Package 'Renvlp'

March 16, 2020

Type Package
Title Computing Envelope Estimators
Version 2.8
Date 2020-03-16
Author Minji Lee, Zhihua Su
Maintainer Minji Lee <mlee9@ufl. edu>
Description Provides a general routine, envMU, which allows estimation of the M enve-lope of span(U) given root n consistent estimators of M and U. The routine envMU does not pre-sume a model. This package implements response envelopes, partial response envelopes, en-velopes in the predictor space, heteroscedastic envelopes, simultaneous envelopes, scaled re-sponse envelopes, scaled envelopes in the predictor space, groupwise envelopes, weighted en-velopes, envelopes in logistic regression and envelopes in Poisson regres-
sion. For each of these model-based routines the package provides inference tools includ-ing bootstrap, cross validation, estimation and prediction, hypothesis testing on coeffi-cients are included except for weighted envelopes. Tools for selection of dimension in-clude AIC, BIC and likelihood ratio testing. Background is avail-able at Cook, R. D., Forzani, L. and Su, Z. (2016) doi:10.1016/j.jmva.2016.05.006. Optimiza-tion is based on a clockwise coordinate descent algorithm.
License GPL-2
NeedsCompilation no
Imports Rsolnp, stats
Suggests MASS
Repository CRAN
Date/Publication 2020-03-16 11:00:02 UTC
R topics documented:
Renvlp-package 3
Berkeley 5
boot.env 6
boot.genv 7
boot.henv 8
boot.logit.env 9
boot.penv 10
boot.pois.env 11
boot.senv 12
boot.stenv 13
boot.sxenv 14
boot.xenv 15
contr 16
cv.env 17
cv.genv 18
cv.henv 19
cv.logit.env 20
cv.penv 21
cv.pois.env 22
cv.senv 23
cv.stenv 24
cv.sxenv 25
cv.xenv 26
d.stenv 27
env 28
envMU 30
expan 31
fiberpaper 32
GE 32
genv 33
genvMU 35
ginv 36
henv 36
henvMU 38
horseshoecrab 39
logit.env 40
logit.envMU 42
penv 43
pois.env 45
pois.envMU 46
pred.env 47
pred.genv 48
pred.henv 49
pred.logit.env 50
pred.penv 51
pred.pois.env 52
pred.senv 53
pred.stenv 54
pred.sxenv 55
pred.xenv 56
pred2.env 57
sales 58
senv 59
Renvlp-package 3
senvMU 61
stenv 62
stenvMU 64
sxenv 65
sxenvMU 67
testcoef.env 68
testcoef.genv 69
testcoef.henv 70
testcoef.logit.env 71
testcoef.penv 73
testcoef.pois.env 74
testcoef.senv 75
testcoef.stenv 76
testcoef.sxenv 78
testcoef.xenv 79
u.env 80
u.genv 81
u.henv 82
u.logit.env 83
u.penv 84
u.pois.env 85
u.pred2.env 86
u.senv 87
u.stenv 88
u.sxenv 89
u.xenv 90
waterstrider 91
weighted.env 92
weighted.penv 93
weighted.pred.env 95
weighted.xenv 96
wheatprotein 98
xenv 99
Index 102
Renvlp-package Computing Envelope Estimators

Description

This package contains functions for estimating envelope models including response envelopes, partial response envelopes, envelopes in the predictor space, heteroscedastic envelopes, simultaneous envelopes, scaled response envelopes, scaled envelopes in the predictor space, groupwise envelopes, weighted envelopes, envelopes in logistic regression and envelopes in poisson regression.

Details

Package:	Renvlp
Type:	Package
Version:	2.8
Date:	$2020-03-16$
License:	GPL-2
Imports:	Rsolnp
Suggests:	Mass, stats

Author(s)

Minji Lee and Zhihua Su.
Maintainer: Minji Lee mlee9@ufl.edu

References

Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.

Cook, R. D., Li, B. and Chiaromente, F. (2010). Envelope Models for Parsimonious and Efficient Multivariate Linear Regression (with discussion). Statist. Sinica 20, 927-1010.
Su, Z. and Cook, R.D. (2011). Partial envelopes for efficient estimation in multivariate linear regression. Biometrika 98, 133-146.
Cook, R. D., Helland, I. S. and Su, Z. (2013). Envelopes and Partial Least Squares Re- gression. Journal of the Royal Statistical Society: Series B 75, 851-877.
Su, Z. and Cook, R.D. (2013). Estimation of Multivariate Means with Heteroscedastic Error Using Envelope Models. Statistica Sinica, 23, 213-230.

Cook, R. D., Zhang, X. (2015). Simultaneous Envelopes for Multivariate Linear Regression. Technometrics 57, 11-25.

Cook, R. D., Su, Z. (2013). Scaled Envelopes: scale Invariant and Efficient Estimation in Multivariate Linear Regression. Biometrika 100, 939-954.
Cook, R. D., Su, Z. (2016). Scaled Predictor Envelopes and Partial Least Squares Regression. Technometrics 58, 155-165.

Park, Y., Su, Z. and Zhu, H. (2017) Groupwise envelope models for Imaging Genetic Analysis. Biometrics, to appear.

Eck, D. J. and Cook, R. D. (2017). Weighted Envelope Estimation to Handle Variability in Model Selection. Biometrika.

Cook, R. D., Zhang, X. (2015). Foundations for Envelope Models and Methods. Journal of the American Statistical Association 110, 599-611.

| Berkeley \quad Berkeley Guidance Study Data |
| :--- | :--- |

Description

Heights of children born in Berkeley

Usage

data("Berkeley")

Format

A data frame with 93 observations on the following 32 variables.
V1 Sex.
V2 Age 1.
V3 Age 1.25.
V4 Age 1.5.
V5 Age 1.75.
V6 Age 2.
V7 Age 3.
V8 Age 4.
v9 Age 5.
V10 Age 6.
V11 Age 7.
V12 Age 8.
V13 Age 8.5.
V14 Age 9.
V15 Age 9.5.
V16 Age 10.
V17 Age 10.5.
V18 Age 11.
V19 Age 11.5.
V20 Age 12.
V21 Age 12.5.
V22 Age 13.
V23 Age 13.5.
V24 Age 14.
V25 Age 14.5.

V26 Age 15.
V27 Age 15.5.
V28 Age 16.
V29 Age 16.5.
V30 Age 17.
V31 Age 17.5.
V32 Age 18.

Details

This data set contains measurements of heights of children born in 1928-29 in Berkeley, CA.

References

Tuddenham, R. D. and Snyder, M. M. (1954). Physical growth of California boys and girls from birth to eighteen years. Publications in child developments. University of California, Berkeley, 1(2), 183-364.
boot.env Bootstrap for env

Description

Compute bootstrap standard error for the envelope estimator.

Usage

boot.env(X, Y, u, B)

Arguments

$X \quad$ Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
$Y \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
$u \quad$ Dimension of the envelope. An integer between 0 and r.
B Number of bootstrap samples. A positive integer.

Details

This function computes the bootstrap standard errors for the regression coefficients in the envelope model by bootstrapping the residuals.

Value

The output is an r by p matrix.
bootse The standard error for elements in beta computed by bootstrap.

Examples

```
data(wheatprotein)
X <- wheatprotein[, 8]
Y <- wheatprotein[, 1:6]
u<- u.env(X,Y)
u
B <- 100
bootse <- boot.env(X, Y, 1, B)
bootse
```

boot.genv
Bootstrap for genv

Description

Compute bootstrap standard error for the groupwise envelope.

Usage

boot.genv(X, Y, Z, u, B)

Arguments

X
$\mathrm{Y} \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
Z
$\mathrm{u} \quad$ Dimension of the groupwise envelope. An integer between 0 and r .
B Number of bootstrap samples. A positive integer.

Details

This function computes the bootstrap standard errors for the regression coefficients in the groupwise envelope model by bootstrapping the residuals.

Value

The output is an p by r matrix.
bootse The standard error for elements in beta computed by bootstrap.

Examples

```
data(fiberpaper)
X <- fiberpaper[ , c(5, 7)]
Y <- fiberpaper[ , 1:3]
Z <- as.numeric(fiberpaper[ , 6] > mean(fiberpaper[ , 6]))
## Not run: B <- 100
## Not run: res <- boot.genv(X, Y, Z, 2, B)
## Not run: res$bootse[[1]]
## Not run: res$bootse[[2]]
```

```
boot.henv Bootstrap for henv
```


Description

Compute bootstrap standard error for the heteroscedastic envelope.

Usage

boot.henv(X, Y, u, B)

Arguments

$\mathrm{X} \quad$ A group indicator vector of length n, where n denotes the number of observations.
$\mathrm{Y} \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
$u \quad$ Dimension of the heteroscedastic envelope. An integer between 0 and r.
B Number of bootstrap samples. A positive integer.

Details

This function computes the bootstrap standard errors for the regression coefficients in the heteroscedastic envelope model by bootstrapping the residuals.

Value

The output is an r by p matrix.
bootse The standard error for elements in beta computed by bootstrap.

Examples

```
data(waterstrider)
X <- waterstrider[ , 1]
Y <- waterstrider[ , 2:5]
B <- 100
## Not run: res <- boot.henv(X, Y, 2, B)
## Not run: res
```

boot.logit.env Bootstrapfor logit.env

Description

Compute bootstrap standard error for the envelope estimator in logistic regression.

Usage

boot.logit.env(X, Y, u, B)

Arguments

$\mathrm{X} \quad$ Predictors. An n by p matrix, p is the number of predictors and n is number of observations. The predictors must be continuous variables.
$Y \quad$ Response. An n by 1 matrix. The univariate response must be binary.
$\mathrm{u} \quad$ Dimension of the envelope. An integer between 0 and p .
B Number of bootstrap samples. A positive integer.

Details

This function computes the bootstrap standard errors for the coefficients in the logistic regression envelope by the paired bootstrap.

Value

The output is a p by 1 matrix.
bootse The standard error for elements in beta computed by bootstrap.

Examples

```
    data(horseshoecrab)
    X1 <- as.numeric(horseshoecrab[ , 1] == 2)
    X2 <- as.numeric(horseshoecrab[ , 1] == 3)
    X3 <- as.numeric(horseshoecrab[ , 1] == 4)
    X4 <- as.numeric(horseshoecrab[ , 2] == 2)
    X5 <- as.numeric(horseshoecrab[ , 2] == 3)
    X6 <- horseshoecrab[ , 3]
    X7 <- horseshoecrab[ , 5]
    X <- cbind(X1, X2, X3, X4, X5, X6, X7)
    Y <- as.numeric(ifelse(horseshoecrab[ , 4] > 0, 1, 0))
    B <- 100
    \#\# Not run: bootse <- boot.logit.env(X, Y, 1, B)
    \#\# Not run: bootse
```

boot.penv Bootstrap for penv

Description

Compute bootstrap standard error for the partial envelope estimator.

Usage

boot. penv (X1, X2, Y, u, B)

Arguments

X1 Predictors of main interest. An n by p 1 matrix, n is the number of observations, and p 1 is the number of main predictors. The predictors can be univariate or multivariate, discrete or continuous.
X2 Covariates, or predictors not of main interest. An n by p2 matrix, p2 is the number of covariates.
$Y \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
$\mathrm{u} \quad$ Dimension of the partial envelope. An integer between 0 and r .
B Number of bootstrap samples. A positive integer.

Details

This function computes the bootstrap standard errors for the regression coefficients betal in the partial envelope model by bootstrapping the residuals.

Value

The output is an r by p 1 matrix.
bootse The standard error for elements in betal computed by bootstrap.

Examples

```
data(fiberpaper)
X1 <- fiberpaper[, 7]
X2 <- fiberpaper[, 5:6]
Y <- fiberpaper[, 1:4]
B <- 100
## Not run: bootse <- boot.penv(X1, X2, Y, 1, B)
## Not run: bootse
```

boot.pois.env Bootstrap for pois.env

Description

Compute bootstrap standard error for the envelope estimator in poisson regression.

Usage

boot.pois.env(X, Y, u, B)

Arguments

$\mathrm{X} \quad$ Predictors. An n by p matrix, p is the number of predictors and n is number of observations. The predictors must be continuous variables.
$Y \quad$ Response. An n by 1 matrix. The univariate response must be counts.
$\mathrm{u} \quad$ Dimension of the envelope. An integer between 0 and p .
B Number of bootstrap samples. A positive integer.

Details

This function computes the bootstrap standard errors for the coefficients in the poisson regression envelope by the paired bootstrap.

Value

The output is a p by 1 matrix.
bootse The standard error for elements in beta computed by bootstrap.

Examples

```
data(horseshoecrab)
X1 <- as.numeric(horseshoecrab[ , 1] == 2)
X2 <- as.numeric(horseshoecrab[ , 1] == 3)
X3 <- as.numeric(horseshoecrab[ , 1] == 4)
X4 <- as.numeric(horseshoecrab[ , 2] == 2)
X5 <- as.numeric(horseshoecrab[ , 2] == 3)
X6 <- horseshoecrab[ , 3]
X7 <- horseshoecrab[ , 5]
\(\mathrm{X}<-\mathrm{cbind}(\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 7)\)
Y <- horseshoecrab[ , 4]
B <- 100
\#\# Not run: bootse <- boot.pois.env(X, Y, 1, B)
\#\# Not run: bootse
```

boot.senv

Description

Compute bootstrap standard error for the scaled envelope estimator.

Usage

boot. senv(X, Y, u, B)

Arguments

$X \quad$ Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
$Y \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
$\mathrm{u} \quad$ Dimension of the scaled envelope. An integer between 0 and r .
B Number of bootstrap samples. A positive integer.

Details

This function computes the bootstrap standard errors for the regression coefficients in the scaled envelope model by bootstrapping the residuals.

Value

The output is an r by p matrix.
bootse The standard error for elements in beta computed by bootstrap.

Examples

```
data(sales)
X <- sales[, 1:3]
Y <- sales[, 4:7]
u <- u. senv(X,Y)
u
## Not run: B <- 100
## Not run: bootse <- boot.senv(X, Y, 2, B)
## Not run: bootse
```

boot.stenv Bootstrap for stenv

Description

Compute bootstrap standard error for the simultaneous envelope estimator.

Usage

boot.stenv(X, Y, q, u, B)

Arguments

$X \quad$ Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
$Y \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
$q \quad$ Dimension of the X-envelope. An integer between 0 and p.
$u \quad$ Dimension of the Y-envelope. An integer between 0 and r .
B Number of bootstrap samples. A positive integer.

Details

This function computes the bootstrap standard errors for the regression coefficients in the envelope model by bootstrapping the residuals.

Value

The output is an p by r matrix.
bootse The standard error for elements in beta computed by bootstrap.

Examples

```
    data(fiberpaper)
    X <- fiberpaper[, 5:7]
    Y <- fiberpaper[, 1:4]
    u <- u.stenv(X, Y)
    u
    ## Not run: B <- 100
    ## Not run: bootse <- boot.stenv(X, Y, 2, 3, B)
    ## Not run: bootse
```

 boot.sxenv Bootstrap for sxenv

Description

Compute bootstrap standard error for the scaled envelope in the predictor space estimator.

Usage

boot. sxenv (X, Y, u, R, B)

Arguments

$\mathrm{X} \quad$ Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
$Y \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
$u \quad$ Dimension of the scaled envelope in the predictor space. An integer between 0 and p .

R The number of replications of the scales. A vector, the sum of all elements of R must be p .

B Number of bootstrap samples. A positive integer.

Details

This function computes the bootstrap standard errors for the regression coefficients in the scaled envelope model in the predictor space by bootstrapping the residuals.

Value

The output is an p by r matrix.
bootse The standard error for elements in beta computed by bootstrap.

Examples

```
data(sales)
Y <- sales[, 1:3]
X <- sales[, 4:7]
\(\mathrm{R}<-\operatorname{rep}(1,4)\)
\(u<-u \cdot \operatorname{sxenv}(X, Y, R)\)
u
B <- 100
\#\# Not run: bootse <- boot. sxenv(X, Y, 2, R, B)
\#\# Not run: bootse
```

boot.xenv Bootstrap for xenv

Description

Compute bootstrap standard error for the envelope estimator.

Usage

boot. $\mathrm{xenv}(\mathrm{X}, \mathrm{Y}, \mathrm{u}, \mathrm{B})$

Arguments

X
Predictors. An n by p matrix, p is the number of predictors and n is number of observations. The predictors must be continuous variables.

Y
Responses. An n by r matrix, r is the number of responses. The response can be univariate or multivariate and must be continuous variable.
$u \quad$ Dimension of the envelope. An integer between 0 and p .
B Number of bootstrap samples. A positive integer.

Details

This function computes the bootstrap standard errors for the regression coefficients in the envelope model in predictor space by bootstrapping the residuals.

Value

The output is a p by r matrix.
bootse The standard error for elements in beta computed by bootstrap.

Examples

```
data(wheatprotein)
X <- wheatprotein[, 1:6]
Y <- wheatprotein[, 7]
## Not run: B <- 100
## Not run: bootse <- boot.xenv(X, Y, 2, B)
## Not run: bootse
```

contr Contraction matrix

Description

Generate contraction matrix.

Usage

contr (d)

Arguments

d
Dimension of the contraction matrix. A positive integer.

Details

The contraction and expansion matrices are links between the "vec" operator and "vech"operator: for an d by d symmetric matrix $A, \operatorname{vech}(A)=\operatorname{contr}(d) * \operatorname{vec}(A)$, and $\operatorname{vec}(A)=\operatorname{expan}(d) * \operatorname{vech}(A)$. The "vec" operator stacks the matrix A into an $\mathrm{d}^{\wedge} 2$ dimensional vector columnwise. The "vech" operator stacks the lower triangle or the upper triangle of a symmetric matrix into an $d *(d+1) /$ 2 vector. For more details of "vec", "vech", contraction and expansion matrix, refer to Henderson and Searle (1979).

Value

The output is a matrix.
contrMatrix A contraction matrix that has dimension $\mathrm{d}^{*}(\mathrm{~d}+1) / 2$ by d ${ }^{\wedge} 2$.

References

Henderson, H. V., and Searle, S. R. (1979). Vec and Vech operators for matrices, with some uses in Jacobians and multivariate statistics. Canadian J. Statist. 7, 65-81.

Examples

contr(3)

Description

Compute the prediction error for the envelope estimator using m-fold cross validation.

Usage

cv.env(X, Y, u, m, nperm)

Arguments

$X \quad$ Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
$Y \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
$u \quad$ Dimension of the envelope. An integer between 0 and r .
$m \quad$ A positive integer that is used to indicate m-fold cross validation.
nperm A positive integer indicating number of permutations of the observations, m-fold cross validation is run on each permutation.

Details

This function computes prediction errors using m-fold cross validation. For a fixed dimension u, the data is randomly partitioned into m parts, each part is in turn used for testing for the prediction performance while the rest $\mathrm{m}-1$ parts are used for training. This process is repeated for nperm times, and average prediction error is reported. As Y is multivariate, the identity inner product is used for computing the prediction errors.

Value

The output is a real nonnegative number.
cVPE The prediction error estimated by m-fold cross validation.

Examples

```
data(wheatprotein)
X <- wheatprotein[, 8]
Y <- wheatprotein[, 1:6]
u <- u.env(X, Y)
u
m <- 5
nperm <- 50
cvPE <- cv.env(X, Y, 1, m, nperm)
cvPE
```

cv.genv Cross validation for genv

Description

Compute the prediction error for the groupwise envelope estimator using m-fold cross validation.

Usage

cv.genv(X, Y, Z, u, m, nperm)

Arguments

$\mathrm{X} \quad$ Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
$Y \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
Z A group indicator vector of length n, where n denotes the number of observations.
$\mathrm{u} \quad$ Dimension of the groupwise envelope. An integer between 0 and r .
$m \quad$ A positive integer that is used to indicate m-fold cross validation.
nperm A positive integer indicating number of permutations of the observations, m-fold cross validation is run on each permutation.

Details

This function computes prediction errors using m-fold cross validation. For a fixed dimension u, the data is randomly partitioned into m parts, each part is in turn used for testing for the prediction performance while the rest $\mathrm{m}-1$ parts are used for training. This process is repeated for nperm times, and average prediction error is reported. As Y is multivariate, the identity inner product is used for computing the prediction errors.

Value

The output is a real nonnegative number.
cvPE The prediction error estimated by m-fold cross validation.

Examples

```
data(fiberpaper)
X <- fiberpaper[ , c(5, 7)]
Y <- fiberpaper[ , 1:3]
Z <- as.numeric(fiberpaper[ , 6] > mean(fiberpaper[ , 6]))
## Not run: m <- 5
## Not run: nperm <- 50
```

```
## Not run: cvPE <- cv.genv(X, Y, Z, 2, m, nperm)
```

\#\# Not run: cvPE

```
cv.henv
```


Cross validation for henv

Description

Compute the prediction error for the heteroscedastic envelope estimator using m-fold cross validation.

Usage

cv.henv(X, Y, u, m, nperm)

Arguments

$\mathrm{X} \quad$ A group indicator vector of length n, where n denotes the number of observations.
$Y \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
$\mathrm{u} \quad$ Dimension of the heteroscedastic envelope. An integer between 0 and r .
$m \quad$ A positive integer that is used to indicate m-fold cross validation.
nperm A positive integer indicating number of permutations of the observations, m-fold cross validation is run on each permutation.

Details

This function computes prediction errors using m-fold cross validation. For a fixed dimension u, the data is randomly partitioned into m parts, each part is in turn used for testing for the prediction performance while the rest $\mathrm{m}-1$ parts are used for training. This process is repeated for nperm times, and average prediction error is reported. As Y is multivariate, the identity inner product is used for computing the prediction errors.

Value

The output is a real nonnegative number.
cvPE The prediction error estimated by m-fold cross validation.

Examples

```
    data(waterstrider)
    X <- waterstrider[ , 1]
    Y <- waterstrider[ , 2:5]
    m <- 5
    nperm <- 50
    ## Not run: cvPE <- cv.henv(X, Y, 2, m, nperm)
    ## Not run: cvPE
```

 cv.logit.env Cross validation for logit.env

Description

Compute the prediction error for the envelope estimator in logistic regression using m-fold cross validation.

Usage

cv.logit.env(X, Y, u, m, nperm)

Arguments

$\mathrm{X} \quad$ Predictors. An n by p matrix, p is the number of predictors and n is number of observations. The predictors must be continuous variables.
Y Response. An n by 1 matrix. The univariate response must be binary.
$\mathrm{u} \quad$ Dimension of the envelope. An integer between 0 and p .
$\mathrm{m} \quad$ A positive integer that is used to indicate m -fold cross validation.
nperm A positive integer indicating number of permutations of the observations, m-fold cross validation is run on each permutation.

Details

This function computes prediction errors using m-fold cross validation. For a fixed dimension u, the data is randomly partitioned into m parts, each part is in turn used for testing for the prediction performance while the rest $\mathrm{m}-1$ parts are used for training. This process is repeated for nperm times, and average prediction error is reported.

Value

The output is a real nonnegative number.
cVPE The prediction error estimated by m-fold cross validation.

Examples

```
data(horseshoecrab)
X1 <- as.numeric(horseshoecrab[ , 1] == 2)
X2 <- as.numeric(horseshoecrab[ , 1] == 3)
X3 <- as.numeric(horseshoecrab[ , 1] == 4)
X4 <- as.numeric(horseshoecrab[ , 2] == 2)
X5 <- as.numeric(horseshoecrab[ , 2] == 3)
X6 <- horseshoecrab[ , 3]
X7 <- horseshoecrab[ , 5]
X <- cbind(X1, X2, X3, X4, X5, X6, X7)
Y <- as.numeric(ifelse(horseshoecrab[ , 4] > 0, 1, 0))
m <- 5
nperm <- 50
## Not run: cvPE <- cv.logit.env(X, Y, 1, m, nperm)
## Not run: cvPE
```

cv.penv Cross validation for penv

Description

Compute the prediction error for the partial envelope estimator using m-fold cross validation.

Usage

cv.penv (X1, X2, Y, u, m, nperm)

Arguments

X1 Predictors of main interest. An n by p1 matrix, n is the number of observations, and p 1 is the number of main predictors. The predictors can be univariate or multivariate, discrete or continuous.

Covariates, or predictors not of main interest. An n by p2 matrix, p2 is the number of covariates.

Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
u
Dimension of the envelope. An integer between 0 and r.
m
A positive integer that is used to indicate m-fold cross validation.
nperm A positive integer indicating number of permutations of the observations, m-fold cross validation is run on each permutation.

Details

This function computes prediction errors using m-fold cross validation. For a fixed dimension u, the data is randomly partitioned into m parts, each part is in turn used for testing for the prediction performance while the rest $\mathrm{m}-1$ parts are used for training. This process is repeated for nperm times, and average prediction error is reported. As Y is multivariate, the identity inner product is used for computing the prediction errors.

Value

The output is a real nonnegative number.
cvPE The prediction error estimated by m-fold cross validation.

Examples

```
data(fiberpaper)
X1 <- fiberpaper[, 7]
X2 <- fiberpaper[, 5:6]
Y <- fiberpaper[, 1:4]
m <- 5
nperm <- 50
## Not run: cvPE <- cv.penv(X1, X2, Y, 1, m, nperm)
## Not run: cvPE
```

cv.pois.env Cross validation for pois.env

Description

Compute the prediction error for the envelope estimator in poisson regression using m-fold cross validation.

Usage

cv.pois.env(X, Y, u, m, nperm)

Arguments

$X \quad$ Predictors. An n by p matrix, p is the number of predictors and n is number of observations. The predictors must be continuous variables.
Y Response. An n by 1 matrix. The univariate response must be counts.
$\mathrm{u} \quad$ Dimension of the envelope. An integer between 0 and p .
$\mathrm{m} \quad$ A positive integer that is used to indicate m -fold cross validation.
nperm A positive integer indicating number of permutations of the observations, m-fold cross validation is run on each permutation.

Details

This function computes prediction errors using m-fold cross validation. For a fixed dimension u, the data is randomly partitioned into m parts, each part is in turn used for testing for the prediction performance while the rest $\mathrm{m}-1$ parts are used for training. This process is repeated for nperm times, and average prediction error is reported.

Value

The output is a real nonnegative number.
CVPE The prediction error estimated by m-fold cross validation.

Examples

```
data(horseshoecrab)
X1 <- as.numeric(horseshoecrab[ , 1] == 2)
X2 <- as.numeric(horseshoecrab[ , 1] == 3)
X3 <- as.numeric(horseshoecrab[ , 1] == 4)
X4 <- as.numeric(horseshoecrab[ , 2] == 2)
X5 <- as.numeric(horseshoecrab[ , 2] == 3)
X6 <- horseshoecrab[ , 3]
X7 <- horseshoecrab[ , 5]
X <- cbind(X1, X2, X3, X4, X5, X6, X7)
Y <- horseshoecrab[ , 4]
m<- 5
nperm <- 50
## Not run: cvPE <- cv.pois.env(X, Y, 1, m, nperm)
## Not run: cvPE
```


Description

Compute the prediction error for the scaled envelope estimator using m-fold cross validation.

Usage

cv.senv(X, Y, u, m, nperm)

Arguments

X
Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.

Y
Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.

```
u Dimension of the scaled envelope. An integer between 0 and r.
m A positive integer that is used to indicate m-fold cross validation.
nperm A positive integer indicating number of permutations of the observations, m-fold
cross validation is run on each permutation.
```


Details

This function computes prediction errors using m-fold cross validation. For a fixed dimension u, the data is randomly partitioned into m parts, each part is in turn used for testing for the prediction performance while the rest $\mathrm{m}-1$ parts are used for training. This process is repeated for nperm times, and average prediction error is reported. As Y is multivariate, the identity inner product is used for computing the prediction errors.

Value

The output is a real nonnegative number.
cVPE The prediction error estimated by m-fold cross validation.

Examples

```
data(sales)
X <- sales[, 1:3]
Y <- sales[, 4:7]
m <- 5
nperm <- 50
## Not run: cvPE <- cv.senv(X, Y, 2, m, nperm)
## Not run: cvPE
```

```
cv.stenv Cross validation for stenv
```


Description

Compute the prediction error for the simultaneous envelope estimator using m-fold cross validation.

Usage

cv.stenv(X, Y, q, u, m, nperm)

Arguments

X
q

Y Responses. An n by r matrix, r is the number of responses. The response can be univariate or multivariate and must be continuous variable.
Predictors. An n by p matrix, p is the number of predictors and n is number of observations. The predictors must be continuous variables.

Dimension of the X -envelope. An integer between 0 and p .

u	Dimension of the Y-envelope. An integer between 0 and r.
m	A positive integer that is used to indicate m -fold cross validation.
nperm	A positive integer indicating number of permutations of the observations, m -fold cross validation is run on each permutation.

Details

This function computes prediction errors using m-fold cross validation. For a fixed dimension (q, u), the data is randomly partitioned into m parts, each part is in turn used for testing for the prediction performance while the rest $\mathrm{m}-1$ parts are used for training. This process is repeated for nperm times, and average prediction error is reported. If Y is multivariate, the identity inner product is used for computing the prediction errors.

Value

The output is a real nonnegative number.
cvPE The prediction error estimated by m-fold cross validation.

Examples

```
data(fiberpaper)
X <- fiberpaper[, 5:7]
Y <- fiberpaper[, 1:4]
m <- 5
nperm <- 50
## Not run: cvPE <- cv.stenv(X, Y, 2, 3, m, nperm)
## Not run: cvPE
```

cv.sxenv Cross validation for sxenv

Description

Compute the prediction error for the scaled envelope in the predictor space estimator using m -fold cross validation.

Usage

cv.sxenv(X, Y, $u, R, m, n p e r m)$

Arguments

X

Y
$u \quad$ Dimension of the scaled envelope. An integer between 0 and r.
R
m
nperm
Predictors. An n by p matrix, p is the number of predictors and n is number of observations. The predictors must be continuous variables.

Responses. An n by r matrix, r is the number of responses. The response can be univariate or multivariate and must be continuous variable.
,
The number of replications of the scales. A vector, the sum of all elements of R must be p .

A positive integer that is used to indicate m-fold cross validation.
A positive integer indicating number of permutations of the observations, m-fold cross validation is run on each permutation.

Details

This function computes prediction errors using m-fold cross validation. For a fixed dimension u, the data is randomly partitioned into m parts, each part is in turn used for testing for the prediction performance while the rest $\mathrm{m}-1$ parts are used for training. This process is repeated for nperm times, and average prediction error is reported. As Y is multivariate, the identity inner product is used for computing the prediction errors.

Value

The output is a real nonnegative number.
cvPE The prediction error estimated by m-fold cross validation.

Examples

```
data(sales)
Y <- sales[, 1:3]
X <- sales[, 4:7]
R <- rep(1, 4)
m <- 5
nperm <- 50
## Not run: cvPE <- cv.sxenv(X, Y, 2, R, m, nperm)
## Not run: cvPE
```

cv.xenv Cross validation for xenv

Description

Compute the prediction error for the envelope estimator using m-fold cross validation.

Usage

```
cv.xenv(X, Y, u, m, nperm)
```


Arguments

$X \quad$ Predictors. An n by p matrix, p is the number of predictors and n is number of observations. The predictors must be continuous variables.
$\mathrm{Y} \quad$ Responses. An n by r matrix, r is the number of responses. The response can be univariate or multivariate and must be continuous variable.
$\mathrm{u} \quad$ Dimension of the envelope. An integer between 0 and p .
$m \quad$ A positive integer that is used to indicate m-fold cross validation.
nperm A positive integer indicating number of permutations of the observations, m-fold cross validation is run on each permutation.

Details

This function computes prediction errors using m-fold cross validation. For a fixed dimension u, the data is randomly partitioned into m parts, each part is in turn used for testing for the prediction performance while the rest $\mathrm{m}-1$ parts are used for training. This process is repeated for nperm times, and average prediction error is reported. If Y is multivariate, the identity inner product is used for computing the prediction errors.

Value

The output is a real nonnegative number.
cVPE The prediction error estimated by m-fold cross validation.

Examples

```
data(wheatprotein)
X <- wheatprotein[, 1:6]
Y <- wheatprotein[, 7]
m <- 5
nperm <- 50
## Not run: cvPE <- cv.xenv(X, Y, 2, m, nperm)
## Not run: cvPE
```


d.stenv

Select the rank of beta

Description

This function outputs the rank selected by a chi-squared test developed by Bura and Cook (2003) with specified significance level for the beta.

Usage

d.stenv(X, Y, alpha = 0.01)

Arguments

X
Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
$\mathrm{Y} \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
alpha Significance level for testing. The default is 0.01 .

Details

This function estimate the rank of beta using a chi-squared test. The test statistic and degrees of freedom are described in Bura and Cook (2003).

Value

rank.beta Rank of beta guided by the Bura-Cook estimator.

References

Bura, E. and Cook, R. D. (2003). Rank estimation in reduced-rank regression. Journal of Multivariate Analysis, 87, 159-176.

```
env
Fit the envelope model
```


Description

Fit the envelope model in multivariate linear regression with dimension u.

Usage

$$
\operatorname{env}(X, Y, u, \text { asy }=\text { TRUE, init = NULL) }
$$

Arguments

$X \quad$ Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
$\mathrm{Y} \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
$u \quad$ Dimension of the envelope. An integer between 0 and r.
asy Flag for computing the asymptotic variance of the envelope estimator. The default is TRUE. When p and r are large, computing the asymptotic variance can take much time and memory. If only the envelope estimators are needed, the flag can be set to asy $=$ FALSE.
init The user-specified value of Gamma for the envelope subspace. An r by u matrix. The default is the one generated by function envMU.

Details

This function fits the envelope model to the responses and predictors,

$$
Y=\mu+\Gamma \eta X+\varepsilon, \Sigma=\Gamma \Omega \Gamma^{\prime}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{\prime}
$$

using the maximum likelihood estimation. When the dimension of the envelope is between 1 and $\mathrm{r}-1$, the starting value and blockwise coordinate descent algorithm in Cook et al. (2016) is implemented. When the dimension is r , then the envelope model degenerates to the standard multivariate linear regression. When the dimension is 0 , it means that X and Y are uncorrelated, and the fitting is different.

Value

The output is a list that contains the following components:

beta	The envelope estimator of the regression coefficients.
Sigma	The envelope estimator of the error covariance matrix.
Gamma	An orthonormal basis of the envelope subspace.
Gamma0	An orthonormal basis of the complement of the envelope subspace.
eta	The coordinates of beta with respect to Gamma.
Omega	The coordinates of Sigma with respect to Gamma.
Omega0	The coordinates of Sigma with respect to Gamma0.
mu	The estimated intercept. loglik maximized log likelihood function.
covMatrix	The asymptotic covariance of vec(beta). The covariance matrix returned are asymptotic. For the actual standard errors, multiply by $1 / \mathrm{n}$.
asySE	The asymptotic standard error for elements in beta under the envelope model. The standard errors returned are asymptotic, for actual standard errors, multiply by $1 /$ sqrt(n).
ratio	The asymptotic standard error ratio of the standard multivariate linear regression estimator over the envelope estimator, for each element in beta.

$\mathrm{n} \quad$ The number of observations in the data.

References

Cook, R. D., Li, B. and Chiaromente, F. (2010). Envelope Models for Parsimonious and Efficient Multivariate Linear Regression (with discussion). Statist. Sinica 20, 927-1010.
Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.

Examples

```
data(wheatprotein)
X <- wheatprotein[, 8]
\(Y<-\) wheatprotein[, 1:6]
\(u<-u \cdot \operatorname{env}(X, Y)\)
u
\(m<-\operatorname{env}(X, Y, 1)\)
m
m\$beta
```

envMU Estimate the envelope subspace

Description

Estimate the envelope subspace with specified dimension.

Usage

envMU(M, U, u, initial = NULL)

Arguments

M M matrix in the envelope objective function. An r by r semi-positive definite matrix.
$U \quad U$ matrix in the envelope objective function. An r by r semi-positive definite matrix.
$u \quad$ Dimension of the envelope. An integer between 0 and r .
initial The user-specified value of Gamma for the envelope subspace.

Details

This function estimate the envelope subspace using an non-Grassmann optimization algorithm. The starting value and optimization algorithm is described in Cook et al. (2016).

Value

Gammahat The orthonormal basis of the envelope subspace.
Gamma0hat The orthonormal basis of the complement of the envelope subspace.
objfun The minimized objective function.

References

Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.
expan Expansion matrix

Description

Generate expansion matrix.

Usage

expan(d)

Arguments

d
Dimension of the expansion matrix. A positive integer.

Details

The contraction and expansion matrices are links between the "vec" operator and "vech"operator: for an d by $d \operatorname{symmetric}$ matrix $A, \operatorname{vech}(A)=\operatorname{contr}(d) * \operatorname{vec}(A)$, and $\operatorname{vec}(A)=\operatorname{expan}(d) * \operatorname{vech}(A)$. The "vec" operator stacks the matrix A into an $\mathrm{d}^{\wedge} 2$ dimensional vector columnwise. The "vech" operator stacks the lower triangle or the upper triangle of a symmetric matrix into an $d *(d+1) /$ 2 vector. For more details of "vec", "vech", contraction and expansion matrix, refer to Henderson and Searle (1979).

Value

The output is a matrix.
expanMatrix An expansion matrix that has dimension $\mathrm{d}^{\wedge} 2$ by d*(d+1)/2.

References

Henderson, H. V., and Searle, S. R. (1979). Vec and Vech operators for matrices, with some uses in Jacobians and multivariate statistics. Canadian J. Statist. 7, 65-81.

Examples

expan(3)

Description

Pulp and paper property

Usage

data("fiberpaper")

Format

A data frame with 62 observations on the following 8 variables.
V1 Breaking length.
V2 Elastic modulus.
V3 Stress at failure.
V4 Burst strength.
V5 Arithmetic fiber length.
V6 Long fiber fraction.
V7 Fine fiber fraction.
V8 Zero span tensile.

Details

This data set contains measurements of properties of pulp fibers and the paper made from them.

References

Johnson, R.A. and Wichern, D.W. (2007). Applied Multivariate Statistical Analysis, 6th edition.
GE Gaussian elimination

Description

Gaussian elimination with partial pivoting.

Usage

GE(A)

Arguments

A
An n by p matrix. n must be greater than or equal to p.

Details

This function performs Gaussian elimination to the input matrix and returns the locations of pivoting elements.

Value

The output is a vector of length n.
idx A vector of length n. The first p elements are the indices of the pivoting elements, ordered accoridng to columns, and the rest n-p elements are the remaining indices from 1 to n .
genv Fit the groupwise envelope model

Description

Fit the groupwise envelope model in multivariate linear regression with dimension u.

Usage

$\operatorname{genv}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{u}$, asy $=$ TRUE, fit $=$ TRUE, init $=$ NULL)

Arguments

X

Y

Z
u
asy
fit Flag for computing the fitted response. The default is TRUE.
init The user-specified value of Gamma for the groupwise envelope subspace. An r by u matrix. The default is the one generated by function genvMU.

Details

This function fits the groupwise envelope model to the responses and predictors,

$$
Y_{(l) j}=\mu_{(l)}+\Gamma \eta_{(l) j} X_{(l) j}+\varepsilon_{(l) j}, \Sigma_{(l)}=\Gamma \Omega_{(l)} \Gamma^{\prime}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{\prime}
$$

for $\mathrm{l}=1, \ldots, \mathrm{~L}$, using the maximum likelihood estimation. When the dimension of the groupwise envelope is between 1 and $\mathrm{r}-1$, the starting value and blockwise coordinate descent algorithm in Cook et al. (2016) is implemented. When the dimension is r , then the envelope model degenerates to the standard multivariate linear regression. When the dimension is 0 , it means that X and Y are uncorrelated, and the fitting is different. When L is 1 , the groupwise envelope model degenerates to the envelope model in Cook et al. (2010).

Value

The output is a list that contains the following components:

beta	A list of r by p matrices for the estimator of regression coefficients. beta[[i]] indicates the estimator of regression coefficient for the ith group.
Sigma	A list of the estimator of error covariance matrix. Sigma[[i]] contains the esti- mated covariance matrix for the ith group.
Gamma	An orthonormal basis of the groupwise envelope subspace.
Gamma0	An orthonormal basis of the complement of the groupwise envelope subspace. eta Omega
Omega0	The coordinates of beta with respect to Gamma. The coordinates of Sigma with respect to Gamma.
mu	The coordinates of Sigma with respect to Gamma0.
The estimator of group mean. A r by L matrix whose ith column contains the	
mean for the group.	

References

Park, Y., Su, Z. and Zhu, H. (2017) Groupwise envelope models for Imaging Genetic Analysis. Biometrics, to appear.
Cook, R. D., Li, B. and Chiaromente, F. (2010). Envelope Models for Parsimonious and Efficient Multivariate Linear Regression (with discussion). Statist. Sinica 20, 927-1010.
Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.

Examples

```
data(fiberpaper)
X <- fiberpaper[ , c(5, 7)]
Y <- fiberpaper[ , 1:3]
Z <- as.numeric(fiberpaper[ , 6] > mean(fiberpaper[ , 6]))
## Not run: u <- u.genv(X, Y, Z)
## Not run: u
## Not run: m <- genv(X, Y, Z, 2)
```

genvMU Estimate the groupwise envelope subspace

Description

Estimate the groupwise envelope subspace with specified dimension.

Usage

genvMU(M, U, MU, u, n, ng, L, initial = NULL)

Arguments

M A matrix M for the non-Grassmann manifold optimization problem in Cook et al. (2016)
$U \quad$ A matrix U for the non-Grassmann manifold optimization problem in Cook et al. (2016)
MU Sum of matrix M and U.
$u \quad$ A given dimension of the groupwise envelope space. It should be an interger between 0 and r.
$\mathrm{n} \quad$ The number of observations.
ng A L by 1 vector of the number of observations in each group.
$\mathrm{L} \quad$ The number of groups.
initial The user-specified value of Gamma for the envelope subspace.

Value
Gamma An r by u matrix for the orthonormal basis of the groupwise envelope subspace.
Gamma0 An r by $(r-u)$ matrix for the orthonormal basis of the complement of the groupwise envelope subspace.

References

Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.

```
    ginv Generalized Inverse of a Matrix
```


Description

Calculates the Moore-Penrose generalized inverse of a matrix X.

Usage
 $\operatorname{ginv}(X$, tol $=\operatorname{sqrt}($. Machine\$double.eps))

Arguments

X Matrix for which the Moore-Penrose inverse is required
tol A relative tolerance to detect zero sigular values

References

Venables, W.N. and Ripley, B.D. (1999) Modern Applied statistics with S-PLUS. Third Edition. Springer. p. 100

Description

Fit the heteroscedastic envelope model with dimension u.

Usage

henv(X, Y, u, asy = TRUE, fit = TRUE, init = NULL)

Arguments

X

Y
u
asy
fit Flag for computing the fitted response. The default is TRUE.
init The user-specified value of Gamma for the heteroscedastic envelope subspace. An r by u matrix. The default is the one generated by function henvMU.

Details

This function fits the heteroscedastic envelope model to the responses,

$$
Y_{(i) j}=\mu+\Gamma \eta_{(i)}+\varepsilon_{(i) j}, \Sigma_{(i)}=\Gamma \Omega_{(i)} \Gamma^{\prime}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{\prime}
$$

for $\mathrm{i}=1, \ldots, \mathrm{p}$, using the maximum likelihood estimation. When the dimension of the heteroscedastic envelope is between 1 and $r-1$, the starting value and blockwise coordinate descent algorithm in Cook et al. (2016) is implemented. When the dimension is r , then the envelope model degenerates to the standard multivariate linear regression for comparing group means. When the dimension is 0 , it means there is no any group effect, and the fitting is different.

Value

The output is a list that contains the following components:

beta	The heteroscedastic envelope estimator of the group main effect. An r by p matix, the ith column of the matrix contains the main effect for the ith group.
Sigma	A list of the heteroscedastic envelope estimator of the error covariance matrix. Sigma[[i]] contains the estimated covariance matrix for the ith group.
Gamma	An orthonormal basis of the heteroscedastic envelope subspace.
Gamma0	An orthonormal basis of the complement of the heteroscedastic envelope subspace.
eta	A list of the coordinates of beta with respect to Gamma. eta [[i]] indicates the coordinates of the main effect of the ith group with respect to Gamma.
Omega	A list of the coordinates of Sigma with respect to Gamma. Omega[[i]] indicates the coordinates of the covariance matrix of the ith group with respect to Gamma.
Omega0	The coordinates of Sigma with respect to Gamma0.
mu	The heteroscedastic envelope estimator of the grand mean. A r by 1 matrix.
mug	A list of the heteroscedastic envelope estimator of the group mean. An r by p matix, the ith column of the matrix contains the mean for the ith group.

loglik	The maximized log likelihood function.
covMatrix	The asymptotic covariance of (mu, vec(beta)' ', An $\mathrm{r}(\mathrm{p}+1)$ by $\mathrm{r}(\mathrm{p}+1)$ matrix. The covariance matrix returned are asymptotic. For the actual standard errors, multiply by $1 / \mathrm{n}$.
asySE	The asymptotic standard error for elements in beta under the heteroscedastic envelope model. An r by p matrix. The standard errors returned are asymptotic, for actual standard errors, multiply by $1 / \mathrm{sqrt}(\mathrm{n})$.
ratio	The asymptotic standard error ratio of the standard multivariate linear regres- sion for comparing group means over the heteroscedastic envelope estimator, for each element in beta. An r by p matrix.
groupInd	A matrix containing the unique values of group indicators. The matrix has p rows.
n	The number of observations in the data.
ng	The number of observations in each group.
	Fitted responses.

References

Su, Z. and Cook, R. D. (2013) Estimation of Multivariate Means with Heteroscedastic Error Using Envelope Models. Statistica Sinica, 23, 213-230.
Cook, R. D., Li, B. and Chiaromente, F. (2010). Envelope Models for Parsimonious and Efficient Multivariate Linear Regression (with discussion). Statist. Sinica 20, 927-1010.

Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.

Examples

```
data(waterstrider)
X <- waterstrider[ , 1]
Y <- waterstrider[ , 2:5]
## Not run: u <- u.henv(X, Y)
## Not run: u
## Not run: m <- henv(X, Y, 2)
```

henvMU Estimate the heteroscedastic envelope subspace

Description

Estimate the heteroscedastic envelope subspace with specified dimension.

Usage

henvMU(M, U, MU, u, n, ng, L, initial = NULL)

Arguments

M A matrix M for the non-Grassmann manifold optimization problem in Cook et al. (2016)

U A matrix U for the non-Grassmann manifold optimization problem in Cook et al. (2016)

MU \quad Sum of matrix M and U.
u
A given dimension of the heteroscedastic envelope space. It should be an interger between 0 and r.
$\mathrm{n} \quad$ The number of observations.
ng A L by 1 vector of the number of observations in each group.
$\mathrm{L} \quad$ The number of groups.
initial The user-specified value of Gamma for the envelope subspace.

Value

Gamma An r by u matrix for the orthonormnal basis of the heteroscedastic envelope subspace.
Gamma0 An r by $(r-u)$ matrix for the orthonornal basis of the complement of the heteroscedastic envelope subspace.

References

Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.

```
horseshoecrab Horseshoe Crab Data
```


Description

The number of satellite male crabs near a female crab upon characteristic of the female horseshoe crabs.

Usage

data("horseshoecrab")

Format

A data frame with 173 observations on the following 5 variables.
V1 Color.
V2 Condition of spine.
V3 Width of shell.
V4 Satellite.
V5 Weight.

Details

This data set contains the number of satellite male crabs and characteristics of the female horseshoe crabs.

References

Agresti, A. (2007). An Introduction to Categorical Data Analysis, 2nd edition.

```
    logit.env Fit the envelope model in logistic regression
```


Description

Fit the envelope model in logistic regression with dimension u.

Usage

logit.env(X, Y, u, asy = TRUE, init = NULL)

Arguments

X

Y Response. An n by 1 matrix. The univariate response must be binary.
$u \quad$ Dimension of the envelope. An integer between 0 and p .
asy Flag for computing the asymptotic variance of the envelope estimator. The default is TRUE. When p and r are large, computing the asymptotic variance can take much time and memory. If only the envelope estimators are needed, the flag can be set to asy = FALSE.
init The user-specified value of Gamma for the envelope subspace in logistic regression. An p by u matrix. The default is the one generated by function logit.envMU.

Details

This function fits the envelope model in logistic regression,

$$
Y=\exp \left(\mu+\beta^{\prime} X\right) /\left(1+\exp \left(\mu+\beta^{\prime} X\right)\right), \Sigma_{X}=\Gamma \Omega \Gamma^{\prime}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{\prime}
$$

using the maximum likelihood estimation. When the dimension of the envelope is between 1 and p-1, the starting value and blockwise coordinate descent algorithm in Cook et al. (2016) is implemented. This model works the best when X is multivariate normal.

Value

The output is a list that contains the following components:

beta	The envelope estimator of the canonical parameter.
SigmaX	The envelope estimator of the covariance matrix of X.
Gamma	An orthonormal basis of the envelope subspace.
Gamma0	An orthonormal basis of the complement of the envelope subspace.
eta	The estimated beta of the canonical parameter with respect to Gamma.
Omega	The coordinates of SigmaX with respect to Gamma.
Omega0	The coordinates of SigmaX with respect to Gamma0.
mu	The estimated intercept of the canonical parameter.
loglik	The maximized log likelihood function.
covMatrix	The asymptotic covariance of vec(beta). The covariance matrix returned are asymptotic. For the actual standard errors, multiply by $1 / \mathrm{n}$.
asySE	The asymptotic standard error for elements in beta under the envelope model. The standard errors returned are asymptotic, for actual standard errors, multiply by $1 / \operatorname{sqrt}(n)$.
ratio	The asymptotic standard error ratio of the standard multivariate linear regression estimator over the envelope estimator, for each element in beta.
n	The number of observations in the data.

References

Cook, R. D., Zhang, X. (2015). Foundations for Envelope Models and Methods. Journal of the American Statistical Association 110, 599-611.

Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.

Examples

```
data(horseshoecrab)
X1 <- as.numeric(horseshoecrab[ , 1] == 2)
X2 <- as.numeric(horseshoecrab[ , 1] == 3)
X3 <- as.numeric(horseshoecrab[ , 1] == 4)
X4 <- as.numeric(horseshoecrab[ , 2] == 2)
X5 <- as.numeric(horseshoecrab[ , 2] == 3)
```

```
    X6 <- horseshoecrab[ , 3]
    X7 <- horseshoecrab[ , 5]
    X <- cbind(X1, X2, X3, X4, X5, X6, X7)
    Y <- as.numeric(ifelse(horseshoecrab[ , 4] > 0, 1, 0))
    ## Not run: u <- u.logit.env(X, Y)
    ## Not run: u
    ## Not run: m <- logit.env(X, Y, 1)
    ## Not run: m$beta
```

 logit.envMU Estimate the envelope subspace in logistic regression

Description

Estimate the envelope subspace with specified dimension in logistic regression.

Usage

logit.envMU(X, Y, u, initial = NULL)

Arguments

$\mathrm{X} \quad$ Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
Y Response. An n by 1 matrix. The univariate response must be binary.
$u \quad$ Dimension of the envelope. An integer between 0 and p.
initial The user-specified value of Gamma for the envelope subspace.

Details

This function estimate the envelope subspace in logistic regression using an non-Grassmann optimization algorithm. The starting value and optimization algorithm is described in Cook et al. (2016).

Value
Gammahat The orthonormal basis of the envelope subspace.
Gamma0hat The orthonormal basis of the complement of the envelope subspace.
muhat The estimated intercept of the canonical parameter.
etahat The estimated beta of the canonical parameter with respect to Gamma.
weighthat The estimated weight defined as $\mathrm{C}^{\prime \prime}$ (theta) / E (C"(theta)) where C (theta) is the conditional log likelihood.
Vhat \quad The estimated V defined as $\mathrm{V}=$ theta $+(\mathrm{Y}-\mathrm{mu}$ (theta) $/ \mathrm{W})$.
avar The asympotic covariance of vec(beta).
objfun The minimized objective function.

References

Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.

```
penv Fit the partial envelope model
```


Description

Fit the partial envelope model in multivariate linear regression with dimension u.

Usage

penv(X1, X2, Y, u, asy = TRUE, init = NULL)

Arguments

X1 Predictors of main interest. An n by $p 1$ matrix, n is the number of observations, and p 1 is the number of main predictors. The predictors can be univariate or multivariate, discrete or continuous.
X2 Covariates, or predictors not of main interest. An n by p2 matrix, p2 is the number of covariates.
$\mathrm{Y} \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
$\mathrm{u} \quad$ Dimension of the partial envelope. An integer between 0 and r .
asy Flag for computing the asymptotic variance of the partial envelope estimator. The default is TRUE. When p and r are large, computing the asymptotic variance can take much time and memory. If only the partial envelope estimators are needed, the flag can be set to asy = FALSE.
init The user-specified value of Gamma for the partial envelope subspace. An r by u matrix. The default is the one generated by function envMU.

Details

This function fits the partial envelope model to the responses Y and predictors X 1 and X 2 ,

$$
Y=\mu+\Gamma \eta X_{1}+\beta_{2} X_{2}+\varepsilon, \Sigma=\Gamma \Omega \Gamma^{\prime}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{\prime}
$$

using the maximum likelihood estimation. When the dimension of the envelope is between 1 and $\mathrm{r}-1$, we implemented the algorithm in Su and Cook (2011), but the partial envelope subspace is estimated using the blockwise coordinate descent algorithm in Cook et al. (2016). When the dimension is r , then the partial envelope model degenerates to the standard multivariate linear regression with Y as the responses and both X 1 and X 2 as predictors. When the dimension is $0, \mathrm{X} 1$ and Y are uncorrelated, and the fitting is the standard multivariate linear regression with Y as the responses and X2 as the predictors.

Value

The output is a list that contains the following components:

beta1	The partial envelope estimator of beta1, which is the regression coefficients for
X1.	

References

Su, Z. and Cook, R.D. (2011). Partial envelopes for efficient estimation in multivariate linear regression. Biometrika 98, 133-146.
Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.

Examples

```
data(fiberpaper)
X1 <- fiberpaper[, 7]
X2 <- fiberpaper[, 5:6]
Y <- fiberpaper[, 1:4]
u <- u.penv(X1, X2, Y)
u
m <- penv(X1, X2, Y, 1)
m
m$beta1
```


Description

Fit the envelope model in poisson regression with dimension u.

Usage

pois.env(X, Y, u, asy = TRUE, init = NULL)

Arguments

$\mathrm{X} \quad$ Predictors. An n by p matrix, p is the number of predictors and n is number of observations. The predictors must be continuous variables.
Y Response. An n by 1 matrix. The univariate response must be counts.
$u \quad$ Dimension of the envelope. An integer between 0 and p.
asy Flag for computing the asymptotic variance of the envelope estimator. The default is TRUE. When p and r are large, computing the asymptotic variance can take much time and memory. If only the envelope estimators are needed, the flag can be set to asy = FALSE.
init The user-specified value of Gamma for the envelope subspace in poisson regression. An p by u matrix. The default is the one generated by function pois.envMU.

Details

This function fits the envelope model in poisson regression,

$$
Y=\exp \left(\mu+\beta^{\prime} X\right), \Sigma_{X}=\Gamma \Omega \Gamma^{\prime}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{\prime}
$$

using the maximum likelihood estimation. When the dimension of the envelope is between 1 and $\mathrm{p}-1$, the starting value and blockwise coordinate descent algorithm in Cook et al. (2016) is implemented. This model works the best when X is multivariate normal.

Value

The output is a list that contains the following components:

beta	The envelope estimator of the canonical parameter.
SigmaX	The envelope estimator of the covariance matrix of X.
Gamma	An orthonormal basis of the envelope subspace.
Gamma0	An orthonormal basis of the complement of the envelope subspace.
eta	The estimated beta of the canonical parameter with respect to Gamma.
Omega	The coordinates of SigmaX with respect to Gamma.

\(\left.\left.$$
\begin{array}{ll}\text { Omega0 } & \text { The coordinates of SigmaX with respect to Gamma0. } \\
\text { mu } & \text { The estimated intercept of the canonical parameter. } \\
\text { loglik } & \text { The maximized log likelihood function. }\end{array}
$$\right] \begin{array}{l}The asymptotic covariance of vec(beta). The covariance matrix returned are

asymptotic. For the actual standard errors, multiply by 1 / \mathrm{n} .\end{array}\right]\)| The asymptotic standard error for elements in beta under the envelope model. |
| :--- |
| The standard errors returned are asymptotic, for actual standard errors, multiply |
| by $1 /$ sqrt(n). |

References

Cook, R. D., Zhang, X. (2015). Foundations for Envelope Models and Methods. Journal of the American Statistical Association 110, 599-611.
Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.

Examples

```
data(horseshoecrab)
X1 <- as.numeric(horseshoecrab[ , 1] == 2)
X2 <- as.numeric(horseshoecrab[ , 1] == 3)
X3 <- as.numeric(horseshoecrab[ , 1] == 4)
X4 <- as.numeric(horseshoecrab[ , 2] == 2)
X5 <- as.numeric(horseshoecrab[ , 2] == 3)
X6 <- horseshoecrab[ , 3]
X7 <- horseshoecrab[ , 5]
X <- cbind(X1, X2, X3, X4, X5, X6, X7)
Y <- horseshoecrab[ , 4]
## Not run: u <- u.pois.env(X, Y)
## Not run: u
m <- pois.env(X, Y, 1)
m$beta
```

pois.envMU

Description

Estimate the envelope subspace with specified dimension in poisson regression.

Usage

pois.envMU(X, Y, u, initial $=\mathrm{NULL})$

Arguments

X
Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.

Y Response. An n by 1 matrix. The univariate response must be counts.
$\mathrm{u} \quad$ Dimension of the envelope. An integer between 0 and p .
initial The user-specified value of Gamma for the envelope subspace.

Details

This function estimate the envelope subspace in poisson regression using an non-Grassmann optimization algorithm. The starting value and optimization algorithm is described in Cook et al. (2016).

Value

Gammahat The orthonormal basis of the envelope subspace.
Gamma0hat The orthonormal basis of the complement of the envelope subspace.
muhat The estimated intercept of the canonical parameter.
etahat The estimated beta of the canonical parameter with respect to Gamma.
weighthat The estimated weight defined as $C^{\prime \prime}\left(\right.$ theta) / $\mathrm{E}\left(\mathrm{C}^{\prime \prime}\right.$ (theta)) where C (theta) is the conditional log likelihood.
Vhat \quad The estimated V defined as $V=$ theta $+(Y-m u(t h e t a) / W)$.
avar The asympotic covariance of vec(beta).
objfun The minimized objective function.

References

Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.

```
pred.env
```

Estimation or prediction for env

Description

Perform estimation or prediction under the envelope model.

Usage

pred.env(m, Xnew)

Arguments

m
Xnew

A list containing estimators and other statistics inherited from env.
The value of X with which to estimate or predict Y. A p dimensional vector.

Details

This function evaluates the envelope model at new value Xnew. It can perform estimation: find the fitted value when $\mathrm{X}=$ Xnew, or prediction: predict Y when $\mathrm{X}=$ Xnew. The covariance matrix and the standard errors are also provided.

Value

The output is a list that contains following components.
value \quad The fitted value or the predicted value evaluated at Xnew.
covMatrix.estm The covariance matrix of the fitted value at Xnew.
SE.estm The standard error of the fitted value at Xnew.
covMatrix.pred The covariance matrix of the predicted value at Xnew.
SE.pred The standard error of the predicted value at Xnew.

Examples

```
data(wheatprotein)
X <- wheatprotein[, 8]
Y <- wheatprotein[, 1:6]
u <- u.env(X, Y)
u
m <- env(X, Y, 1)
m
X <- as.matrix(X)
pred.res <- pred.env(m, X[2, ])
pred.res
```

 pred.genv Estimation or prediction for genv

Description

Perform estimation or prediction under the groupwise envelope model.

Usage

pred.genv(m, Xnew, Znew)

Arguments

m
Xnew
Znew

A list containing estimators and other statistics inherited from env.
The value of X with which to estimate or predict Y . A p dimensional vector.
A group indicator of X .

Details

This function evaluates the envelope model at new value Xnew. It can perform estimation: find the fitted value when $\mathrm{X}=$ Xnew with a group indicator $\mathrm{Z}=\mathrm{Znew}$, or prediction: predict Y when X $=$ Xnew with a group indicator $\mathrm{Z}=\mathrm{Znew}$. The covariance matrix and the standard errors are also provided.

Value

The output is a list that contains following components.

value	The fitted value or the predicted value evaluated at Znew.
covMatrix.estm	The covariance matrix of the fitted value at Znew.
SE.estm	The standard error of the fitted value at Znew.
covMatrix.pred	The covariance matrix of the predicted value at Znew.
SE.pred	The standard error of the predicted value at Znew.

Examples

```
data(fiberpaper)
X <- fiberpaper[ , c(5, 7)]
Y <- fiberpaper[ , 1:3]
Z <- as.numeric(fiberpaper[ , 6] > mean(fiberpaper[ , 6]))
u <- u.genv(X, Y, Z)
u
m <- genv(X, Y, Z, 2)
m
X <- as.matrix(X)
pred.res <- pred.genv(m, X[2, ], Z[2])
pred.res
```

pred.henv Estimation or prediction for henv

Description

Perform estimation or prediction under the heteroscedastic envelope model.

Usage

pred.henv(m, Xnew)

Arguments

$m \quad$ A list containing estimators and other statistics inherited from henv.
Xnew The value of X with which to estimate or predict Y . An r by 1 vector.

Details

This function evaluates the heteroscedastic envelope model at new value Xnew. It can perform estimation: find the fitted value when $\mathrm{X}=\mathrm{Xnew}$, or prediction: predict Y when $\mathrm{X}=\mathrm{Xnew}$. The covariance matrix and the standard errors are also provided.

Value

The output is a list that contains following components.

value	The fitted value or the predicted value evaluated at Xnew.
covMatrix.estm	The covariance matrix of the fitted value at Xnew.
SE.estm	The standard error of the fitted value at Xnew.
covMatrix.pred	The covariance matrix of the predicted value at Xnew.
SE.pred	The standard error of the predicted value at Xnew.

Examples

```
data(waterstrider)
X <- waterstrider[ , 1]
Y <- waterstrider[ , 2:5]
## Not run: m <- henv(X, Y, 2)
## Not run: pred.res <- pred.henv(m, X[2])
```

```
pred.logit.env Estimation or prediction for logit.env
```


Description

Perform estimation or prediction under the envelope model in logistic regression.

Usage

pred.logit.env(m, Xnew)

Arguments

m
A list containing estimators and other statistics inherited from xenv.
Xnew
The value of X with which to estimate or predict Y. A p dimensional vector.

Details

This function evaluates the envelope model at new value Xnew. It can perform estimation: find the fitted value when $\mathrm{X}=$ Xnew. The covariance matrix of estimation and the standard errors of estimation are also provided.

Value

The output is a list that contains following components.
value \quad The fitted value or predicted value evaluated at Xnew.
covMatrix.estm The covariance matrix of the fitted value at Xnew.
SE.estm The standard error of the fitted value at Xnew.

Examples

```
data(horseshoecrab)
X1 <- as.numeric(horseshoecrab[ , 1] == 2)
X2 <- as.numeric(horseshoecrab[ , 1] == 3)
X3 <- as.numeric(horseshoecrab[ , 1] == 4)
X4 <- as.numeric(horseshoecrab[ , 2] == 2)
X5 <- as.numeric(horseshoecrab[ , 2] == 3)
X6 <- horseshoecrab[ , 3]
X7 <- horseshoecrab[ , 5]
X <- cbind(X1, X2, X3, X4, X5, X6, X7)
Y <- as.numeric(ifelse(horseshoecrab[ , 4] > 0, 1, 0))
m <- logit.env(X, Y, 1)
pred.res <- pred.logit.env(m, X[1, ])
pred.res
```

 pred.penv Estimation or prediction for penv

Description

Perform estimation or prediction under the partial envelope model.

Usage

pred.penv(m, X1new, X2new)

Arguments

m	A list containing estimators and other statistics inherited from penv.
X1new	The value of X1 with which to estimate or predict Y. A p1 dimensional vector.
X2new	The value of X2 with which to estimate or predict Y. A p2 dimensional vector.

Details

This function evaluates the partial envelope model at new value Xnew. It can perform estimation: find the fitted value when $\mathrm{X}=\mathrm{Xnew}$, or prediction: predict Y when $\mathrm{X}=$ Xnew. The covariance matrix and the standard errors are also provided.

Value

The output is a list that contains following components.
value \quad The fitted value or the predicted value evaluated at X1new and X2new.
covMatrix.estm The covariance matrix of the fitted value at X1new and X2new.
SE.estm The standard error of the fitted value at X1new and X2new.
covMatrix.pred The covariance matrix of the predicted value at X1new and X2new.
SE.pred The standard error of the predicted value at X1new and X2new.

Examples

```
data(fiberpaper)
X1 <- fiberpaper[, 7]
X2 <- fiberpaper[, 5:6]
Y <- fiberpaper[, 1:4]
m <- penv(X1, X2, Y, 1)
pred.res <- pred.penv(m, X1[1], X2[1, ])
pred.res
```

pred.pois.env Estimation or prediction for pois.env

Description

Perform estimation or prediction under the envelope model in poisson regression.

Usage

pred.pois.env(m, Xnew)

Arguments

m
Xnew

A list containing estimators and other statistics inherited from xenv.
The value of X with which to estimate or predict Y . A p dimensional vector.

Details

This function evaluates the envelope in poisson regression at new value Xnew. It can perform estimation: find the fitted value when $\mathrm{X}=\mathrm{Xnew}$, or prediction: predict Y when $\mathrm{X}=$ Xnew. The covariance matrix of estimation and the standard errors of estimation are also provided.

Value

The output is a list that contains following components.
value \quad The fitted value or the predicted value evaluated at Xnew.
covMatrix.estm The covariance matrix of the fitted value at Xnew.
SE.estm The standard error of the fitted value at Xnew.

Examples

```
data(horseshoecrab)
X1 <- as.numeric(horseshoecrab[ , 1] == 2)
X2 <- as.numeric(horseshoecrab[ , 1] == 3)
X3 <- as.numeric(horseshoecrab[ , 1] == 4)
X4 <- as.numeric(horseshoecrab[ , 2] == 2)
X5 <- as.numeric(horseshoecrab[ , 2] == 3)
X6 <- horseshoecrab[ , 3]
X7 <- horseshoecrab[ , 5]
X <- cbind(X1, X2, X3, X4, X5, X6, X7)
Y <- horseshoecrab[ , 4]
m <- pois.env(X, Y, 1)
pred.res <- pred.pois.env(m, X[1, ])
pred.res
```

pred.senv Estimation or prediction for senv

Description

Perform estimation or prediction under the scaled envelope model.

Usage

pred.senv(m, Xnew)

Arguments

m
Xnew

A list containing estimators and other statistics inherited from scale.env.
The value of X with which to estimate or predict Y . A p dimensional vector.

Details

This function evaluates the scaled envelope model at new value Xnew. It can perform estimation: find the fitted value when $\mathrm{X}=$ Xnew, or prediction: predict Y when $\mathrm{X}=\mathrm{Xnew}$. The covariance matrix and the standard errors are also provided.

Value

The output is a list that contains following components.
value \quad The fitted value or the predicted value evaluated at Xnew.
covMatrix.estm The covariance matrix of the fitted value at Xnew.
SE.estm The standard error of the fitted value at Xnew.
covMatrix.pred The covariance matrix of the predicted value at Xnew.
SE.pred The standard error of the predicted value at Xnew.

Examples

data(sales)
X <- sales[, 1:3]
$\mathrm{Y}<-$ sales[, 4:7]
$m<-\operatorname{senv}(X, Y, 2)$
pred.res <- pred. $\operatorname{senv}(m, X[2]$,
pred.res
pred.stenv Estimation or prediction for stenv

Description

Perform estimation or prediction under the simultaneous envelope model.

Usage

pred.stenv(m, Xnew)

Arguments

m
Xnew

A list containing estimators and other statistics inherited from stenv.
The value of X with which to estimate or predict Y . A p dimensional vector.

Details

This function evaluates the simultaneous envelope model at new value Xnew. It can perform estimation: find the fitted value when $\mathrm{X}=\mathrm{Xnew}$, or prediction: predict Y when $\mathrm{X}=$ Xnew. The covariance matrix and the standard errors are also provided.

Value

The output is a list that contains following components.
value \quad The fitted value or the predicted value evaluated at Xnew.
covMatrix.estm The covariance matrix of the fitted value at Xnew.
SE.estm The standard error of the fitted value at Xnew.
covMatrix.pred The covariance matrix of the predicted value at Xnew.
SE.pred The standard error of the predicted value at Xnew.

Examples

```
data(fiberpaper)
X <- fiberpaper[ , 5:7]
Y <- fiberpaper[ , 1:4]
m <- stenv(X, Y, 2, 3)
m
pred.res <- pred.stenv(m, X[1, ])
    pred.res
```

pred.sxenv Estimation or prediction for sxenv

Description

Perform estimation or prediction under the scaled envelope model in the predictor space.

Usage

pred.sxenv(m, Xnew)

Arguments

$\mathrm{m} \quad$ A list containing estimators and other statistics inherited from stenv.
Xnew The value of X with which to estimate or predict Y. A p dimensional vector.

Details

This function evaluates the scaled envelope model in the predictor space at new value Xnew. It can perform estimation: find the fitted value when $\mathrm{X}=\mathrm{Xnew}$, or prediction: predict Y when $\mathrm{X}=$ Xnew. The covariance matrix and the standard errors are also provided.

Value

The output is a list that contains following components.
value \quad The fitted value or the predicted value evaluated at Xnew.
covMatrix.estm The covariance matrix of the fitted value at Xnew.
SE.estm The standard error of the fitted value at Xnew.
covMatrix.pred The covariance matrix of the predicted value at Xnew.
SE.pred The standard error of the predicted value at Xnew.

Examples

```
data(sales)
Y <- sales[, 1:3]
X <- sales[, 4:7]
R <- rep(1, 4)
    m <- sxenv(X, Y, 2, R)
    pred.res <- pred.sxenv(m, X[1, ])
    pred.res
```

pred. xenv Estimation or prediction for xenv

Description

Perform estimation or prediction under the envelope model in predictor space.

Usage

pred. xenv(m, Xnew)

Arguments

$\mathrm{m} \quad$ A list containing estimators and other statistics inherited from xenv.
Xnew The value of X with which to estimate or predict Y . A p dimensional vector.

Details

This function evaluates the envelope model at new value Xnew. It can perform estimation: find the fitted value when $\mathrm{X}=$ Xnew, or prediction: predict Y when $\mathrm{X}=$ Xnew. The covariance matrix and the standard errors are also provided.

Value

The output is a list that contains following components.
value \quad The fitted value or the predicted value evaluated at Xnew.
covMatrix.estm The covariance matrix of the fitted value at Xnew.
SE.estm The standard error of the fitted value at Xnew.
covMatrix.pred The covariance matrix of the predicted value at Xnew.
SE.pred The standard error of the predicted value at Xnew.

Examples

data(wheatprotein)
X <- wheatprotein[, 1:6]
$\mathrm{Y}<-$ wheatprotein[, 7]
$m<-\operatorname{xenv}(X, Y, 2)$
m
pred.res <- pred.xenv(m, X[1,])
pred.res
pred2.env
Estimation or prediction for env

Description

Perform estimation or prediction under the envelope model through partial envelope model.

Usage

pred2.env(X, Y, u, Xnew)

Arguments

X

Y
u
Xnew

Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
$Y \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.

The dimension of the constructed partial envelope model.
The value of X with which to estimate or predict Y. A p dimensional vector.

Details

This function evaluates the envelope model at new value Xnew. It can perform estimation: find the fitted value when $\mathrm{X}=$ Xnew, or prediction: predict Y when $\mathrm{X}=$ Xnew. The covariance matrix and the standard errors are also provided. Compared to predict.env, this function performs prediction through partial envelope model, which can be more accurate if the partial envelope is of smaller dimension and contains less variant material information. The constructed partial envelope model is obtained by the following: Let A0 by a p by p-1 matrix, such that $\mathrm{A}=(\mathrm{Xnew}, \mathrm{A} 0)$ has full rank. Let phi1 $=$ beta $*$ Xnew, phi2 $=$ beta $* A 0$, phi $=($ phi1, phi2 $)$ and $X=$ inverse of $A * X=\left(Z 1, Z 2^{\prime}\right)^{\prime}$. Then the model $\mathrm{Y}=$ alpha + beta $* \mathrm{X}+$ epsilon can be reparameterized as $\mathrm{Y}=$ alpha + phi1 $* \mathrm{Z} 1+$ phi2 $2 \mathrm{Z} 2+$ epsilon. We then fit a partial envelope model with Z 1 as the predictor of interest, and predict at (Z1, Z2')' = inverse of A^{*} Xnew.

Value

The output is a list that contains following components.
value \quad The fitted value or the predicted value evaluated at Xnew.
covMatrix.estm The covariance matrix of the fitted value at Xnew.
SE.estm The standard error of the fitted value at Xnew.
covMatrix.pred The covariance matrix of the predicted value at Xnew.
SE.pred The standard error of the predicted value at Xnew.

Examples

```
data(fiberpaper)
X <- fiberpaper[, 5:7]
Y <- fiberpaper[, 1:4]
u <- u.pred2.env(X, Y, X[10, ])
pred.res <- pred2.env(X, Y, u$u.bic, X[10, ])
pred.res$SE.estm
pred.res$SE.pred
```

```
sales Sales staff Data
```


Description

On the performance of a firm's sales staff

Usage

```
    data("sales")
```


Format

A data frame with 50 observations on the following 7 variables.
V1 Index of sales growth.
V2 Index of sales profitability.
V3 Index of new account sales.
V4 Score on creativity.
V5 Score on mechanical reasoning test.
V6 Score on abstract reasoning test.
V7 Score on Mathematics test.

Details

This data set contains 3 measures of performance and 4 tests scores.

References

Johnson, R.A., Wichern, D.W. (2007). Applied Multivariage Statistical Analysis, 6th edition.
senv \quad Fit the scaled envelope model

Description

Fit the scaled envelope model in multivariate linear regression with dimension u.

Usage

$\operatorname{senv}(\mathrm{X}, \mathrm{Y}, \mathrm{u}$, asy $=$ TRUE, init $=$ NULL)

Arguments

X
$\mathrm{Y} \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
u
init The user-specified value of Gamma for the scaled envelope subspace. An r by u matrix. The default is the one generated by function senvMU.

Details

This function fits the scaled envelope model to the responses and predictors,

$$
Y=\mu+\Lambda \Gamma \eta X+\varepsilon, \Sigma=\Lambda \Gamma \Omega \Gamma^{\prime} \Lambda+\Lambda \Gamma_{0} \Omega_{0} \Gamma_{0}^{\prime} \Lambda
$$

using the maximum likelihood estimation. When the dimension of the scaled envelope is between 1 and $r-1$, the starting value and blockwise coordinate descent algorithm in Cook et al. (2016) is implemented. When the dimension is r , then the scaled envelope model degenerates to the standard multivariate linear regression. When the dimension is 0 , it means that X and Y are uncorrelated, and the fitting is different.

Value

The output is a list that contains the following components:

beta	The scaled envelope estimator of the regression coefficients.
Sigma	The scaled envelope estimator of the error covariance matrix.
Lambda	The matrix of estimated scale.
Gamma	An orthonormal basis of the scaled envelope subspace.
Gamma0	An orthonormal basis of the complement of the scaled envelope subspace.
eta	The coordinates of beta with respect to Gamma.
Omega	The coordinates of Sigma with respect to Gamma.
Omega0	The coordinates of Sigma with respect to Gamma0.
mu	The estimated intercept.
loglik	The maximized log likelihood function.
covMatrix	The asymptotic covariance of vec(beta). The covariance matrix returned are asymptotic. For the actual standard errors, multiply by $1 / \mathrm{n}$.
asySE	The asymptotic standard error for elements in beta under the envelope model. The standard errors returned are asymptotic, for actual standard errors, multiply by $1 /$ sqrt(n).
ratio	The asymptotic standard error ratio of the standard multivariate linear regression estimator over the envelope estimator, for each element in beta.
n	The number of observations in the data.

References

Cook, R. D., Su, Z. (2013). Scaled Envelopes: scale Invariant and Efficient Estimation in Multivariate Linear Regression. Biometrika 100, 939-954.

Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.

Examples

```
data(sales)
X <- sales[, 1:3]
Y <- sales[, 4:7]
u <- u. senv(X,Y)
u
m <- senv(X, Y, 2)
m$beta
```

senvMU Estimate the scaled envelope subspace

Description

Estimate the scaled envelope subspace with specified dimension.

Usage

senvMU(X, Y, u, initial = NULL)

Arguments

$X \quad$ Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
$\mathrm{Y} \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
$u \quad$ Dimension of the envelope. An integer between 0 and r.
initial The user-specified value of Gamma for the envelope subspace.

Details

This function estimate the scaled envelope subspace using an non-Grassmann optimization algorithm and nonlinear optimization using augmented Lagrange method.

Value

Gammahat The orthonormal basis of the scaled envelope subspace.
Gamma0hat The orthonormal basis of the complement of the scaled envelope subspace.
Lambdahat The matrix of estimated scales.
objfun The minimized objective function.

References

Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.
Ye, Y., Interior algorithms for linear, quadratic, and linearly constrained non linear programming, PhD Thesis, Departments of EES stanford University, Stanford CA.

stenv Fit the simultaneous envelope model

Description

Fit the simultaneous envelope model in multivariate linear regression with dimension ($\mathrm{q}, \mathrm{u})$.

Usage

stenv(X, Y, q, u, asy = TRUE, Pinit = NULL, Ginit = NULL)

Arguments

$\mathrm{X} \quad$ Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
$Y \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
$q \quad$ Dimension of the X-envelope. An integer between 0 and p.
$u \quad$ Dimension of the Y-envelope. An integer between 0 and r.
asy Flag for computing the asymptotic variance of the envelope estimator. The default is TRUE. When p and r are large, computing the asymptotic variance can take much time and memory. If only the envelope estimators are needed, the flag can be set to asy = FALSE.
Pinit The user-specified value of Phi for the X-envelope subspace. An p by q matrix. The default is the one generated by function stenvMU.
Ginit The user-specified value of Gamma for the Y-envelope subspace. An r by u matrix. The default is the one generated by function stenvMU.

Details

This function fits the envelope model to the responses and predictors simultaneously,

$$
Y=\mu+\Gamma \eta^{\prime} \Phi^{\prime} X+\varepsilon, \Sigma_{Y \mid X}=\Gamma \Omega \Gamma^{\prime}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{\prime}, \Sigma_{X}=\Phi \Delta \Phi^{\prime}+\Phi_{0} \Delta_{0} \Phi_{0}^{\prime}
$$

using the maximum likelihood estimation. When the dimension of the Y-envelope is between 1 and $\mathrm{r}-1$ and the dimension of the X -envelope is between 1 and $\mathrm{p}-1$, the starting value and blockwise coordinate descent algorithm in Cook et al. (2016) is implemented. When the dimension is (p,r), then the envelope model degenerates to the standard multivariate linear regression. When the dimension of the Y-envelope is r , then the envelope model degenerates to the standard envelope model. When the dimension of X-envelope is p , then the envelope model degenerates to the envelope model in the predictor space. When the dimension is 0 , it means that X and Y are uncorrelated, and the fitting is different.

Value

The output is a list that contains the following components:

beta	The envelope estimator of the regression coefficients.
SigmaYcX	The envelope estimator of the error covariance matrix.
SigmaX	The envelope estimator of the covariance matrix of X.
Gamma	An orthonormal basis of the Y-envelope subspace.
Gamma0	An orthonormal basis of the complement of the Y-envelope subspace.
eta	The coordinates of beta with respect to Gamma and Phi.
Omega	The coordinates of SigmaYcX with respect to Gamma.
Omega0	The coordinates of SigmaYcX with respect to Gamma0.
mu	The estimated intercept.
Phi	An orthonormal basis of the X-envelope subspace.
Phio	An orthonormal basis of the complement of the X-envelope subspace.
Delta	The coordinates of SigmaX with respect to Phi.
Delta0	The coordinates of SigmaX with respect to Phi0.
loglik	The maximized log likelihood function.
covMatrix	The asymptotic covariance of vec(beta). The covariance matrix returned are asymptotic. For the actual standard errors, multiply by $1 / n$.
asySE	The asymptotic standard error for elements in beta under the envelope model. The standard errors returned are asymptotic, for actual standard errors, multiply by $1 / \operatorname{sqrt}(\mathrm{n})$.
ratio	The asymptotic standard error ratio of the standard multivariate linear regression estimator over the envelope estimator, for each element in beta.
n	The number of observations in the data.

References

Cook, R. D., Zhang, X. (2015). Simultaneous Envelopes for Multivariate Linear Regression. Technometrics 57, 11-25.
Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.

Examples

```
data(fiberpaper)
X <- fiberpaper[, 5:7]
Y <- fiberpaper[, 1:4]
u <- u.stenv(X, Y)
u
m <- stenv(X, Y, 2, 3)
m
m$beta
```

```
stenvMU Estimate the simultaneous envelope subspace
```


Description

Estimate the simulatneous envelope subspace with specified dimension.

Usage

stenvMU(X, Y, q, u, initial1 = NULL, initial2 = NULL)

Arguments

$X \quad$ Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
$\mathrm{Y} \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
$q \quad$ Dimension of the X-envelope. An integer between 0 and p.
$u \quad$ Dimension of the Y-envelope. An integer between 0 and r.
initial1 The user-specified value of Phi for the X-envelope subspace. An p by q matrix.
initial2 The user-specified value of Gamma for the Y-envelope subspace. An r by u matrix.

Details

This function estimate the simultaneous envelope subspace using an non-Grassmann optimization algorithm.

Value

Gammahat The orthonormal basis of the Y-envelope subspace.
Gamma0hat The orthonormal basis of the complement of the Y-envelope subspace.
Phihat The orthonormal basis of the X-envelope subspace.
Phi0hat The orthonormal basis of the complement of the X-envelope subspace.
objfun The minimized objective function.

References

Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.
sxenv \quad Fit the scaled envelope model in the predictor space

Description

Fit the scaled envelope model in the predictor space in multivariate linear regression with dimension u.

Usage

$\operatorname{sxenv}(\mathrm{X}, \mathrm{Y}, \mathrm{u}, \mathrm{R}$, asy $=\mathrm{TRUE}$, init $=\mathrm{NULL})$

Arguments

X

Y
u

R
asy Flag for computing the asymptotic variance of the envelope estimator. The default is TRUE. When p and r are large, computing the asymptotic variance can take much time and memory. If only the envelope estimators are needed, the flag can be set to asy = FALSE.
init The user-specified value of Gamma for the scaled envelope subspace in the predictor space. An p by u matrix. The default is the one generated by function sxenvMU.

Details

This function fits the scaled envelope model in the predictor space to the responses and predictors,

$$
Y=\mu_{Y}+\eta^{\prime} \Gamma^{\prime} \Lambda^{-1}\left(X-\mu_{X}\right)+\varepsilon, \Sigma_{X}=\Lambda \Gamma \Omega \Gamma^{\prime} \Lambda+\Lambda \Gamma_{0} \Omega_{0} \Gamma_{0}^{\prime} \Lambda
$$

using the maximum likelihood estimation. When the dimension of the scaled envelope in the predictor space is between 1 and $\mathrm{p}-1$, the starting value and blockwise coordinate descent algorithm in Cook et al. (2016) is implemented. When the dimension is p , then the scaled envelope model in the predictor space degenerates to the standard multivariate linear regression. When the dimension is 0 , it means that X and Y are uncorrelated, and the fitting is different.

Value

The output is a list that contains the following components:

beta	The scaled envelope estimator of the regression coefficients.
Sigma	The scaled envelope estimator of the error covariance matrix.
Lambda	The matrix of estimated scale.
Gamma	An orthonormal basis of the scaled envelope subspace.
Gamma0	An orthonormal basis of the complement of the scaled envelope subspace.
eta	The coordinates of beta with respect to Gamma.
Omega	The coordinates of Sigma with respect to Gamma.
Omega0	The coordinates of Sigma with respect to Gamma0.
muY	The mean of Y.
muX	The mean of X.
loglik	The maximized log likelihood function. covMatrix
The asymptotic covariance of vec(beta). The covariance matrix returned are asymptotic. For the actual standard errors, multiply by $1 / \mathrm{n}$.	
asySE	The asymptotic standard error for elements in beta under the envelope model. The standard errors returned are asymptotic, for actual standard errors, multiply by $1 /$ / sqrt(n$).$
ratio	The asymptotic standard error ratio of the standard multivariate linear regression estimator over the envelope estimator, for each element in beta.
n	The number of observations in the data.

References

Cook, R. D., Su, Z. (2016). Scaled Predictor Envelopes and Partial Least Squares Regression. Technometrics 58, 155-165.
Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.

Examples

```
data(sales)
Y <- sales[, 1:3]
X <- sales[, 4:7]
R <- rep(1, 4)
u <- u.sxenv(X, Y, R)
u
m <- sxenv(X, Y, 2, R)
m$beta
```


Description

Estimate the scaled envelope subspace in the predictor space with specified dimension.

Usage

sxenvMU(X, Y, u, R, initial = NULL)

Arguments

$X \quad$ Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
$\mathrm{Y} \quad$ Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.
$u \quad$ Dimension of the scaled envelope in the predictor space. An integer between 0 and p.
$R \quad$ The number of replications of the scales. A vector, the sum of all elements of R must be p .
initial The user-specified value of Gamma for the envelope subspace.

Details

This function estimate the scaled envelope subspace in the predictor space using an non-Grassmann optimization algorithm and nonlinear optimization using augmented Lagrange method.

Value

Gammahat The orthonormal basis of the scaled envelope subspace in the predictor space.
Gamma0hat The orthonormal basis of the complement of the scaled envelope subspace in the predictor space.
Lambdahat The matrix of estimated scales.
objfun The minimized objective function.

References

Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.
Ye, Y., Interior algorithms for linear, quadratic, and linearly constrained non linear programming, PhD Thesis, Departments of EES stanford University, Stanford CA.

Description

This function tests the null hypothesis $\mathrm{L} *$ beta * $\mathrm{R}=\mathrm{A}$ versus the alternative hypothesis $\mathrm{L} *$ beta * $\mathrm{R} \sim=\mathrm{A}$, where beta is estimated under the envelope model.

Usage

testcoef.env(m, L, R, A)

Arguments

m A list containing estimators and other statistics inherited from env.
$\mathrm{L} \quad$ The matrix multiplied to beta on the left. It is a d 1 by r matrix, while d 1 is less than or equal to r.
$R \quad$ The matrix multiplied to beta on the right. It is a p by d 2 matrix, while d 2 is less than or equal to p .

A
The matrix on the right hand side of the equation. It is a d1 by d2 matrix.
Note that inputs L, R and A must be matrices, if not, use as.matrix to convert them.

Details

This function tests for hypothesis H0: L beta $\mathrm{R}=\mathrm{A}$, versus Ha: L beta $\mathrm{R}!=\mathrm{A}$. The beta is estimated by the envelope model. If $\mathrm{L}=\mathrm{Ir}, \mathrm{R}=\mathrm{Ip}$ and $\mathrm{A}=0$, then the test is equivalent to the standard F test on if beta $=0$. The test statistic used is vec $(\mathrm{L}$ beta $R-A)$ hatSigma^ $-1 \operatorname{vec}(\mathrm{~L} \text { beta } R-A)^{\wedge} T$, where beta is the envelope estimator and hatSigma is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom $\mathrm{d} 1 * \mathrm{~d} 2$.

Value

The output is a list that contains following components.
chisqStatistic The test statistic.
dof The degrees of freedom of the reference chi-squared distribution.
pValue $\quad p$-value of the test.
covMatrix The covariance matrix of vec(L beta R).

Examples

```
data(wheatprotein)
X <- wheatprotein[, 8]
Y <- wheatprotein[, 1:6]
m <- env(X, Y, 1)
m
L <- diag(6)
R <- as.matrix(1)
A <- matrix(0, 6, 1)
test.res <- testcoef.env(m, L, R, A)
test.res
```

testcoef.genv Hypothesis test of the coefficients of the groupwise envelope model

Description

This function tests the null hypothesis $\mathrm{L} *$ beta $* \mathrm{R}=\mathrm{A}$ versus the alternative hypothesis $\mathrm{L} *$ beta * $\mathrm{R} \sim=\mathrm{A}$, where beta is estimated under the groupwise envelope model.

Usage

testcoef.genv(m, L, R, A)

Arguments

m

L

R

A

A list containing estimators and other statistics inherited from genv.
The matrix multiplied to beta on the left. It is a d1 by r matrix, while d 1 is less than or equal to r.
The matrix multiplied to beta on the right. It is a p by d 2 matrix, while d 2 is less than or equal to p .

The matrix on the right hand side of the equation. It is a d1 by d2 matrix.
Note that inputs L, R and A must be matrices, if not, use as.matrix to convert them.

Details

This function tests for hypothesis H0: L beta[[i]] $\mathrm{R}=\mathrm{A}$, versus Ha: L beta[[i]] $\mathrm{R}!=\mathrm{A}$. The beta is estimated by the groupwise envelope model. If $\mathrm{L}=\mathrm{Ir}, \mathrm{R}=\mathrm{Ip}$ and $\mathrm{A}=0$, then the test is equivalent to the standard F test on if beta $[[\mathrm{i}]]=0$. The test statistic used is vec $(\mathrm{L}$ beta $\mathrm{R}-\mathrm{A})$ hatSigma ${ }^{\wedge}-1$ $\operatorname{vec}(\mathrm{L} \text { beta } R-A)^{\wedge} \mathrm{T}$, where beta is the envelope estimator and hatSigma is the estimated asymptotic covariance of $\operatorname{vec}(\mathrm{L}$ beta $\mathrm{R}-\mathrm{A})$. The reference distribution is chi-squared distribution with degrees of freedom d1 * d2.

Value

The output is a list that contains following components.
chisqStatistic The test statistic.
dof The degrees of freedom of the reference chi-squared distribution.
pValue $\quad p$-value of the test.
covMatrix The covariance matrix of vec(L beta R).

Examples

```
data(fiberpaper)
X <- fiberpaper[ , c(5, 7)]
Y <- fiberpaper[ , 1:3]
Z <- as.numeric(fiberpaper[ , 6] > mean(fiberpaper[ , 6]))
u <- u.genv(X, Y, Z)
u
m <- genv(X, Y, Z, 2)
m
L <- diag(3)
R <- diag(2)
A <- matrix(0, 3, 2)
test.res <- testcoef.genv(m, L, R, A)
test.res
```

testcoef.henv

Hypothesis test of the coefficients of the heteroscedastic envelope model

Description

This function tests the null hypothesis $\mathrm{L} *$ beta $* \mathrm{R}=\mathrm{A}$ versus the alternative hypothesis $\mathrm{L} *$ beta * $\mathrm{R} \sim=\mathrm{A}$, where beta is estimated under the heteroscedastic envelope model.

Usage

testcoef.henv(m, L, R, A)

Arguments

m
L

R

A list containing estimators and other statistics inherited from genv.
The matrix multiplied to beta on the left. It is a d1 by r matrix, while d 1 is less than or equal to r.
The matrix multiplied to beta on the right. It is a p by d 2 matrix, while d 2 is less than or equal to p .

A
The matrix on the right hand side of the equation. It is a d 1 by d 2 matrix.
Note that inputs L, R and A must be matrices, if not, use as.matrix to convert them.

Details

This function tests for hypothesis H0: L beta $\mathrm{R}=\mathrm{A}$, versus Ha: L beta $\mathrm{R}!=\mathrm{A}$. The beta is estimated by the heteroscedastic envelope model. If $\mathrm{L}=\mathrm{Ir}, \mathrm{R}=\mathrm{Ip}$ and $\mathrm{A}=0$, then the test is equivalent to the standard F test on if beta $=0$. The test statistic used is vec $(L$ beta $R-A)$ hatSigma^ -1 vec $(L$ beta R $-\mathrm{A})^{\wedge} \mathrm{T}$, where beta is the envelope estimator and hatSigma is the estimated asymptotic covariance of $\operatorname{vec}(\mathrm{L}$ beta $\mathrm{R}-\mathrm{A})$. The reference distribution is chi-squared distribution with degrees of freedom d1 * 2 .

Value

The output is a list that contains following components.
chisqStatistic The test statistic.
dof The degrees of freedom of the reference chi-squared distribution.
pValue $\quad \mathrm{p}$-value of the test.
covMatrix The covariance matrix of vec(L beta R).

Examples

```
data(waterstrider)
X <- waterstrider[ , 1]
Y <- waterstrider[ , 2:5]
## Not run: m <- henv(X, Y, 2)
## Not run: m
L <- diag(4)
R <- matrix(c(1, -1, 0), 3, 1)
A <- matrix(0, 4, 1)
## Not run: test.res <- testcoef.henv(m, L, R, A)
## Not run: test.res
```

testcoef.logit.env Hypothesis test of the coefficients of the envelope model

Description

This function tests the null hypothesis $L *$ beta $=A$ versus the alternative hypothesis $L *$ beta $\sim=A$, where beta is estimated under the envelope model in logistic regression.

Usage

testcoef.logit.env(m, L, A)

Arguments

m
L

A

A list containing estimators and other statistics inherited from logit.env.
The matrix multiplied to beta on the left. It is a d1 by p matrix, while d 1 is less than or equal to p .

The matrix on the right hand side of the equation. It is a d1 by 1 matrix.
Note that inputs L and A must be matrices, if not, use as.matrix to convert them.

Details

This function tests for hypothesis H0: L beta = A, versus Ha: L beta $!=A$. The beta is estimated by the envelope model in predictor space. If $\mathrm{L}=\mathrm{Ip}$ and $\mathrm{A}=0$, then the test is equivalent to the standard F test on if beta $=0$. The test statistic used is vec $(\mathrm{L}$ beta -A$)$ hatSigma $\wedge-1 \operatorname{vec}(\mathrm{~L} \text { beta }-\mathrm{A})^{\wedge} \mathrm{T}$, where beta is the envelope estimator and hatSigma is the estimated asymptotic covariance of vec(L beta A). The reference distribution is chi-squared distribution with degrees of freedom d1.

Value

The output is a list that contains following components.
chisqStatistic The test statistic.
dof The degrees of freedom of the reference chi-squared distribution.
pValue p-value of the test.
covMatrix The covariance matrix of vec(L beta).

Examples

```
data(horseshoecrab)
X1 <- as.numeric(horseshoecrab[ , 1] == 2)
X2 <- as.numeric(horseshoecrab[ , 1] == 3)
X3 <- as.numeric(horseshoecrab[ , 1] == 4)
X4 <- as.numeric(horseshoecrab[ , 2] == 2)
X5 <- as.numeric(horseshoecrab[ , 2] == 3)
X6 <- horseshoecrab[ , 3]
X7 <- horseshoecrab[ , 5]
X <- cbind(X1, X2, X3, X4, X5, X6, X7)
Y <- as.numeric(ifelse(horseshoecrab[ , 4] > 0, 1, 0))
m <- logit.env(X, Y, 1)
L <- diag(7)
A <- matrix(0, 7, 1)
test.res <- testcoef.logit.env(m, L, A)
test.res
```

```
    testcoef.penv Hypothesis test of the coefficients of the partial envelope model
```


Description

This function tests the null hypothesis $\mathrm{L} *$ beta $1 * \mathrm{R}=\mathrm{A}$ versus the alternative hypothesis $\mathrm{L} *$ betal

* $\mathrm{R} \sim=\mathrm{A}$, where beta is estimated under the partial envelope model.

Usage

testcoef. penv(m, L, R, A)

Arguments

m A list containing estimators and other statistics inherited from penv.
$\mathrm{L} \quad$ The matrix multiplied to beta on the left. It is a d1 by r matrix, while d 1 is less than or equal to r.
$\mathrm{R} \quad$ The matrix multiplied to beta on the right. It is a p1 by d 2 matrix, while d 2 is less than or equal to p 1 .

A The matrix on the right hand side of the equation. It is a d1 by d2 matrix.
Note that inputs L, R and A must be matrices, if not, use as.matrix to convert them.

Details

This function tests for hypothesis H0: L beta1 $\mathrm{R}=\mathrm{A}$, versus Ha: L beta1 $\mathrm{R}!=\mathrm{A}$. The beta is estimated by the partial envelope model. If $\mathrm{L}=\mathrm{Ir}, \mathrm{R}=\mathrm{Ip} 1$ and $\mathrm{A}=0$, then the test is equivalent to the standard F test on if beta $1=0$. The test statistics used is vec $(\mathrm{L}$ beta1 $\mathrm{R}-\mathrm{A})$ hatSigma ${ }^{\wedge}-1$ $\operatorname{vec}(L \text { beta1 } R-A)^{\wedge} T$, where beta is the envelope estimator and hatSigma is the estimated asymptotic covariance of $\operatorname{vec}(\mathrm{L}$ beta1 $\mathrm{R}-\mathrm{A})$. The reference distribution is chi-squared distribution with degrees of freedom $\mathrm{d} 1 * \mathrm{~d} 2$.

Value

The output is a list that contains following components.
chisqStatistic The test statistic.
dof The degrees of freedom of the reference chi-squared distribution.
p Value $\quad p$-value of the test.
covMatrix The covariance matrix of vec(L beta1 R).

Examples

```
data(fiberpaper)
X1 <- fiberpaper[, 7]
X2 <- fiberpaper[, 5:6]
Y <- fiberpaper[, 1:4]
m <- penv(X1, X2, Y, 1)
m
L <- diag(4)
R <- as.matrix(1)
A <- matrix(0, 4, 1)
test.res <- testcoef.penv(m, L, R, A)
test.res
```

testcoef. pois.env Hypothesis test of the coefficients of the envelope model

Description

This function tests the null hypothesis $\mathrm{L} *$ beta $=\mathrm{A}$ versus the alternative hypothesis $\mathrm{L} *$ beta $\sim=\mathrm{A}$, where beta is estimated under the envelope model in poisson regression.

Usage

testcoef.pois.env(m, L, A)

Arguments

m
L

A
A

A list containing estimators and other statistics inherited from pois.env.
The matrix multiplied to beta on the left. It is a d1 by p matrix, while d 1 is less than or equal to p .
The matrix on the right hand side of the equation. It is a d1 by 1 matrix.
Note that inputs L and A must be matrices, if not, use as.matrix to convert them.

Details

This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If $\mathrm{L}=\mathrm{Ip}$ and $\mathrm{A}=0$, then the test is equivalent to the standard F test on if beta $=0$. The test statistic used is vec $(\mathrm{L}$ beta -A$)$ hatSigma^ $-1 \operatorname{vec}(\mathrm{~L} \text { beta }-\mathrm{A})^{\wedge} \mathrm{T}$, where beta is the envelope estimator and hatSigma is the estimated asymptotic covariance of vec(L beta A). The reference distribution is chi-squared distribution with degrees of freedom d1.

Value

The output is a list that contains following components.
chisqStatistic The test statistic.
dof The degrees of freedom of the reference chi-squared distribution.
pValue $\quad p$-value of the test.
covMatrix The covariance matrix of vec(L beta).

Examples

```
data(horseshoecrab)
X1 <- as.numeric(horseshoecrab[ , 1] == 2)
X2 <- as.numeric(horseshoecrab[ , 1] == 3)
X3 <- as.numeric(horseshoecrab[ , 1] == 4)
X4 <- as.numeric(horseshoecrab[ , 2] == 2)
X5 <- as.numeric(horseshoecrab[ , 2] == 3)
X6 <- horseshoecrab[ , 3]
X7 <- horseshoecrab[ , 5]
X <- cbind(X1, X2, X3, X4, X5, X6, X7)
Y <- horseshoecrab[ , 4]
m <- pois.env(X, Y, 1)
L <- diag(7)
A <- matrix(0, 7, 1)
test.res <- testcoef.pois.env(m, L, A)
test.res
```

testcoef.senv Hypothesis test of the coefficients of the scaled envelope model

Description

This function tests the null hypothesis $\mathrm{L} *$ beta $* \mathrm{R}=\mathrm{A}$ versus the alternative hypothesis $\mathrm{L} *$ beta $*$ $\mathrm{R} \sim=\mathrm{A}$, where beta is estimated under the scaled envelope model.

Usage

testcoef. senv(m, L, R, A)

Arguments

m

L

A list containing estimators and other statistics inherited from scale.env.
The matrix multiplied to beta on the left. It is a d1 by r matrix, while d 1 is less than or equal to r.

R
The matrix multiplied to beta on the right. It is a p by d 2 matrix, while d 2 is less than or equal to p .

A
The matrix on the right hand side of the equation. It is a d 1 by d 2 matrix.
Note that inputs L, R and A must be matrices, if not, use as.matrix to convert them.

Details

This function tests for hypothesis H0: L beta $\mathrm{R}=\mathrm{A}$, versus Ha: L beta $\mathrm{R}!=\mathrm{A}$. The beta is estimated by the scaled envelope model. If $\mathrm{L}=\mathrm{Ir}, \mathrm{R}=\mathrm{Ip}$ and $\mathrm{A}=0$, then the test is equivalent to the standard F test on if beta $=0$. The test statistic used is $\operatorname{vec}(L$ beta $R-A)$ hatSigma^^ $1 \operatorname{vec}(L \text { beta } R-A)^{\wedge} T$, where beta is the envelope estimator and hatSigma is the estimated asymptotic covariance of vec(L beta $\mathrm{R}-\mathrm{A}$). The reference distribution is chi-squared distribution with degrees of freedom $\mathrm{d} 1 * \mathrm{~d} 2$.

Value

The output is a list that contains following components.
chisqStatistic The test statistic.
dof The degrees of freedom of the reference chi-squared distribution.
pValue $\quad p$-value of the test.
covMatrix The covariance matrix of vec(L beta R).

Examples

```
data(sales)
X <- sales[, 1:3]
Y <- sales[, 4:7]
m <- senv(X, Y, 2)
L <- diag(4)
R <- as.matrix(c(1, 0, 0))
A <- matrix(0, 4, 1)
test.res <- testcoef.\operatorname{senv(m, L, R, A)}
test.res
```


Description

This function tests the null hypothesis $\mathrm{L} *$ beta * $\mathrm{R}=\mathrm{A}$ versus the alternative hypothesis $\mathrm{L} *$ beta * $\mathrm{R} \sim=\mathrm{A}$, where beta is estimated under the simultaneous envelope model.

Usage

testcoef.stenv(m, L, R, A)

Arguments

m
L
$R \quad$ The matrix multiplied to beta on the right. It is an r by $d 2$ matrix, while $d 2$ is less than or equal to r.

A
A list containing estimators and other statistics inherited from stenv.
The matrix multiplied to beta on the left. It is a d1 by p matrix, while d 1 is less than or equal to p .

The matrix on the right hand side of the equation. It is a d 1 by d 2 matrix.

Note that inputs L, R and A must be matrices, if not, use as.matrix to convert them.

Details

This function tests for hypothesis H0: L beta $R=A$, versus Ha: L beta $R!=A$. The beta is estimated by the simultaneous envelope model. If $L=I p, R=\operatorname{Ir}$ and $A=0$, then the test is equivalent to the standard F test on if beta $=0$. The test statistic used is vec $(L$ beta $R-A)$ hatSigma^ ${ }^{\wedge}-1 \operatorname{vec}(L$ beta R $-\mathrm{A})^{\wedge} \mathrm{T}$, where beta is the envelope estimator and hatSigma is the estimated asymptotic covariance of $\operatorname{vec}(L$ beta $R-A)$. The reference distribution is chi-squared distribution with degrees of freedom $\mathrm{d} 1 * \mathrm{~d} 2$.

Value

The output is a list that contains following components.

```
chisqStatistic The test statistic.
dof The degrees of freedom of the reference chi-squared distribution.
pValue p-value of the test.
covMatrix The covariance matrix of vec(L beta R).
```


Examples

```
data(fiberpaper)
X <- fiberpaper[ , 5:7]
Y <- fiberpaper[ , 1:4]
m <- stenv(X, Y, 2, 3)
L <- diag(3)
R <- as.matrix(c(1, 0, 0, 0), nrow = 4)
A <- matrix(0, 3, 1)
test.res <- testcoef.stenv(m, L, R, A)
test.res
```

```
testcoef.sxenv Hypothesis test of the coefficients of the scaled envelope model in the
``` predictor space

\section*{Description}

This function tests the null hypothesis \(\mathrm{L} *\) beta \(* \mathrm{R}=\mathrm{A}\) versus the alternative hypothesis \(\mathrm{L} *\) beta * \(\mathrm{R} \sim=\mathrm{A}\), where beta is estimated under the scaled envelope model in the predictor space.

\section*{Usage}
testcoef.sxenv(m, L, R, A)

\section*{Arguments}
m A list containing estimators and other statistics inherited from scale.xenv.
\(\mathrm{L} \quad\) The matrix multiplied to beta on the left. It is a d1 by p matrix, while d 1 is less than or equal to p .
\(R \quad\) The matrix multiplied to beta on the right. It is an \(r\) by \(d 2\) matrix, while \(d 2\) is less than or equal to \(r\).

A
The matrix on the right hand side of the equation. It is a d 1 by d 2 matrix.
Note that inputs L, R and A must be matrices, if not, use as.matrix to convert them.

\section*{Details}

This function tests for hypothesis H0: L beta \(\mathrm{R}=\mathrm{A}\), versus Ha: L beta \(\mathrm{R}!=\mathrm{A}\). The beta is estimated by the scaled envelope model in the predictor space. If \(L=I p, R=\operatorname{Ir}\) and \(A=0\), then the test is equivalent to the standard F test on if beta \(=0\). The test statistic used is \(\operatorname{vec}(\mathrm{L}\) beta R - A) hatSigma \({ }^{\wedge}-1 \operatorname{vec}(L \text { beta } R-A)^{\wedge} T\), where beta is the envelope estimator and hatSigma is the estimated asymptotic covariance of \(\operatorname{vec}(\mathrm{L}\) beta \(\mathrm{R}-\mathrm{A})\). The reference distribution is chi-squared distribution with degrees of freedom \(\mathrm{d} 1 * \mathrm{~d} 2\).

\section*{Value}

The output is a list that contains following components.
chisqStatistic The test statistic.
dof The degrees of freedom of the reference chi-squared distribution.
pValue \(\quad p\)-value of the test.
covMatrix The covariance matrix of vec(L beta R).

\section*{Examples}
```

    data(sales)
    Y <- sales[, 1:3]
    X <- sales[, 4:7]
    R <- rep(1, 4)
    u <- U.sxenv(X, Y, R)
    u
    m <- sxenv(X, Y, 2, R)
L <- diag(4)
R <- as.matrix(c(1, 0, 0))
A <- matrix(0, 4, 1)
test.res <- testcoef.sxenv(m, L, R, A)
test.res

```
testcoef. xenv Hypothesis test of the coefficients of the envelope model

\section*{Description}

This function tests the null hypothesis \(\mathrm{L} *\) beta \(* \mathrm{R}=\mathrm{A}\) versus the alternative hypothesis \(\mathrm{L} *\) beta * \(\mathrm{R} \sim=\mathrm{A}\), where beta is estimated under the envelope model in predictor space.

\section*{Usage}
testcoef.xenv(m, L, R, A)

\section*{Arguments}
m
L

R

A

A list containing estimators and other statistics inherited from xenv.
The matrix multiplied to beta on the left. It is a d1 by p matrix, while d1 is less than or equal to p .
\(R \quad\) The matrix multiplied to beta on the right. It is an \(r\) by \(d 2\) matrix, while \(d 2\) is less than or equal to \(r\).
The matrix on the right hand side of the equation. It is a d1 by d2 matrix.
Note that inputs L, R and A must be matrices, if not, use as.matrix to convert them.

\section*{Details}

This function tests for hypothesis H0: L beta \(\mathrm{R}=\mathrm{A}\), versus Ha: L beta \(\mathrm{R}!=\mathrm{A}\). The beta is estimated by the envelope model in predictor space. If \(\mathrm{L}=\mathrm{Ip}, \mathrm{R}=\mathrm{Ir}\) and \(\mathrm{A}=0\), then the test is equivalent to the standard \(F\) test on if beta \(=0\). The test statistic used is vec \((L\) beta \(R-A)\) hatSigma \({ }^{\wedge}-1\) vec \((L\) beta \(\mathrm{R}-\mathrm{A})^{\wedge} \mathrm{T}\), where beta is the envelope estimator and hatSigma is the estimated asymptotic covariance of \(\operatorname{vec}(\mathrm{L}\) beta \(\mathrm{R}-\mathrm{A})\). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2.

\section*{Value}

The output is a list that contains following components.
chisqStatistic The test statistic.
dof The degrees of freedom of the reference chi-squared distribution.
pValue \(\quad p\)-value of the test.
covMatrix The covariance matrix of vec(L beta R).

\section*{Examples}
data(wheatprotein)
X <- wheatprotein[, 1:6]
\(Y<-\) wheatprotein[, 7]
\(\mathrm{m}<-\operatorname{xenv}(X, Y, 2)\)
m
L <- diag(6)
R <- as.matrix(1)
A <- matrix(0, 6, 1)
test.res <- testcoef. \(\operatorname{xenv(m,~L,~R,~A)~}\)
test.res
u.env

Select the dimension of env

\section*{Description}

This function outputs dimensions selected by Akaike information criterion (AIC), Bayesian information criterion (BIC) and likelihood ratio testing with specified significance level for the envelope model.

\section*{Usage}
u.env(X, Y, alpha = 0.01)

\section*{Arguments}
\(X \quad\) Predictors. An \(n\) by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
\(\mathrm{Y} \quad\) Multivariate responses. An \(n\) by \(r\) matrix, \(r\) is the number of responses and \(n\) is number of observations. The responses must be continuous variables.
alpha Significance level for testing. The default is 0.01 .

\section*{Value}
u.aic Dimension of the envelope subspace selected by AIC.
u.bic Dimension of the envelope subspace selected by BIC.
u.lrt Dimension of the envelope subspace selected by the likelihood ratio testing procedure.
loglik.seq Log likelihood for dimension from 0 to \(r\).
aic.seq AIC value for dimension from 0 to \(r\).
bic.seq BIC value for dimension from 0 to \(r\).

\section*{Examples}
data(wheatprotein)
X <- wheatprotein[, 8]
\(Y<-\) wheatprotein[, 1:6]
\(u<-u \cdot \operatorname{env}(X, Y)\)
u
u.genv Select the dimension of genv

\section*{Description}

This function outputs dimensions selected by Akaike information criterion (AIC), Bayesian information criterion (BIC) and likelihood ratio testing with specified significance level for the groupwise envelope model.

\section*{Usage}
u.genv(X, Y, Z, alpha = 0.01)

\section*{Arguments}

X

Y

Z
alpha

Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.

Multivariate responses. An \(n\) by \(r\) matrix, \(r\) is the number of responses and \(n\) is number of observations. The responses must be continuous variables.

A group indicator vector of length \(n\), where \(n\) denotes the number of observations.

Significance level for testing. The default is 0.01 .

\section*{Value}
u.aic Dimension of the groupwise envelope subspace selected by AIC.
u.bic Dimension of the groupwise envelope subspace selected by BIC.
u.lrt Dimension of the groupwise envelope subspace selected by the likelihood ratio testing procedure.
loglik.seq Log likelihood for dimension from 0 to r.
aic.seq \(\quad\) AIC value for dimension from 0 to r .
bic.seq \(\quad\) BIC value for dimension from 0 to \(r\).

\section*{Examples}
```

data(fiberpaper)
X <- fiberpaper[ , c(5, 7)]
Y <- fiberpaper[ , 1:3]
Z <- as.numeric(fiberpaper[ , 6] > mean(fiberpaper[ , 6]))
u <- u.genv(X, Y, Z)
u

```

\section*{u.henv}

\section*{Select the dimension of henv}

\section*{Description}

This function outputs dimensions selected by Akaike information criterion (AIC), Bayesian information criterion (BIC) and likelihood ratio testing with specified significance level for the heteroscedastic envelope model.

\section*{Usage}
u.henv(X, Y, alpha = 0.01)

\section*{Arguments}
\(\mathrm{X} \quad\) A group indicator vector of length \(n\), where \(n\) denotes the number of observations.

Y
Multivariate responses. An \(n\) by \(r\) matrix, \(r\) is the number of responses and \(n\) is number of observations. The responses must be continuous variables.
alpha Significance level for testing. The default is 0.01 .

\section*{Value}
\begin{tabular}{ll}
u.aic & Dimension of the heteroscedastic envelope subspace selected by AIC. \\
u.bic & Dimension of the heteroscedastic envelope subspace selected by BIC. \\
u.lrt & \begin{tabular}{l}
Dimension of the heteroscedastic envelope subspace selected by the likelihood \\
ratio testing procedure.
\end{tabular} \\
loglik.seq & \begin{tabular}{l}
Log likelihood for dimension from 0 to r. \\
aic.seq
\end{tabular} \\
AIC value for dimension from 0 to r. \\
bic.seq & BIC value for dimension from 0 to r.
\end{tabular}

\section*{Examples}
```

data(waterstrider)
X <- waterstrider[ , 1]
Y <- waterstrider[ , 2:5]

## Not run: u <- u.henv(X, Y)

## Not run: u

```
u.logit.env
Select the dimension of logit.env

\section*{Description}

This function outputs dimensions selected by Akaike information criterion (AIC), Bayesian information criterion (BIC) and likelihood ratio testing with specified significance level for the envelope model in logistic regression.

\section*{Usage}
u.logit.env(X, Y, alpha = 0.01)

\section*{Arguments}
\(\mathrm{X} \quad\) Predictors. An n by p matrix, p is the number of predictors and n is number of observations. The predictors must be continuous variables.
Y Response. An n by 1 matrix. The univariate response must be binary.
alpha \(\quad\) Significance level for testing. The default is 0.01 .

\section*{Value}
\begin{tabular}{ll}
u.aic & Dimension of the envelope subspace selected by AIC. \\
u.bic & \begin{tabular}{l}
Dimension of the envelope subspace selected by BIC. \\
u.lrt
\end{tabular} \\
\begin{tabular}{l}
Dimension of the envelope subspace selected by the likelihood ratio testing pro- \\
cedure.
\end{tabular} \\
loglik.seq & \begin{tabular}{l}
Log likelihood for dimension from 0 to p. \\
aic.seq
\end{tabular} \\
bic.seq & AIC value for dimension from 0 to p. \\
& BIC value for dimension from 0 to p.
\end{tabular}

\section*{Examples}
```

    data(horseshoecrab)
    X1 <- as.numeric(horseshoecrab[ , 1] == 2)
    X2 <- as.numeric(horseshoecrab[ , 1] == 3)
    X3 <- as.numeric(horseshoecrab[ , 1] == 4)
    X4 <- as.numeric(horseshoecrab[ , 2] == 2)
    X5 <- as.numeric(horseshoecrab[ , 2] == 3)
    X6 <- horseshoecrab[ , 3]
    X7 <- horseshoecrab[ , 5]
    X <- cbind(X1, X2, X3, X4, X5, X6, X7)
    Y <- as.numeric(ifelse(horseshoecrab[ , 4] > 0, 1, 0))
    ## Not run: u <- u.logit.env(X, Y)
    ## Not run: u
    ```
u.penv
Select the dimension of penv

\section*{Description}

This function outputs dimensions selected by Akaike information criterion (AIC), Bayesian information criterion (BIC) and likelihood ratio testing with specified significance level for the partial envelope model.

\section*{Usage}
u.penv(X1, X2, Y, alpha = 0.01)

\section*{Arguments}

X1 Predictors of main interest. An \(n\) by p1 matrix, \(n\) is the number of observations, and p 1 is the number of main predictors. The predictors can be univariate or multivariate, discrete or continuous.
X2 Covariates, or predictors not of main interest. An \(n\) by p2 matrix, p2 is the number of covariates.
\(\mathrm{Y} \quad\) Multivariate responses. An \(n\) by \(r\) matrix, \(r\) is the number of responses and \(n\) is number of observations. The responses must be continuous variables.
alpha Significance level for testing. The default is 0.01 .

\section*{Value}
u.aic Dimension of the partial envelope subspace selected by AIC
u.bic Dimension of the partial envelope subspace selected by BIC.
u.lrt Dimension of the partial envelope subspace selected by the likelihood ratio testing procedure.
loglik.seq Log likelihood for dimension from 0 to \(r\).
aic.seq AIC value for dimension from 0 to \(r\).
bic.seq BIC value for dimension from 0 to \(r\).

\section*{Examples}
```

data(fiberpaper)
X1 <- fiberpaper[, 7]
X2 <- fiberpaper[, 5:6]
Y <- fiberpaper[, 1:4]
u <- u.penv(X1, X2, Y)
u

```
 u.pois.env Select the dimension of pois.env

\section*{Description}

This function outputs dimensions selected by Akaike information criterion (AIC), Bayesian information criterion (BIC) and likelihood ratio testing with specified significance level for the envelope model in poisson regression.

\section*{Usage}
u.pois.env(X, Y, alpha = 0.01)

\section*{Arguments}
\(X \quad\) Predictors. An n by p matrix, p is the number of predictors and n is number of observations. The predictors must be continuous variables.

Y Response. An n by 1 matrix. The univariate response must be counts.
alpha \(\quad\) Significance level for testing. The default is 0.01 .

\section*{Value}
u.aic Dimension of the envelope subspace selected by AIC.
u.bic Dimension of the envelope subspace selected by BIC.
u.lrt Dimension of the envelope subspace selected by the likelihood ratio testing procedure.
loglik.seq Log likelihood for dimension from 0 to p .
aic.seq \(\quad\) AIC value for dimension from 0 to \(p\).
bic.seq \(\quad\) BIC value for dimension from 0 to \(p\).

\section*{Examples}
```

    data(horseshoecrab)
    X1 <- as.numeric(horseshoecrab[ , 1] == 2)
    X2 <- as.numeric(horseshoecrab[ , 1] == 3)
    X3 <- as.numeric(horseshoecrab[ , 1] == 4)
    X4 <- as.numeric(horseshoecrab[ , 2] == 2)
    X5 <- as.numeric(horseshoecrab[ , 2] == 3)
    X6 <- horseshoecrab[ , 3]
    X7 <- horseshoecrab[ , 5]
    X <- cbind(X1, X2, X3, X4, X5, X6, X7)
    Y <- horseshoecrab[ , 4]
    ## Not run: u <- u.pois.env(X, Y)
    ## Not run: u
    ```
 u.pred2.env
 Select the dimension of the constructed partial envelope for prediction
 based on envelope model

\section*{Description}

This function outputs dimensions selected by Akaike information criterion (AIC), Bayesian information criterion (BIC) and likelihood ratio testing with specified significance level for the constructed partial envelope model.

\section*{Usage}
u.pred2.env(X, Y, Xnew, alpha = 0.01)

\section*{Arguments}
\(x\)
\(\mathrm{Y} \quad\) Multivariate responses. An \(n\) by \(r\) matrix, \(r\) is the number of responses and \(n\) is number of observations. The responses must be continuous variables.
Xnew The value of X with which to estimate or predict Y . A p dimensional vector.
alpha
Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
alue
u.aic Dimension of the constructed partial envelope subspace selected by AIC.
u.bic Dimension of the constructed partial envelope subspace selected by BIC.
u.lrt Dimension of the constructed partial envelope subspace selected by the likelihood ratio testing procedure.
loglik.seq Log likelihood for dimension from 0 to \(r\).
aic.seq AIC value for dimension from 0 to \(r\).
bic.seq BIC value for dimension from 0 to \(r\).

\section*{Examples}
```

data(fiberpaper)
X <- fiberpaper[, 5:7]
Y <- fiberpaper[, 1:4]
u<- u.pred2.env(X, Y, X[10, ])
u

```

\section*{u.senv Select the dimension of senv}

\section*{Description}

This function outputs dimensions selected by Akaike information criterion (AIC), Bayesian information criterion (BIC).

\section*{Usage}
u. \(\operatorname{senv}(X, Y)\)

\section*{Arguments}
\(X \quad\) Predictors. An \(n\) by \(p\) matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
\(\mathrm{Y} \quad\) Multivariate responses. An \(n\) by \(r\) matrix, \(r\) is the number of responses and \(n\) is number of observations. The responses must be continuous variables.

\section*{Value}
u.aic

Dimension of the scaled envelope subspace selected by AIC.
u.bic

Dimension of the scaled envelope subspace selected by BIC.
aic.seq
AIC value for dimension from 0 to \(r\).
bic.seq BIC value for dimension from 0 to \(r\).

\section*{Examples}
```

data(sales)
X <- sales[, 1:3]
Y <- sales[, 4:7]
u <- U.\operatorname{senv(X, Y)}
u

```
u.stenv Select the dimension of stenv

\section*{Description}

This function outputs dimensions selected by Akaike information criterion (AIC), Bayesian information criterion (BIC) and likelihood ratio testing with specified significance level for the simultaneous envelope model.

\section*{Usage}
u.stenv(X, Y, alpha = 0.01)

\section*{Arguments}

X
\(\mathrm{Y} \quad\) Multivariate responses. An \(n\) by \(r\) matrix, \(r\) is the number of responses and \(n\) is number of observations. The responses must be continuous variables.
alpha Significance level for testing. The default is 0.01 .

\section*{Value}
d Rank of beta selected by the Bura-Cook estimator.
u.aic Dimension of the simultaneous envelope subspace selected by AIC.
u.bic Dimension of the simultaneous envelope subspace selected by BIC.
u.lrt Dimension of the simultaneous envelope subspace selected by the likelihood ratio testing procedure.
loglik.mat Log likelihood for dimension from (1, 1) to (r, p).
aic.mat \(\quad\) AIC value for dimension from \((1,1)\) to \((r, p)\).
bic.mat \(\quad\) BIC value for dimension from \((1,1)\) to \((r, p)\).

\section*{Examples}
```

data(fiberpaper)
X <- fiberpaper[, 5:7]
Y <- fiberpaper[, 1:4]
u <- u.stenv(X, Y)
u

```

\section*{u.sxenv}

\section*{Description}

This function outputs dimensions selected by Akaike information criterion (AIC), Bayesian information criterion (BIC) for the scaled envelope model in the predictor space.

\section*{Usage}
u.sxenv (X, Y, R)

\section*{Arguments}
\(X \quad\) Predictors. An \(n\) by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
\(\mathrm{Y} \quad\) Multivariate responses. An \(n\) by \(r\) matrix, \(r\) is the number of responses and \(n\) is number of observations. The responses must be continuous variables.
\(R \quad\) The number of replications of the scales. A vector, the sum of all elements of \(R\) must be p .

\section*{Value}
u.aic Dimension of the scaled envelope subspace in the predictor space selected by AIC.
u.bic Dimension of the scaled envelope subspace in the predictor space selected by BIC.
aic.seq AIC value for dimension from 0 to p .
bic.seq BIC value for dimension from 0 to p .

\section*{Examples}
```

data(sales)
Y <- sales[, 1:3]
X <- sales[, 4:7]
R <- rep(1, 4)
u <- u.Sxenv(X, Y, R)
u

```

\section*{Description}

This function outputs dimensions selected by Akaike information criterion (AIC), Bayesian information criterion (BIC) and likelihood ratio testing with specified significance level for the envelope model.

\section*{Usage}
u. \(x\) env (X, Y, alpha = 0.01)

\section*{Arguments}
\(X \quad\) Predictors. An \(n\) by p matrix, p is the number of predictors and n is number of observations. The predictors must be continuous variables.
\(\mathrm{Y} \quad\) Responses. An \(n\) by r matrix, \(r\) is the number of responses. The response can be univariate or multivariate and must be continuous variable.
alpha Significance level for testing. The default is 0.01 .

\section*{Value}
u.aic Dimension of the envelope subspace selected by AIC.
u.bic Dimension of the envelope subspace selected by BIC.
u.lrt Dimension of the envelope subspace selected by the likelihood ratio testing procedure.
loglik.seq Log likelihood for dimension from 0 to p .
aic.seq AIC value for dimension from 0 to \(p\).
bic.seq BIC value for dimension from 0 to \(p\).

\section*{Examples}
```

data(wheatprotein)
X <- wheatprotein[, 1:6]
Y <- wheatprotein[, 7]
u <- u.xenv(X, Y)
u

```
waterstrider Water strider data

\section*{Description}

Measures of characteristics of the water striders

\section*{Usage \\ data("waterstrider")}

\section*{Format}

A data frame with 90 observations on the following 9 variables.

V1 Index of water strider species.
V2 Logarithm of length of the first antennal segment.
V3 Logarithm of length of the second antennal segment.
V4 Logarithm of length of the third antennal segment.
V5 Logarithm of length of the fourth antennal segment.
V6 Logarithm of length of fomora of middle leg.
V7 Logarithm of length of tibiae of middle leg.
V8 Logarithm of length of fomora of hind leg.
V9 Logarithm of length of tibiae of hind leg.

\section*{Details}

This data set contains 8 measures of water striders and an indicator of the species of water striders.

\section*{References}

Klingenberg, C. R. and Spence, J. R. (1993). Heterochrony and Allometry Lessons from the Water Strider Genus Limnoporus. Evolution 47, 1834-1853

\section*{Description}

Compute the weighted envelope estimator with weights computed from BIC.

\section*{Usage}
weighted.env(X, Y, bstrpNum = 0, min.u = 1,
\(\max . u=n c o l(\) as.matrix(Y)), boot.resi = "full")

\section*{Arguments}
\(\mathrm{X} \quad\) Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
\(\mathrm{Y} \quad\) Multivariate responses. An \(n\) by \(r\) matrix, \(r\) is the number of responses and \(n\) is number of observations. The responses must be continuous variables.
bstrpNum Number of bootstrap samples. A positive integer.
min. \(u \quad\) Lower bound of the range of \(u\) to compute bootstrap error. A postive integer between 1 and \(p\). This argument is relevant only when bstrpNum>0.
max. upper bound of the range of \(u\) to compute bootstrap error. A postive integer between 1 and p . This argument is relevant only when bstrpNum \(>0\).
boot.resi A string that can be "full" or "weighted" indicating the model from which the residuals are calculated. If the input is "full", then the residuals are obtained using the standard estimators; and if the input is "weighted", then the residuals are obtained using the weighted envelope estimators. This argument is for computing residuals in residual bootstrap, and it is relevant only when bstrpNum>0.

\section*{Details}

This function computes the weighted envelope estimator in a standard multivariate linear regression. And the weighted envelope estimator takes the form
\[
\hat{\beta}_{w}=\sum_{j=1}^{r} w_{j} \hat{\beta}_{j}
\]
where \(\hat{\beta}_{j}\) is the envelope estimator of \(\beta\) with \(u=j\) and \(w_{j}\) 's are the weights computed from BIC values
\[
w_{j}=\frac{\exp \left(-b_{j}\right)}{\sum_{k=1}^{r} \exp \left(-b_{k}\right)}
\]
where \(b_{j}\) is the BIC criterion evaluated at the envelope estimator \(\hat{\beta}_{j}\). For details, see Eck and Cook (2017).

The variation of the weighted envelope estimator is estimated by residual bootstrap. The user can specify the range for bootstrap \(u=(\min . u\), max. \(u\)), if the weights outside of the range are small.

\section*{Value}

The output is a list that contains the following components:
\begin{tabular}{ll}
beta & The weighted envelope estimator of the regression coefficients. \\
mu & The weighted estimated intercept. \\
Sigma & The weighted envelope estimator of the error covariance matrix. \\
w & Weights computed based on BIC. \\
loglik & \begin{tabular}{l}
The log likelihood function computed with weighted envelope estimator. \\
n
\end{tabular} \\
bootse & \begin{tabular}{l}
The number of observations in the data. \\
The standard error for elements in beta computed by residual bootstrap. This \\
output is available only when bstrpNum>0.
\end{tabular} \\
ratios & \begin{tabular}{l}
The boostrap standard error ratio of the standard multivariate linear regression \\
estimator over the weighted envelope estimator for each element in beta. This \\
output is available only when bstrpNum \(>0\).
\end{tabular} \\
bic_select & \begin{tabular}{l}
A table that lists how many times BIC selected each candidate dimension. If \\
BIC never selects a dimension, this dimension does not appear on the table. \\
This output is available only when bstrpNum>0.
\end{tabular}
\end{tabular}

\section*{References}

Eck, D. J. and Cook, R. D. (2017). Weighted Envelope Estimation to Handle Variability in Model Selection. Biometrika. To appear.

\section*{Examples}
data(wheatprotein)
X <- wheatprotein[, 8]
Y <- wheatprotein[, 1:6]
\(m<-\) weighted.env (\(X, Y\))
m\$w
m\$beta
\#\# Not run: m2 <- weighted.env (X, Y, bstrpNum = 100, min. u = 1, max. \(u=6\), boot. resi = "full")
\#\# Not run: m2\$bic_select
\#\# Not run: m2\$bootse
```

weighted.penv Weighted partial envelope estimator

```

\section*{Description}

Compute the weighted partial envelope estimator with weights computed from BIC.

\section*{Usage}
weighted.penv(X1, X2, Y, bstrpNum = 0, min.u = 1,
max. \(u=\) ncol(as.matrix(Y)), boot.resi \(=\) "full")

\section*{Arguments}

X1
Predictors of main interest. An \(n\) by p 1 matrix, n is the number of observations, and p 1 is the number of main predictors. The predictors can be univariate or multivariate, discrete or continuous.
X2
Covariates, or predictors not of main interest. An n by p2 matrix, p2 is the number of covariates.
\(Y \quad\) Multivariate responses. An \(n\) by \(r\) matrix, \(r\) is the number of responses and \(n\) is number of observations. The responses must be continuous variables.
bstrpNum Number of bootstrap samples. A positive integer.
min. \(u \quad\) Lower bound of the range of \(u\) to compute bootstrap error. A postive integer between 1 and \(p\). This argument is relevant only when bstrpNum>0.
max. u Upper bound of the range of \(u\) to compute bootstrap error. A postive integer between 1 and p . This argument is relevant only when bstrpNum \(>0\).
boot.resi A string that can be "full" or "weighted" indicating the model from which the residuals are calculated. If the input is "full", then the residuals are obtained using the standard estimators; and if the input is "weighted", then the residuals are obtained using the weighted envelope estimators. This argument is for computing residuals in residual bootstrap, and it is relevant only when bstrpNum \(>0\).

\section*{Details}

This function computes the weighted partial envelope estimator in a standard multivariate linear regression. And the weighted partial envelope estimator takes the form
\[
\hat{\beta}_{w}=\sum_{j=1}^{r} w_{j} \hat{\beta}_{j}
\]
where \(\hat{\beta}_{j}\) is the partial envelope estimator of \(\beta\) with \(u=j\) and \(w_{j}\) 's are the weights computed from BIC values
\[
w_{j}=\frac{\exp \left(-b_{j}\right)}{\sum_{k=1}^{r} \exp \left(-b_{k}\right)}
\]
where \(b_{j}\) is the BIC criterion evaluated at the partial envelope estimator \(\hat{\beta}_{j}\). For details, see Eck and Cook (2017).

The variation of the weighted partial envelope estimator is estimated by residual bootstrap. The user can specify the range for bootstrap \(u=(\min . u\), max. \(u\)), if the weights outside of the range are small.

\section*{Value}

The output is a list that contains the following components:
\[
\begin{array}{ll}
\text { beta } & \text { The weighted partial envelope estimator of the regression coefficients. } \\
\text { mu } & \text { The weighted estimated intercept. } \\
\text { Sigma } & \text { The weighted partial envelope estimator of the error covariance matrix. } \\
\text { w } & \text { Weights computed based on BIC. }
\end{array}
\]
\begin{tabular}{ll}
loglik & The log likelihood function computed with weighted partial envelope estimator. \\
n & The number of observations in the data. \\
bootse & \begin{tabular}{l}
The standard error for elements in betal computed by residual bootstrap. This \\
output is available only when bstrpNum \(>0\).
\end{tabular} \\
ratios & \begin{tabular}{l}
The boostrap standard error ratio of the standard multivariate linear regression \\
estimator over the weighted partial envelope estimator for each element in betal. \\
This output is available only when bstrpNum \(>0\).
\end{tabular} \\
bic_select & \begin{tabular}{l}
A table that lists how many times BIC selected each candidate dimension. If \\
BIC never selects a dimension, this dimension does not appear on the table. \\
This output is available only when bstrpNum \(>0\).
\end{tabular}
\end{tabular}

\section*{References}

Eck, D. J. and Cook, R. D. (2017). Weighted Envelope Estimation to Handle Variability in Model Selection. Biometrika. To appear.

\section*{Examples}
```

data(fiberpaper)
X1 <- fiberpaper[, 7]
X2 <- fiberpaper[, 5:6]
Y <- fiberpaper[, 1:4]
m <- weighted.penv(X1, X2, Y)
m$w
m$beta1
m2 <- penv(X1, X2, Y, 2)
m2\$beta1

## Not run: m3 <- weighted.penv(X1, X2, Y, bstrpNum = 100, boot.resi = "full")

## Not run: m3\$w

## Not run: m3\$bic_select

## Not run: m3\$bootse

## Not run: boot.penv(X1, X2, Y, 2, 100)

```
```

weighted.pred.env Estimation or prediction using weighted partial envelope

```

\section*{Description}

Perform estimation or prediction through weighted partial envelope model.

\section*{Usage}
weighted.pred.env(X, Y, Xnew)

\section*{Arguments}

X
Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.
\(Y \quad\) Multivariate responses. An \(n\) by \(r\) matrix, \(r\) is the number of responses and \(n\) is number of observations. The responses must be continuous variables.
Xnew The value of X with which to estimate or predict Y . A p dimensional vector.

\section*{Details}

This function evaluates the envelope model at new value Xnew. It can perform estimation: find the fitted value when \(\mathrm{X}=\) Xnew, or prediction: predict Y when \(\mathrm{X}=\) Xnew. But it does not provide the estimation or prediction error. This function performs prediction using the same procedure as in pred2.env, except that the partial envelope estimator with dimension \(u\) is replaced by a weighted partial envelope estimator. The weights are decided based on BIC values.

\section*{Value}
value \(\quad\) The fitted value or the predicted value evaluated at Xnew.

\section*{Examples}
data(fiberpaper)
X <- fiberpaper[, 5:7]
Y <- fiberpaper[, 1:4]
\#\# Not run: pred.res <- weighted.pred.env(X, Y, X[10,])
weighted.xenv Weighted predictor envelope estimator

\section*{Description}

Compute the weighted predictor envelope estimator with weights computed from BIC.

\section*{Usage}
weighted. xenv(X, Y, bstrpNum = 0, min.u = 1,
max.u = ncol(as.matrix(X)), boot.resi = "full")

\section*{Arguments}

X
Predictors. An \(n\) by \(p\) matrix, \(p\) is the number of predictors and \(n\) is number of observations. The predictors must be continuous variables.

Y
Responses. An \(n\) by r matrix, \(r\) is the number of responses. The response can be univariate or multivariate and must be continuous variable.
bstrpNum Number of bootstrap samples. A positive integer.
min. \(u \quad\) Lower bound of the range of \(u\) to compute bootstrap error. A postive integer between 1 and p . This argument is relevant only when bstrpNum \(>0\).
max. u Upper bound of the range of \(u\) to compute bootstrap error. A postive integer between 1 and \(p\). This argument is relevant only when bstrpNum \(>0\).
boot.resi A string that can be "full" or "weighted" indicating the model from which the residuals are calculated. If the input is "full", then the residuals are obtained using the standard estimators; and if the input is "weighted", then the residuals are obtained using the weighted predictor envelope estimators. This argument is for computing residuals in residual bootstrap, and it is relevant only when bstrpNum>0.

\section*{Details}

This function computes the weighted predictor envelope estimator in a standard multivariate linear regression. And the weighted predictor envelope estimator takes the form
\[
\hat{\beta}_{w}=\sum_{j=1}^{p} w_{j} \hat{\beta}_{j}
\]
where \(\hat{\beta}_{j}\) is the predictor envelope estimator of \(\beta\) with \(u=j\) and \(w_{j}\) 's are the weights computed from BIC values
\[
w_{j}=\frac{\exp \left(-b_{j}\right)}{\sum_{k=1}^{p} \exp \left(-b_{k}\right)}
\]
where \(b_{j}\) is the BIC criterion evaluated at the predictor envelope estimator \(\hat{\beta}_{j}\). For details, see Eck and Cook (2017).

The variation of the weighted predictor envelope estimator is estimated by residual bootstrap. The user can specify the range for bootstrap \(u=(\min . u\), max. \(u\)), if the weights outside of the range are small.

\section*{Value}

The output is a list that contains the following components:
\begin{tabular}{ll}
beta & The weighted predictor envelope estimator of the regression coefficients. \\
mu & The weighted estimated intercept. \\
SigmaX & The weighted predictor envelope estimator of the covariance matrix of X. \\
SigmaYcX & \begin{tabular}{l}
The weighted predictor envelope estimator of the error covariance matrix. \\
w
\end{tabular} \\
loglik & \begin{tabular}{l}
Weights computed based on BIC. \\
The log likelihood function computed with weighted predictor envelope estima- \\
tor.
\end{tabular} \\
n bootse & \begin{tabular}{l}
The number of observations in the data. \\
The standard error for elements in beta computed by residual bootstrap. This \\
output is available only when bstrpNum>0.
\end{tabular}
\end{tabular}
\[
\begin{array}{ll}
\text { ratios } & \begin{array}{l}
\text { The boostrap standard error ratio of the standard multivariate linear regression } \\
\text { estimator over the weighted predictor envelope estimator for each element in } \\
\text { beta. This output is available only when bstrpNum }>0 \text {. }
\end{array} \\
\text { bic_select } & \begin{array}{l}
\text { A table that lists how many times BIC selected each candidate dimension. If } \\
\text { BIC never selects a dimension, this dimension does not appear on the table. } \\
\text { This output is available only when bstrpNum }>0 .
\end{array}
\end{array}
\]

\section*{References}

Eck, D. J. and Cook, R. D. (2017). Weighted Envelope Estimation to Handle Variability in Model Selection. Biometrika. To appear.

\section*{Examples}
```

data(wheatprotein)
X <- wheatprotein[, 1:6]
Y <- wheatprotein[, 7]
m <- weighted.xenv(X, Y)
m$w
m$beta

## Not run: m2 <- weighted.xenv(X, Y, bstrpNum = 100, min.u = 2, max.u = 4, boot.resi = "full")

## Not run: m2\$w

## Not run: m2\$bootse

```
```

wheatprotein Wheat Protein Data

```

\section*{Description}

The protein content of ground wheat samples.

\section*{Usage}
data(wheatprotein)

\section*{Format}

A data frame with 50 observations on the following 8 variables.
V1 Measurements of the reflectance of NIR radiation by the wheat samples at 1680 nm . The measurements were made on the \(\log (1 /\) reflectance \()\) scale.
V2 Measurements of the reflectance of NIR radiation by the wheat samples at 1806 nm .
V3 Measurements of the reflectance of NIR radiation by the wheat samples at 1932 nm .
V4 Measurements of the reflectance of NIR radiation by the wheat samples at 2058 nm .
V5 Measurements of the reflectance of NIR radiation by the wheat samples at 2184 nm .
V6 Measurements of the reflectance of NIR radiation by the wheat samples at 2310 nm .

V7 The protein content of each sample (in percent).
V8 Binary indicator, 0 for high protein content and 1 for low protein content. The cut off point is if the protein content is smaller than 9.75.

\section*{Details}

The data are the result of an experiment to calibrate a near infrared reflectance (NIR) instrument for measuring the protein content of ground wheat samples. The protein content of each sample (in percent) was measured by the standard Kjeldahl method. In Fearn (1983), the problem is to find a linear combination of the measurements that predicts protein content. The estimated coefficients can then be entered into the instrument allowing the protein content of future samples to be read directly. The first 24 cases were used for calibration and the last 26 samples were used for prediction.

\section*{References}

Fearn, T. (1983). A misuse of ridge regression in the calibration of a near infrared reflectance instrument.

\section*{xenv \\ Fit the envelope model in the predictor space}

\section*{Description}

Fit the envelope model in the predictor space with dimension u under linear regression.

\section*{Usage}
xenv(X, Y, u, asy = TRUE, init = NULL)

\section*{Arguments}
\(\mathrm{X} \quad\) Predictors. An n by p matrix, p is the number of predictors and n is number of observations. The predictors must be continuous variables.
\(Y \quad\) Responses. An \(n\) by r matrix, \(r\) is the number of responses. The response can be univariate or multivariate and must be continuous variable.
\(u \quad\) Dimension of the envelope. An integer between 0 and p .
asy Flag for computing the asymptotic variance of the envelope estimator. The default is TRUE. When p and r are large, computing the asymptotic variance can take much time and memory. If only the envelope estimators are needed, the flag can be set to asy = FALSE.
init The user-specified value of Gamma for the envelope subspace in the predictor space. An p by u matrix. The default is the one generated by function envMU.

\section*{Details}

This function fits the envelope model in the predictor space,
\[
Y=\mu+\eta^{\prime} \Omega^{-1} \Gamma^{\prime} X+\varepsilon, \Sigma_{X}=\Gamma \Omega \Gamma^{\prime}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{\prime}
\]
using the maximum likelihood estimation. When the dimension of the envelope is between 1 and \(\mathrm{p}-1\), the starting value and blockwise coordinate descent algorithm in Cook et al. (2016) is implemented. When the dimension is p , then the envelope model degenerates to the standard multivariate linear regression. When the dimension is 0 , it means that X and Y are uncorrelated, and the fitting is different.

\section*{Value}

The output is a list that contains the following components:
\begin{tabular}{|c|c|}
\hline beta & The envelope estimator of the regression coefficients. \\
\hline SigmaX & The envelope estimator of the covariance matrix of X. \\
\hline Gamma & An orthonormal basis of the envelope subspace. \\
\hline Gamma0 & An orthonormal basis of the complement of the envelope subspace. \\
\hline eta & The estimated eta. According to the envelope parameterization, beta \(=\) Gamma * Omega^-1 * eta. \\
\hline Omega & The coordinates of SigmaX with respect to Gamma. \\
\hline Omega0 & The coordinates of SigmaX with respect to Gamma0. \\
\hline mu & The estimated intercept. \\
\hline SigmaYcX & The estimated conditional covariance matrix of Y given X . \\
\hline loglik & The maximized log likelihood function. \\
\hline covMatrix & The asymptotic covariance of vec(beta). The covariance matrix returned are asymptotic. For the actual standard errors, multiply by \(1 / \mathrm{n}\). \\
\hline asySE & The asymptotic standard error for elements in beta under the envelope model. The standard errors returned are asymptotic, for actual standard errors, multiply by \(1 /\) sqrt(n). \\
\hline ratio & The asymptotic standard error ratio of the standard multivariate linear regression estimator over the envelope estimator, for each element in beta. \\
\hline n & The number of observations in the data. \\
\hline
\end{tabular}

\section*{References}

Cook, R. D., Helland, I. S. and Su, Z. (2013). Envelopes and Partial Least Squares Re- gression. Journal of the Royal Statistical Society: Series B 75, 851-877.
Cook, R. D., Forzani, L. and Su, Z. (2016) A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.

\section*{See Also}
simpls.fit for partial least squares (PLS).

\section*{Examples}
```


## Fit the envelope in the predictor space

data(wheatprotein)
X <- wheatprotein[, 1:6]
Y <- wheatprotein[, 7]
u <- u.xenv(X, Y)
u
m <- xenv(X, Y, 4)
m
m\$beta

## Fit the partial least squares

## Not run: m1 <- pls::simpls.fit(X, Y, 4)

## Not run: m1\$coefficients

```

\section*{Index}
```

*Topic datasets
Berkeley, 5
fiberpaper, 32
horseshoecrab, 39
sales, 58
waterstrider, 91
wheatprotein, 98

```

\section*{Berkeley, 5}
```

boot.env, 6
boot.genv, 7
boot.henv, 8
boot.logit.env, 9
boot.penv, 10
boot. pois.env, 11
boot.senv, 12
boot.stenv, 13
boot.sxenv, 14
boot. xenv, 15
contr, 16
cv.env, 17
cv.genv, 18
cv.henv, 19
cv.logit.env, 20
cv.penv, 21
cv.pois.env, 22
cv.senv, 23
cv.stenv, 24
cv.sxenv, 25
cv. xenv, 26
d. stenv, 27
env, 28
envMU, 30
expan, 31
fiberpaper, 32
GE, 32

```
genv, 33
genvMU, 35
ginv, 36
henv, 36
henvMU, 38
horseshoecrab, 39
logit.env, 40
logit.envMU, 42
penv, 43
pois.env, 45
pois.envMU, 46
pred.env, 47
pred.genv, 48
pred.henv, 49
pred.logit.env, 50
pred.penv, 51
pred.pois.env, 52
pred.senv, 53
pred. stenv, 54
pred.sxenv, 55
pred. xenv, 56
pred2.env, 57
Renvlp-package, 3
Revnlp-package (Renvlp-package), 3
sales, 58
senv, 59
senvMU, 61
simpls.fit, 100
stenv, 62
stenvMU, 64
sxenv, 65
sxenvMU, 67
testcoef.env, 68
testcoef.genv, 69
testcoef.henv, 70
```

testcoef.logit.env,71
testcoef.penv,73
testcoef.pois.env, 74
testcoef.senv, 75
testcoef.stenv,76
testcoef.sxenv,78
testcoef.xenv,79
u.env, 80
u.genv, }8
u.henv, 82
u.logit.env, }8
u.penv, }8
u.pois.env, }8
u.pred2.env, 86
u.senv, }8
u.stenv, }8
u.sxenv, }8
u. xenv, }9
waterstrider,91
weighted.env, }9
weighted.penv, }9
weighted.pred.env, }9
weighted.xenv, }9
wheatprotein, }9
xenv, }9

```
```

