Package ‘RcppDynProg’

July 24, 2019

Type Package

Title 'Rcpp' Dynamic Programming
Version 0.1.3

Date 2019-07-24

URL https://github.com/WinVector/RcppDynProg/,

https://winvector.github.io/RcppDynProg/

BugReports https://github.com/WinVector/RcppDynProg/issues
Maintainer John Mount < jmount@win-vector.com>

Description
Dynamic Programming implemented in 'Rcpp'. Includes example partition and out of sample fit-
ting applications. Also supplies additional custom coders for the 'vtreat' package.

License GPL-2 | GPL-3

Depends R (>=3.4.0)

Imports wrapr (>= 1.8.4), Rcpp (>= 1.0.0), utils, stats
LinkingTo Rcpp, ReppArmadillo

RoxygenNote 6.1.1

Suggests RUnit, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Author John Mount [aut, cre],
Nina Zumel [aut],
Win-Vector LLC [cph]

Repository CRAN
Date/Publication 2019-07-24 17:30:02 UTC

2 const_costs

R topics documented:

CONSE_COSES . . o v v o e i et e 2
const_costs_logistic e 2
HN_COSES o e e e 3
lin_costs_logistic e e e 4
plecewise_constant oL L e e 4
piecewise_constant_coder Lol e e 5
piecewise_linear. L 6
piecewise_linear_coder L. 6
ReppDynProg o e e 7
run_RcppDynProg tests 7
score_SOlution e e e 8
solve_for_partition e e e e 9
solve_for_partitionc L. 10
solve_interval_partition oL 11
solve_interval_partition_k oL 12
solve_interval_partition_no_k L L 13
const_costs const_costs
Description

Built matrix of total out of sample interval square error costs for held-out means. One indexed.

Usage

const_costs(y, w, min_seg, indices)

Arguments
% NumericVector, values to group in order.
\ NumericVector, weights.
min_seg positive integer, minimum segment size.
indices IntegerVector, order list of indices to pair.
Value

xcosts NumericMatix, for j>=i xcosts(i,j) is the cost of partition element [i,...,j] (inclusive).
Examples

const_costs(c(1, 1, 2, 2), c(1, 1, 1, 1), 1, 1:4)

const_costs_logistic

const_costs_logistic
const_costs_logistic

Description

Built matrix of interval logistic costs for held-out means. One indexed.

Usage

const_costs_logistic(y, w, min_seg, indices)

Arguments
% NumericVector, 0/1 values to group in order (should be in interval [0,1]).
w NumericVector, weights (should be positive).
min_seg positive integer, minimum segment size.
indices IntegerVector, order list of indices to pair.
Value

xcosts NumericMatix, for j>=i xcosts(i,j) is the cost of partition element [i,...,j] (inclusive).

Examples

const_costs_logistic(c(0.1, 0.1, 0.2, 0.2), c(1, 1, 1, 1), 1, 1:4)

lin_costs lin_costs

Description

Built matrix of interval costs for held-out linear models. One indexed.

Usage

lin_costs(x, y, w, min_seg, indices)

Arguments
X NumericVector, x-coords of values to group.
y NumericVector, values to group in order.
w NumericVector, weights.
min_seg positive integer, minimum segment size.

indices IntegerVector, ordered list of indices to pair.

4 lin_costs_logistic

Value

xcosts NumericMatix, for j>=i xcosts(i,j) is the cost of partition element [i,...,j] (inclusive).

Examples

lin_costs(c (1, 2, 3, 4), c(1, 2, 2, 1), c(1, 1, 1, 1), 1, 1:4)

lin_costs_logistic lin_costs_logistic deviance costs.

Description

Built matrix of interval deviance costs for held-out logistic models. Fits are evaluated in-sample.
One indexed.

Usage

lin_costs_logistic(x, y, w, min_seg, indices)

Arguments
X NumericVector, x-coords of values to group.
% NumericVector, values to group in order (should be in interval [0,1]).
W NumericVector, weights (should be positive).
min_seg positive integer, minimum segment size.
indices IntegerVector, ordered list of indices to pair.
Value

xcosts NumericMatix, for j>=i xcosts(i,j) is the cost of partition element [i,...,j] (inclusive).

Examples

lin_costs_logistic(c(1, 2, 3, 4, 5, 6, 7), c¢c(0, O, 1, O, 1, 1, 0), c(1, 1,

piecewise_constant

plecewise_constant Piecewise constant fit.

Description

vtreat custom coder based on RcppDynProg: :solve_for_partition ().

Usage
piecewise_constant (varName, x, y, w = NULL)
Arguments
varName character, name of variable to work on.
X numeric, input values.
y numeric, values to estimate.
numeric, weights.
Examples
piecewise_constant ("x", 1:8, ¢(-1, -1, -1, -1, 1, 1, 1, 1))

piecewise_constant_coder
Piecewise constant fit coder factory.

Description

Build a piecewise constant fit coder with some parameters bound in.

Usage

piecewise_constant_coder (penalty = 1, min_n_to_chunk = 1000,

min_seg = 10, max_k = 1000)

Arguments

penalty per-segment cost penalty.
min_n_to_chunk
minimum n to subdivied problem.

min_seg positive integer, minimum segment size.

max_Kk maximum segments to divide into.

6 piecewise_linear_coder

Value

a vtreat coder

Examples

coder <- pilecewise_constant_coder (min_seg = 1)
coder ("x", 1:8, c¢(-1, -1, -1, -1, 1, 1, 1, 1))

piecewise_linear Piecewise linear fit.

Description

vtreat custom coder based on RcppDynProg: :solve_for_partition ().

Usage

piecewise_linear (varName, x, y, w = NULL)
Arguments

varName character, name of variable to work on.

X numeric, input values.

y numeric, values to estimate.

w numeric, weights.
Examples

piecewise_linear("x", 1:8, c(1, 2, 3, 4, 4, 3, 2, 1))

piecewise_linear_coder
Piecewise linear fit coder factory.

Description

Build a piecewise linear fit coder with some parameters bound in.

Usage

piecewise_linear_ coder (penalty = 1, min_n_to_chunk = 1000,
min_seg = 10, max_k = 1000)

RceppDynProg 7

Arguments

penalty per-segment cost penalty.
min_n_to_chunk
minimum n to subdivied problem.

min_seg positive integer, minimum segment size.
max_k maximum segments to divide into.
Value

a vtreat coder

Examples

coder <- piecewise_linear_coder (min_seg = 1)
coder ("x", 1:8, c(1, 2, 3, 4, 4, 3, 2, 1))

RcppDynProg RcppDynProg

Description

Repp dynamic programming solutions for partitioning and machine learning problems. Includes
out of sample fitting applications. Also supplies additional custom coders for the vtreat package.
Please see https://github.com/WinVector/RcppDynProg for details.

Author(s)

John Mount

run_RcppDynProg_tests
Run RcppDynProg package tests.

Description

For all files with names of the form ""test_.+\.R$" in the package directory unit_tests run all func-
tions with names of the form "~test_.+$" as RUnit tests. Attaches RUnit and pkg, requires RUnit.
Stops on error.

8 score_solution

Usage

run_RcppDynProg_tests (..., verbose = TRUE,
package_test_dirs = "unit_tests", test_dirs = character(0),
stop_on_issue = TRUE, stop_if _no_tests = TRUE,
require_RUnit_attached = FALSE, require_pkg_attached = TRUE,
rngKind = "Mersenne-Twister", rngNormalKind = "Inversion")

Arguments

not used, force later arguments to bind by name.

verbose logical, if TRUE print more.
package_test_dirs

directory names to look for in the installed package.
test_dirs paths to look for tests in.
stop_on_issue

logical, if TRUE stop after errors or failures.
stop_if_no_tests

logical, if TRUE stop if no tests were found.
require_RUnit_attached

logical, if TRUE require RUnit be attached before testing.
require_pkg_attached

logical, if TRUE require pkg be attached before testing.

rngKind pseudo-random number generator method name.
rngNormalKind
pseudo-random normal generator method name.
Details
Based on https://github.com/RcppCore/Rcpp/blob/master/tests/doRUnit.
R. This version is GPL-3, works derived from it must be distributed GPL-3.
Value

RUnit test results (invisible).

score_solution compute the price of a partition solution (and check is valid).

Description

compute the price of a partition solution (and check is valid).

Usage

score_solution(x, solution)

solve_for_partition 9

Arguments
X NumericMatix, for j>=i x(i,j) is the cost of partition element [i,...,j] (inclusive).
solution vector of indices

Value

price
Examples

x <- matrix(c(1,1,5,1,1,0,5,0,1), nrow=3)
s <- c(1, 2, 4)
score_solution(x, s)

solve_for_partition
Solve for a piecewise linear partiton.

Description

Solve for a good set of right-exclusive x-cuts such that the overall graph of y~x is well-approximated
by a piecewise linear function. Solution is a ready for use with with base: : findInterval ()
and stats: :approx () (demonstrated in the examples).

Usage

solve_for_partition(x, y, ..., W
min_n_to_chunk

NULL, penalty = 0,
1000, min_seg = 1, max_k = length(x))

Arguments
be numeric, input variable (no NAs).
% numeric, result variable (no NAs, same length as x).
not used, force later arguments by name.
w numeric, weights (no NAs, positive, same length as x).
penalty per-segment cost penalty.

min_n_to_chunk
minimum n to subdivied problem.

min_seg positive integer, minimum segment size.
max_k maximum segments to divide into.
Value

a data frame appropriate for stats::approx().

10

Examples

example data
d <- data.frame (
x = 1:8,
y =c¢c(1, 2, 3, 4, 4, 3, 2, 1))

solve for break points

soln <- solve_for_partition(d$x, dSy)
show solution

print (soln)

label each point
d$group <- base::findInterval (
dsx,
soln$x[solnSwhat=="'left'])
apply pilecewise approximation
d$estimate <- stats::approx(
soln$x,
soln$pred,
xout = d$x,
method = 'linear',
rule = 2)8$y
show result
print (d)

solve_for_partitionc

solve_for_partitionc
Solve for a piecewise constant partiton.

Description

Solve for a good set of right-exclusive x-cuts such that the overall graph of y~x is well-approximated
by a piecewise linear function. Solution is a ready for use with with base: : findInterval ()

and stats: :approx () (demonstrated in the examples).

Usage

solve_for_partitionc(x, vy,

min_n_to_chunk = 1000, min_seg = 1, max_k
Arguments
X numeric, input variable (no NAs).
% numeric, result variable (no NAs, same length as x).

not used, force later arguments by name.

w numeric, weights (no NAs, positive, same length as x).

., w = NULL, penalty

0,
(%))

solve_interval_partition 11

penalty per-segment cost penalty.
min_n_to_chunk
minimum n to subdivied problem.

min_seg positive integer, minimum segment size.
max_k maximum segments to divide into.
Value

a data frame appropriate for stats::approx().

Examples

example data
d <- data.frame (
x = 1:8,
y = ¢(-1, -1, -1, -1, 1, 1, 1, 1))

solve for break points

soln <- solve_for_partitionc (dx, dy)
show solution

print (soln)

label each point
d$group <- base::findInterval (
dsx,
soln$x[solnSwhat=="'left'])
apply piecewise approximation
d$Sestimate <- stats::approx(
soln$x,
soln$pred,
xout = d$x,
method = 'constant',
rule = 2)S$y
show result
print (d)

solve_interval_partition
solve_interval_partition interval partition problem.

Description

Solve a for a minimal cost partition of the integers [1,...,ntow(x)] problem where for j>=i x(i,j).
is the cost of choosing the partition element [i,...,j]. Returned solution is an ordered vector v of
length k<=kmax where: v[1]==1, v[k]==nrow(x)+1, and the partition is of the form [v[i], v[i+1])
(intervals open on the right).

12 solve_interval_partition_k

Usage

solve_interval_partition(x, kmax)

Arguments
X NumericMatix, for j>=i x(i,j) is the cost of partition element [i,...,j] (inclusive).
kmax int, maximum number of segments in solution.

Value

dynamic program solution.

Examples

costs <- matrix(c(l1.5, NA ,NA ,1 ,0 , NA, 5, -1, 1), nrow = 3)
solve_interval_partition(costs, nrow(costs))

solve_interval_partition_k
solve_interval_partition interval partition problem with a bound on
number of steps.

Description

Solve a for a minimal cost partition of the integers [1,...,ntow(x)] problem where for j>=i x(i,j).
is the cost of choosing the partition element [i,...,j]. Returned solution is an ordered vector v of
length k<=kmax where: v[1]==1, v[k]==nrow(x)+1, and the partition is of the form [v[i], v[i+1])
(intervals open on the right).

Usage

solve_interval_ partition_k (x, kmax)

Arguments
X NumericMatix, for j>=i x(i,j) is the cost of partition element [i,...,j] (inclusive).
kmax int, maximum number of segments in solution.

Value

dynamic program solution.

solve_interval_partition_no_k 13

Examples

costs <- matrix(c(l1.5, NA ,NA ,1 ,0 , NA, 5, -1, 1), nrow = 3)
solve_interval_partition(costs, nrow(costs))

solve_interval_partition_no_k
solve_interval_partition interval partition problem, no boun on the
number of steps.

Description

Not working yet.

Usage

solve_interval_partition_no_k (x)

Arguments

x NumericMatix, for j>=i x(i,j) is the cost of partition element [i,...,j] (inclusive).

Details

Solve a for a minimal cost partition of the integers [1,...,ntow(x)] problem where for j>=i x(i,j). is
the cost of choosing the partition element [i,...,j]. Returned solution is an ordered vector v of length
k where: v[1]==1, v[k]==nrow(x)+1, and the partition is of the form [v[i], v[i+1]) (intervals open
on the right).

Value

dynamic program solution.

Examples

costs <- matrix(c(l1.5, NA ,NA ,1 ,0 , NA, 5, -1, 1), nrow = 3)
solve_interval_partition(costs, nrow(costs))

