Package 'RVAideMemoire'

June 15, 2020
Encoding latin1
Type Package
Title Testing and Plotting Procedures for Biostatistics
Version 0.9-77
Date 2020-06-15
Author Maxime Hervé
Maintainer Maxime Hervé maxime.herve@univ-rennes1.fr
biocViews
Imports ade4 ($>=1.7-8$), boot, car, FactoMineR, graphics, grDevices, lme4 ($>=1.0-4$), MASS, mixOmics, nnet, pls, pspearman, stats, utils, vegan ($>=2.4-3$)
Suggests dgof, emmeans, ordinal, survival
Description Contains miscellaneous functions useful in biostatistics, mostly univariate and multivariate testing procedures with a special emphasis on permutation tests. Many functions intend to simplify user's life by shortening existing procedures or by implementing plotting functions that can be used with as many methods from different packages as possible.
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2020-06-15 15:40:03 UTC

R topics documented:

RVAideMemoire-package 4
adonis.II 5
Anova.clm 6
back.emmeans 7
bootstrap 8
byf.hist 9
byf.mqqnorm 10
byf.mshapiro 10
byf.qqnorm 11
byf.shapiro 12
CDA.cv 13
CDA.test 14
cdf.discrete 15
chisq.bin.exp 16
chisq.bintest 17
chisq.exp 18
chisq.multcomp 19
chisq.theo.bintest 20
chisq.theo.multcomp 21
cochran.qtest 22
cond.multinom 24
coord.proj 24
cor.2comp 25
cor.conf 26
cor.multcomp 27
cov.test 29
cox.resid 30
cramer 30
cramer.test 31
cv 32
dendro.gp 33
deprecated 33
DIABLO.cv 35
DIABLO.test 36
dummy 37
elogis 38
fisher.bintest 38
fisher.multcomp 40
fp.test 41
G.bintest 42
G.multcomp 44
G.test 45
G.theo.multcomp 46
GPA.test 47
ind.contrib 48
least.rect 49
loc.slp 50
logis.fit 51
logis.noise 52
mod 52
mood.medtest 53
mqqnorm 55
mshapiro.test 55
multinomial.multcomp 56R topics documented:3
multinomial.test 57
multinomial.theo.multcomp 58
multtest.cor 59
multtest.gp 61
multtest.gp.bin 62
MVA.anova 63
MVA.biplot 64
MVA.cmv 65
MVA.cor 68
MVA.corplot 70
MVA.cv 73
MVA.load 75
MVA.loadplot 77
MVA.pairplot 80
MVA.plot 81
MVA.scoreplot 82
MVA.scores 86
MVA.synt 88
MVA.test 90
MVA.trajplot 92
OR.multinom 95
ord.rw 95
overdisp.glmer 96
pairwise.CDA.test 96
pairwise.factorfit 98
pairwise.G.test 99
pairwise.mood.medtest 100
pairwise.MVA.test 101
pairwise.perm.manova 102
pairwise.perm.t.test 104
pairwise.perm.var.test 105
pairwise.var.test 106
pcor 107
pcor.test 108
perm.anova 110
perm.bartlett.test 111
perm.cor.test 112
perm.t.test 114
perm.var.test 115
plotresid 117
plotsurvivors 118
PLSDA.VIP 118
predict.CDA.cv 119
predict.coadisc 120
predict.MVA.cv 121
prop.bin.multcomp 122
prop.multcomp 123
prop.multinom 124
prop.multinom.test 125
rating.emmeans 126
rating.prob 127
reg.ci 128
scat.cr 129
se 130
seq2 130
spearman.ci 131
spearman.cor.multcomp 132
splitf 133
stand 134
test.multinom 135
to.dudi 136
user.cont 136
wald.ptheo.multinom.test 137
wald.ptheo.test 139
wilcox.paired.multcomp 140
wilcox.signtest 141
wmean 143
Index 144

RVAideMemoire-package Testing and Plotting Procedures for Biostatistics

Description

Contains miscellaneous functions useful in biostatistics, mostly univariate and multivariate testing procedures with a special emphasis on permutation tests. Many functions intend to simplify user's life by shortening existing procedures or by implementing plotting functions that can be used with as many methods from different packages as possible.

Details

Package:	RVAideMemoire
Type:	Package
Version:	$0.9-77$
Date:	$2020-06-15$
License:	GPL-2
LazyLoad:	yes

Author(s)

Maxime Hervé

Maintainer: Maxime Hervé maxime.herve@univ-rennes1.fr

References

Document : "Aide-memoire de statistique appliquee a la biologie - Construire son etude et analyser les resutats a l'aide du logiciel R" (available on CRAN)

```
adonis.II Type II permutation MANOVA using distance matrices
```


Description

This function is a wrapper to adonis but performs type II tests (whereas adonis performs type I).

Usage

adonis.II(formula, data, ...)

Arguments

formula a typical model formula such as $Y \sim A+B * C$, but where Y is either a dissimilarity object (inheriting from class "dist") or data frame or a matrix; A, B, and C may be factors or continuous variables.
data the data frame from which A, B and C would be drawn.
... additional arguments to adonis. See help of this function.

Details

See adonis for detailed explanation of what is done. The only difference with adonis is that adonis. II performs type II tests instead of type I.

Value

a data frame of class "anova".

Author(s)

Maxime Hervé <mx.herve@ gmail.com>

Examples

```
require(vegan)
data(dune)
data(dune.env)
# Compare:
adonis(dune~Management*A1,data=dune.env,permutations=99)
adonis(dune~A1*Management,data=dune.env,permutations=99)
```

```
# With:
adonis.II(dune~Management*A1,data=dune.env,permutations=99)
adonis.II(dune~A1*Mannagement,data=dune.env,permutations=99)
```

Anova.clm Anova Tables for Cumulative Link (Mixed) Models

Description

These functions are methods for Anova to calculate type-II or type-III analysis-of-deviance tables for model objects produced by clm and clmm. Likelihood-ratio tests are calculated in both cases.

Usage

```
\#\# S3 method for class 'clm'
Anova(mod, type = c("II", "III", 2, 3), ...)
\#\# S3 method for class 'clmm'
Anova(mod, type = c("II", "III", 2, 3), ...)
```


Arguments

```
    mod clm or clmm object.
    type type of test, "II","III", 2 or 3.
    ... additional arguments to Anova. Not usable here.
```


Details

See help of the Anova for a detailed explanation of what "type II" and "typ III" mean.

Value

See Anova.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

Anova, clm, clmm

Description

Back-transforms EMMeans (produced by emmeans) when the model was built on a transformed response variable. This is typically the case when a $\mathrm{LM}(\mathrm{M})$ with $\log (x+1)$ as response variable gives a better fitting than a GLM(M) for count data.

Usage

back.emmeans(emm, transform = c("log", "logit", "sqrt", "4rt", "inverse"), base = exp(1), add $=0$, ord $=$ FALSE, decreasing $=$ TRUE)

Arguments

emm

transform
base the base with respect to which the logarithm transformation was computed (if transform="log"). Defaults to $e=\exp (1)$.
add value to be added to x before computing the transformation, if needed (e.g. 1 if the initial transformation was $\log (x+1)$).
ord logical indicating if back-transformed EMMeans should be ordered.
decreasing logical indicating in which order back-transformed EMMeans should be ordered, if order=TRUE.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

```
emmeans
```


Examples

```
require(emmeans)
set.seed(1149)
tab <- data.frame(
    response <- c(rpois(30,0),rpois(30,2),rpois(30,4)),
    fact <- gl(3,30,labels=LETTERS[1:3])
)
model <- lm(log(response+1)~fact,data=tab)
EMM <- emmeans(model,~fact)
back.emmeans(EMM, transform="log",add=1)
```

```
bootstrap Bootstrap
```


Description

Simplified version of the boot function.

Usage

bootstrap(x, fun, nrep $=1000$, conf.level $=0.95, \ldots$)

Arguments

x
numeric vector.
fun function to be used for computation (function(x,i) ...(x[i])).
nrep number of replicates.
conf.level confidence level for confidence interval.
... additional arguments to boot. See help of this function.

Details

See help of the boot function for more explanations.

Value

method	the character string "Bootstrap"
data. name	a character string giving the name of the data.
estimate	the estimated original value
conf.level	confidence level for confidence interval.
rep	number of replicates.
conf.int	limits of the confidence interval.

Author(s)

Maxime Hervé <mx.herve@ gmail.com>

See Also

boot

Examples

\# Confidence interval of a mean
samp <- sample(1:50,10,replace=TRUE)
bootstrap(samp,function(x,i) mean(x[i]))
\# Confidence interval of the standard error of the mean
bootstrap(samp,function(x,i) sd(x[i])/sqrt(length(x[i])))

byf.hist Histogram for factor levels

Description

Draws a histogram of a numeric variable per level of a factor.

Usage

byf.hist(formula, data, sep = FALSE, density = TRUE, xlab = NULL, ylab = NULL, col = NULL)

Arguments

formula $\quad a$ formula of the form $a \sim b$ where a gives the data values $a n d b a$ factor giving the corresponding groups.
data an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
sep logical. If TRUE a histogram is displayed per level of the factor. If FALSE all levels are displayed on the same histogram.
density logical. If TRUE density polygons are displayed, if FALSE classical counts are displayed.
$x l a b \quad$ label for x -axis (name of the response variable as default).
ylab label for y-axis ("Density" or "Frequency" as default, depending on the type of histogram).
col color(s) used for density curves or bars.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

hist

Examples

```
data(iris)
byf.hist(Sepal.Length~Species,data=iris)
```

byf.mqqnorm QQ-plot for factor levels

Description

Draws a multivariate QQ-plot of numeric variables per level of a factor.

Usage

byf.mqqnorm(formula, data)

Arguments

formula $\quad a$ formula of the form $a \sim b$, where a is a matrix giving the dependent variables (each column giving a variable) and b a factor giving the corresponding groups.
data an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

mqqnorm, byf.mshapiro, qqPlot

Examples

```
data(iris)
byf.mqqnorm(as.matrix(iris[,1:4])~Species,data=iris)
```

byf.mshapiro

Shapiro-Wilk test for factor levels

Description

Performs a multivariate Shapiro-Wilk test on numeric variables per level of a factor.

Usage

byf.mshapiro(formula, data)

Arguments

$$
\begin{array}{ll}
\text { formula } & \begin{array}{l}
\text { a formula of the form } a \sim b \text { where } a \text { is a matrix giving the dependent variables } \\
\text { (each column giving a variable) and } b \text { a factor giving the corresponding groups. } \\
\text { data }
\end{array} \begin{array}{l}
\text { an optional data frame containing the variables in the formula formula. By } \\
\text { default the variables are taken from environment (formula). }
\end{array}
\end{array}
$$

Value

method name of the test.
data.name a character string giving the names of the data.
tab table of results.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

byf.mqqnorm, mshapiro.test, qqPlot

Examples

data(iris)
byf.mshapiro(as.matrix(iris[,1:4])~Species,data=iris)

```
byf.qqnorm QQ-plot for factor levels
```


Description

Draws a QQ-plot of a numeric variable per level of a factor.

Usage

byf.qqnorm(formula, data, ...)

Arguments

formula	a formula of the form $a \sim b$ where a gives the data values and b a factor giving the corresponding groups.
an optional data frame containing the variables in the formula formula. By	
default the variables are taken from environment (formula).	

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

link[RVAideMemoire]\{byf.shapiro\}, qqPlot

Examples

```
data(iris)
```

byf.qqnorm(Sepal.Length~Species,data=iris)
byf.shapiro Shapiro-Wilk test for factor levels

Description

Performs a Shapiro-Wilk test on a numeric variable per level of a factor.

Usage

byf.shapiro(formula, data)

Arguments

formula | a formula of the form $\mathrm{a} \sim \mathrm{b}$ where a gives the data values and $\mathrm{b} a$ factor giving |
| :--- |
| the corresponding groups. |
| data |
| an optional data frame containing the variables in the formula formula. By |
| default the variables are taken from environment (formula). |

Value

method name of the test.
data. name a character string giving the names of the data.
tab table of results.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

```
byf.qqnorm, shapiro.test
```


Examples

```
data(iris)
byf.shapiro(Sepal.Length~Species,data=iris)
```

CDA.cv Cross validation

Description

Performs cross validation with correspondence discriminant analyses.

Usage

```
CDA.cv(X, Y, repet \(=10, \mathrm{k}=7\), ncomp \(=\) NULL, method \(=c(" m a h a l a n o b i s "\),
    "euclidian"))
```


Arguments

$X \quad$ a data frame of dependent variables (typically contingency or presence-absence table).
Y factor giving the groups.
repet an integer giving the number of times the whole procedure has to be repeated.
$\mathrm{k} \quad$ an integer giving the number of folds (can be re-set internally if needed).
ncomp an integer giving the number of components to be used for prediction. If NULL all components are used.
method criterion used to predict class membership. See predict.coadisc.

Details

The training sets are generated in respect to the relative proportions of the levels of Y in the original data set (see splitf).

Value

repet number of times the whole procedure was repeated.
k number of folds.
ncomp number of components used.
method criterion used to classify individuals of the test sets.
groups levels of Y.
models.list list of of models generated (repet*k models), for PLSR, CPPLS, PLS-DA, PPLS-DA, LDA and QDA.

NMC Classification error rates (repet values).

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

discrimin.coa

Examples

```
require(ade4)
data(perthi02)
## Not run: CDA.cv(perthi02$tab,perthi02$cla)
```

CDA.test Significance test for CDA

Description

Performs a significance test for correspondence discriminant analysis. See Details.

Usage

CDA.test(X, fact, ncomp = NULL, ...)

Arguments

$X \quad$ a data frame of dependent variables (typically contingency or presence-absence table).
fact factor giving the groups.
ncomp an integer giving the number of components to be used for the test. If NULL nlevels(fact)-1 are used. See Details.
... other arguments to pass to summary.manova. See Details.

Details

CDA consists in two steps: building a correspondence analysis (CA) on X, then using row coordinates on all CA components as input variables for a linear discriminant analysis. CDA. test builds the intermediate CA, then uses the first ncomp components to test for an effect of fact. If 1 component is used the test is an ANOVA, if more than 1 component are used the test is a MANOVA.

Value

An ANOVA or MANOVA table.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

discrimin.coa, summary.manova

Examples

```
require(ade4)
data(perthi02)
CDA.test(perthi02$tab,perthi02$cla)
```

cdf.discrete

Cumulative Distribution Function of a known discrete distribution

Description

Returns an object similar to what is produced by ecdf, but based on a known discrete distribution.

Usage

```
cdf.discrete(x, dist = c("binom", "geom", "hyper", "nbinom", "pois"), ...)
```


Arguments

$x \quad$ numeric vector of the observations.
dist character string naming a discrete distribution ("binom" by default).
... parameters of the distribution specified by dist.

Details

The function is intended to be used in goodness-of-fits tests for discrete distributions, such as proposed in the dgof package.

Author(s)

Maxime Hervé mx.herve@gmail.com

Examples

```
if(require(dgof)) {
    set.seed(1124)
    resp <- rpois(20,2)
    cvm.test(resp,cdf.discrete(resp,"pois",2))
}
```

chisq. bin.exp Expected counts for comparison of response probabilities to given values

Description

Returns expected counts before comparing response probabilities (i.e. when the response variable is a binary variable) to given values by a chi-squared test. The function is in fact a wrapper to the chi-squared test for comparison of proportions to given values on a contingency table.

Usage

chisq.bin.exp(formula, data, p, graph = FALSE)

Arguments

formula $\quad a$ formula of the form $a \sim b$, where a and b give the data values and corresponding groups, respectively. a can be a numeric vector or a factor, with only two possible values (except NA).
data an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
p theoretical probabilities.
graph logical. If TRUE a mosaic plot of expected counts is drawn.

Details

The function returns how many counts can be <5 to respect Cochran's rule (80% of counts must be $>=5$).

Value

p.theo theoretical probabilities.
mat contingency table of expected counts.
cochran number of counts which can be <5.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

prop.test, chisq. theo.bintest, mosaicplot

Examples

```
response <- c(rep(0:1,c(40,60)),rep(0:1,c(55,45)),rep(0:1,c(65,35)))
fact <- gl(3,100,labels=LETTERS[1:3])
p.theo <- c(0.5,0.45,0.2)
chisq.bin.exp(response~fact, p=p.theo)
```

```
chisq.bintest Pearson's Chi-squared test for binary variables
```


Description

Performs a Pearson's Chi-squared test for comparing response probabilities (i.e. when the response variable is a binary variable). The function is in fact a wrapper to the chi-squared test for comparison of proportions on a contingency table. If the p -value of the test is significant, the function performs pairwise comparisons by using Pearson's Chi-squared tests.

Usage

chisq.bintest(formula, data, correct $=$ TRUE, alpha $=0.05$, p.method $=$ "fdr")

Arguments

formula $\quad a$ formula of the form $a \sim b$, where a and b give the data values and corresponding groups, respectively. a can be a numeric vector or a factor, with only two possible values (except NA).
data an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
correct a logical indicating whether to apply continuity correction when computing the test statistic for 2 by 2 tables. See help of chisq. test.
alpha significance level to compute pairwise comparisons.
p.method method for p-values correction. See help of p.adjust.

Details

If the response is a $0 / 1$ variable, the probability of the ' 1 ' group is tested. In any other cases, the response is transformed into a factor and the probability of the second level is tested.
Since a chi-squared test is an approximate test, an exact test is preferable when the number of individuals is small (200 is a reasonable minimum). See fisher. bintest in that case.

Value

method.test
data. name
alternative
estimate
a character string giving the name of the global test computed.
a character string giving the name(s) of the data.
a character string describing the alternative hypothesis.
the estimated probabilities.

```
null.value the value of the difference in probabilities under the null hypothesis, always 0 .
statistic test statistics.
parameter test degrees of freedom.
p.value \(\quad \mathrm{p}\)-value of the global test.
alpha significance level.
p.adjust.method
    method for p-values correction.
p.value.multcomp
    data frame of pairwise comparisons result.
method.multcomp
    a character string giving the name of the test computed for pairwise compar-
    isons.
```


Author(s)

Maxime Hervé <mx.herve@ gmail.com>

See Also

G.bintest, fisher.bintest

Examples

```
response <- c(rep(0:1,c(40,60)),rep(0:1,c(55,45)),rep(0:1,c(65,35)))
fact <- gl(3,100,labels=LETTERS[1:3])
chisq.bintest(response~fact)
```

chisq.exp Expected counts for comparison of proportions to given values

Description

Returns expected counts before comparing proportions to given values by a chi-squared test.

Usage

chisq.exp(data, p, graph = FALSE)

Arguments

data contingency table.
p theoretical proportions.
graph logical. If TRUE a mosaic plot of expected counts is drawn.

Details

The function returns how many counts can be <5 to respect Cochran's rule (80% of counts must be $>=5$).

Value

p. theo	theoretical proportions.
mat	contingency table of expected counts.
cochran	number of counts which can be <5.

Author(s)

Maxime Hervé <mx.herve@ gmail.com>

See Also

prop.test, chisq.test, mosaicplot

Examples

```
proportions <- sample(c(0,1),200,replace=TRUE)
populations <- sample(LETTERS[1:3],200, replace=TRUE)
tab.cont <- table(populations,proportions)
p.theo <- c(0.4,0.5,0.7)
chisq.exp(tab.cont,p=p.theo)
```

chisq.multcomp Pairwise comparisons after a chi-squared goodness-of-fit test

Description

Performs pairwise comparisons after a global chi-squared goodness-of-fit test.

Usage

chisq.multcomp(x, p.method = "fdr")

Arguments

```
x
        numeric vector (counts).
p.method method for p-values correction. See help of p.adjust.
```


Details

Since a chi-squared test is an approximate test, an exact test is preferable when the number of individuals is small (200 is a reasonable minimum). See multinomial. multcomp in that case.

Value

```
    method name of the test.
    data.name a character string giving the name(s) of the data.
    p.adjust.method
            method for p-values correction.
    p.value table of results.
```


Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

chisq.test, multinomial.test, multinomial.multcomp

Examples

```
counts <- c(49,30,63,59)
chisq.test(counts)
chisq.multcomp(counts)
```

chisq.theo.bintest Pearson's Chi-squared test for comparison of response probabilities to given values

Description

Performs a Pearson's Chi-squared test for comparing response probabilities (i.e. when the response variable is a binary variable) to given values. The function is in fact a wrapper to the chi-squared test for comparison of proportions to given values on a contingency table.

Usage

chisq. theo.bintest(formula, data, p)

Arguments

formula $\quad a$ formula of the form $a \sim b$, where a and b give the data values and corresponding groups, respectively. a can be a numeric vector or a factor, with only two possible values (except NA).
data an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
p
theoretical probabilities.

Details

If the response is a $0 / 1$ variable, the probability of the ' 1 ' group is tested. In any other cases, the response is transformed into a factor and the probability of the second level is tested.

Value

method.test a character string giving the name of the test.
data.name a character string giving the name(s) of the data.
alternative a character string describing the alternative hypothesis, always two-sided.
estimate the estimated probabilities.
null.value the theoretical probabilities.
statistic test statistics.
parameter test degrees of freedom.
p.value $\quad p$-value of the test.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

prop.test, chisq.bin.exp, prop.bin.multcomp

Examples

```
response <- c(rep(0:1,c(40,60)),rep(0:1,c(55,45)),rep(0:1,c(65,35)))
fact <- gl(3,100,labels=LETTERS[1:3])
p.theo <- c(0.5,0.45,0.2)
chisq.theo.bintest(response~fact,p=p.theo)
```

chisq. theo.multcomp Pairwise comparisons after a chi-squared test for given probabilities

Description

Performs pairwise comparisons after a global chi-squared test for given probabilities.

Usage

chisq.theo.multcomp($x, p=r e p(1 / l e n g t h(x)$, length $(x)), p . m e t h o d=" f d r ")$

Arguments

x
numeric vector (counts).
p theoretical proportions.
p.method method for p -values correction. See help of p.adjust.

Details

Since a chi-squared test is an approximate test, an exact test is preferable when the number of individuals is small (200 is a reasonable minimum). See multinomial.theo.multcomp in that case.
Value

method	name of the test.
data.name	a character string giving the name(s) of the data.
observed	observed counts.
expected	expected counts.
p.adjust.method	method for p-values correction.
statistic	statistics of each test.
p.value2	corrected p-values.
p.value	data frame of results.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

chisq.test, multinomial.test, multinomial. theo.multcomp

Examples

counts <- $c(49,30,63,59)$
p. theo <- c $(0.2,0.1,0.45,0.25)$
chisq.test (counts, $p=p$. theo)
chisq. theo.multcomp (counts, $p=p$. theo)

```
cochran.qtest Cochran's Q test
```


Description

Performs the Cochran's Q test for unreplicated randomized block design experiments with a binary response variable and paired data. If the p-value of the test is significant, the function performs pairwise comparisons by using the Wilcoxon sign test.

Usage

cochran.qtest(formula, data, alpha $=0.05$, p.method $=$ "fdr")

Arguments

formula $\quad a$ formula of the form $a \sim b \mid c$, where a, b and c give the data values and corresponding groups and blocks, respectively. a can be a numeric vector or a factor, with only two possible values.
data an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
alpha significance level to compute pairwise comparisons.
p.method method for p-values correction. See help of p.adjust.

Details

If the response is a $0 / 1$ variable, the probability of the ' 1 ' group is tested. In any other cases, the response is transformed into a factor and the probability of the second level is tested.

Value

method.test a character string giving the name of the global test computed.
data. name a character string giving the name(s) of the data.
alternative a character string describing the alternative hypothesis.
estimate the estimated probabilities.
null.value the value of the difference in probabilities under the null hypothesis, always 0 .
statistic test statistics (Pearson's Chi-squared test only).
parameter test degrees of freedom (Pearson's Chi-squared test only).
p .value $\quad \mathrm{p}$-value of the global test.
alpha significance level.
p.adjust.method
method for p -values correction.
p.value.multcomp
data frame of pairwise comparisons result.
method.multcomp
a character string giving the name of the test computed for pairwise comparisons.

Author(s)

Maxime Hervé mx.herve@gmail.com

Examples

```
response <- c(0,1,1,0,0,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,1)
fact <- gl(3,1,30,labels=LETTERS[1:3])
block <- gl(10,3,labels=letters[1:10])
cochran.qtest(response~fact|block)
```

cond.multinom | Condition number of the Hessian matrix of a multinomial log-linear |
| :--- |
| model | model

Description

Computes the condition number of the Hessian matrix of a model fitted with multinom.

Usage

cond.multinom(model)

Arguments

model object of class "multinom".

Author(s)

Maxime Hervé mx.herve@gmail.com
coord.proj
Coordinates of projected points

Description

Returns the coordinates of a set of points when orthogonally projected on a new axis.

Usage

coord.proj(coord,slp)

Arguments

coord 2-column data frame or matrix giving the original coordinates (left column: x, right column: y).
slp slope of the new axis.

Author(s)

Maxime Hervé mx.herve@gmail.com

Examples

```
data(iris)
# Original coordinates
plot(Petal.Length~Sepal.Length, pch=16,col=as.numeric(iris$Species),data=iris)
# New axis
abline(-6, 1.6)
# Coordinates on new axis
new.coord <- coord.proj(iris[,c("Sepal.Length","Petal.Length")],1.6)
stripchart(new.coord~Species,data=iris,col=1:3)
```

cor. 2comp

Comparison of 2 Pearson's linear correlation coefficients

Description

Performs the test for equality of 2 Pearson's correlation coefficients. If the difference is not significative, the function returns the common coefficient, its confidence interval and performs the test for equality to a given value.

Usage

cor. 2 comp (var1, var2, var3, var4, alpha $=0.05$, conf.level $=0.95$, theo $=0$)

Arguments

var1	numeric vector (first variable of the first correlation).
var2	numeric vector (second variable of the first correlation).
var3	numeric vector (first variable of the second correlation).
var4	numeric vector (second variable of the second correlation).
alpha	significance level.
conf.level	confidence level.
theo	theoretical coefficient.

Value

method.test a character string giving the name of the global test computed.
data. name a character string giving the name(s) of the data.
statistic test statistics.
p.value $\quad p$-value for comparison of the 2 coefficients.
null.value the value of the difference in coefficients under the null hypothesis, always 0 .
alternative a character string describing the alternative hypothesis.

```
estimate the estimated correlation coefficients.
alpha significance level.
conf.level confidence level.
common.name a character string explaining the elements of the table below.
common data frame of results if the coefficients are not significantly different (common
    coefficient).
```


Author(s)

Maxime Hervé <mx.herve@ gmail.com>

See Also

```
cor.test
```


Examples

```
cor1.var1 <- 1:30+rnorm(30,0,2)
cor1.var2 <- 1:30+rnorm(30,0,3)
cor2.var1 <- (-1):-30+rnorm(30,0,2)
cor2.var2 <- (-1):-30+rnorm(30,0,3)
cor.2comp(cor1.var1, cor1.var2, cor2.var1,cor2.var2)
```


Description

Performs a test for equality of a Pearson's linear correlation coefficient to a given value.

Usage

```
cor.conf(var1, var2, theo)
```


Arguments

var1	numeric vector (first variable).
var2	numeric vector (second variable).
theo	theoretical value.

Value

method	a character string giving the name of the test.
data.name	a character string giving the name(s) of the data.
statistic	test statistics.
p.value	p-value of the test.
null.value	the value of the theoretical coefficient.
alternative	a character string describing the alternative hypothesis.
estimate	the estimated correlation coefficient.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

cor.test

Examples

```
var1 <- 1:30+rnorm(30,0,4)
var2 <- 1:30+rnorm(30,0,4)
cor.conf(var1,var2, theo=0.5)
```

Comparison of several Pearson's linear correlation coefficients

Description

Performs comparisons of several Pearson's linear correlation coefficients. If no difference, the function returns the common correlation coefficient, its confidence interval and test for its equality to a given value. If difference is significative, the functions performs pairwise comparisons between coefficients.

Usage

cor.multcomp(var1, var2, fact, alpha $=0.05$, conf.level $=0.95$, theo $=0$, p.method = "fdr")

Arguments

var1	numeric vector (first variable).
var2	numeric vector (second variable).
fact	factor (groups).
alpha	significance level.
conf.level	confidence level.
theo	theoretical coefficient.
p.method	method for p-values correction. See help ofp. adjust.

Value

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

```
cor.test
```


Examples

```
var1 <- c(1:15+rnorm(15,0,4),1:15+rnorm(15,0,1),1:15+rnorm(15,0,8))
var2 <- c(-1:-15+rnorm(15,0,4),1:15+rnorm(15,0,1),1:15+rnorm(15,0,8))
fact <- gl(3,15,labels=LETTERS[1:3])
cor.multcomp(var1,var2,fact)
var3 <- c(1:15+rnorm(15,0,1),1:15+rnorm(15,0,3),1:15+rnorm(15,0,2))
cor.multcomp(var1,var3,fact)
```

```
cov.test Significance test for the covariance between two datasets
```


Description

Performs a permutation test based on the sum of square covariance between variables of two datasets, to test wether the (square) covariance is higher than expected under random association between the two datasets. The test is relevent parallel to a 2B-PLS.

Usage

cov.test (X, Y, scale. $X=$ TRUE, scale. $Y=$ TRUE, nperm $=999$, progress = TRUE)

Arguments

X
Y
scale. $X \quad$ logical, if TRUE (default) scaling of X is required.
scale. $Y \quad$ logical, if TRUE (default) scaling of Y is required.
nperm number of permutations.
progress logical indicating if the progress bar should be displayed.

Details

The function deals with the limitted floating point precision, which can bias calculation of p -values based on a discrete test statistic distribution.

Value

method	a character string indicating the name of the test.
data. name	a character string giving the name(s) of the data, plus additional information.
statistic	the value of the test statistics.
permutations	the number of permutations.
p.value	the p-value of the test.

Author(s)

Maxime Hervé mx.herve@gmail.com

Description

Plots martingale residuals of a Cox model against fitted values, to check for log-linearity of covariates.

Usage

cox.resid(model)

Arguments

```
    model a coxph model.
```


Author(s)

Maxime Hervé mx.herve@gmail.com, based on an idea of John Fox.

References

Fox, J. 2002 Cox Proportional-Hazards Regression for Survival Data.

See Also

coxph

Examples

\# 'kidney' dataset of package 'survival'
require(survival)
data(kidney)
model <- coxph(Surv(time,status)~age+factor(sex),data=kidney)
cox.resid(model)
cramer Cramer's association coefficient

Description

Computes the Cramér's association coefficient between 2 nominal variables.

Usage

$\operatorname{cramer}(x, y)$

Arguments

x
a contingency table ('matrix' or 'table' object). x and y can also both be factors.
y ignored if x is a contingency table. If not, y should be a vector of the same length.

Author(s)

Maxime Hervé mx.herve@gmail.com

Examples

```
var1 <- sample(LETTERS[1:3],30, replace=TRUE)
var2 <- sample(letters[1:3],30,replace=TRUE)
cramer(var1,var2)
# or cramer(table(var1,var2))
```

```
cramer.test Cramer's association coefficient
```


Description

Computes the Cramér's association coefficient between 2 nominal variables, its confidence interval (by bootstraping) and tests for its significance.

Usage

cramer.test(x, y, nrep $=1000$, conf.level $=0.95$)

Arguments

x
y
nrep number of replicates for bootstraping.
conf.level

Value

method name of the test.
statistic test statistics.
parameter test degrees of freedom.
p.value test p -value.
data.name a character string giving the names of the data.
estimate Cramér's coefficient.

```
conf.level confidence level.
rep number of replicates.
conf.int confidence interval.
alternative a character string giving the alternative hypothesis, always "two.sided"
null.value the value of the association measure under the null hypothesis, always 0.
```


Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

boot

Examples

```
var1 <- sample(LETTERS[1:3],30,replace=TRUE)
var2 <- sample(letters[1:3],30,replace=TRUE)
cramer.test(var1,var2)
# or cramer.test(table(var1,var2))
```

cV
Coefficient of variation

Description

Computes the coefficient of variation of a vector.

Usage

$\mathrm{cv}(\mathrm{x}, \mathrm{abs}=\mathrm{TRUE}, \mathrm{pc}=\mathrm{TRUE})$

Arguments

x	numeric vector.
abs	logical. If TRUE the coefficient is expressed in absolute value.
pc	logical. If TRUE the coefficient is expressed in percentage.

Details

The function deals with missing values.

Author(s)

Maxime Hervé mx.herve@gmail.com

Examples

$c v(r n o r m(30))$
dendro.gp Dendrogram and number of groups to be chosen

Description

Draws a dendrogram and an additional bar plot helping to choose the number of groups to be retained (based on the dendrogram).

Usage

dendro.gp(dend)

Arguments

dend a dendrogram obtained from hclust.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

hclust

Examples

```
data(iris)
distances <- dist(iris[,1:4],method="euclidian")
dendro <- hclust(distances,method="ward.D2")
dendro.gp(dendro)
```

 deprecated Deprecated functions in RVAideMemoire package

Description

Functions that are not usable anymore, and will be entirely removed from the package in future versions.

Usage

```
back.lsmeans(...)
byf.normhist(...)
cor.sparse(...)
CvM.test(...)
DA.confusion(...)
DA.valid(...)
DA.var(...)
dunn.test(...)
fc.multcomp(...)
friedman.rating.test(...)
kruskal.rating.test(...)
pairwise.manova(...)
pairwise.to.groups(...)
pairwise.wilcox.rating.test(...)
plot1comp.ind(...)
plot1comp.var(...)
PLSDA.ncomp(...)
PLSDA.test(...)
rating.lsmeans(...)
s.corcircle2(...)
scat.mix.categorical(...)
scat.mix.numeric(...)
scatter.coa2(...)
wilcox.paired.rating.multcomp(...)
wilcox.rating.signtest(...)
wilcox.rating.test(...)
```


Arguments

$$
\ldots \quad \text { previous arguments. }
$$

Details

back.lsmeans and rating.lsmeans are replaced by back.emmeans and rating.emmeans. More generally, stop using package lsmeans and change to package emmeans, its new version.
byf. normhist was not very useful and byf.hist does nearly the same job.
cor. sparse is replaced by the more generic MVA. plot.
CvM. test did actually not perform a Cramer-von Mises test but an alternative Cramer test. Use cramer. test from package cramer directly, on which CvM. test was based.
DA. confusion and DA. valid are replaced by the more generic MVA.cmv and MVA.cv.
DA. var is replaced by the more generic MVA. synt.
dunn. test is not very useful, prefer dunnTest from package FSA.
fc.multcomp is not useful anymore since emtrends (package emmeans) does the same job in a much more powerful manner (see argument var of emtrends).
friedman.rating.test, kruskal.rating.test, wilcox.rating.test, wilcox.rating.signtest, pairwise.wilcox.rating.test and wilcox.paired.rating.multcomp can be problematic with ratings (in which ties and zeroes are very frequent). The use of CLM(M)s (via clm and clmm) is recommended.
pairwise.manova is not useful anymore since emmeans (package emmeans) does the same job in a much more powerful manner (on "mlm" objects, created by lm and not manova)
pairwise. to. groups was not very useful.
plot1comp.ind, plot1comp.var, s.corcircle2, scat.mix.categorical, scat.mix.numeric and scatter. coa2 are replaced by the more generic MVA. plot.
PLSDA. ncomp was not really useful and mvr does nearly the same job.
PLSDA. test is replaced by the more generic MVA. test.

DIABLO.cv Cross validation

Description

Performs cross validation with DIABLO (block.plsda or block.splsda).

Usage

DIABLO.cv(x, method = c("mahalanobis.dist", "max.dist", "centroids.dist"),

Arguments

x
an object of class "sgccda".
method criterion used to predict class membership. See perf.
validation a character giving the kind of (internal) validation to use. See perf.
k an integer giving the number of folds (can be re-set internally if needed).
repet an integer giving the number of times the whole procedure has to be repeated.
... other arguments to pass to perf.

Details

The function uses the weighted predicted classification error rate (see perf).
Value
repet number of times the whole procedure was repeated.
$k \quad$ number of folds.
validation kind of validation used.
ncomp number of components used.
method criterion used to classify individuals of the test sets.
NMC.mean mean classification error rate (based on repet values).
NMC.se standard error of the classification error rate (based on repet values).

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

block.plsda, block.splsda, perf

Examples

```
## Not run:
require(mixOmics)
data(nutrimouse)
data <- list(gene=nutrimouse$gene,lipid=nutrimouse$lipid,Y=nutrimouse$diet)
DIABLO <- block.plsda(X=data,indY=3)
DIABLO.cv(DIABLO)
## End(Not run)
```

DIABLO. test Significance test based on cross-validation

Description

Performs a permutation significance test based on cross-validation with DIABLO (block. plsda or block.splsda).

Usage

DIABLO.test(x, method = c("mahalanobis.dist", "max.dist", "centroids.dist"), validation = c("Mfold", "loo"), k = 7, nperm = 999, progress = TRUE, ...)

Arguments

x
method
validation
k
nperm
progress
...
an object of class "sgccda".
criterion used to predict class membership. See perf.
a character giving the kind of (internal) validation to use. See perf.
an integer giving the number of folds (can be re-set internally if needed).
number of permutations.
logical indicating if the progress bar should be displayed.
other arguments to pass to perf.

Details

The function uses the weighted predicted classification error rate (see perf).

Value

method	a character string indicating the name of the test.
data. name	a character string giving the name of the data, plus additional information.
statistic	the value of the test statistics (classification error rate).
permutations	the number of permutations.
p.value	the p-value of the test.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

```
block.plsda, block.splsda, perf
```


Examples

```
## Not run:
require(mixOmics)
data(nutrimouse)
data <- list(gene=nutrimouse$gene,lipid=nutrimouse$lipid,Y=nutrimouse$diet)
DIABLO <- block.plsda(X=data,indY=3)
DIABLO.test(DIABLO)
## End(Not run)
```

 dummy Dummy responses

Description

Creates a matrix of dummy responses from a factor. Needed in some multivariate analyses.

Usage

dummy (f, simplify = TRUE)

Arguments

f
simplify logical indicating if the last column of the response matrix should be removed (to avoid model overfitting).

Author(s)

Maxime Hervé mx.herve@gmail.com

Examples

```
fac <- gl(3,5,labels=LETTERS[1:3])
```

dummy (fac)

```
elogis Empirical logistic transformation
```


Description

Empirical logistic transformation for logistic models with data showing (quasi-)complete separation. The function is intended to be used as a link function in GLM(M)s.

Usage

elogis()

Author(s)

Formula from McCullagh \& Nelder in their seminal book 'Generalized Linear Models'. R code from Eric Wajnberg \& Jean-Sébastien Pierre.

Examples

```
# An example with 3 groups and complete separation (from E. Wajnberg)
tab <- data.frame(case=letters[1:3],yes=c(25,30,0), no=c(1,0, 20))
tab
## Not run:
mod <- glm(cbind(yes,no)~case,family=binomial(link=elogis()),data=tab)
# Warnings are normal
summary(mod)
## End(Not run)
```

fisher.bintest Fisher's exact test for binary variables

Description

Performs a Fisher's exact test for comparing response probabilities (i.e. when the response variable is a binary variable). The function is in fact a wrapper to the Fisher's exact test for count data. If the p-value of the test is significant, the function performs pairwise comparisons by using Fisher's exact tests.

Usage

fisher.bintest(formula, data, alpha $=0.05$, p.method = "fdr")

Arguments

formula	a formula of the form $a \sim b$, where a and b give the data values and correspond- ing groups, respectively. a can be a numeric vector or a factor, with only two possible values (except NA). an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
data	significance level to compute pairwise comparisons.
alpha	
p.method	method for p-values correction. See help of p.adjust.

Details

If the response is a $0 / 1$ variable, the probability of the ' 1 ' group is tested. In any other cases, the response is transformed into a factor and the probability of the second level is tested.
Since chi-squared and G tests are approximate tests, exact tests are preferable when the number of individuals is small (200 is a reasonable minimum).

Value

method.test a character string giving the name of the global test computed.
data.name a character string giving the name(s) of the data.
alternative a character string describing the alternative hypothesis.
estimate the estimated probabilities.
null.value the value of the difference in probabilities under the null hypothesis, always 0 .
p.value p-value of the global test.
alpha significance level.
p.adjust.method method for p -values correction.
p.value.multcomp
data frame of pairwise comparisons result.
method.multcomp
a character string giving the name of the test computed for pairwise comparisons.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

chisq.bintest, G.bintest

Examples

```
response <- c(0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,0,0,1,1,1)
fact <- gl(3,10,labels=LETTERS[1:3])
fisher.bintest(response~fact)
```


Description

Performs pairwise comparisons after a comparison of proportions or after a test for independence of 2 categorical variables, by using a Fisher's exact test.

Usage

fisher.multcomp(tab.cont, p.method = "fdr")

Arguments

tab.cont contingency table.
p.method method for p-values correction. See help of p.adjust.

Details

Since chi-squared and G tests are approximate tests, exact tests are preferable when the number of individuals is small (200 is a reasonable minimum).

Value

method	name of the test.		
data. name	a character string giving the name(s) of the data.		
p.adjust.method		\quad	method for p-values correction.
:---			
p.value	\quad	table of results of pairwise comparisons.	
:---			

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

chisq.test, prop.test, fisher.test

Examples

```
# 2-column contingency table: comparison of proportions
tab.cont1 <- matrix(c(17,23,12,24,20,10),ncol=2, dimnames=list(c("Control",
    "Treatment1","Treatment2"), c("Alive","Dead")),byrow=TRUE)
fisher.test(tab.cont1)
fisher.multcomp(tab.cont1)
# 3-column contingency table: independence test
```

```
tab.cont2 <- as.table(matrix(c(25,10,12,6,15,14,9,16,9),ncol=3,dimnames=list(c("fair",
    "dark","russet"),c("blue","brown","green"))))
fisher.test(tab.cont2)
fisher.multcomp(tab.cont2)
```

fp.test

Fligner-Policello test

Description

Performs a Fligner-Policello test of the null that the medians in the two groups (samples) are the same.

Usage

```
fp.test(x, ...)
## Default S3 method:
fp.test(x, y, delta = 0, alternative = "two.sided", ...)
## S3 method for class 'formula'
fp.test(formula, data, subset, ...)
```


Arguments

x
$y \quad a \quad$ numeric vector of data values.
delta null difference in medians tested.
alternative a character string specifying the alternative hypothesis, must be one of "two. sided" (default), "greater" or "less".
formula $\quad a$ formula of the form $a \sim b$, where a and b give the data values and corresponding groups.
data an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
subset an optional vector specifying a subset of observations to be used.
further arguments to be passed to or from other methods.

Details

The Fligner-Policello test does not assume that the shape of the distribution is similar in two groups, contrary to the Mann-Whitney-Wilcoxon test. However, it assumes that the distributions are symmetric.

Value

statistic test statistics.
p.value p-value of the test.
alternative a character string describing the alternative hypothesis.
method a character string indicating the name of the test.
data.name a character string giving the names of the data.
null.value the specified hypothesized value of the median difference.

Author(s)

Maxime Hervé mx.herve@gmail.com based on fp.test

See Also

fp.test, wilcox.test

Examples

```
x <- rpois(20,3)
y <- rpois(20,5)
fp.test(x,y)
```

G.bintest G-test for binary variables

Description

Performs a G-test for comparing response probabilities (i.e. when the response variable is a binary variable). The function is in fact a wrapper to the G-test for comparison of proportions on a contingency table. If the p-value of the test is significant, the function performs pairwise comparisons by using G-tests.

Usage

G.bintest(formula, data, alpha = 0.05, p.method = "fdr")

Arguments

formula $\quad a$ formula of the form $a \sim b$, where a and b give the data values and corresponding groups, respectively. a can be a numeric vector or a factor, with only two possible values (except NA).
data an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
alpha significance level to compute pairwise comparisons.
p.method method for p-values correction. See help of p.adjust.

Details

If the response is a $0 / 1$ variable, the probability of the ' 1 ' group is tested. In any other cases, the response is transformed into a factor and the probability of the second level is tested.

Since a G-test is an approximate test, an exact test is preferable when the number of individuals is small (200 is a reasonable minimum). See fisher. bintest in that case.

Value

method.test a character string giving the name of the global test computed.
data. name a character string giving the name(s) of the data.
alternative a character string describing the alternative hypothesis.
estimate the estimated probabilities.
null.value the value of the difference in probabilities under the null hypothesis, always 0 .
statistic test statistics.
parameter test degrees of freedom.
p.value $\quad p$-value of the global test.
alpha significance level.
p.adjust.method
method for p -values correction.
p.value.multcomp
data frame of pairwise comparisons result.
method.multcomp
a character string giving the name of the test computed for pairwise comparisons.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

chisq.bintest, fisher.bintest

Examples

response <- $c(\operatorname{rep}(0: 1, c(40,60)), \operatorname{rep}(0: 1, c(55,45)), \operatorname{rep}(0: 1, c(65,35)))$
fact <- gl(3,100,labels=LETTERS[1:3])
G.bintest(response~fact)

Description

Performs pairwise comparisons after a global G-test.

Usage

G.multcomp(x, p.method = "fdr")

Arguments

x	numeric vector (counts).
p.method	method for p-values correction. See help of p.adjust.

Details

Since a G-test is an approximate test, an exact test is preferable when the number of individuals is small (200 is a reasonable minimum). See multinomial.multcomp in that case.

Value

method \quad name of the test.
data. name \quad a character string giving the name(s) of the data.
p.adjust.method
method for p-values correction.
p.value

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

G.test, multinomial.test, multinomial.multcomp

Examples

```
counts <- c(49, 30,63,59)
G.test(counts)
G.multcomp(counts)
```

G.test G-test

Description

Perfoms a G-test on a contingency table or a vector of counts.

Usage

G.test(x, $p=\operatorname{rep}(1 /$ length(x), length(x)))

Arguments

$x \quad a \quad$ numeric vector or matrix (see Details).
$\mathrm{p} \quad$ theoretical proportions (optional).

Details

If x is matrix, it must be constructed like this:

- 2 columns giving number of successes (left) and fails (right)
- 1 row per population.

The function works as chisq. test :

- if x is a vector and theoretical proportions are not given, equality of counts is tested
- if x is a vector and theoretical proportions are given, equality of counts to theoretical counts (given by theoretical proportions) is tested
- if x is a matrix with two coloums, equality of proportion of successes between populations is tested.
- if x is a matrix with more than two columns, independence of rows and columns is tested.

Since a G-test is an approximate test, an exact test is preferable when the number of individuals is small (200 is a reasonable minimum). See multinomial.test in that case with a vector, fisher. test with a matrix.

Value

method	name of the test.
statistic	test statistics.
parameter	test degrees of freedom.
p.value	p-value.
data.name	a character string giving the name(s) of the data.
observed	the observed counts.
expected	the expected counts under the null hypothesis.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

chisq.test, multinomial.test, fisher.test G.multcomp, G. theo.multcomp, pairwise.G.test

Examples

counts <- c $(49,30,63,59)$
G.test(counts)
G.theo.multcomp Pairwise comparisons after a G-test for given probabilities

Description

Performs pairwise comparisons after a global G-test for given probabilities.

Usage

G.theo.multcomp(x, $p=\operatorname{rep}(1 / l e n g t h(x)$, length(x)), $p . m e t h o d=" f d r ")$

Arguments

x	numeric vector (counts).
p	theoretical proportions.
p.method	method for p-values correction. See help of p.adjust.

Details

Since a G-test is an approximate test, an exact test is preferable when the number of individuals is small (200 is a reasonable minimum). See multinomial. theo. multcomp in that case.
Value

method	name of the test.
data.name	a character string giving the name(s) of the data.
observed	observed counts.
expected	expected counts.
p.adjust.method	method for p-values correction.
statistic	statistics of each test.
p.value2	corrected p-values.
p.value	data frame of results.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

G.test, multinomial.test, multinomial. theo.multcomp

Examples

counts <- $c(49,30,63,59)$
p. theo <- c(0.2,0.1,0.45,0.25)
G. test (counts, $p=p$. theo)
G. theo.multcomp (counts, $p=p$. theo)

GPA.test Significance test for GPA

Description

Performs a permutation significance test based on total variance explained for Generalized Procrustes Analysis. The function uses GPA.

Usage

GPA.test(df, group, tolerance $=10^{\wedge}-10$, nbiteration $=200$, scale $=$ TRUE, nperm $=$ 999, progress $=$ TRUE)

Arguments

$\mathrm{df} \quad$ a data frame with n rows (individuals) and p columns (quantitative varaibles), in which all data frames are combined.
group a vector indicating the number of variables in each group (i.e. data frame).
tolerance a threshold with respect to which the algorithm stops, i.e. when the difference between the GPA loss function at step n and $n+1$ is less than tolerance.
nbiteration the maximum number of iterations until the algorithm stops.
scale logical, if TRUE (default) scaling is required.
nperm number of permutations.
progress logical indicating if the progress bar should be displayed.

Details

Rows of each data frame are randomly and independently permuted.
The function deals with the limitted floating point precision, which can bias calculation of p-values based on a discrete test statistic distribution.

Value

method	a character string indicating the name of the test.
data. name	a character string giving the name(s) of the data, plus additional information.
statistic	the value of the test statistics.
permutations	the number of permutations.
p.value	the p-value of the test.

Author(s)

Maxime Hervé mx.herve@gmail.com

References

Wakeling IN, Raats MM and MacFie HJH (1992) A new significance test for consensus in Generalized Procrustes Analysis. Journal of Sensory Studies 7:91-96.

See Also

GPA

Examples

require(FactoMineR)
data(wine)
\#\# Not run: GPA.test(wine[,-(1:2)],group=c(5,3,10,9,2))
ind.contrib Individual contributions in regression

Description

Computes difference in regression parameters when each individual is dropped, expressed in proportion of the whole regression coefficients. The function deals with 1 m (including glm) and least.rect models.

Usage

ind.contrib(model, print.diff = FALSE, graph = TRUE, warning=25)

Arguments

model model (of class "lm" or "least.rect").
print.diff logical. If TRUE results are printed.
graph logical. If TRUE results are returned in a graphical way.
warning level of graphical warning.

Value

coefficients coefficients of each computed regression.
coefficients.diff
difference in coefficients between each computed regression and the whole regression.
coefficients.prop
difference in coefficients expressed in proportion of the whole regression coefficients.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

lm.influence, least.rect

Examples

$x<-1: 30$
$y<-1: 30+r n o r m(30,0,4)$
model1 <- $\operatorname{lm}\left(y^{\sim} x\right)$
model2 <- least.rect $\left(y^{\sim} x\right)$
ind.contrib(model1)
ind. contrib(model2)
least.rect Least rectangles linear regression

Description

Fits a least rectangle linear regression, possibly for each level of a factor.

Usage

least.rect(formula, data, conf.level $=0.95$, theo $=1$, adj $=$ TRUE)

Arguments

formula	a formula of the form $y \sim x$, where y and x give the y and x variable, respectively.
The formula can also be $y \sim x \mid f$ to fit a (separate) regression for each level of	
the factor f.	
an optional data frame containing the variables in the formula formula. By	
default the variables are taken from environment (formula).	
conf.level	confidence level.
theo	theoretical value of the slope. If several regression are fitted, the same value is used for all comparisons of slope vs. theoretical value.

adj logical indicating if, in case of several regressions fitted, confidence intervals and p-values should be Bonferroni-corrected for multiple testing.

Value

coefficients	regression parameters.
residuals	residuals.
fitted.values	fitted values.
call	the matched call.
model	the model frame used.
conf.level	confidence level.
conf.int	confidence interval of regression parameters.
theo	theoretical value of the slope.
comp	data frame of results for equality of the slope(s) to the theoretical value.
corr	data frame of results for significativity of the correlation coefficient(s). multiple
logical, TRUE if several regressions are fitted.	
adj	logical, TRUE if confidence intervals and p-values are corrected for multiple test- ing (only if several regressions are fitted).

Author(s)

Maxime Hervé mx.herve@gmail.com

Examples

```
x <- 1:30+rnorm(30,0,3)
y <- 1:30+rnorm(30,0,3)
regression1 <- least.rect(y~x)
summary(regression1)
x2 <- c(1:30,1:30)
y2 <- c(1:30+rnorm(30,0,3),seq(10,22,12/29)+rnorm(30,0,3))
fact <- gl(2,30,labels=LETTERS[1:2])
regression2 <- least.rect(y2~x2|fact)
summary(regression2)
```

 loc.slp Slope of a hand-defined line

Description

Returns the slope of a line defined by selecting two points on a graph.

Usage

loc.slp()

Author(s)

Maxime Hervé mx.herve@gmail.com

Description

Cuts the data into intervals, compute the response probability and its standard error for each interval and add the results to the regression curve. No test is performed but this permits to have a graphical idea of the adjustment of the model to the data.

Usage

logis.fit(model, int $=5, \ldots$)

Arguments

```
    model glm model.
    int number of intervals.
    ... other arguments. See help of points and segments.
```


Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

glm

Examples

```
x<- 1:50
y <- c(rep(0,18), sample(0:1,14,replace=TRUE),rep(1,18))
model <- glm(y~x,family=binomial)
plot(x,y)
lines(x,model$fitted)
logis.fit(model)
```

Creating a nls model for logistic regression from fitted values of a glm model

Description

Adds some noise to the fitted values of a glm model to create a nls model for logistic regression (creating a nl s model from exact fitted values can not be done, see help of nls).

Usage

logis.noise(model, intensity = 25)

Arguments

model	glm model.
intensity	intensity of the noise: lower the value, bigger the noise.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

glm, nls

Examples

```
x <- 1:50
y <- c(rep(0,18),sample(0:1,14,replace=TRUE),rep (1,18))
model <- glm(y~x,family=binomial)
y2 <- logis.noise(model)
# Then model2 <- nls(y2~SSlogis(...))
```

$\bmod \quad$ Mode

Description

Computes the mode of a vector. The function makes the difference between continuous and discontinuous variables (which are made up of integers only). By extention, it also gives the most frequent value in a character vector or a factor.

Usage

$\bmod (x)$

Arguments

x vector (numeric, character or factor).

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

density

Examples

```
# Continuous variable
x <- rnorm(100)
mod(x)
# Discontinuous variable
y <- rpois(100,2)
mod(y)
# Character vector
z <- sample(LETTERS[1:3],20,replace=TRUE)
mod(z)
```

mood.medtest

Mood's median test

Description

Performs a Mood's median test to compare medians of independent samples.

Usage

```
mood.medtest(x, ...)
## Default S3 method:
mood.medtest(x, g, exact = NULL, ...)
## S3 method for class 'formula'
mood.medtest(formula, data, subset, ...)
```


Arguments

x
a numeric vector of data values.
$\mathrm{g} \quad$ a vector or factor object giving the group for the corresponding elements of x .
exact a logical indicating whether an exact p-value should be computed.
formula $\quad a$ formula of the form $a \sim b$, where a and b give the data values and corresponding groups.
data an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
subset an optional vector specifying a subset of observations to be used.
... further arguments to be passed to or from other methods.

Details

If exact=NULL, a Fisher's exact test is used if the number of data values is <200; otherwise a chi-square test is used, with Yates continuity correction if necessary.

Value

method	a character string indicating the name of the test.
data.name	a character string giving the name(s) of the data.
statistic	the value the chi-squared test statistic (in case of a chis-square test).
parameter	the degrees of freedom of the approximate chi-squared distribution of the test statistic (in case of a chis-square test).
p.value	the p-value of the test.

Author(s)

Maxime Hervé mx.herve@gmail.com

Examples

```
set.seed(1716)
response <- c(rnorm(10,3,1.5),rnorm(10,5.5,2))
fact <- gl(2,10,labels=LETTERS[1:2])
mood.medtest(response~fact)
```

mqqnorm Multivariate normality QQ-Plot

Description

Draws a QQ-plot to assess multivariate normality.

Usage

mqqnorm(x, main = "Multi-normal Q-Q Plot")

Arguments

$\begin{array}{ll}x & \text { a data frame or a matrix of numeric variables (each column giving a variable). } \\ \text { main } & \text { title of the graph. }\end{array}$

Author(s)

Maxime Hervé <mx.herve@ gmail.com>

See Also

mshapiro.test, qqPlot

Examples

```
x <- 1:30+rnorm(30)
y <- 1:30+rnorm(30,1,3)
mqqnorm(cbind(x,y))
```

mshapiro.test Shapiro-Wilk multivariate normality test

Description

Performs a Shapiro-Wilk test to asses multivariate normality. This is a slightly modified copy of the mshapiro. test function of the package mvnormtest, for internal convenience.

Usage

mshapiro.test(x)

Arguments

Value

method	name of the test.
data. name	a character string giving the names of the data.
statistic	test statistics of the test.
p.value	p-value of the test.

Author(s)

Maxime Hervé <mx.herve@ gmail.com> from the work of Slawomir Jarek

See Also

shapiro.test, mshapiro.test

Examples

```
x <- 1:30+rnorm(30)
y <- 1:30+rnorm(30,1,3)
mshapiro.test(cbind(x,y))
```

multinomial.multcomp Pairwise comparisons after an exact multinomial test

Description

Performs pairwise comparisons after a global exact multinomial test. These comparisons are performed using exact binomial tests.

Usage

multinomial.multcomp(x, p.method = "fdr")

Arguments

x
numeric vector (counts). Can also be a factor; in that case table(x) is used as counts.
p.method method for p -values correction. See help of p.adjust.

Details

Since chi-squared and G tests are approximate tests, exact tests are preferable when the number of individuals is small (200 is a reasonable minimum).

An exact multinomial test with two groups is strictly the same than an exact binomial test.

Value

method data. name	a character string giving the name(s) of the data.			
p.adjust.method		\quad		method for p-values correction.
:---	:---			
p.value	table of results.			

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

multinomial.test, binom.test

Examples

counts <- $c(5,15,23)$
multinomial.test(counts)
multinomial.multcomp(counts)
multinomial.test Exact multinomial test

Description

Perfoms an exact multinomial test on a vector of counts.

Usage

multinomial.test(x, $p=r e p(1 / l e n g t h(x)$, length(x)))

Arguments

$x \quad$ numeric vector (counts). Can also be a factor; in that case table (x) is used as counts.
$\mathrm{p} \quad$ theoretical proportions (optional).

Details

The function works as chisq. test or G. test :

- if theoretical proportions are not given, equality of counts is tested
- if theoretical proportions are given, equality of counts to theoretical counts (given by theoretical proportions) is tested.
Since chi-squared and G tests are approximate tests, exact tests are preferable when the number of individuals is small (200 is a reasonable minimum).

Be aware that the calculation time increases with the number of individuals (i.e. the sum of x) and the number of groups (i.e. the length of x).
An exact multinomial test with two groups is strictly the same as an exact binomial test.

Value

method name of the test.
p.value p-value.
data.name a character string giving the name(s) of the data.
observed the observed counts.
expected the expected counts under the null hypothesis.

Author(s)

Maxime Hervé mx.herve@gmail.com based on multinomial.test

See Also

chisq.test, G.test, binom.test, multinomial.multcomp, multinomial. theo.multcomp

Examples

```
counts <- c(5,15,23)
```

multinomial.test(counts)

```
multinomial.theo.multcomp
Pairwise comparisons after an exact multinomial test for given proba-
    bilities
```


Description

Performs pairwise comparisons after a global exact multinomial test for given probabilities. These comparisons are performed using exact binomial tests.

Usage

multinomial.theo.multcomp(x, $\mathrm{p}=\operatorname{rep}(1 /$ length(x$)$, length(x)), prop $=$ FALSE, p.method $=$ "fdr")

Arguments

x
p
prop
p.method
numeric vector (counts). Can also be a factor; in that case table(x) is used as counts.
theoretical proportions.
logical indicating if results should be printed as counts (FALSE) or proportions (TRUE).
method for p -values correction. See help of p. adjust.
multtest.cor

Details

Since chi-squared and G tests are approximate tests, exact tests are preferable when the number of individuals is small (200 is a reasonable minimum).
An exact multinomial test with two groups is strictly the same than an exact binomial test.

Value

method name of the test. data. name a character string giving the name(s) of the data. observed observed counts. expected expected counts. p.adjust.method	
	method for p-values correction. p.value2
corrected p-values.	
p.value	data frame of results.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

multinomial.test, binom.test

Examples

```
counts <- c(5,15,23)
p.theo <- c(0.2,0.5,0.3)
multinomial.test(counts, p=p.theo)
multinomial.theo.multcomp(counts,p=p.theo)
```

multtest.cor Univariate correlation test for multiple variables

Description

Performs correlation tests between one variable and a series of other variables, and corrects pvalues.

Usage

multtest.cor(mult.var, uni.var, method = "pearson", p.method = "fdr", ordered $=$ TRUE)
\#\# S3 method for class 'multtest.cor'
plot $(x$, arrows $=$ TRUE, main $=$ NULL, pch $=16$, cex = 1, col = c("red", "orange", "black"), labels = NULL, ...)

Arguments

mult.var	data frame containing a series of numeric variables.
uni.var	numeric variable (vector).
method	a character string indicating which correlation coefficient is to be computed. See help of cor.
p.method	method for p-values correction. See help of p.adjust.
ordered	logical indicating if variables should be ordered based on correlation values.
x	object returned from multtest.cor.
arrows	logical indicating if arrows should be plotted. If FALSE, points are displayed at the extremity of the arrows.
main	optional title of the graph.
pch	symbol(s) used for points, when points are displayed (see arrows).
cex	size of points and labels (see help of dotchart).
col	vector of three colors: first for variables with $\mathrm{P}<0.05$, second for variables with $0.05<\mathrm{P}<0.1$, third for variables with $\mathrm{P}>0.1$. Recycled if only one value.
labels	names of the variables. If NULL (default), labels correspond to names found in mult.var.
	not used.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

cor.test

Examples

```
data(iris)
# Original coordinates
plot(Petal.Length~Sepal.Length,pch=16,col=as.numeric(iris$Species),data=iris)
# New axis
abline(-6,1.6)
# Coordinates on new axis
new.coord <- coord.proj(iris[,c("Sepal.Length","Petal.Length")],1.6)
# Correlation between the whole dataset and new coordinates
mult.cor <- multtest.cor(iris[,1:4],new.coord)
plot(mult.cor)
```

```
multtest.gp Univariate comparison of groups for multiple variables
```


Description

Performs group comparisons for multiple variables using parametric, permutational or rank tests, and corrects p -values. Gives also group means and standards errors for each variable.

Usage

```
multtest.gp(tab, fac, test = c("param", "perm", "rank"),
        transform = c("none", "sqrt", "4rt", "log"), add = 0, p.method = "fdr",
        ordered = TRUE, ...)
    \#\# S3 method for class 'multtest.gp'
    plot \((x\), signif \(=\) FALSE, alpha \(=0.05\),
        vars = NULL, xlab = "Group", ylab = "Mean (+/- SE) value",
        titles \(=\) NULL, groups \(=\) NULL, ...)
```


Arguments

tab	data frame containing response variables.
fac	factor defining groups to compare.
test	type of test to use: parametric (default), permutational (non parametric) or rankbased (non parametric). See Details.
transform	transformation to apply to response variables before testing (none by default; "4rt" is fourth-root). Only used for parametric and permutational tests.
add	value to add to response variables before a log-transformation.
p.method	method for p-values correction. See help of p.adjust.
ordered	logical indicating if variables should be ordered based on p-values.
x	object returned from multtest.gp.
signif	logical indicating if only variables with significant P -value should be plotted.
alpha	significance threshold.
vars	numeric vector giving variables to plot (rows of x). Default to all, which can lead to errors if too many variables.
xlab	legend of the x axis.
ylab	legend of the y axis
titles	titles of the graphs (name of the variables by default).
groups	names of the bars (levels of fac by default).
	additional arguments to testing functions in multtest.gp (especially for var. equal in t.test and nperm in perm.anova and perm.t.test) and to barplot in plot.

Details

In case of parametric tests, t-tests or ANOVAs are used depending on the number of groups (2 or more, respectively). In case of permutational tests: permutational t-tests or permutational ANOVAs. In case of rank-based tests: Mann-Whitney-Wilcoxon or Kruskal-Wallis tests.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

perm.anova, perm.t.test

Examples

```
data(iris)
mult <- multtest.gp(iris[,1:4],iris$Species)
plot(mult)
```

multtest.gp.bin Univariate comparison of groups for multiple binary variables

Description

Performs group comparisons for multiple binary variables using a parametric or an exact test, and corrects p-values. Gives also group proportions and standards errors for each variable.

Usage

multtest.gp.bin(tab, fac, test = c("LRT", "Fisher"),
p.method = "fdr", ordered = TRUE, ...)
\#\# S3 method for class 'multtest.gp.bin'
plot $(x$, signif $=$ FALSE, alpha $=0.05$,
vars = NULL, xlab = "Group", ylab = "Mean (+/- SE) proportion",
titles $=$ NULL, groups $=$ NULL, ...)

Arguments

tab	data frame containing response variables.
fac	factor defining groups to compare.
test	type of test to use: likelihood ratio test based on binomial GLM ("LRT", default) or Fisher's exact test ("Fisher").
p.method	method for p-values correction. See help of p. adjust. ordered x
l	

signif	logical indicating if only variables with significant P-value should be plotted.
alpha	significance threshold. vars
numeric vector giving variables to plot (rows of x). Default to all, which can	
lead to errors if too many variables.	
ylab	legend of the x axis.
titles	legend of the y axis groups
titles of the graphs (name of the variables by default).	
\ldots	names of the bars (levels of fac by default).
	additional arguments to testing functions in multtest.gp.bin (especially for
Anova and fisher. test) and to barplot in plot.	

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

multtest.gp, Anova, fisher.test

MVA. anova Type II permutation test for constrained multivariate analyses

Description

This function is a wrapper to anova.cca(... , by="terms") but performs type II tests (whereas anova. cca performs type I).

Usage

MVA. anova(object, ...)

Arguments

object a result object from cca, rda, capscale or dbrda.
... additional arguments to anova.cca (can be permutations, model, parallel and/or strata). See help of this function.

Details

See anova.cca for detailed explanation of what is done. The only difference with anova.cca is that MVA. anova performs type II tests instead of type I.
See example of adonis. II for the difference between type I (sequential) and type II tests.

Value

a data frame of class "anova".

Author(s)

Maxime Hervé mx.herve@gmail.com

MVA.biplot Biplot of multivariate analyses

Description

Displays a biplot of a multivariate analysis. This just consists in superimposing a score plot and a correlation circle (plus centroids of factor levels in constrained analyses, RDA or CCA). The correlation circle is adjusted to fit the size of the score plot.

Usage

MVA.biplot (x, xax = 1, yax = 2, scaling = 2, sco. set $=c(12,1,2)$, cor.set $=c(12,1,2)$, space $=1$, ratio $=0.9$, weights $=1$, constraints = c("nf", "n", "f", NULL), sco.args = list(), cor.args = list(), f.col = 1, f.cex = 1)

Arguments

x
xax the horizontal axis.
yax the vertical axis.
scaling type of scaling (see MVA. scoreplot).
sco.set scores to be displayed, when several sets are available (see MVA. scoreplot).
cor.set correlations to be displayed, when several sets are available (see MVA. scoreplot).

space

ratio
weights space to use, when several are available (see MVA. scoreplot and MVA. corplot). constant for adjustement of correlations to the size of the score plot (0.9 means the longest arrows is 90% of the corresponding axis).
constraints
sco.args
cor.args list containing optional arguments to pass to MVA.corplot. All arguments are accepted except xlab, ylab, circle, intcircle, drawintaxes, add and add. const.
f.col
f.cex
color(s) used for barycenters in case of a constraint analysis (RDA or CCA) containing factor constraint(s). Can be a unique value, a vector giving one color per constraint or a vector giving one color per barycenter (all factors confounded).
size(s) used for barycenters in case of a constraint analysis (RDA or CCA) containing factor constraint(s). Can be a unique value, a vector giving one size per constraint or a vector giving one size per barycenter (all factors confounded).

Details

This function should not be use directly. Prefer the general MVA. plot, to which all arguments can be passed.
All multivariate analyses covered by MVA. corplot can be used for biplots.

Author(s)

Maxime Hervé mx.herve@gmail.com

Examples

require(vegan)
data(iris)
RDA <- rda(iris[,1:4]~Species, data=iris)
MVA.plot(RDA, "biplot", cor.args=list(col="purple"), ratio=0.8,f.col=c("red", "green", "blue"))

MVA.cmv
Cross model validation

Description

Performs cross model validation (2CV) with different PLS analyses.

Usage

Arguments

$X \quad$ a data frame of independent variables.
Y the dependent variable(s): numeric vector, data frame of quantitative variables or factor.
repet an integer giving the number of times the whole 2 CV procedure has to be repeated.
kout an integer giving the number of folds in the outer loop (can be re-set internally if needed).
kinn an integer giving the number of folds in the inner loop (can be re-set internally if needed). Cannot be $>$ kout.
ncomp an integer giving the maximal number of components to be tested in the inner loop (can be re-set depending on the size of the train sets).
scale logical indicating if data should be scaled (see Details).
$\left.\begin{array}{ll}\text { model } & \text { the model to be fitted (see Details). } \\ \text { crit.inn } \\ \text { the criterion to be used to choose the number of components in the inner loop. } \\ \text { Root Mean Square Error of Prediction ("RMSEP", default) and Q2 ("Q2") are } \\ \text { only used for PLSR and CPPLS, whereas the Number of MisClassifications } \\ \text { ("NMC") is only used for discriminant analyses. }\end{array}\right]$ (he threshold to be used if the number of components is chosen according to Q2.

Details

Cross model validation is detailed is Szymanska et al (2012). Some more details about how this function works:

- when a discriminant analysis is used ("PLS-DA", "PPLS-DA", "PLS-DA/LDA", "PLS-DA/QDA", "PPLS-DA/LDA" or "PPLS-DA/QDA"), the training sets (test set itself in the inner loop, test+validation sets in the outer loop) are generated in respect to the relative proportions of the levels of Y in the original data set (see splitf).
- "PLS-DA" is considered as PLS2 on a dummy-coded response. For a PLS-DA based on the CPPLS algorithm, use "PPLS-DA" with lower and upper limits of the power parameters set to 0.5.
- if a second analysis is used ("PLS-DA/LDA", "PLS-DA/QDA", "PPLS-DA/LDA" or "PPLS-DA/QDA"), a LDA or QDA is built on scores of the first analysis (PLS-DA or PPLS-DA) also in the inner loop. The classification error rate, based on this second analysis, is used to choose the number of components.
If scale $=$ TRUE, the scaling is done as this:
- for each step of the outer loop (i.e. kout steps), the rest set is pre-processed by centering and unit-variance scaling. Means and standard deviations of variables in the rest set are then used to scale the test set.
- for each step of the inner loop (i.e. kinn steps), the training set is pre-processed by centering and unit-variance scaling. Means and standard deviations of variables in the training set are then used to scale the validation set.

Value

model	model used.
type	type of model used.
repet	number of times the whole 2 CV procedure was repeated.
kout	number of folds in the outer loop.
kinn	number of folds in the inner loop.
crit.inn	criterion used to choose the number of components in the inner loop.
crit.DA	criterion used to classify individuals of the test and validation sets.
Q2diff	threshold used if the number of components is chosen according to Q2.
groups	levels of Y if it is a factor.
models.list	list of of models generated (repet*kout models), for PLSR, CPPLS, PLS-DA and PPLS-DA.
models1.list	list of of (P)PLS-DA models generated (repet*kout models), for PLS-DA/LDA, PLS-DA/QDA, PPLS-DA/LDA and PPLS-DA/QDA.
models2.list	list of of LDA/QDA models generated (repet*kout models), for PLS-DA/LDA, PLS-DA/QDA, PPLS-DA/LDA and PPLS-DA/QDA.
RMSEP	RMSEP computed from the models used in the outer loops (repet values).
Q2	Q2 computed from the models used in the outer loops (repet values).
NMC	Classification error rate computed from the models used in the outer loops (repet values).
confusion	Confusion matrices computed from the models used in the outer loops (repet values).
pred.prob	Probability of each individual of being of each level of Y .

Author(s)

Maxime Hervé mx.herve@gmail.com

References

Szymanska E, Saccenti E, Smilde AK and Westerhuis J (2012) Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics (2012) 8:S3-S16.

See Also

predict.MVA.cmv, mvr, lda, qda

Examples

```
require(pls)
require(MASS)
# PLSR
data(yarn)
```

```
## Not run: MVA.cmv(yarn$NIR,yarn$density,model="PLSR")
# PPLS-DA coupled to LDA
data(mayonnaise)
## Not run: MVA.cmv(mayonnaise$NIR, factor(mayonnaise$oil.type),model="PPLS-DA/LDA", crit.inn="NMC")
```

```
MVA.cor
```

Correlations of multivariate analyses

Description

Returns correlations of a multivariate analysis.

Usage

MVA. cor $(x$, xax $=1$, yax $=2$, set $=c(12,1,2)$, space $=1, \ldots)$

Arguments

x
xax axis or axes for which to extract correlations.
yax axis for which to extract correlations (ignored if length (xax) >1).
set variables to be displayed, when several sets are available (see Details). 12 (default) for both sets, 1 for X or constraints, 2 for Y or constrained variables.
space variables to be displayed, when several spaces are available (see Details). space is the number of the space to be plotted.
... not used.

Details

Many multivariate analyses are supported, from various packages:

- PCA: dudi .pca, rda.
- sPCA: spca.
- IPCA: ipca.
- sIPCA: sipca.
- LDA: lda, discrimin.
- PLS-DA (PLS2 on a dummy-coded factor): plsda. X space only.
- sPLS-DA (sPLS2 on a dummy-coded factor): splsda. X space only.
- CPPLS: mvr. Set 1 is X, set 2 is Y. If set=12 (default), fac is not available and pch, cex, col, lwd can be defined differently for each set. X space only.
- PLSR: mvr, pls, plsR (plsRglm package). Set 1 is X, set 2 is Y. If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set. X space only.
- sPLSR: pls. Set 1 is X , set 2 is Y. If set=12 (default), fac is not available and pch, cex, col, lwd can be defined differently for each set. X space only.
- PLS-GLR: plsRglm (plsRglm package). Set 1 is X, set 2 is Y. If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set. Correlations are computed with Y on the link scale.
- PCR: mvr. Set 1 is X , set 2 is Y. If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set.
- CDA: discrimin, discrimin.coa.
- NSCOA: dudi.nsc. For NSCOA there is no real correlation, but the classical representation of columns is arrows. This is why MVA.corplot was made able to deal with this analysis.
- CCA: cca, pcaiv. Constraints (only quantitative constraints are extracted) in constrained space only.
- Mix analysis: dudi.mix, dudi.hillsmith. Only quantitative variables are displayed.
- RDA (or PCAIV): pcaiv, pcaivortho, rda. With rda, space 1 is constrained space, space 2 is unconstrained space. Only constrained space is available with pcaiv, the opposite for pcaivortho. Set 1 is constraints (only quantitative constraints are extracted), set 2 is dependent variables (only set 2 is available for pcaivortho). If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set.
- CCorA: CCorA, rcc. Space 1 is X, space 2 is Y. With rcc a third space is available, in which coordinates are means of X and Y coordinates. In this third space, set 1 is X, set 2 is Y. If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set.
- rCCorA: rcc. Space 1 is X, space 2 is Y, space 3 is a "common" space in which coordinates are means of X and Y coordinates. In space 3 , set 1 is X and set 2 is Y. If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set.
- CIA: coinertia. Space 1 is X, space 2 is Y, space 3 is a "common" space where X and Y scores are normed. In space 3 , set 1 is X and set 2 is Y. If set=12 in space 3 (default), fac is not available and pch,cex, col, lws can be defined differently for each set.
- GPA: GPA. Only the consensus ordination can be displayed.
- 2B-PLS: pls. Space 1 is X, space 2 is Y, space 3 is a "common" space in which coordinates are means of X and Y coordinates. In space 3 , set 1 is X and set 2 is Y. If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set.
- 2B-sPLS: pls. Space 1 is X , space 2 is Y, space 3 is a "common" space in which coordinates are means of X and Y coordinates. In space 3 , set 1 is X and set 2 is Y. If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set.
- rGCCA: wrapper. rgcca. Space can be 1 to n, the number of blocks (i.e. datasets).
- sGCCA: wrapper . sgcca. Space can be 1 to n, the number of blocks (i.e. datasets).
- DIABLO: block. plsda, block. splsda. Space can be 1 to n , the number of blocks (i.e. datasets).

Author(s)

Maxime Hervé mx.herve@gmail.com

Description

Displays a correlation circle of a multivariate analysis.

Usage

MVA. corplot (x, xax $=1$, yax $=2$, thresh $=0$, fac $=$ NULL, set $=c(12,1,2)$, space $=1$, xlab $=$ NULL, ylab $=$ NULL, main $=$ NULL, circle $=$ TRUE, intcircle $=0.5$, points $=$ TRUE, ident = TRUE, arrows = TRUE, labels = NULL, main. pos = c("bottomleft", "topleft", "bottomright", "topright"), main.cex = 1.3, legend = FALSE, legend.pos = c("topleft", "topright", "bottomleft", "bottomright"), legend.title = NULL, legend.lab = NULL, pch $=16$, cex $=1$, col = 1, lwd = 1, drawintaxes $=$ TRUE, add $=$ FALSE, add.const $=1$, keepmar $=$ FALSE)

Arguments

x	a multivariate analysis (see Details).
the horizontal axis.	
yax	the vertical axis. This can be set to NULL for a one-dimensional graph, which is a dotchart. threshold (in absolute value of the correlation coefficient) of variables to be plot- ted.
thresh	an optional factor defining groups of variables. variables to be displayed, when several sets are available (see Details). 12 (de- fault) for both sets, 1 for X or constraints, 2 for Y or constrained variables. set
space	variables to be displayed, when several spaces are available (see Details). space is the number of the space to be plotted.
xlab	legend of the horizontal axis. If NULL (default), automatic labels are used de- pending on the multivariate analysis. only used for two-dimensional graphs. Legend of the vertical axis. If NULL (default), automatic labels are used depending on the multivariate analysis.
main	optional title of the graph. only used for two-dimensional graphs. Logical indicating if the circle of radius circle
intcircle	only used for two-dimensional graphs. Vector of one or several values indicating radii of circles to be plotted inside the main circle. Can be set to NULL.
points	only used for two-dimensional graphs. If FALSE, arrows or points (see arrows) are replaced with their corresponding label (defined by labels).
ident	only used for two-dimensional graphs when points=TRUE. A logical indicating if variable names should be displayed.

\(\left.$$
\begin{array}{ll}\text { arrows } & \begin{array}{l}\text { only used if points=TRUE. Logical indicating if arrows should be plotted. If } \\
\text { FALSE, points are displayed at the extremity of the arrows. }\end{array} \\
\text { labels } & \begin{array}{l}\text { names of the variables. If NULL (default), labels correspond to variable names } \\
\text { found in the data used in the multivariate analysis. For two-dimensional graphs, } \\
\text { only used if ident=TRUE. }\end{array} \\
\text { main.pos } & \begin{array}{l}\text { position of the title, if main is not NULL. Default to "bottomleft". } \\
\text { size of the title, if main is not NULL. }\end{array} \\
\text { main.cex } & \begin{array}{l}\text { only used for two-dimensional graphs. Logical indicating if a legend should be } \\
\text { added to the graph. }\end{array} \\
\text { legend } & \begin{array}{l}\text { position of the legend, if legend is TRUE. Default to "topleft". } \\
\text { optional title of the legend, if legend is TRUE. }\end{array} \\
\text { legend.title } & \begin{array}{l}\text { legend labels, if legend is TRUE. If NULL, levels of the factor defined by fac are } \\
\text { used. }\end{array} \\
\text { legend.lab } & \begin{array}{l}\text { symbol(s) used for points, when points are displayed (see arrows). If fac is } \\
\text { not NULL, can be a vector of length one or a vector giving one value per group. }\end{array}
$$

Otherwise a vector of any length can be defined, which is recycled if necessary.\end{array}\right\}\)| size of the points and/or of the variable names. For two-dimensional graphs: |
| :--- |
| if fac is not NULL, can be a vector of length one or a vector giving one value |
| per group; otherwise a vector of any length can be defined, which is recycled |
| if necessary. For dotcharts, gives the size used for points and all labels (see |
| dotchart). |

Details

This function should not be use directly. Prefer the general MVA. plot, to which all arguments can be passed.

Many multivariate analyses are supported, from various packages:

- PCA: dudi. pca, rda.
- sPCA: spca.
- IPCA: ipca.
- sIPCA: sipca.
- LDA: lda, discrimin.
- PLS-DA (PLS2 on a dummy-coded factor): plsda. X space only.
- sPLS-DA (sPLS2 on a dummy-coded factor): splsda. X space only.
- CPPLS: mvr. Set 1 is X, set 2 is Y. If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set. X space only.
- PLSR: mvr, pls, plsR (plsRglm package). Set 1 is X, set 2 is Y. If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set. X space only.
- sPLSR: pls. Set 1 is X, set 2 is Y. If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set. X space only.
- PLS-GLR: plsRglm (plsRglm package). Set 1 is X, set 2 is Y. If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set. Correlations are computed with Y on the link scale.
- PCR: mvr. Set 1 is X, set 2 is Y. If set=12 (default), fac is not available and pch, cex, col, lwd can be defined differently for each set.
- CDA: discrimin, discrimin.coa.
- NSCOA: dudi.nsc. For NSCOA there is no real correlation, but the classical representation of columns is arrows. This is why MVA.corplot was made able to deal with this analysis.
- CCA: cca, pcaiv. Constraints (only quantitative constraints are extracted) in constrained space only.
- Mix analysis: dudi.mix, dudi.hillsmith. Only quantitative variables are displayed.
- RDA (or PCAIV): pcaiv, pcaivortho, rda. With rda, space 1 is constrained space, space 2 is unconstrained space. Only constrained space is available with pcaiv, the opposite for pcaivortho. Set 1 is constraints (only quantitative constraints are extracted), set 2 is dependent variables (only set 2 is available for pcaivortho). If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set.
- db-RDA: capscale, dbrda. Constraints (only quantitative constraints are extracted) in constrained space only.
- CCorA: CCorA, rcc. Space 1 is X, space 2 is Y. With rcc a third space is available, in which coordinates are means of X and Y coordinates. In this third space, set 1 is X, set 2 is Y. If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set.
- rCCorA: rcc. Space 1 is X, space 2 is Y, space 3 is a "common" space in which coordinates are means of X and Y coordinates. In space 3 , set 1 is X and set 2 is Y. If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set.
- CIA: coinertia. Space 1 is X , space 2 is Y , space 3 is a "common" space where X and Y scores are normed. In space 3 , set 1 is X and set 2 is Y. If set=12 in space 3 (default), fac is not available and pch,cex, col, lws can be defined differently for each set.
- PCIA: procuste. Set 1 is X, set 2 is Y.
- 2B-PLS: pls. Space 1 is X, space 2 is Y, space 3 is a "common" space in which coordinates are means of X and Y coordinates. In space 3 , set 1 is X and set 2 is Y. If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set.
- 2B-sPLS: pls. Space 1 is X, space 2 is Y, space 3 is a "common" space in which coordinates are means of X and Y coordinates. In space 3 , set 1 is X and set 2 is Y. If set=12 (default), fac is not available and pch,cex, col, lwd can be defined differently for each set.
- rGCCA: wrapper. rgcca. Space can be 1 to n, the number of blocks (i.e. datasets).
- sGCCA: wrapper. sgcca. Space can be 1 to n, the number of blocks (i.e. datasets).
- DIABLO: block.plsda, block. splsda. Space can be 1 to n, the number of blocks (i.e. datasets).

Author(s)

Maxime Hervé mx.herve@gmail.com

Examples

```
require(ade4)
data(olympic)
PCA <- dudi.pca(olympic$tab, scannf=FALSE)
MVA.plot(PCA, "corr")
```

MVA.cv

Cross validation

Description

Performs cross validation with different PLS and/or discriminant analyses.

Usage

MVA.cv(X, Y, repet $=10, \mathrm{k}=7$, ncomp $=8$, scale $=$ TRUE, model $=\mathrm{c}($ "PLSR", "CPPLS", "PLS-DA", "PPLS-DA", "LDA", "QDA", "PLS-DA/LDA", "PLS-DA/QDA", "PPLS-DA/LDA", "PPLS-DA/QDA"), lower = 0.5, upper = 0.5, Y.add = NULL, weights $=$ rep(1, nrow(X)), set.prior = FALSE, crit.DA = c("plug-in", "predictive", "debiased"), ...)

Arguments

X
Y the dependent variable(s): numeric vector, data frame of quantitative variables or factor.
repet an integer giving the number of times the whole procedure has to be repeated.
$k \quad$ an integer giving the number of folds (can be re-set internally if needed).
ncomp an integer giving the number of components to be used for all models except LDA and QDA (can be re-set depending on the size of the train sets).
scale logical indicating if data should be scaled (see Details).
model the model to be fitted (see Details).

lower	a vector of lower limits for power optimisation in CPPLS or PPLS-DA (see cppls.fit).
upper	a vector of upper limits for power optimisation in CPPLS or PPLS-DA (see cppls.fit).
weights	a vector or matrix of additional responses containing relevant information about the observations, in CPPLS or PPLS-DA (see cppls. fit). a vector of individual weights for the observations, in CPPLS or PPLS-DA (see cppls.fit).
set.prior	only used when a LDA or QDA is performed (coupled or not with a PLS model). If TRUE, the prior probabilities of class membership are defined according to the mean weight of individuals belonging to each class. If FALSE, prior probabilities are obtained from the data sets on which LDA/QDA models are built.
crit.DA	criterion used to predict class membership when a LDA or QDA is used. See predict.lda.
\ldots	other arguments to pass to plsr (PLSR, PLS-DA) or cPpls (CPPLS, PPLS- DA).

Details

When a discriminant analysis is used ("PLS-DA", "PPLS-DA", "LDA", "QDA", "PLS-DA/LDA", "PLS-DA/QDA", "PPLS-DA/LDA" or "PPLS-DA/QDA"), the training sets are generated in respect to the relative proportions of the levels of Y in the original data set (see splitf).
"PLS-DA" is considered as PLS2 on a dummy-coded response. For a PLS-DA based on the CPPLS algorithm, use "PPLS-DA" with lower and upper limits of the power parameters set to 0.5.
If scale $=$ TRUE, the scaling is done as this: for each step of the validation loop (i.e. k steps), the training set is pre-processed by centering and unit-variance scaling. Means and standard deviations of variables in the training set are then used to scale the test set.

Value	
model	model used.
type	
repet	type of model used.
k	number of times the whole procedure was repeated.
ncomp	number of folds.
crit. DA	number of components used.
criterion used to classify individuals of the test sets.	
groups	levels of Y if it is a factor.
models1.list	list of of models generated (repet*k models), for PLSR, CPPLS, PLS-DA, list of of (P)PLS-DA models generated (repet*k models), for PLS-DA/LDA,
models2.list	PLS-DA/QDA, PPLS-DA/LDA and PPLS-DA/QDA. list of of LDA/QDA models generated (repet*k models), for PLS-DA/LDA,
	PLS-DA/QDA, PPLS-DA/LDA and PPLS-DA/QDA.

RMSEP	RMSEP vales (repet values).
Q2	Q2 values (repet values).
NMC	Classification error rates (repet values).
confusion	Confusion matrices (repet values).
pred.prob	Probability of each individual of being of each level of Y.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

predict.MVA.cmv, mvr, lda, qda

Examples

```
require(pls)
require(MASS)
# PLSR
data(yarn)
## Not run: MVA.cv(yarn$NIR,yarn$density,model="PLSR")
# PPLS-DA coupled to LDA
data(mayonnaise)
## Not run: MVA.cv(mayonnaise$NIR,factor(mayonnaise$oil.type),model="PPLS-DA/LDA")
```

MVA.load Loadings of multivariate analyses

Description

Returns loadings of a multivariate analysis.

Usage

MVA. load (x, xax = 1, yax = 2, set $=c(12,1,2)$, space $=1, \ldots)$

Arguments

X
xax axis or axes for which to extract loadings.
yax axis for which to extract loadings (ignored if length $(x a x)>1$).
set variables to be displayed, when several sets are available (see Details). 12 (default) for both sets, 1 for X, 2 for Y.
space variables to be displayed, when several spaces are available (see Details). space is the number of the space to be plotted.
... not used.

Details

Many multivariate analyses are supported, from various packages:

- PCA: prcomp, princomp, dudi.pca, rda, pca, pca.
- sPCA: spca.
- IPCA: ipca.
- sIPCA: sipca.
- LDA: lda, discrimin.
- PLS-DA (PLS2 on a dummy-coded factor): plsda. X space only.
- sPLS-DA (sPLS2 on a dummy-coded factor): splsda. X space only.
- CPPLS: mvr. X space only.
- PLSR: mvr, pls, plsR (plsRglm package). X space only.
- sPLSR: pls. X space only.
- PLS-GLR: plsRglm (plsRglm package).
- PCR: mvr.
- CDA: discrimin, discrimin.coa.
- NSCOA: dudi.nsc.
- MCA: dudi. acm.
- Mix analysis: dudi.mix, dudi.hillsmith.
- PCIA: procuste. Set 1 is X , set 2 is Y.
- RDA (or PCAIV): pcaiv, pcaivortho, rda. With rda, space 1 is constrained space, space 2 is unconstrained space. Only constrained space is available with pcaiv, the opposite for pcaivortho.
- CCorA: rcc. Space 1 is X, space 2 is Y.
- rCCorA: rcc. Space 1 is X , space 2 is Y .
- CIA: coinertia. Space 1 is X, space 2 is Y.
- 2B-PLS: pls. Space 1 is X, space 2 is Y.
- 2B-sPLS: pls. Space 1 is X, space 2 is Y.
- rGCCA: wrapper. rgcca. Space can be 1 to n, the number of blocks (i.e. datasets).
- sGCCA: wrapper. sgcca. Space can be 1 to n, the number of blocks (i.e. datasets).
- DIABLO: block.plsda, block. splsda. Space can be 1 to n, the number of blocks (i.e. datasets).

Author(s)

Maxime Hervé mx.herve@gmail.com

Description

Displays a loading plot of a multivariate analysis.

Usage

```
MVA.loadplot (x, xax = 1, yax = 2, fac = NULL, set = c(12, 1, 2), space = 1, map = TRUE,
    xlab = NULL, ylab = NULL, main = NULL, points = TRUE, ident = TRUE, links = TRUE,
    line = TRUE, labels = NULL, main.pos = c("bottomleft", "topleft","bottomright",
    "topright"), main.cex = 1.3, legend = FALSE, legend.pos = c("topleft", "topright",
    "bottomleft", "bottomright"), legend.title = NULL, legend.lab = NULL, pch = 16,
    cex = 1, col = 1, lwd = 1, lty = 1, drawextaxes = TRUE, drawintaxes = TRUE, xlim = NULL,
    ylim = NULL)
```


Arguments

x
xax the horizontal axis.
yax the vertical axis. This can be set to NULL for a one-dimensional graph.
fac only used for one-dimensional graphs. An optional factor defining groups of variables.
set variables to be displayed, when several sets are available (see Details). 12 (default) for both sets, 1 for X, 2 for Y.
space variables to be displayed, when several spaces are available (see Details). space is the number of the space to be plotted.
map logical indicating if a two-dimensional (TRUE, default) or a one-dimensional graph should be drawn. A one-dimensional graph can show loadings for one or two dimensions, both horizontally.
$x l a b \quad$ only used for two-dimensional graphs. Legend of the horizontal axis. If NULL (default), automatic labels are used depending on the multivariate analysis.
ylab legend of the vertical axis. If NULL (default), automatic labels are used depending on the multivariate analysis.
main optional title of the graph.
points only used for two-dimensional graphs. If FALSE, lines or points (see links) are replaced with their corresponding label (defined by labels).
ident logical indicating if variable names should be displayed. Only used when points=TRUE for two-dimensional graphs.
links only used for two-dimensional graphs when points=TRUE. Logical indicating if variables should be linked to the origin of the graph. If FALSE, points are displayed at the extremity of the segments.

line	only used for one-dimensional graphs when yax=NULL. Logical indicating if loadings should be linked (default) as displayed as sticks. only used if ident=TRUE. Names of the variables. If NULL (default), labels cor- respond to variable names found in the data used in the multivariate analysis.
labels	only used for one-dimensional graphs. Position of the title, if main is not NULL. Default to "bottomleft".
main.pos	size of the title, if main is not NULL.
main.cex	logical indicating if a legend should be added to the graph.
legend	position of the legend, if legend is TRUE. Default to "topleft". optional title of the legend, if legend is TRUE.
legend.title	legend labels, if legend is TRUE. If NULL for a one-dimensional graph, dimension names are used. If NULL for a two-dimensional graph, levels of the factor defined
beg fac are used.	

Details

This function should not be use directly. Prefer the general MVA. plot, to which all arguments can be passed.

Many multivariate analyses are supported, from various packages:

- PCA: prcomp, princomp, dudi . pca, rda, pca, pca.
- sPCA: spca.
- IPCA: ipca.
- sIPCA: sipca.
- LDA: lda, discrimin.
- PLS-DA (PLS2 on a dummy-coded factor): plsda. X space only.
- sPLS-DA (sPLS2 on a dummy-coded factor): splsda. X space only.
- CPPLS: mvr. X space only.
- PLSR: mvr, pls, plsR (plsRglm package). X space only.
- sPLSR: pls. X space only.
- PLS-GLR: plsRglm (plsRglm package).
- PCR: mvr.
- CDA: discrimin, discrimin.coa.
- NSCOA: dudi.nsc.
- MCA: dudi . acm.
- Mix analysis: dudi.mix, dudi.hillsmith.
- PCIA: procuste. Set 1 is X, set 2 is Y.
- RDA (or PCAIV): pcaiv, pcaivortho, rda. With rda, space 1 is constrained space, space 2 is unconstrained space. Only constrained space is available with pcaiv, the opposite for pcaivortho.
- CCorA: rcc. Space 1 is X, space 2 is Y.
- rCCorA: rcc. Space 1 is X, space 2 is Y.
- CIA: coinertia. Space 1 is X, space 2 is Y.
- 2B-PLS: pls. Space 1 is X, space 2 is Y.
- 2B-sPLS: pls. Space 1 is X, space 2 is Y.
- rGCCA: wrapper. rgcca. Space can be 1 to n, the number of blocks (i.e. datasets).
- sGCCA: wrapper. sgcca. Space can be 1 to n, the number of blocks (i.e. datasets).
- DIABLO: block.plsda, block. splsda. Space can be 1 to n, the number of blocks (i.e. datasets).

Author(s)

Maxime Hervé mx.herve@gmail.com

Examples

```
require(ade4)
data(olympic)
PCA <- dudi.pca(olympic$tab,scannf=FALSE)
MVA.plot(PCA,"load")
```


Description

Displays a paired plot (i.e. a score plot of paired points) of a multivariate analysis.

Usage

```
MVA.pairplot(x, xax = 1, yax = 2, pairs = NULL, scaling=2, space = 1, fac = NULL,
        xlab = NULL, ylab = NULL, main = NULL, ident = TRUE, labels = NULL, cex = 0.7, col = 1,
        lwd = 1, main.pos = c("bottomleft", "topleft", "bottomright", "topright"),
        main.cex = 1.3, legend = FALSE, legend.pos = c("topleft", "topright", "bottomleft",
        "bottomright"), legend.title = NULL, legend.lab = NULL, drawextaxes = TRUE,
        drawintaxes = TRUE, xlim = NULL, ylim = NULL)
```


Arguments

$x \quad$ a multivariate analysis (see Details).
xax the horizontal axis.
yax the vertical axis. Cannot be NULL, only two-dimensional graphs can be drawn.
pairs two-level factor identifying paired individuals (in the same order in both sets of points). Can be omitted with multivariate analyses where two sets of points are available in the same space (see MVA.scoreplot). In this case these sets are automatically detected.
scaling type of scaling. Only available with some analyses performed with the vegan package. See Details of MVA. scoreplot.
space scores to be displayed, when several spaces are available (see Details of MVA. scoreplot). space is the number of the space to be plotted.
fac an optional factor defining groups pairs.
xlab legend of the horizontal axis. If NULL (default), automatic labels are used depending on the multivariate analysis.
ylab legend of the vertical axis. If NULL (default), automatic labels are used depending on the multivariate analysis.
main optional title of the graph.
ident logical indicating if variable names should be displayed.
labels names of the individuals. If NULL (default), labels correspond to row names of the data used in the multivariate analysis.
cex size of the labels. If fac is not NULL, can be a vector of length one or a vector giving one value per group. Otherwise a vector of any length can be defined, which is recycled if necessary.
col color(s) used for arrows and labels. If fac is not NULL, can be a vector of length one or a vector giving one value per group. Otherwise a vector of any length can be defined, which is recycled if necessary.

lwd	width of arrows. If fac is not NULL, can be a vector of length one or a vector giving one value per group. Otherwise a vector of any length can be defined, which is recycled if necessary.
main.pos	position of the title, if main is not NULL. Default to "bottomleft". main.cex size of the title, if main is not NULL.
legend	logical indicating if a legend should be added to the graph.
legend.pos	position of the legend, if legend is TRUE. Default to "topleft". legend.title optional title of the legend, if legend is TRUE.
legend.lab	legend labels, if legend is TRUE. If NULL and fac is defined, levels of fac are used.
drawextaxes	logical indicating if external axes should be drawn..
drawintaxes	logical indicating if internal axes should be drawn. xlim
limits of the horizontal axis. If NULL, limits are computed automatically.	

Details

This function should not be use directly. Prefer the general MVA. plot, to which all arguments can be passed.

All multivariate analyses supported by MVA. scoreplot can be used for a paired plot.

Author(s)

Maxime Hervé <mx.herve@ gmail.com>

Examples

require(ade4)
data(macaca)
PCIA <- procuste (macaca\$xy1, macaca\$xy2)
MVA.plot(PCIA, "pairs")

MVA.plot
Plotting of multivariate analyses

Description

Displays several kinds of plots for multivariate analyses.

Usage

```
MVA.plot(x, type = c("scores", "loadings", "correlations", "biplot", "pairs",
    "trajectories"), ...)
```


Arguments

X
type
... arguments to be passed to subfunctions. See Details.

Details

Different subfunctions are used depending on the type of plot to be displayed: MVA. scoreplot, MVA. loadplot, MVA. corplot, MVA.biplot, MVA. pairplot or MVA.trajplot. These functions should not be used directly (everything can be done with the general MVA. plot) but for convenience, arguments and analyses supported are detailed in separate help pages.
Warning: the use of attach before running a multivariate analysis can prevent MVA. plot to get the values it needs, and make it fail.

Author(s)

Maxime Hervé mx.herve@gmail.com

```
MVA.scoreplot Score plot of multivariate analyses
```


Description

Displays a score plot of a multivariate analysis.

Usage

MVA. scoreplot (x, xax = 1, yax = 2, scaling = 2, set $=c(12,1,2)$, space $=1$, byfac = TRUE, fac = NULL, barycenters = TRUE, stars = TRUE, contours = FALSE, dhist $=$ TRUE, weights $=1$, xlab $=$ NULL, ylab $=$ NULL, main $=$ NULL, pch $=16$, cex = 1, col = 1, points = TRUE, labels = NULL, main. pos = c("bottomleft", "topleft", "bottomright", "topright"), main.cex = 1.3, fac.lab = NULL, fac.cex = 1, legend = FALSE, legend.pos = c("topleft", "topright", "bottomleft", "bottomright"), legend.title = NULL, legend.lab = NULL, legend.cex = 1, drawextaxes = TRUE, drawintaxes = TRUE, xlim = NULL, ylim = NULL, keepmar = FALSE)

Arguments

X
a multivariate analysis (see Details).
xax the horizontal axis.
yax the vertical axis. This can be set to NULL for a one-dimensional graph. The type of graph to be drawn in this case depends on the value of dhist.

scaling	type of scaling. Only available with some analyses performed with the vegan package. See Details.
set	scores to be displayed, when several sets are available (see Details). 12 (default) for both sets, 1 for rows or X, 2 for columns or Y.
space	scores to be displayed, when several spaces are available (see Details). space is the number of the space to be plotted.
byfac	only used with MCA and mix analyses (see Details). If TRUE, a separate score plot is displayed for each factor included in the analysis. In this case fac cannot be used and if main=NULL, the factor names are displayed as titles on the graphs.
fac	an optional factor defining groups of individuals.
barycenters	only used if fac is not NULL. If TRUE (default), the name of each group (defined by fac.lab) is diplayed at the position of the barycenter of this group. Available for two-dimensional graphs and for dotcharts in the one-dimensional case (see dhist).
stars	only used if fac is not NULL. If TRUE (default), the individual of each group are linked to their corresponding barycenter.
contours	only used if fac is not NULL. If TRUE, a polygon of contour is displayed for each group.
dhist	only used in the one-dimensional case. If TRUE (default), a density histogram is displayed. If FALSE, a dotchart is displayed.
weights	individual weights, used to calculate barycenter positions (see barycenters).
xlab	legend of the horizontal axis. If NULL (default), automatic labels are used depending on the multivariate analysis.
ylab	legend of the vertical axis. If NULL (default), automatic labels are used depending on the multivariate analysis. Available for two-dimensional graphs and for density histograms in the one-dimensional case (see dhist).
main	optional title of the graph. Can be a vector of several values for MCA and mix analyses when byfac=TRUE (see byfac).
pch	symbol(s) used for points, when points are displayed (see points). If fac is not NULL, can be a vector of length one or a vector giving one value per group. Otherwise a vector of any length can be defined, which is recycled if necessary. Available for two-dimensional graphs and for dotcharts in the one-dimensional case (see dhist). Re-used for all graphs for MCA and mix analyses when byfac=TRUE (see byfac).
cex	size of the points or of the labels (see points). Available for two-dimensional graphs and for dotcharts in the one-dimensional case (see dhist). For twodimensional graphs: if fac is not NULL, can be a vector of length one or a vector giving one value per group; otherwise a vector of any length can be defined, which is recycled if necessary. For dotcharts, gives the size used for points and all labels (see dotchart). Re-used for all graphs for MCA and mix analyses when byfac=TRUE (see byfac).
col	color(s) used for points or labels (see points). If fac is not NULL, can be a vector of length one or a vector giving one value per group. Otherwise a vector of any length can be defined, which is recycled if necessary (not available for density

histograms, see dhist). Re-used for all graphs for MCA and mix analyses when byfac=TRUE (see byfac).

points	only used for two-dimensional graphs. If FALSE, points are replaced with their corresponding label (defined by labels). Re-used for all graphs for MCA and mix analyses when byfac=TRUE (see byfac).
labels	used in two-dimensional graphs when points=FALSE and in dotcharts (see dhist). Names of the individuals. If NULL (default), labels correspond to row names of the data used in the multivariate analysis. Re-used for all graphs for MCA and mix analyses when byfac=TRUE (see byfac).
main.pos	position of the title, if main is not NULL. Default to "bottomleft". Re-used for all graphs for MCA and mix analyses when byfac=TRUE (see byfac).
main.cex	size of the title, if main is not NULL. Re-used for all graphs for MCA and mix analyses when byfac=TRUE (see byfac).
fac.lab	only used if fac is not NULL. Labels used to display barycenters in two-dimensional graphs or on the vertical axis of a dotchart in the one-dimensional case (see dhist). If NULL, levels of the factor defined by fac are used. In case of a MCA or a mix analysis with byfac=TRUE (see byfac), labels cannot be changed and correspond to the levels of the factor displayed on each graph.
fac.cex	only used if fac is not NULL and in two-dimensional graphs. Labels used to display barycenters. Can be a vector of length one or a vector giving one value
per group. Re-used for all graphs for MCA and mix analyses when byfac=TRUE	
(see byfac).	

legend.cex size of legend labels, if legend is TRUE.
drawextaxes logical indicating if external axes should be drawn. Available for two-dimensional graphs and for density histograms in the one-dimensional case (see dhist).
drawintaxes logical indicating if internal axes should be drawn.
$x \lim \quad$ limits of the horizontal axis. If NULL, limits are computed automatically. Reused for all graphs for MCA and mix analyses when byfac=TRUE (see byfac).
only used in two-dimensional graphs. Limits of the vertical axis. If NULL, limits are computed automatically. Re-used for all graphs for MCA and mix analyses when byfac=TRUE (see byfac).
only used in two-dimensional graphs. Logical indicating if margins defined by MVA.scoreplot should be kept after plotting (necessary for biplots).

Details

This function should not be use directly. Prefer the general MVA. plot, to which all arguments can be passed.
Many multivariate analyses are supported, from various packages:

- PCA: prcomp, princomp (if scores=TRUE), dudi.pca, rda, pca, pca. scaling can be defined for rda (see scores.rda).
- sPCA: spca.
- IPCA: ipca.
- sIPCA: sipca.
- PCoA: cmdscale (with at least on non-default argument), dudi. pco, wemdscale (with at least one non-default argument), capscale, pco, pcoa.
- nMDS: monoMDS, metaMDS, nmds, isoMDS.
- LDA: lda, discrimin.
- PLS-DA (PLS2 on a dummy-coded factor): plsda. X space only.
- sPLS-DA (sPLS2 on a dummy-coded factor): splsda. X space only.
- CPPLS: mvr. X space only.
- PLSR: mvr, pls, plsR (plsRglm package). X space only.
- sPLSR: pls. X space only.
- PLS-GLR: plsRglm (plsRglm package).
- PCR: mvr.
- CDA: discrimin, discrimin.coa.
- NSCOA: dudi.nsc.
- MCA: dudi . acm.
- Mix analysis: dudi.mix, dudi.hillsmith.
- COA: dudi.coa, cca. Set 1 is rows, set 2 is columns. If set=12 (default), fac is not available and pch,cex, col can be defined differently for each set. scaling can be defined for cca (see scores.cca).
- DCOA: dudi. dec. Set 1 is rows, set 2 is columns. If set=12 (default), fac is not available and pch,cex, col can be defined differently for each set.
- PCIA: procuste. Set 1 is X, set 2 is Y. If set=12 (default), fac is not available and pch, cex, col can be defined differently for each set.
- Procrustean superimposition: procrustes. Set 1 is X, set 2 is Y. If set=12 (default), fac is not available and pch,cex, col can be defined differently for each set.
- GPA: GPA. Only the consensus ordination can be displayed.
- DPCoA: dpcoa. Set 1 is categories, set 2 is collections. If set $=12$ (default), fac is not available and pch,cex, col can be defined differently for each set.
- RDA (or PCAIV): pcaiv, pcaivortho, rda. With rda, space 1 is constrained space, space 2 is unconstrained space. Only constrained space is available with pcaiv, the opposite for pcaivortho. scaling can be defined for rda (see scores.rda).
- db-RDA (or CAP): capscale, dbrda. Space 1 is constrained space, space 2 is unconstrained space.
- CCA: pcaiv, cca. With rda, space 1 is constrained space, space 2 is unconstrained space. Only constrained space is available with pcaiv. Set 1 is rows, set 2 is columns. scaling can be defined for cca (see scores.cca).
- CCorA: CCorA, rcc. Space 1 is X, space 2 is Y. With rcc a third space is available, in which coordinates are means of X and Y coordinates.
- rCCorA: rcc. Space 1 is X, space 2 is Y, space 3 is a "common" space in which coordinates are means of X and Y coordinates.
- CIA: coinertia. Space 1 is X, space 2 is Y, space 3 is a "common" space where X and Y scores are normed. In space 3 , set 1 is X and set 2 is Y. If set=12 in space 3 (default), fac is not available and pch,cex, col can be defined differently for each set.
- 2B-PLS: pls. Space 1 is X, space 2 is Y, space 3 is a "common" space in which coordinates are means of X and Y coordinates.
- 2B-sPLS: pls. Space 1 is X , space 2 is Y, space 3 is a "common" space in which coordinates are means of X and Y coordinates.
- rGCCA: rgcca, wrapper. rgcca. Space can be 1 to n, the number of blocks (i.e. datasets).
- sGCCA: sgcca, wrapper. sgcca. Space can be 1 to n, the number of blocks (i.e. datasets).
- DIABLO: block. plsda, block. splsda. Space can be 1 to n, the number of blocks (i.e. datasets).

Author(s)

Maxime Hervé <mx.herve@ gmail.com>

Examples

```
data(iris)
PCA <- prcomp(iris[,1:4])
MVA.plot(PCA,"scores")
MVA.plot(PCA, "scores", fac=iris$Species,col=1:3,pch=15:17)
```

MVA.scores Scores of multivariate analyses

Description

Returns scores of a multivariate analysis.

Usage

MVA. scores (x, xax $=1$, yax $=2$, scaling $=2$, set $=c(12,1,2)$, space $=1, \ldots$)

Arguments

X
$x a x \quad$ axis or axes for which to extract scores.
yax axis for which to extract scores (ignored if length $(x a x)>1)$.
scaling type of scaling. Only available with some analyses performed with the vegan package. See Details.
set scores to be displayed, when several sets are available (see Details). 12 (default) for both sets, 1 for rows or $\mathrm{X}, 2$ for columns or Y.
space scores to be displayed, when several spaces are available (see Details). space is the number of the space to be plotted.
... not used.

Details

Many multivariate analyses are supported, from various packages:

- PCA: prcomp, princomp (if scores=TRUE), dudi. pca, rda, pca, pca. scaling can be defined for rda (see scores.rda).
- sPCA: spca.
- IPCA: ipca.
- sIPCA: sipca.
- PCoA: cmdscale (with at least on non-default argument), dudi.pco, wcmdscale (with at least one non-default argument), capscale, pco, pcoa.
- nMDS: monoMDS, metaMDS, nmds, isoMDS.
- LDA: lda, discrimin.
- PLS-DA (PLS2 on a dummy-coded factor): plsda. X space only.
- sPLS-DA (sPLS2 on a dummy-coded factor): splsda. X space only.
- CPPLS: mvr. X space only.
- PLSR: mvr, pls, plsR (plsRglm package). X space only.
- sPLSR: pls. X space only.
- PLS-GLR: plsRglm (plsRglm package).
- PCR: mvr.
- CDA: discrimin, discrimin.coa.
- NSCOA: dudi .nsc.
- MCA: dudi . acm.
- Mix analysis: dudi.mix, dudi.hillsmith.
- COA: dudi. coa, cca. Set 1 is rows, set 2 is columns. If set $=12$ (default), fac is not available and pch,cex, col can be defined differently for each set. scaling can be defined for cca (see scores.cca).
- DCOA: dudi. dec. Set 1 is rows, set 2 is columns. If set=12 (default), fac is not available and pch,cex, col can be defined differently for each set.
- PCIA: procuste. Set 1 is X , set 2 is Y. If set=12 (default), fac is not available and pch, cex, col can be defined differently for each set.
- Procrustean superimposition: procrustes. Set 1 is X, set 2 is Y. If set=12 (default), fac is not available and pch,cex, col can be defined differently for each set.
- GPA: GPA. Only the consensus ordination can be displayed.
- DPCoA: dpcoa. Set 1 is categories, set 2 is collections. If set=12 (default), fac is not available and pch,cex, col can be defined differently for each set.
- RDA (or PCAIV): pcaiv, pcaivortho, rda. With rda, space 1 is constrained space, space 2 is unconstrained space. Only constrained space is available with pcaiv, the opposite for pcaivortho. scaling can be defined for $r d a$ (see scores.rda).
- db-RDA (or CAP): capscale, dbrda. Space 1 is constrained space, space 2 is unconstrained space.
- CCA: pcaiv, cca. With rda, space 1 is constrained space, space 2 is unconstrained space. Only constrained space is available with pcaiv. Set 1 is rows, set 2 is columns. scaling can be defined for cca (see scores.cca).
- CCorA: CCorA, rcc. Space 1 is X, space 2 is Y. With rcc a third space is available, in which coordinates are means of X and Y coordinates.
- rCCorA: rcc. Space 1 is X, space 2 is Y, space 3 is a "common" space in which coordinates are means of X and Y coordinates.
- CIA: coinertia. Space 1 is X, space 2 is Y, space 3 is a "common" space where X and Y scores are normed. In space 3 , set 1 is X and set 2 is Y. If set=12 in space 3 (default), fac is not available and pch,cex, col can be defined differently for each set.
- 2B-PLS: pls. Space 1 is X, space 2 is Y, space 3 is a "common" space in which coordinates are means of X and Y coordinates.
-2B-sPLS: pls. Space 1 is X, space 2 is Y, space 3 is a "common" space in which coordinates are means of X and Y coordinates.
- rGCCA: rgcca, wrapper. rgcca. Space can be 1 to n, the number of blocks (i.e. datasets).
- sGCCA: sgcca, wrapper. sgcca. Space can be 1 to n, the number of blocks (i.e. datasets).
- DIABLO: block. plsda, block. splsda. Space can be 1 to n, the number of blocks (i.e. datasets).

Author(s)

Maxime Hervé mx.herve@gmail.com

MVA.synt Synthesis quality of multivariate analyses

Description

Gives a simple estimator of the quality of the (descriptive) synthesis performed by a wide range of multivariate analyses.

Usage

```
MVA. synt (x, rows = 5)
```


Arguments

$x \quad$ a multivariate analysis (see Details).
rows maximum number of axes to print in the output.

Details

Many multivariate analyses are supported, from various packages.

- PCA: prcomp, princomp, dudi.pca, rda, pca, pca: \% of total variance explained by each axis.
- sPCA: spca: \% of total variance explained by each axis.
- IPCA: ipca: kurtosis of each axis.
- sIPCA: sipca: kurtosis of each axis.
- PCoA: cmdscale (with eig=TRUE), dudi.pco, wcmdscale (with eig=TRUE), capscale, pco, pcoa: \% of total variance explained by each axis.
- nMDS: monoMDS, metaMDS, nmds, isoMDS: stress.
- RDA: pcaiv, pcaivortho, rda: \% of constrained and unconstrained total variance, \% of constrained variance explained by constrained axes (pcaiv and rda), \% of unconstrained variance explained by unconstrained axes (pcaivortho and rda).
- db-RDA (or CAP): capscale, dbrda: \% of constrained and unconstrained total variance, \% of constrained variance explained by constrained axes, $\%$ of unconstrained variance explained by unconstrained axes.
- COA: dudi. coa, cca: \% of total inertia explained by each axis.
- CCA: pcaiv, cca: \% of constrained and unconstrained total inertia, \% of constrained inertia explained by constrained axes, $\%$ of unconstrained inertia explained by unconstrained axes (cca only).
- CPPLS: mvr: \% of X and Y variances explained by each axis.
- PLSR: mvr, plsR (plsRglm package): \% of X and Y variances explained by each axis (only Y for the moment with plsR).
- 2B-PLS: pls: \% of X/Y square covariance explained by each pair of axes, correlation between each pair of axes (canonical correlations).
- CCorA: CCorA, rcc: correlation between each pair of axes (canonical correlations).
- rCCorA: rcc: correlation between each pair of axes (canonical correlations).
- PCR: mvr: \% of X and Y variances explained by each axis.
- MCA: dudi. acm: \% of total inertia explained by each axis.
- Mix analysis: dudi.mix, dudi.hillsmith: \% of total inertia explained by each axis.
- GPA: GPA: $\%$ of consensus and residual variance, $\%$ of total variance exlained by each axis, $\%$ of consensus variance explained by each axis, $\%$ of residual variance coming from each group of variables.
- RGCCA: rgcca, wrapper. rgcca: \% of total intra-block variance explained by each axis, correlation between each pair of axes (canonical correlations).
- DIABLO: block.plsda, block.splsda: \% of total intra-block variance explained by each axis, correlation between each pair of axes (canonical correlations).
- CIA: coinertia: RV coefficient, \% of co-inertia explained by each pair of axes, correlation between each pair of axes (canonical correlations).
- PCIA: procuste: m2.

Author(s)

Maxime Hervé mx.herve@gmail.com

Examples

```
data(iris)
PCA <- prcomp(iris[,1:4])
MVA.synt(PCA)
```

MVA. test Significance test based on cross (model) validation

Description

Performs a permutation significance test based on cross (model) validation with different PLS and/or discriminant analyses. See MVA.cv and MVA.cmv for more details about how cross (model) validation is performed.

Usage

MVA.test (X, Y, cmv = FALSE, ncomp = 8, kout = 7, kinn = 6, scale = TRUE, model = c("PLSR", "CPPLS", "PLS-DA", "PPLS-DA", "LDA", "QDA", "PLS-DA/LDA", "PLS-DA/QDA", "PPLS-DA/LDA","PPLS-DA/QDA"), Q2diff = 0.05, lower = 0.5, upper $=0.5$, Y.add $=$ NULL, weights $=\operatorname{rep}(1, \operatorname{nrow}(X))$, set.prior $=$ FALSE, crit.DA = c("plug-in", "predictive", "debiased"), p.method = "fdr", nperm $=$ 999, progress $=$ TRUE, ...)

Arguments

$X \quad$ a data frame of independent variables.
Y the dependent variable(s): numeric vector, data frame of quantitative variables or factor.
cmv a logical indicating if the values (Q2 or NMC) should be generated through cross-validation (classical K-fold process) or cross model validation (inner + outer loops).
\(\left.$$
\begin{array}{ll}\text { ncomp } & \begin{array}{l}\text { an integer giving the number of components to be used to generate all submodels } \\
\text { (cross-validation) or the maximal number of components to be tested in the inner } \\
\text { loop (cross model validation). Can be re-set internally if needed. Does not } \\
\text { concern LDA and QDA. }\end{array}
$$

an integer giving the number of folds (cross-validation) or the number of folds

in the outer loop (cross-model validation). Can be re-set internally if needed.

an integer giving the number of folds in the inner loop (cross model validation

only). Can be re-set internally if needed. Cannot be > kout.\end{array}\right\}\)| logical indicating if data should be scaled. See help of MVA.cv and MVA.cmv. |
| :--- |
| kinn |
| scale |
| model model to be fitted. |
| Q2diff |
| lower |
| upper threshold to be used if the number of components is chosen according to Q2 |
| (cross model validation only). |

Details

When Y consists in quantitative response(s), the null hypothesis is that each response is not predicted better than what would happen by chance. In this case, Q2 is used as the test statistic. When Y contains several responses, a p-value is computed for each response and p-values are corrected for multiple testing.

When Y is a factor, the null hypothesis is that the factor has no discriminant ability. In this case, the classification error rate (NMC) is used as the test statistic.
Whatever the response, the reference value of the test statistics is obtained by averaging 20 values coming from independently performed cross (model) validation on the original data.
The function deals with the limitted floating point precision, which can bias calculation of p -values based on a discrete test statistic distribution.

Value

method	a character string indicating the name of the test.
data.name	a character string giving the name(s) of the data, plus additional information.
statistic	the value of the test statistics.
permutations	the number of permutations.
p.value the p-value of the test. p.adjust.method a character string giving the method for p-values correction.	

Author(s)

Maxime Hervé mx.herve@gmail.com

References

Westerhuis J, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM and van Dorsten FA (2008) Assessment of PLSDA cross validation. Metabolomics 4:81-89.

See Also

MVA.cv, MVA.cmv

Examples

```
require(pls)
require(MASS)
# PLSR
data(yarn)
## Not run: MVA.test(yarn$NIR,yarn$density,cmv=TRUE,model="PLSR")
# PPLS-DA coupled to LDA
data(mayonnaise)
## Not run: MVA.test(mayonnaise$NIR,factor(mayonnaise$oil.type),model="PPLS-DA/LDA")
```


Description

Displays a trajectory plot (i.e. a score plot with trajectories linking defined points) of a multivariate analysis.

Usage

```
MVA.trajplot(x, xax = 1, yax = 2, trajects, trajlab = NULL, scaling = 2,
        set = c(12, 1, 2), space = 1, xlab = NULL, ylab = NULL, main = NULL,
        pch = 16, cex = 1, trajlab.cex = 1, col = 1, lwd = 1, lty = 1,
        points = TRUE, allpoints = TRUE, arrows = TRUE, labels = NULL,
        main.pos = c("bottomleft", "topleft", "bottomright", "topright"),
        main.cex = 1.3, legend = FALSE, legend.pos = c("topleft", "topright",
        "bottomleft", "bottomright"), legend.title = NULL, legend.lab = NULL,
        legend.cex = 1, drawextaxes = TRUE, drawintaxes = TRUE, xlim = NULL,
        ylim = NULL)
```


Arguments

x
xax the horizontal axis.
trajects
trajlab
space
xlab

main

pch
lty
points
yax the vertical axis. Cannot be NULL, only two-dimensional graphs can be drawn.
scaling type of scaling. Only available with some analyses performed with the vegan package. See Details of MVA. scoreplot.
set scores to be displayed, when several sets are available (see Details of MVA. scoreplot). 12 (default) for both sets, 1 for rows or X, 2 for columns or Y.
ylab legend of the vertical axis. If NULL (default), automatic labels are used depending on the multivariate analysis.
cex size of the labels. Can be a vector giving one value per trajectory (and a last one for non-linked points if allpoints=TRUE).
trajlab.cex size of trajectory labels. Can be a vector giving one value per trajectory.
col color(s) used for arrows and labels. If fac is not NULL, can be a vector of length one or a vector giving one value per group. Otherwise a vector of any length can be defined, which is recycled if necessary.
lwd width of trajectory segments. Can be a vector giving one value per trajectory.
a multivariate analysis (see Details).
vector or list of vectors identifying trajectories. Each vector should give the number of the individuals to be linked, ordered from the first to the last one.
optional traject labels. scores to be displayed, when several spaces are available (see Details of MVA. scoreplot). space is the number of the space to be plotted.
legend of the horizontal axis. If NULL (default), automatic labels are used depending on the multivariate analysis.
optional title of the graph.
symbols used for points. Can be a vector giving one value per trajectory (and a last one for non-linked points if allpoints=TRUE). type of trajectory segments. Can be a vector giving one value per trajectory.
logical indicating if points should be displayed. If FALSE, points are replaced with their corresponding label (defined by labels).

allpoints	logical indicating if points which do not belong to any trajectory should be drawn.
arrows	logical indicating if trajectories should be oriented with arrows. names of the individuals. If NULL (default), labels correspond to row names of the data used in the multivariate analysis.
main.pos	position of the title, if main is not NULL. Default to "bottomleft".
main.cex	size of the title, if main is not NULL.
legend	logical indicating if a legend should be added to the graph.
legend.pos	position of the legend, if legend is TRUE. Default to "topleft".
legend.title	optional title of the legend, if legend is TRUE.
legend.lab	legend labels, if legend is TRUE. If NULL and trajlab is defined, values of trajlab are used.
legend.cex	size of legend labels, if legend is TRUE.
drawextaxes	logical indicating if external axes should be drawn.. drawintaxes
logical indicating if internal axes should be drawn.	
xlim	limits of the horizontal axis. If NULL, limits are computed automatically.
ylim	limits of the vertical axis. If NULL, limits are computed automatically.

Details

This function should not be use directly. Prefer the general MVA. plot, to which all arguments can be passed.

All multivariate analyses supported by MVA. scoreplot can be used for a paired plot. 1

Author(s)

Maxime Hervé mx.herve@gmail.com

Examples

```
require(ade4)
data(olympic)
PCA <- dudi.pca(olympic$tab,scannf=FALSE)
MVA.plot(PCA,"traject",trajects=list(1:10, 25:30),col=c(2,3,1),trajlab=c("T1", "T2"))
```

```
OR.multinom Odds-ratio (multinomial regression)
```


Description

Computes the odds ratios and their confidence interval for a predictor of a model fitted with multinom.

Usage

OR.multinom(model, variable, conf.level $=0.95$)

Arguments

$$
\begin{array}{ll}
\text { model } & \text { object of class "multinom". } \\
\text { variable } & \text { any predictor present in model (unquoted). } \\
\text { conf.level } & \text { confidence level. }
\end{array}
$$

Author(s)

Maxime Hervé mx.herve@gmail.com
ord.rw Re-computation of an ordination using given row weights

Description

Re-computes an ordination using given row weights (possibly extracted from a correspondence analysis). The function is intended to be used prior to coinertia when row weights have to be equalized.

Usage

ord.rw(ord, CA = NULL, rw = NULL)

Arguments

ord an ordination to re-compute. Must come from the ade4 package or be supported by to. dudi. In any case the resulting ordination will be in the ade 4 format.
CA an optional correspondence analysis from which row weights should be extracted. Must come from dudi. coa or cca.
rw an optional vector of row weights. Used only is CA is NULL.

Author(s)

Maxime Hervé mx.herve@gmail.com

Description

Estimates residual deviance and residual degrees of freedom to check for overdispersion with glmer models. This function is directly comming from http://glmm.wikidot.com/faq.

Usage

overdisp.glmer(model)

Arguments

model a model fitted by glmer.

Author(s)

Ben Bolker

See Also

glmer

Examples

```
require(lme4)
# Example from the 'glmer' function
gm1 <- glmer(cbind(incidence,size-incidence)~period+(1|herd),
        family="binomial",data=cbpp)
overdisp.glmer(gm1)
```

pairwise.CDA.test Pairwise comparisons for CDA

Description

Performs pairwise comparisons between group levels with corrections for multiple testing, using CDA.test.

Usage

pairwise.CDA.test(X, fact, ncomp = NULL, p.method = "fdr", ...)

Arguments

X
fact factor giving the groups.
ncomp an integer giving the number of components to be used for the test. If NULL nlevels(fact)-1 are used.
p.method method for p -values correction. See help of p.adjust.
.. other arguments to pass to CDA. test.

Details

See CDA. test.

Value

method	a character string indicating what type of tests were performed.
data.name	a character string giving the name(s) of the data.
p.value	table of results.
p.adjust.method	method for p-values correction.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

CDA.test

Examples

```
require(ade4)
data(perthi02)
CDA.test(perthi02$tab,perthi02$cla)
pairwise.CDA.test(perthi02$tab,perthi02$cla)
```


Description

Performs pairwise comparisons between group levels with corrections for multiple testing. Tests are computed using factorfit.

Usage

pairwise.factorfit(ord, fact, xax = 1, yax = 2, nperm = 999, p.method = "fdr", ...)

Arguments

ord	any multivariate analysis handled by MVA. scores.
fact	grouping factor.
xax	first axis of the factorial map.
yax	second axis of the factorial map.
nperm	number of permutations.
p.method	method for p-values correction. See help of p.adjust.
\ldots	optional further agruments to MVA. scores.

Value

method a character string giving the name of the test.
data. name a character string giving the name(s) of the data and the number of permutations.
p .value table of results.
p.adjust.method
method for p -values correction.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

factorfit

Examples

```
require(vegan)
data(iris)
PCA <- rda(iris[,1:4])
MVA.plot(PCA,fac=iris$Species,col=1:3)
# Global test
envfit(PCA~Species,data=iris)
# Pairwise comparisons
# (not enough permutations here but faster to run)
pairwise.factorfit(PCA,iris$Species,nperm=49)
```

pairwise.G.test Pairwise comparisons for proportions using G-tests

Description

Performs pairwise comparisons between pairs of proportions with correction for multiple testing.

Usage

pairwise.G.test(x, p.method = "fdr")

Arguments

x
p.method method for p-values correction. See help of p.adjust.

Details

Since a G-test is an approximate test, an exact test is preferable when the number of individuals is small (200 is a reasonable minimum). See fisher.multcomp in that case.

Value

method	name of the test.			
data.name	a character string giving the name(s) of the data.			
p.adjust.method		\quad		method for p-values correction.
:---	:---			
p.value	table of results.			

See Also

G.test, fisher.multcomp

Examples

```
x <- matrix(c(44,56,36,64,64,40),ncol=2, dimnames=list(c("Control","Treatment1", "Treatment2"),
    c("Alive","Dead")),byrow=TRUE)
G.test(x)
pairwise.G.test(x)
```

pairwise.mood.medtest Pairwise Mood's median tests

Description

Performs pairwise comparisons between group levels with corrections for multiple testing.

Usage

pairwise.mood.medtest(resp, fact, exact = NULL, p.method = "fdr")

Arguments

resp response vector.
fact grouping factor.
exact a logical indicating whether exact p-values should be computed.
p.method method for p -values correction. See help of p .adjust.

Details

If exact=NULL, Fisher's exact tests are used if the number of data values is <200; otherwise chisquare tests are used (with Yates continuity correction).

Value

method	a character string indicating the name of the test.
data. name	a character string giving the name(s) of the data.
p.value	table of results.
p.adjust.method	method for p-values correction.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

```
    mood.medtest
```


Examples

```
set.seed(0904)
response <- c(rnorm(10),rnorm(10,0.8),rnorm(10,2))
fact <- gl(3,10,labels=LETTERS[1:3])
mood.medtest(response~fact)
pairwise.mood.medtest(response,fact)
```

pairwise.MVA.test Pairwise permutation tests based on cross (model) validation

Description

Performs pairwise comparisons between group levels with corrections for multiple testing, using MVA.test.

Usage

pairwise.MVA.test(X, fact, p.method $=$ "fdr", cmv = FALSE, ncomp $=8$, kout $=7$, kinn $=6$, model $=c(" P L S-D A ", " P P L S-D A ", " L D A ", ~ " Q D A "$, "PLS-DA/LDA", "PLS-DA/QDA", "PPLS-DA/LDA","PPLS-DA/QDA"), nperm $=$ 999, progress $=$ TRUE, ...)

Arguments

$X \quad$ a data frame of independent variables.
fact grouping factor.
p.method method for p-values correction. See help of p.adjust.
$\mathrm{cmv} \quad$ a logical indicating if the test statistic (NMC) should be generated through crossvalidation (classical K-fold process) or cross model validation (inner + outer loops).
ncomp
an integer giving the number of components to be used to generate all submodels (cross-validation) or the maximal number of components to be tested in the inner loop (cross model validation). Can be re-set internally if needed. Does not concern LDA and QDA.
kout an integer giving the number of folds (cross-validation) or the number of folds in the outer loop (cross-model validation). Can be re-set internally if needed.
kinn an integer giving the number of folds in the inner loop (cross model validation only). Can be re-set internally if needed. Cannot be $>$ kout.
model the model to be fitted.
nperm number of permutations.
progress logical indicating if the progress bar should be displayed.
... other arguments to pass to MVA. test.

Details

The function deals with the limitted floating point precision, which can bias calculation of p -values based on a discrete test statistic distribution.

Value

method	a character string indicating what type of tests were performed.
data.name	a character string giving the name(s) of the data.
p.value table of results. p.adjust.method	
method for p-values correction.	
permutations	number of permutations.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

MVA.test

Examples

require(pls)
data(mayonnaise)
\# PPLS-DA
\#\# Not run: pairwise.MVA.test(mayonnaise\$NIR, factor(mayonnaise\$oil.type), model="PPLS-DA")
\# The function needs a long calculation time!
pairwise.perm.manova Pairwise permutation MANOVAs

Description

Performs pairwise comparisons between group levels with corrections for multiple testing. These pairwise comparisons are relevant after a permutation MANOVA, such as performed by adonis.

Usage

pairwise.perm.manova(resp, fact, test = c("Pillai", "Wilks", "Hotelling-Lawley", "Roy", "Spherical"), nperm = 999, progress $=$ TRUE, p.method $=$ "fdr", F = FALSE, R2 = FALSE)

Arguments

resp	response. Either a matrix (one column per variable; objects of class "data.frame" are accepted and internally converted into matrices) or a distance matrix.
fact	grouping factor. test
choice of test statistic when resp is a matrix (see anova.mlm).	
nperm	number of permutations.
progress	logical indicating if the progress bar should be displayed.
p.method	method for p-values correction. See help of p.adjust. F
R2	should the table of F values be returned?
	should the table of R2 values be returned? For tests based on distance matrices only.

Details

If resp is a matrix, a classical MANOVA is performed and the distribution of the (pseudo-)F is computed through permutations. The function deals with the limitted floating point precision, which can bias calculation of p -values based on a discrete test statistic distribution.
If resp is a distance matrix, adonis is used to perform each comparison.

Value

method	a character string giving the name of the test.
data.name	a character string giving the name(s) of the data and the number of permutations.
p.value table of results. p.adjust.method	method for p-values correction. F.value
table of F values (if required). R2.value table of R2 values (if required).	

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

anova.mlm, adonis

Examples

```
require(vegan)
data(iris)
# permutation MANOVA
adonis(iris[,1:4]~Species,data=iris,method="euclidean")
# Pairwise comparisons
```

```
# (not enough permutations here but faster to run)
pairwise.perm.manova(iris[,1:4],iris$Species,nperm=49)
# or
pairwise.perm.manova(dist(iris[, 1:4],"euclidean"),iris$Species,nperm=49)
```

pairwise.perm.t.test Pairwise permutation t tests

Description

Performs pairwise comparisons between group levels with corrections for multiple testing.

Usage

```
pairwise.perm.t.test(resp, fact, p.method = "fdr", paired = FALSE,
        alternative = c("two.sided","less", "greater"), nperm = 999,
        progress = TRUE)
```


Arguments

resp	response vector.
fact	grouping factor.
p.method	method for p-values correction. See help of p. adjust.
paired	a logical indicating whether you want paired (permutation) t-tests.
alternative	a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".
nperm	number of permutations.
progress	logical indicating if the progress bar should be displayed.

Details

The function deals with the limitted floating point precision, which can bias calculation of p -values based on a discrete test statistic distribution.

Value

method a character string indicating what type of t-tests were performed.
data. name a character string giving the name(s) of the data.
p.value table of results.
p.adjust.method
method for p-values correction.
permutations number of permutations.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

pairwise.t.test

Examples

```
set.seed(1203)
response <- c(rnorm(5),rpois(5,0.5),rnorm(5, 2,1))
fact <- gl(3,5,labels=LETTERS[1:3])
# Not enough permutations here but it runs faster
# permutation ANOVA
perm.anova(response~fact,nperm=49)
# Pairwise comparisons
pairwise.perm.t.test(response,fact,nperm=49)
```

```
pairwise.perm.var.test
```

 Pairwise permutation F tests

Description

Performs pairwise comparisons between group levels with corrections for multiple testing.

Usage

pairwise.perm.var.test(resp, fact, p.method = "fdr", alternative = c("two.sided","less", "greater"), nperm = 999, progress = TRUE)

Arguments

resp response vector.
fact grouping factor.
p.method method for p-values correction. See help of p.adjust.
alternative a character string specifying the alternative hypothesis, must be one of "two. sided" (default), "greater" or "less".
nperm number of permutations.
progress
logical indicating if the progress bar should be displayed.

Details

The function deals with the limitted floating point precision, which can bias calculation of p -values based on a discrete test statistic distribution.

Value

method a character string giving the name of the test.
data. name a character string giving the name(s) of the data.
p.value table of results.
p.adjust.method
method for p -values correction.
permutations number of permutations.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

pairwise.var.test

Examples

```
set.seed(0921)
response <- c(rnorm(10),rpois(10,0.2),rnorm(10, ,2))
fact <- gl(3,10,labels=LETTERS[1:3])
# Not enough permutations here but it runs faster
# permutation Bartlett test
perm.bartlett.test(response~fact,nperm=49)
    # Pairwise comparisons
    pairwise.perm.var.test(response,fact, nperm=49)
```

 pairwise.var.test Pairwise F tests

Description

Performs pairwise comparisons between group levels with corrections for multiple testing.

Usage

pairwise.var.test(resp, fact, p.method = "fdr", alternative = c("two.sided","less", "greater"))

Arguments

resp	response vector.
fact	grouping factor.
p.method	method for p-values correction. See help of p.adjust.
alternative	a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".

Value

method a character string giving the name of the test.
data. name a character string giving the name(s) of the data.
p.value table of results.
p.adjust.method
method for p -values correction.

Author(s)

Maxime Hervé <mx.herve@ gmail.com>

See Also

pairwise. perm. var.test

Examples

```
require(graphics)
# Bartlett test
bartlett.test(count~spray,data=InsectSprays)
# Pairwise comparisons
pairwise.var.test(InsectSprays$count,InsectSprays$spray)
```

pcor (Semi-)Partial correlation

Description

Computes the (semi-)partial correlation of x and y , controlling for z .

Usage

```
pcor(x, y, z, semi = FALSE, use = "complete.obs", method = c("pearson",
    "kendall", "spearman"))
```


Arguments

x
y
z
semi logical. If TRUE the semi-partial correlation coefficient is computed. In that case only y is controlled for z.
use same as use of cor.
method same as method of cor.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

pcor. test for confidence intervals (and tests).

Examples

```
set.seed(1444)
x <- 1:30
y <- 1:30+rnorm(30,0,2)
z1<- runif(30,0,4)
z2 <- 30:1+rnorm(30,0,3)
pcor(x,y,z1)
pcor(x,y,list(z1,z2))
```

```
pcor.test Tests for (semi-)partial association/correlation between paired sam-
```

ples

Description

Tests for (semi-)partial association between paired samples while controlling for other variables, using one of Pearson's product moment correlation coefficient or Spearman's rho.

Usage

pcor.test(x, y, z, semi $=$ FALSE, conf.level $=0.95$, nrep $=1000$, method = c("pearson", "spearman"))

Arguments

X
$\mathrm{y} \quad \mathrm{a}$ numeric vector.
z
semi
conf.level
nrep number of replicates for computation of the confidence interval of a Spearman's rank correlation coefficient (by bootstraping).
method a character string indicating which correlation coefficient is to be used for the test. One of "pearson" or "spearman".

Details

If method is "pearson" and if there are at least $4+k$ complete series of observation (where k is the number of controlling variables), an asymptotic confidence interval of the correlation coefficient is given based on Fisher's Z transform.
If method is "spearman", the p-value is computed through the AS89 algorithm if the number of complete series of observation is less than 10 , otherwise via the asymptotic t approximation (in both cases the pspearman function is used). A confidence interval of the correlation coefficient, computed by bootstraping, is given.

Value

data. name	a character string giving the name(s) of the data.
alternative	a character string describing the alternative hypothesis, always two-sided.
method	a character string indicating how the association was measured.
conf.int	a condidence interval for the measure of association.
statistic	the value of the test statistic.
parameter	the degrees of freedom of the test (only for a Pearson's correlation coefficient).
p.value	the p-value of the test.
estimate	the estimated measure of association, with name "cor" or "rho" corresponding to the method employed.
null.value	he value of the association measure under the null hypothesis, always 0.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

pcor

Examples

```
set.seed(1444)
x <- 1:30
y <- 1:30+rnorm(30,0,2)
z1 <- runif(30,0,4)
z2 <- 30:1+rnorm(30,0,3)
pcor.test(x,y,z1)
pcor.test(x,y,list(z1,z2))
```


Description

Performs a permutation analysis of variance for 1 to 3 factors. For 2 and 3 factors, experiment design must be balanced. For 2 factors, the factors can be crossed with or without interaction, or nested. The second factor can be a blocking (random) factor. For 3 factors, design is restricted to 2 fixed factors crossed (with or without interaction) inside blocks (third factor).

Usage

perm.anova(formula, nest.f2 = c("fixed", "random"), data, nperm = 999, progress = TRUE)

Arguments

formula a formula of the form response ~ factor (s) (see Details).
nest.f2 in case of 2 nested factors, precision is needed if the nested factor (factor2) is "fixed" (default) or "random".
data an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
nperm number of permutations.
progress logical indicating if the progress bar should be displayed.

Details

For 2 factors, the formula can be:

> response \sim factor $1+$ factor2 for 2 fixed factors without interaction
> response \sim factor $1 *$ factor2 for 2 fixed factors with interaction
> response \sim factor1 / factor2 for 2 fixed factors with factor2 nested into factor1 (if factor2 is a random factor, argument nest. f2 must be changed from "fixed" (default) to "random")
> response \sim factor1 | factor2 for 1 fixed factor (factor1) and 1 blocking (random) factor (factor2).

For 3 factors, the formula can only be:
response ~ factor1 + factor2 | factor3 or
response ~ factor 1 * factor2 | factor3. The 2 factors are here fixed and crossed inside each level of the third, blocking (random), factor.
The function deals with the limitted floating point precision, which can bias calculation of p-values based on a discrete test statistic distribution.

Value

a data frame of class "anova".

Author(s)

Maxime Hervé <mx.herve@ gmail.com>

Examples

```
set.seed(1203)
response <- c(rnorm(12),rpois(12,0.5),rnorm(12, 2,1))
fact1 <- gl(3,12,labels=LETTERS[1:3])
fact2 <- gl(3,1,36,labels=letters[1:3])
fact3 <- gl(6,6,labels=letters[1:6])
block <- gl(2,6,36,labels=letters[1:2])
# Not enough permutations here but faster to run
# 2 crossed fixed factors with interaction
perm.anova(response~fact1*fact2, nperm=49)
# 2 nested fixed factors
perm.anova(response~fact1/fact2, nperm=49)
# 2 nested factors, fact2 being random
perm.anova(response~fact1/fact3, nest.f2="random",nperm=49)
# 1 fixed factor and 1 blocking (random) factor
perm.anova(response~fact1|block,nperm=49)
```

perm.bartlett.test Permutation Bartlett's test of homogeneity of variances

Description

Performs a permutation Bartlett's test of homogeneity of k variances.

Usage

perm.bartlett.test(formula, data, nperm $=999$, progress $=$ TRUE)

Arguments

formula	a formula of the form $a \sim b$ where a gives the data values and b the corresponding groups.
data	an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
nperm	number of permutations.
progress	logical indicating if the progress bar should be displayed.

Details

The function deals with the limitted floating point precision, which can bias calculation of p -values based on a discrete test statistic distribution.

Value

method	name of the test.
data. name	a character string giving the name(s) of the data.
statistic	test statistics of the parametric test.
permutations	number of permutations.
p.value	p-value of the permutation test.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

bartlett.test

Examples

response <- c(rnorm(12), $\operatorname{rpois}(12,1), \operatorname{rnorm}(12,2,1))$
fact <- gl(3,12,labels=LETTERS[1:3])
perm.bartlett.test(response~fact)

Description

Performs a permutation Pearson's product-moment correlation test.

Usage

perm.cor.test(x, y, alternative = c("two.sided", "less", "greater"), nperm $=999$, progress $=$ TRUE)

Arguments

x, y	numeric vectors of data values. x and y must have the same length.
alternative	a character string specifying the alternative hypothesis, must be one of "two. sided" (default), "greater" or "less".
nperm	number of permutations.
progress	logical indicating if the progress bar should be displayed.

Details

The function deals with the limitted floating point precision, which can bias calculation of p -values based on a discrete test statistic distribution.

Value

method name of the test.
data. name a character string giving the name(s) of the data.
statistic test statistics of the parametric test.
permutations number of permutations.
p.value $\quad \mathrm{p}$-value of the permutation test.
estimate the estimated correlation coefficient.
alternative a character string describing the alternative hypothesis.
null.value the value of the association measure under the null hypothesis, always 0 .

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

cor.test

Examples

```
x <- rnorm(50)
y <- runif(50)
perm.cor.test(x,y)
```

```
perm.t.test
```


Description

Performs a permutation Student's t -test.

Usage

```
perm.t.test(x, ...)
\#\# Default S3 method:
perm.t.test(x, y, paired = FALSE, ...)
\#\# S3 method for class 'formula'
perm.t.test(formula, data, alternative = c("two.sided", "less", "greater"),
    paired \(=\) FALSE, nperm \(=999\), progress \(=\) TRUE, ...)
```


Arguments

X
$\mathrm{y} \quad$ a numeric vector of data values.
a numeric vector of data values.
a numeric vector of data values.
paired
a logical indicating whether you want a paired t-test.
formula $\quad a$ formula of the form $a \sim b$ where a gives the data values $a n d b a$ factor with 2 levels giving the corresponding groups.
data an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".
nperm number of permutations.
progress
... logical indicating if the progress bar should be displayed. further arguments to be passed to or from other methods.

Details

The function deals with the limitted floating point precision, which can bias calculation of p -values based on a discrete test statistic distribution.

Value

statistic test statistics of the parametric test.
permutations number of permutations.
p.value $\quad \mathrm{p}$-value of the permutation test.

estimate	the estimated mean or difference in means depending on whether it was a paired or not paired test.
alternative	a character string describing the alternative hypothesis.
method	a character string indicating what type of t-test was performed.
data.name	a character string giving the name(s) of the data.
null.value	the specified hypothesized value of the mean difference, always 0.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

t.test

Examples

response <- c(rnorm(5), rnorm(5,2,1))
fact <- gl(2,5,labels=LETTERS[1:2])
\# Not enough permutations here but faster to run
\# Unpaired test
perm.t.test (response~fact, nperm=49)
\# Paired test
perm.t.test(response~fact, paired=TRUE, nperm=49)

Description

Performs a permutation F test to compare two variances.

Usage

```
perm.var.test(x, ...)
## Default S3 method:
perm.var.test(x, y, ...)
## S3 method for class 'formula'
perm.var.test(formula, data, alternative = c("two.sided", "less",
    "greater"), nperm = 999, progress = TRUE, ...)
```


Arguments

x	a numeric vector of data values.
y	a numeric vector of data values.
formula	a formula of the form $\mathrm{a} \sim \mathrm{b}$ where a gives the data values and b a factor with 2 levels giving the corresponding groups.
data	an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
alternative	a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".
nperm	number of permutations.
progress	logical indicating if the progress bar should be displayed. further arguments to be passed to or from other methods.
\ldots	

Details

The function deals with the limitted floating point precision, which can bias calculation of p-values based on a discrete test statistic distribution.

Value

method name of the test.
statistic test statistics of the parametric test.
permutations number of permutations.
p.value $\quad p$-value of the permutation test.
estimate the ratio of the two variances.
alternative a character string describing the alternative hypothesis.
data.name a character string giving the name(s) of the data.
null.value the ratio of population variances under the null hypothesis, always 1.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

var.test

Examples

```
response <- c(rpois(8,1),rpois(8,3))
fact <- gl(2,8,labels=LETTERS[1:2])
perm.var.test(response~fact)
```

```
plotresid Simple analysis of model residuals
```


Description

Plots residuals of a model against fitted values and for some models a QQ-plot of these residuals. Optionally, a Shapiro-Wilk test can be performed on residuals. The function deals with 1 m (including glm, lmList, lmList, glm.nb, mlm and manova), lmer, glmer, glmmPQL, glmmadmb, lme, gls, nls, nlsList, survreg and least. rect models.

Usage

plotresid(model, shapiro = FALSE)

Arguments

model an object of class "lm", "lmList", "lmList4", "merMod", "glmmadmb", "lme", "glmmPQL", "gls", "nls", "nlsList", "survreg" or "least.rect".
shapiro logical. If TRUE and if model is based on a Gaussian distribution, a Shapiro-Wilk test is performed on residuals.

Details

Response residuals are used for linear models, non linear models and generalized linear models based on an identity link (except with "quasi" distributions where response residuals are used only if variance="constant"). Pearson or studentized residuals are used whenever there is a link function which is not identity (and with "quasi" distributions when variance is not "constant").

QQ-plots and Shapiro-Wilk tests are available whenever the model is based on a Gaussian distribution (and with "quasi" distributions when variance="constant").
With a mlm or manova model, only a multivariate QQ-plot is drawn. The test performed when shapiro=TRUE is a Shapiro-Wilk test for multivariate normality.

Author(s)

Maxime Hervé mx.herve@gmail.com

See Also

lm, lmList, lmList, glm, glm.nb, manova, lmer, glmer, lmer, glmer.nb, lme, glmmPQL, gls, nls, nlsList, survreg, least.rect, qresiduals, qqPlot, shapiro.test, mqqnorm, mshapiro.test
plotsurvivors \quad Survivor curve

Description

Plots the survivor curve (log(survivors) against time) of a dataset to check for constancy of hazard.

Usage

plotsurvivors(x, status $=$ rep(1, length(x)))

Arguments

```
x
``` time to event. status status (1: event observed, 0 : event not observed).

\section*{Value}
\(\mathrm{n} \quad\) initial number of individuals.
time time of events.
alive number of survivors at each time.

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{Examples}
```


# 'kidney' dataset of package 'survival'

require(survival)
data(kidney)
plotsurvivors(kidney$time,kidney$status)

```

PLSDA.VIP Variable Importance in the Projection (VIP)

\section*{Description}

Returns VIP score of each X-variable in a PLS-DA (obtained from plsda).

\section*{Usage}

PLSDA.VIP(model, graph = FALSE)

\section*{Arguments}
\[
\begin{array}{ll}
\text { model } & \text { object of class "plsda" (from plsda). } \\
\text { graph } & \text { logical: should VIP scores be displayed? }
\end{array}
\]

\section*{Value}
tab table of results.
sup1 name of X-variables having a VIP score \(>1\).

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}
plsda

\section*{Examples}
```

if (require(mixOmics)) {
data(yeast)
model.PLSDA <- plsda(t(yeast$data), yeast$strain.cond)
PLSDA.VIP(model.PLSDA)
}

```
predict.CDA.cv Predict method for cross-validated CDA submodels

\section*{Description}

Predicts response based on CDA (correspondence discriminant analysis) submodels generated by cross validation. The predicted class is given with its probability (computed from the values predicted by all submodels).

\section*{Usage}
```


## S3 method for class 'CDA.cv'

predict(object, newdata, type = c("max", "all"), method = c("mahalanobis",
"euclidian"), ...)

```

\section*{Arguments}
object object of class inheriting from "CDA.cv".
newdata vector, matrix or data frame giving new individuals (one row per individual).
type should the probability of the most probable class be given ("max", the default) or the probability of each class ("all")?
method criterion used to predict class membership. See predict.coadisc.
.. . further arguments to be passed to or from other methods.

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}

CDA.cv, predict.coadisc
```

predict.coadisc Predict method for CDA

```

\section*{Description}

Predicts class of the grouping factor based on a Correspondence Discriminant Analysis (performed using discrimin.coa).

\section*{Usage}
\#\# S3 method for class 'coadisc'
predict(object, newdata, method = c("mahalanobis", "euclidian"), ...)

\section*{Arguments}
\begin{tabular}{ll}
object & object of class inheriting from "coadisc". \\
newdata & \begin{tabular}{l}
contingency table (either a "matrix", "table" or "data.frame" object) giving \\
new individuals (one row per individual).
\end{tabular} \\
method & \begin{tabular}{l}
distance metric to be used for prediction. In all cases the predicted class corre- \\
sponds to the minimum distance between the new individual and the centroid of \\
each class. Default is Mahalanobis distance.
\end{tabular} \\
\(\ldots\) & \begin{tabular}{l}
further arguments to be passed to or from other methods.
\end{tabular}
\end{tabular}

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}
discrimin.coa

\section*{Examples}
```

require(ade4)
data(perthi02)
CDA <- discrimin.coa(perthi02$tab,perthi02$cla,scan=FALSE)
new <- matrix(c(17,45,32,17,17,52,28,29,6,10,7,7,7,5,10,4,37,34,23,9),ncol=20)
predict(CDA,new)

```
```

predict.MVA.cv Predict method for cross-validated submodels

```

\section*{Description}

Predicts response based on submodels generated by cross (model) validation. For regression models (PLSR and CPPLS), the predicted value is given with its confidence interval. For discriminant analyses, the predicted class is given with its probability (computed from the values predicted by all submodels).

\section*{Usage}
```


## S3 method for class 'MVA.cv'

predict(object, newdata, conf.level = 0.95, type.DA = c("max", "all"),
crit.DA = c("plug-in", "predictive", "debiased"), ...)

## S3 method for class 'MVA.cmv'

predict(object, newdata, conf.level = 0.95, type.DA = c("max", "all"),
crit.DA = c("plug-in", "predictive", "debiased"), ...)

```

\section*{Arguments}
object object of class inheriting from "MVA.cv" or "MVA.cmv".
newdata vector, matrix or data frame giving new individuals (one row per individual).
conf.level confidence level for prediction of a quantitative response.
type.DA for discriminant analyses, should the probability of the most probable class be given ("max", the default) or the probability of each class ("all")?
crit.DA criterion used to predict class membership when a LDA or QDA is used. See predict.lda.
... further arguments to be passed to or from other methods.

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}

MVA.cv, MVA.cmv
prop.bin.multcomp Pairwise comparisons after a test for given probabilities

\section*{Description}

Performs pairwise comparisons after a global test for given response probabilities (i.e. when the response variable is a binary variable), by using exact binomial tests. The function is in fact a wrapper to pairwise comparisons of proportions to given values on a contingency table.

\section*{Usage}
prop.bin.multcomp(formula, data, p, p.method = "fdr")

\section*{Arguments}
formula \(\quad a\) formula of the form \(a \sim b\), where \(a\) and \(b\) give the data values and corresponding groups, respectively. a can be a numeric vector or a factor, with only two possible values (except NA).
data an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
p theoretical probabilities.
p.method method for p-values correction. See help of p.adjust.

\section*{Details}

If the response is a \(0 / 1\) variable, the probability of the ' 1 ' group is tested. In any other cases, the response is transformed into a factor and the probability of the second level is tested.

\section*{Value}
\begin{tabular}{ll}
method & name of the test. \\
data. name & a character string giving the name(s) of the data. \\
observed & observed probabilities. \\
expected & expected probabilities. \\
p.adjust.method
\end{tabular}\(\quad\)\begin{tabular}{l}
method for p-values correction. \\
p.value2 \\
p.value
\end{tabular}\(\quad\)\begin{tabular}{l}
corrected p-values. \\
table or results of pairwise comparisons.
\end{tabular}

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}
```

prop.multcomp, chisq. theo.bintest

```

\section*{Examples}
```

response <- c(rep(0:1,c(40,60)),rep(0:1,c(55,45)),rep(0:1,c(65,35)))
fact <- gl(3,100,labels=LETTERS[1:3])
p.theo <- c(0.5,0.45,0.2)
chisq.theo.bintest(response~fact,p=p.theo)
prop.bin.multcomp(response~fact,p=p.theo)

```
prop.mul tcomp Pairwise comparisons after a test for given proportions

\section*{Description}

Performs pairwise comparisons after a global test for given proportions, by using exact binomial tests.

\section*{Usage}
prop.multcomp(x, p, p.method = "fdr")

\section*{Arguments}
\(x \quad\) contingency table.
p theoretical proportions.
p.method method for p-values correction. See help of p.adjust.

\section*{Value}
\begin{tabular}{ll}
method & name of the test. \\
data. name & a character string giving the name(s) of the data. \\
observed & observed proportions. \\
expected & expected proportions. \\
p.adjust.method & method for p-values correction. \\
p.value2 & corrected p-values. \\
p.value & table or results of pairwise comparisons.
\end{tabular}

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}
```

prop.test

```

\section*{Examples}
```

proportions <- sample(c(0,1),200,replace=TRUE)
populations <- sample(LETTERS[1:3],200,replace=TRUE)
tab.cont <- table(populations,proportions)
p.theo <- c(0.4,0.5,0.7)
prop.test(tab.cont,p=p.theo)
prop.multcomp(tab.cont,p=p.theo)

```
prop.multinom Proportions and standard errors

\section*{Description}

Computes proportions (and their standard errors) when the number of classes is \(>=2\), based on predicted values of a model. The function is intended to be used parallel to a multinomial log-linear model.

\section*{Usage}
prop.multinom(x)

\section*{Arguments}
x
either a factor or a matrix with K columns giving the counts for each of the K classes.

\section*{Details}

The proportions can be computed through the predict function applied on a multinomial log-linear model (see multinom). However, standard errors (or confidence intervals) cannot be obtained this way. The present function uses differents GLMs (in each case considering one category vs. the sum of all others) to obtain proportions and standard errors. Overdispersion is taken into account by default, using a quasibinomial law in all GLMs built.

\section*{Value}
probs the calculated proportions.
se the calculated standard errors.

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}
multinom, glm

\section*{Examples}
```

response <- data.frame( }A=c(2,2,4,0,2,14,6,16,0,0)
B=c}(2,0,0,0,6,2,10,6,0,0)
C=c}(12,6,0,6,2,0,0,0,0,0)
D=c(0,0,0,14,0,0,0,0,2,0),
E=c(0,0,0,0,0,0,0,0,16,15))
prop.multinom(response)

```
prop.multinom.test

Wald tests for comparison of proportions

\section*{Description}

Performs pairwise comparisons of proportions when the number of classes is \(>=2\) with corrections for multiple testing.

\section*{Usage}
prop.multinom.test(x, p.method = "fdr")

\section*{Arguments}
\(x \quad\) either a factor or a matrix with K columns giving the counts for each of the K classes.
p.method method for \(p\)-values correction. See help of p.adjust.

\section*{Details}

The function builds multinomial log-linear models (using multinom) and applies Wald tests to compare the intercepts to 0 . All necessary models (each time using a different reference level/class) are built to get p-values of all possible comparisons among levels/classes.

\section*{Value}
\begin{tabular}{ll}
method & a character string indicating the name of the test. \\
data. name & a character string giving the name(s) of the data. \\
p.adjust.method & method for p-values correction. \\
p. value & table of results. \\
z. tab & table of z values.
\end{tabular}

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}
multinom, binom.test

\section*{Examples}
```

response <- factor(rep(LETTERS[1:4],c(20,40,42,13)))
table(response)/length(response)
prop.multinom.test(response)

```
rating.emmeans EMMeans for Cumulative Link (Mixed) Models

\section*{Description}

Extracts EMMeans (produced by emmeans) from Cumulative Link (Mixed) Models (produced by clm or clmm), with different possible formats.

\section*{Usage}
rating.emmeans(emm, type = c("prob", "cumprob", "class1", "class2"), level = 0.9)

\section*{Arguments}
emm object returned by emmeans applied on a clm or clmm object.
type type of output to be returned: "prob" (default) gives probability of each rating, "cumprob" gives cumulative probabilities (Pi is probability to be \(<=\) to rating i), "class1" gives the most probable rating and "class2" gives the first rating for which the cumulative probability is \(>=\) to level.
level used only for type "class2" (see type).

\section*{Details}

A factor named cut must have been called in emmeans, to compute EMMeans per cut point (i.e. rating). Additionally, the argument mode of emmeans must have been set to "linear.predictor". Finally, the call to emmeans is typically like emmeans(model, \(\sim\) factor|cut, mode="linear.predictor") where factor is the factor (or interaction) giving levels for which EMMeans have to be computed.

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}
emmeans, clm, clmm

\section*{Examples}
```

    require(ordinal)
    require(emmeans)
    model <- clm(rating~contact*temp,data=wine)
    EMM <- emmeans(model,~contact:temp|cut,mode="linear.predictor")
    # Probabilities
    rating.emmeans(EMM)
    # Cumulative probabilities
    rating.emmeans(EMM, type="cumprob")
    # Most probable rating
    rating.emmeans(EMM,type="class1")
    ```
 rating.prob Observed rating frequencies

\section*{Description}

Computes observed rating frequencies per level of a factor, in various formats.

\section*{Usage}
rating. prob(x, g, type \(=c(" p r o b ", ~ " c u m p r o b ", ~ " c l a s s ")) ~\)

\section*{Arguments}
x
g
type
ordered factor (ratings).
factor giving groups to be compared.
type of output to be returned: "prob" (default) gives frequency of each rating, "cumprob" gives cumulative frequencies (Fi is frequence of ratings \(<=\mathrm{i}\)) and "class" gives the most frequent rating.

\section*{Author(s)}

Maxime Hervé <mx.herve@ gmail.com>

\section*{Examples}
```

require(ordinal)
data(wine)

# Frequencies

rating.prob(wine$rating,wine$contact:wine\$temp)

# Cumulative frequencies

```
```

rating.prob(wine$rating,wine$contact:wine\$temp,type="cumprob")

# Most frequent rating

rating.prob(wine$rating,wine$contact:wine\$temp,type="class")

```
```

reg.ci Confidence intervals of a simple linear regression

```

\section*{Description}

Computes and add to a graph the confidence interval of a simple regression line or of individual values.

\section*{Usage}
reg.ci(model, conf.level \(=0.95\), type \(=c(" m e a n ", " i n d "), \ldots)\)

\section*{Arguments}
model lm model.
conf.level confidence level.
type interval type : "mean" for the interval of the regression line (default), "ind" for the interval of individual values (also called "prediction interval").
... other agruments. See help of lines.

\section*{Author(s)}

Maxime Hervé <mx.herve@ gmail.com>

\section*{See Also}
lm

\section*{Examples}
```

x <- 1:50
y <- 1:50+rnorm(50,0,4)
regression <- lm(y~x)
plot(x,y)
abline(regression)
reg.ci(regression,type="mean",col="red")
reg.ci(regression,type="ind",col="blue")

```
```

    scat.cr "Correlation" of variables to axes in MCA or mix analyses
    ```

\section*{Description}

Represents the "correlation" of variables to axes in a MCA (from dudi . acm) or a mix analysis (from dudi.hillsmith or dudi.mix).

\section*{Usage}
scat.cr(dudi.obj, axis = 1)

\section*{Arguments}
dudi.obj object obtained from dudi.acm, dudi.hillsmith or dudi.mix.
axis axis to be represented (the first by default).

\section*{Details}

For quantitative variables, the squared correlation coefficient is displayed. For ordered factors, the squared multiple correlation coefficient is displayed. For unordered factors, the correlation ratio is displayed.

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>, based on an idea of Stéphane Champely.

\section*{See Also}
dudi.acm, dudi.hillsmith, dudi.mix

\section*{Examples}
```

require(ade4)

# Fictive dataset

age <- sample(15:60,50,replace=TRUE)
sex <- sample(c("M","F"),50,replace=TRUE)
size <- sample(155:190,50,replace=TRUE)
hair <- sample(c("Fair","Dark","Russet"),50,replace=TRUE)
eyes <- sample(c("Blue","Green","Brown"),50,replace=TRUE)
weight <- sample(50:85,50,replace=TRUE)
hand <- sample(c("Left.handed","Right.handed"),50,replace=TRUE)
tab <- data.frame(age,sex,size,weight,hand,eyes,hair,stringsAsFactors=TRUE)
amix <- dudi.hillsmith(tab,scannf=FALSE,nf=2)
scat.cr(amix)

```

\section*{Description}

Computes the standard error of a mean or of a proportion.

\section*{Usage}
\[
\operatorname{se}(x, y=N U L L)
\]

\section*{Arguments}
\(x \quad\) numeric vector or number of successes.
\(y \quad\) number of trials. If NULL, the standard error of the mean of \(x\) is computed. If not, the standard error of the proportion \(x / y\) is computed.

\section*{Details}

The function deals with missing values.

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{Examples}
```


# Standard error of a mean

se(rnorm(30))

# Standard error of a proportion

se(9,25)

```
seq2 Sequence generation

\section*{Description}

Generates a regular sequence from the minimum to the maximum of a vector.

\section*{Usage}
seq2(x, int = 999)

\section*{Arguments}
x
numeric vector.
int number of values to be generated (int breaks).

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}
seq

\section*{Examples}
seq2(rnorm(30))
```

spearman.ci

```

Confidence interval of a Spearman's rank correlation coefficient

\section*{Description}

Computes the confidence interval of a Spearman's rank correlation coefficient by bootstraping.

\section*{Usage}
spearman.ci(var1, var2, nrep \(=1000\), conf.level \(=0.95\))

\section*{Arguments}
\begin{tabular}{ll}
var1 & numeric vector (first variable). \\
var2 & nuermic verctor (second variable). \\
nrep & number of replicates for bootstraping. \\
conf.level & confidence level of the interval.
\end{tabular}

\section*{Value}
\begin{tabular}{ll}
method & name of the test. \\
data. name & a character string giving the name(s) of the data. \\
conf. level & confidence level. \\
rep & number of replicates. \\
estimate & Spearman's rank correlation coefficient. \\
conf.int & confidence interval.
\end{tabular}

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}
cor.test, boot

\section*{Examples}
```

var1 <- sample(1:50,15,replace=TRUE)
var2 <- sample(1:50,15,replace=TRUE)
spearman.ci(var1,var2)

```
spearman.cor.multcomp Comparison of several Spearman's rank correlation coefficients

\section*{Description}

Computes Bonferroni-adjusted confidence intervals of a series of Spearman's rank correlation coefficients, for multiple comparisons. Confidence intervals are computed by bootstraping.

\section*{Usage}
spearman.cor.multcomp(var1, var2, fact, alpha \(=0.05\), nrep \(=1000\))

\section*{Arguments}
\begin{tabular}{ll}
var1 & numeric vector (first variable). \\
var2 & numeric vector (second variable). \\
fact & factor (groups). \\
alpha & significance level. \\
nrep & number of replicates for bootstraping.
\end{tabular}

\section*{Details}

Confidence intervals which do not overlap indicate correlation coefficients significantly different at alpha.

\section*{Value}
\begin{tabular}{ll}
method & name of the test. \\
data. name & a character string giving the name(s) of the data. \\
tab & data frame of correlation coefficients with confidence intervals \\
alpha & significance level. \\
nrep & number of replicates for bootstraping.
\end{tabular}

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}
```

spearman.ci

```

\section*{Examples}
```

set.seed(1510)
var1 <- c(1:15+rnorm(15,0,2),1:15+rnorm(15,0,2),1:15+rnorm(15,0,2))
var2 <- c(-1:-15+rnorm(15,0,2),1:15+rnorm(15,0,2),1:15+rnorm(15,0,2))
fact <- gl(3,15,labels=LETTERS[1:3])
spearman.cor.multcomp(var1,var2,fact)

# B and C similar but different from A

```
 splitf Divide into groups respecting relative proportions

\section*{Description}

Divides a data frame randomly, but respecting the relative proportions of levels of a factor in the original data frame. Each subset has roughly the same number of individuals, and the same relative proportions in respect to levels of the given factor.

\section*{Usage}
splitf(set, fac, k)

\section*{Arguments}
set a data frame containing values to be divided into groups.
fac a reference factor giving the relative proportions to be respected in each subset of set.
k an integer giving the number of subsets to be generated.

\section*{Value}

A list of subsets of set.

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}
split

\section*{Examples}
```

data(iris)
iris2 <- iris[c(1:50,51:80,101:120),]

# Proportions to be respected

table(iris2\$Species)/nrow(iris2)

# Splitting

result <- splitf(iris2,iris2\$Species,3)

# All subsets have the same size

lapply(result,nrow)

# And respect the initial proportions

lapply(result,function(x) table(x\$Species)/nrow(x))

```
stand Standardization of a data frame based on another data frame

\section*{Description}

Centers and scales a data frame. See Details.

\section*{Usage}
stand(tab, ref.tab=NULL, center=NULL, scale=NULL)

\section*{Arguments}
tab data frame to scale.
ref.tab optional reference data frame, from which centering and scaling parameters are obtained (see Details).
center optional vector of centering parameters (one per column of tab). See Details.
scale optional vector of scaling parameters (one per column of tab). See Details.

\section*{Details}

If ref. tab is not NULL, centering and scaling parameters are looked for into this data frame. If it has a "scaled: center" attribute, this one is used to center tab. Otherwise means of ref.tab's columns are used. The same happens for scaling parameters (with the "scaled:scale" attribute and standard deviations).

If ref. tab is NULL, values of center and scale are used to standardize tab.
If ref. tab and center are NULL, means of tab's columns are used for centering. If ref.tab and scale are NULL, standard deviations of tab's columns are used for scaling.

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}
scale

\section*{Examples}
```

data(iris)
set.seed(1131)
iris.samp <- iris[sample(1:150,10),1:4]

# Centering parameters of the complete dataset

attr(scale(iris[,1:4]),"scaled:center")

# Centering parameters of the reduced dataset

attr(scale(iris.samp),"scaled:center")

# Standardization based on the reduced dataset only

attr(stand(iris.samp),"scaled:center")

# Standardization based on the complete dataset

attr(stand(iris.samp,iris[,1:4]),"scaled:center")

```

\section*{Description}

Tests for significance of coefficients associated with a given predictor of a model fitted with mult inom. Wald tests are used. All coefficients are generated and tested through the building of models using different reference classes (for the response but also for qualitative predictors with more than 2 levels).

\section*{Usage}
test.multinom(model, variable)

\section*{Arguments}
model object of class "multinom".
variable any predictor present in model (unquoted).

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{Description}

Converts some ordinations performed with the vegan package to objects compatible with coinertia.

\section*{Usage}
to.dudi (ord)

\section*{Arguments}
ord an ordination (see Details).

\section*{Details}

The function supports:
- PCA computed from rda. If data were scaled (prior to the analysis or using scale of rda) it is assumed that is was with the standard deviation using \(n-1\); As in dudi.pca, to.dudi rescales the data with the standard deviation using \(n\).
- PCoA computed from wcmdscale, capscale or dbrda.
- CA computed from cca.

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>
user.cont User defined contrasts for EMMeans

\section*{Description}

Returns a function usable by emmeans for user defined contrasts.

\section*{Usage}
user.cont (cont)

\section*{Arguments}
cont any matrix of contrasts (see 'Details').

\section*{Details}

In these matrices, each line is a comparison (= contrast) and each colum is a level of the factor. Rules for writing contrasts are:
- levels not involved in the comparison must have a null value
- levels to be compared must have opposite signs
- levels can be grouped (for example 2-1-1 give a comparison of the first level against the group composed by the two others)
- the sum of all values of a contrast must be null.

\section*{Value}
user. cont.emmc the function to be called by emmeans

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}
```

emmeans

```

\section*{Examples}
```

require(car)
require(emmeans)
tab <- data.frame(
response <- c(rpois(30,1),rpois(30,3),rpois(30,10)),
fact <- gl(3,30,labels=LETTERS[1:3])
)
model <- glm(response~fact,family="poisson",data=tab)
Anova(model)
mat <- matrix(c(1,-1,0,0,1,-1,2,-1,-1),nrow=3,byrow=TRUE,dimnames=list(levels(fact),1:3))
mat
cont.emmc <- user.cont(mat)
EMM <- emmeans(model,~fact)
contrast(EMM, "cont")

```
 wald.ptheo.multinom.test

Wald tests for comparison of proportions to theoretical values

\section*{Description}

Performs pairwise comparisons of proportions to theoretical values.

\section*{Usage}
wald.ptheo.multinom.test(x, p, p.method = "fdr")

\section*{Arguments}
x
p theoretical proportions.
p.method method for p -values correction. See help of p.adjust.

\section*{Details}

The function builds K logistic regressions (in each case considering one class vs. the sum of all others) and uses wald.ptheo. test to test the hypothesis that the proportion of this class is equal to \(\mathrm{p}[\mathrm{K}]\).

\section*{Value}
\begin{tabular}{ll}
method & name of the test. \\
data.name & a character string giving the name(s) of the data. \\
observed & observed proportions. \\
expected & theoretical proportions. \\
p.adjust.method & method for p-values correction. \\
statistic & statistics of each test. \\
p.value2 & corrected p-values. \\
p.value & data frame of results.
\end{tabular}

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>
```

See Also
wald.ptheo.test, prop.multinom

```

\section*{Examples}
```

response <- factor(rep(LETTERS[1:4],c(20,40,42,13)))
wald.ptheo.multinom.test(response, p=c(0.15,0.25,0.3,0.3))

```
```

wald.ptheo.test Wald test for comparison of a proportion to a theoretical value

```

\section*{Description}

Performs a Wald test for comparison of a proportion to a theoretical value.

\section*{Usage}
wald.ptheo.test(y, blocks \(=\) NULL, \(p=0.5\))

\section*{Arguments}
y either a binary response (numeric vector or factor, with only two possible values except NA) or a two-column matrix with the columns giving the numbers of successes (left) and failures (right).
blocks optional blocking (random) factor.
\(\mathrm{p} \quad\) hypothesized probability of success.

\section*{Details}

The function builds a logistic (mixed) regression and applies a Wald test to compare the estimated value of the intercept to its theoretical value under H0. Eventual overdispersion is taken into account, by using a quasi-binomial law in case of no blocks or by introducing an individual-level random factor if blocks are present.
If the response is a \(0 / 1\) vector, the probability of the ' 1 ' group is tested. With other vectors, the response is transformed into a factor and the probability of the second level is tested.

If the response is a two-column matrix, the probability of the left column is tested.
If the reponse is a vector and no blocking factor is present, the exact binomial test performed by binom. test should be preferred since it is an exact test, whereas the Wald test is an approximate test.

\section*{Value}
\begin{tabular}{ll}
\begin{tabular}{l}
method \\
data. name
\end{tabular} & \begin{tabular}{l}
name of the test. \\
a character string giving the name(s) of the data. \\
statistic
\end{tabular} \\
\begin{tabular}{l}
p.value \\
test statistics of the test.
\end{tabular} \\
alternative & \begin{tabular}{l}
p-value of the test. \\
the estimated proportion (calculated without taking into account the blocking \\
factor, if present).
\end{tabular} \\
null.value & \begin{tabular}{l}
a character string describing the alternative hypothesis, always "two.sided". \\
the value of the proportion under the null hypothesis.
\end{tabular} \\
parameter & \begin{tabular}{l}
the degrees of freedom for the t-statistic, only whith overdispersion and no \\
blocks.
\end{tabular}
\end{tabular}

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}
binom.test, glm, glmer

\section*{Examples}
```

set.seed(2006)
response <- sample(0:1,60,replace=TRUE)

# Comparison to p=0.5

wald.ptheo.test(response)

# Comparison to p=0.8

wald.ptheo.test(response,p=0.8)

# With a blocking factor

require(lme4)
blocks <- gl(3,20)
wald.ptheo.test(response,blocks)

```
wilcox. paired.multcomp
Non parametric pairwise comparisons for paired data

\section*{Description}

Performs non parametric pairwise comparisons of paired samples by Wilcoxon signed rank tests for paired data.

\section*{Usage}
wilcox.paired.multcomp(formula, data, p.method = "fdr")

\section*{Arguments}
formula \(\quad a\) formula of the form \(a \sim b \mid c\), where \(a, b\) and \(c\) give the data values and corresponding groups and blocks, respectively.
data an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
p.method method for p-values correction. See help of p.adjust.
wilcox.signtest

\section*{Value}
\begin{tabular}{ll}
method & name of the test. \\
data.name & a character string giving the name(s) of the data. \\
method & a character string indicating the name of the test. \\
p.adjust.method & method for p-values correction. \\
p.value & table of results of pairwise comparisons.
\end{tabular}

\section*{Author(s)}

Maxime Hervé <mx.herve@ gmail.com>

\section*{See Also}
pairwise.wilcox.test, wilcox.test

\section*{Examples}
```

response <- c(rnorm(10,0,3),rnorm(10,5,3),rnorm(10, 8, 2))
fact <- gl(3,10,labels=LETTERS[1:3])
block <- gl(10,1,30,labels=letters[1:10])
friedman.test(response~fact|block)
wilcox.paired.multcomp(response~fact|block)

```
```

wilcox.signtest Wilcoxon sign test

```

\section*{Description}

Performs a Wilcoxon sign test to compare medians of two paired samples or one median to a given value.

\section*{Usage}
```

wilcox.signtest(x, ...)

## Default S3 method:

wilcox.signtest(x, y = NULL, mu = 0, conf.level = 0.95, ...)

## S3 method for class 'formula'

wilcox.signtest(formula, data, subset, ...)

```

\section*{Arguments}

X
y
mu
conf.level
formula \(\quad a\) formula of the form \(a \sim b\), where \(a\) and \(b\) give the data values and corresponding groups.
data an optional data frame containing the variables in the formula formula. By default the variables are taken from environment (formula).
subset an optional vector specifying a subset of observations to be used.
further arguments to be passed to or from other methods.

\section*{Details}

If zeroes (i.e. null differences with mu) are present, the median of the data different from mu is tested in the one-sample situation; the median of the \(x-y\) differences different from mu in the two-sample situation.

\section*{Value}
method a character string indicating the name of the test.
data.name a character string giving the name(s) of the data.
null.value the specified hypothesized value of the median or median difference depending on the test performed.
p.value the p-value of the test.
alternative a character string giving the alternative hypothesis, always "two.sided"
estimate the estimated median or median of \(x-y\) differences, depending on the test performed.
conf.int a confidence interval for the median tested.

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{See Also}
wilcox.test

\section*{Examples}
```

set.seed(1706)
response <- c(rnorm(7, 3,1.5),rnorm(7,5.5,2))

# Comparison of 2 samples

fact <- gl(2,7,labels=LETTERS[1:2])

```
wilcox.signtest(response~fact)
\# Comparison to a given value
theo <- 4
wilcox.signtest(response, mu=theo)
wmean Weighted arithmetic mean

\section*{Description}

Computes the weighted arithmetic mean of a vector.

\section*{Usage}
wmean \((x, w=r e p(1\), length \((x))\), na. \(r m=T R U E)\)

\section*{Arguments}

X
w
na.rm
numeric vector.
numeric vector of weights.
a logical value indicating whether NA values should be stripped before the computation proceeds.

\section*{Author(s)}

Maxime Hervé <mx.herve@gmail.com>

\section*{Examples}
```

mean(1:10)
wmean(1:10,w=10:1)

```

\section*{Index}
adonis, 5, 102, 103
adonis.II, 5, 63
Anova, 6, 63
anova.cca, 63
Anova.clm, 6
Anova.clmm (Anova.clm), 6
anova.mlm, 103
back.emmeans, 7, 34
back.lsmeans (deprecated), 33
barplot, 61, 63
bartlett.test, 112
binom.test, 57-59, 126, 139, 140
block.plsda, 35-37, 69, 73, 76, 79, 86, 88, 90
block.splsda, 35-37, 69, 73, 76, 79, 86, 88, 90
boot, 8, 32, 132
bootstrap, 8
byf.hist, 9, 34
byf.mqqnorm, 10, 11
byf.mshapiro, 10,10
byf.normhist (deprecated), 33
byf.qqnorm, 11, 12
byf.shapiro, 12
capscale, 63, 72, 85-89, 136
cca, 63, 69, 72, 85-89, 95, 136
CCorA, 69, 72, 86, 88, 89
CDA.cv, 13, 120
CDA. test, 14, 96, 97
cdf.discrete, 15
chisq.bin.exp, 16, 21
chisq.bintest, 17, 39, 43
chisq.exp, 18
chisq.multcomp, 19
chisq.test, \(17,19,20,22,40,45,46,57,58\)
chisq. theo.bintest, 16, 20, 123
chisq. theo.multcomp, 21
clm, 6, 35, 126
clmm, 6, 35, 126
cmdscale, \(85,87,89\)
cochran.qtest, 22
coinertia, \(69,72,76,79,86,88,90,95,136\)
cond.multinom, 24
coord.proj, 24
cor, 60, 108
cor. 2comp, 25
cor.conf, 26
cor.multcomp, 27
cor. sparse (deprecated), 33
cor.test, 26-28, 60, 113, 132
cov.test, 29
cox.resid, 30
coxph, 30
cppls, 66, 74, 91
cppls.fit, 66, 74, 91
cramer, 30
cramer.test, 31
cv, 32
CvM.test (deprecated), 33
DA. confusion (deprecated), 33
DA.valid (deprecated), 33
DA.var (deprecated), 33
dbrda, 63, 72, 86, 88, 89, 136
dendro.gp, 33
density, 53
deprecated, 33
DIABLO.cv, 35
DIABLO.test, 36
discrimin, \(68,69,72,76,79,85,87\)
discrimin.coa, \(14,69,72,76,79,85,87\), 120, 121
dotchart, 60, 71, 83
dpcoa, 85, 88
dudi. acm, 76, 79, 85, 87, 89, 129
dudi.coa, 85, 87, 89, 95
dudi. dec, 85,87
dudi.hillsmith, 69, 72, 76, 79, 85, 87, 89, 129
dudi.mix, \(69,72,76,79,85,87,89,129\)
dudi.nsc, 69, 72, 76, 79, 85, 87
dudi.pca, 68, 71, 76, 79, 85, 87, 89, 136
dudi. pco, 85, 87, 89
dummy, 37
dunn.test (deprecated), 33
dunnTest, 34
ecdf, 15
elogis, 38
emmeans, 7, 35, 126, 136, 137
emtrends, 34
factorfit, 98
fc.multcomp (deprecated), 33
fisher.bintest, 17, 18, 38, 43
fisher.multcomp, 40, 99
fisher. test, 40, 45, 46, 63
fp.test, 41, 42
friedman.rating.test (deprecated), 33
G. bintest, 18, 39, 42
G.mul tcomp, 44, 46
G.test, 44, 45, 47, 57, 58, 99
G. theo.multcomp, 46, 46
glm, 48, 51, 52, 117, 125, 140
glm.nb, 117
glmer, 96, 117, 140
glmer.nb, 117
glmmPQL, 117
gls, 117
GPA, 47, 48, 69, 85, 88, 89
GPA. test, 47
hclust, 33
hist, 9
ind. contrib, 48
ipca, \(68,72,76,79,85,87,89\)
isoMDS, \(85,87,89\)
kruskal.rating.test (deprecated), 33
lda, \(67,68,72,75,76,79,85,87\)
least.rect, 48, 49, 49, 117
lines, 128
lm, 35, 48, 117, 128
lm.influence, 49
lme, 117
lmer, 117
lmList, 117
loc.slp, 50
logis.fit, 51
logis.noise, 52
manova, 35, 117
metaMDS, \(85,87,89\)
mod, 52
monoMDS, \(85,87,89\)
mood.medtest, 53, 100
mosaicplot, 16, 19
mqqnorm, 10, 55, 117
mshapiro.test, \(11,55,55,56,117\)
multinom, 24, 95, 124-126, 135
multinomial.multcomp, 19, 20, 44, 56, 58
multinomial.test, 20, 22, 44-47, 57, 57, 58, 59
multinomial.theo.multcomp, 22, 46, 47, 58, 58
multtest.cor, 59
multtest.gp, 61, 63
multtest.gp.bin, 62
MVA.anova, 63
MVA.biplot, 64, 82
MVA.cmv, 34, 65, 90-92, 122
MVA.cor, 68
MVA.corplot, 64, 65, 70, 82
MVA.cv, 34, 73, 90-92, 122
MVA. load, 75
MVA. loadplot, 77, 82
MVA. pairplot, 80, 82
MVA. plot, 34, 35, 65, 71, 78, 81, 81, 85, 94
MVA. scoreplot, 64, 80-82, 82, 93, 94
MVA. scores, 86, 98
MVA. synt, 34, 88
MVA. test, 35, 90, 101, 102
MVA. trajplot, 82, 92
mvr, 35, 67-69, 72, 75, 76, 79, 85, 87, 89
nls, 52, 117
nlsList, 117
nmds, \(85,87,89\)

OR.multinom, 95
ord.rw, 95
overdisp.glmer, 96
p.adjust, 17, 19, 21, 23, 27, 39, 40, 42, 44, 46, 56, 58, 60-62, 91, 97-101,

103-105, 107, 122, 123, 125, 138, 140
pairwise.CDA.test, 96
pairwise.factorfit, 98
pairwise.G.test, 46, 99
pairwise.manova (deprecated), 33
pairwise.mood.medtest, 100
pairwise.MVA.test, 101
pairwise.perm.manova, 102
pairwise.perm.t.test, 104
pairwise. perm.var.test, 105, 107
pairwise.t.test, 105
pairwise.to.groups (deprecated), 33
pairwise.var.test, 106, 106
pairwise.wilcox.rating.test
(deprecated), 33
pairwise.wilcox.test, 141
pca, \(76,79,85,87,89\)
pcaiv, 69, 72, 76, 79, 85, 86, 88, 89
pcaivortho, \(69,72,76,79,85,88,89\)
pco, 85, 87, 89
pcoa, \(85,87,89\)
pcor, 107, 109
pcor.test, 108, 108
perf, 35-37
perm.anova, 61, 62, 110
perm.bartlett.test, 111
perm.cor.test, 112
perm.t.test, 61, 62, 114
perm.var.test, 115
plot.multtest.cor (multtest.cor), 59
plot.multtest.gp (multtest.gp), 61
plot.multtest.gp.bin(multtest.gp.bin), 62
plot1 comp.ind (deprecated), 33
plot1comp. var (deprecated), 33
plotresid, 117
plotsurvivors, 118
pls, 68, 69, 72, 73, 76, 79, 85-89
plsda, 68, 72, 76, 79, 85, 87, 118, 119
PLSDA. ncomp (deprecated), 33
PLSDA. test (deprecated), 33
PLSDA.VIP, 118
plsr, 66, 74, 91
points, 51
prcomp, 76, 79, 85, 87, 89
predict.CDA.cv, 119
predict.coadisc, \(13,120,120\)
predict.lda, 66, 74, 91, 121
predict.MVA.cmv, 67, 75
predict.MVA.cmv (predict.MVA.cv), 121
predict.MVA.cv, 121
princomp, 76, 79, 85, 87, 89
procrustes, 85,88
procuste, \(72,76,79,85,88,90\)
prop.bin.multcomp, 21, 122
prop.multcomp, 123, 123
prop.multinom, 124, 138
prop.multinom.test, 125
prop.test, \(16,19,21,40,124\)
pspearman, 109
qda, 67,75
qqPlot, 10-12, 55, 117
qresiduals, 117
rating.emmeans, 34, 126
rating.lsmeans (deprecated), 33
rating.prob, 127
rcc, 69, 72, 76, 79, 86, 88, 89
rda, 63, 68, 69, 71, 72, 76, 79, 85-89, 136
reg.ci, 128
rgcca, 86, 88, 90
RVAideMemoire (RVAideMemoire-package), 4
RVAideMemoire-package, 4
s.corcircle2 (deprecated), 33
scale, 135
scat.cr, 129
scat.mix.categorical (deprecated), 33
scat.mix.numeric (deprecated), 33
scatter.coa2 (deprecated), 33
scores.cca, 85-88
scores.rda, \(85,87,88\)
se, 130
segments, 51
seq, 131
seq2, 130
sgcca, 86, 88
shapiro.test, 12, 56, 117
sipca, 68, 72, 76, 79, 85, 87, 89
spca, \(68,72,76,79,85,87,89\)
spearman.ci, 131, 133
spearman.cor.multcomp, 132
split, 133
splitf, 13, 66, 74, 133
splsda, 68, 72, 76, 79, 85, 87
stand, 134
summary.manova, 14
survreg, 117
t. test, 61,115
test.multinom, 135
to. dudi, 95, 136
user.cont, 136
```

var.test, 116
wald.ptheo.multinom.test, 137
wald.ptheo.test, 138,139
wcmdscale, 85, 87, 89, 136
wilcox.paired.multcomp, }14
wilcox.paired.rating.multcomp
(deprecated), 33
wilcox.rating.signtest (deprecated), 33
wilcox.rating.test (deprecated), 33
wilcox.signtest, 141
wilcox.test, 42, 141, 142
wmean, 143
wrapper.rgcca, 69, 73, 76, 79, 86, 88, }9
wrapper.sgcca, 69, 73, 76, 79, 86, 88

```
```

