Package 'RcppHNSW'

September 20, 2019

Title 'Rcpp' Bindings for 'hnswlib', a Library for Approximate Nearest Neighbors

Version 0.2.0

Description 'Hnswlib' is a C++ library for Approximate Nearest Neighbors. This package provides a minimal R interface by relying on the 'Rcpp' package. See https://github.com/nmslib/hnswlib for more on 'hnswlib'. 'hnswlib' is released under Version 2.0 of the Apache License.

License GPL-3

URL https://github.com/jlmelville/rcpphnsw

BugReports https://github.com/jlmelville/rcpphnsw/issues Encoding UTF-8 LazyData true Imports methods, Rcpp (>= 0.11.3) LinkingTo Rcpp RoxygenNote 6.1.1 Suggests testthat, covr NeedsCompilation yes Author James Melville [aut, cre], Aaron Lun [ctb] Maintainer James Melville <jlmelville@gmail.com> Repository CRAN Date/Publication 2019-09-20 16:40:12 UTC

R topics documented:

Index

RcppHnsw-package	 2
hnsw_build	 2
hnsw_knn	 3
hnsw_search	 5
	6

1

RcppHnsw-package

Description

hnswlib is a library implementing the Hierarchical Navigable Small World method for approximate nearest neighbor search.

Details

Details about hnswlib are available at the reference listed below.

Author(s)

James Melville for the R interface; Yury Malkov for hnswlib itself. Maintainer: James Melville <jlmelville@gmail.com>

References

https://github.com/nmslib/hnsw

Malkov, Y. A., & Yashunin, D. A. (2016). Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs. *arXiv preprint arXiv:1603.09320*.

hnsw_build	Build an hnswlib	nearest neighbor index
------------	------------------	------------------------

Description

Build an hnswlib nearest neighbor index

Usage

```
hnsw_build(X, distance = "euclidean", M = 16, ef = 200,
verbose = FALSE)
```

Arguments

Х	a numeric matrix of data to add. Each of the n rows is an item in the index.
distance	Type of distance to calculate. One of:
	• "12" Squared L2, i.e. squared Euclidean.
	• "euclidean" Euclidean.

• "cosine" Cosine.

	• "ip" Inner product: 1 - sum(ai * bi), i.e. the cosine distance where the vectors are not normalized. This can lead to negative distances and other non-metric behavior.
Μ	Controls the number of bi-directional links created for each element during in- dex construction. Higher values lead to better results at the expense of memory consumption. Typical values are 2 -100, but for most datasets a range of 12 -48 is suitable. Can't be smaller than 2.
ef	Size of the dynamic list used during construction. A larger value means a better quality index, but increases build time. Should be an integer value between 1 and the size of the dataset.
verbose	If TRUE, log progress to the console.

Value

an instance of a HnswL2, HnswCosine or HnswIp class.

Examples

```
irism <- as.matrix(iris[, -5])
ann <- hnsw_build(irism)
iris_nn <- hnsw_search(irism, ann, k = 5)</pre>
```

hnsw_knn

Find Nearest Neighbors and Distances

Description

A k-nearest neighbor algorithm using the hnswlib library (https://github.com/nmslib/hnswlib).

Usage

hnsw_knn(X, k = 10, distance = "euclidean", M = 16, ef_construction = 200, ef = 10, verbose = FALSE)

Arguments

Х	a numeric matrix of data to add. Each of the n rows is an item in the index.	
k	Number of neighbors to return.	
distance	Type of distance to calculate. One of:	
	• "12" Squared L2, i.e. squared Euclidean.	
	• "euclidean" Euclidean.	
	• "cosine" Cosine.	
	• "ip" Inner product: 1 - sum(ai * bi), i.e. the cosine distance where the vectors are not normalized. This can lead to negative distances and other non-metric behavior.	

Μ	Controls the number of bi-directional links created for each element during in- dex construction. Higher values lead to better results at the expense of memory consumption. Typical values are 2 -100, but for most datasets a range of 12 -48 is suitable. Can't be smaller than 2.
ef_construction	1
	Size of the dynamic list used during construction. A larger value means a better quality index, but increases build time. Should be an integer value between 1 and the size of the dataset.
ef	Size of the dynamic list used during search. Higher values lead to improved recall at the expense of longer search time. Can take values between k and the size of the dataset and may be greater or smaller than ef_construction. Typical values are $100 - 2000$.
verbose	If TRUE, log progress to the console.

Value

a list containing:

- idx an n by k matrix containing the nearest neighbor indices.
- dist an n by k matrix containing the nearest neighbor distances.

Every item in the dataset is considered to be a neighbor of itself, so the first neighbor of item i should always be i itself. If that isn't the case, then any of M, ef_construction and ef may need increasing.

Hnswlib Parameters

Some details on the parameters used for index construction and search, based on https://github.com/nmslib/hnswlib/blob/master/ALGO_PARAMS.md:

- M Controls the number of bi-directional links created for each element during index construction. Higher values lead to better results at the expense of memory consumption, which is around M * 8-10 bytes per bytes per stored element. High intrinsic dimensionalities will require higher values of M. A range of 2 -100 is typical, but 12 -48 is ok for most use cases.
- ef_construction Size of the dynamic list used during construction. A larger value means a better quality index, but increases build time. Should be an integer value between 1 and the size of the dataset. A typical range is 100 -2000. Beyond a certain point, increasing ef_construction has no effect. A sufficient value of ef_construction can be determined by searching with ef = ef_construction, and ensuring that the recall is at least 0.9.
- ef Size of the dynamic list used during index search. Can differ from ef_construction and be any value between k (the number of neighbors sought) and the number of elements in the index being searched.

References

Malkov, Y. A., & Yashunin, D. A. (2016). Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs. *arXiv preprint arXiv:1603.09320*.

hnsw_search

Examples

iris_nn_data <- hnsw_knn(as.matrix(iris[, -5]), k = 10)</pre>

hnsw_search Search an hnswlib nearest neighbor index

Description

Search an hnswlib nearest neighbor index

Usage

hnsw_search(X, ann, k, ef = 10, verbose = FALSE)

Arguments

Х	A numeric matrix of data to search for neighbors.
ann	an instance of a HnswL2, HnswCosine or HnswIp class.
k	Number of neighbors to return. This can't be larger than the number of items that were added to the index ann. To check the size of the index, call ann\$size().
ef	Size of the dynamic list used during search. Higher values lead to improved recall at the expense of longer search time. Can take values between k and the size of the dataset. Typical values are $100 - 2000$.
verbose	If TRUE, log progress to the console.

Value

a list containing:

- idx an n by k matrix containing the nearest neighbor indices.
- dist an n by k matrix containing the nearest neighbor distances.

Every item in the dataset is considered to be a neighbor of itself, so the first neighbor of item i should always be i itself. If that isn't the case, then any of M, ef_construction and ef may need increasing.

Examples

```
irism <- as.matrix(iris[, -5])
ann <- hnsw_build(irism)
iris_nn <- hnsw_search(irism, ann, k = 5)</pre>
```

Index

hnsw_build, 2
hnsw_knn, 3
hnsw_search, 5
HnswCosine (RcppHnsw-package), 2
HnswIp (RcppHnsw-package), 2
HnswL2 (RcppHnsw-package), 2