Package ‘RStorm’

November 29, 2018
Type Package

Title Simulate and Develop Streaming Processing

Version 1.0

Date 2018-11-29

Author Maurits Kaptein

Maintainer Maurits Kaptein <maurits@mauritskaptein.com>

Description While streaming processing provides opportunities to deal with ex-
tremely large and ever growing data sets in (near) real time, the development of streaming algo-
rithms for complex models is often cumbersome: the software packages that facilitate stream-
ing processing in production environments do not provide statisticians with the simulation, esti-
mation, and plotting tools they are used to. Developers of streaming algorithms would thus bene-
fit from the flexibility of [R] to create, plot and compute data while developing streaming algo-
rithms. Package RStorm implements a streaming architecture modeled on Storm for easy devel-
opment and testing of streaming algorithms in [R]. RStorm is not intended as a production pack-
age, but rather a development tool for streaming algorithms.

License GPL-2

Depends plyr

RoxygenNote 6.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-11-29 15:40:03 UTC

R topics documented:

RStorm-package 2
AddBolt L 5
AddFinalize 6
Bolt . . . e 7
ChangeSpout e e e 8
Emit e 9
GetHash e 11
GetHashList e e e 12

2 RStorm-package

GetHashNames e e e 13
GetTrack e e e e e e 14
GetTrackNames e e 15
RStorm e e 17
RStorm.env e e 19
SENLENCES . . & v v v v e 19
SetHash e e e 20
ShowFinalize e e 21
Topology e 22
TrackRow e 24
Tuple . . . e 25

Index 27

RStorm-package Simulate a Streaming Process in [R]
Description

While streaming processing provides opportunities to deal with extremely large and ever grow-
ing data sets in (near) real time, the development of streaming algorithms for complex models is
often cumbersome: the software packages that facilitate streaming processing in production envi-
ronments do not provide statisticians with the simulation, estimation, and plotting tools they are
used to. Developers of streaming algorithms would thus benefit from the flexibility of [R] to create,
plot and compute data while developing streaming algorithms. RStorm implements a streaming
architecture modeled on Storm for easy development and testing of streaming algorithms in [R].
Package RStorm is not intended as a production package, but rather a development tool for stream-
ing algorithms. See the below examples for some of the usages of RStorm for the development and
comparison of streaming algorithms.

Details of the package, examples of streaming algorithms, and examples of the use of RStorm can
be found at http://software.mauritskaptein.com/RStorm

Details
Package: RStorm
Type: Package
Version: 0.9
Date: 2013-07-26
License: GPL-2
Author(s)

Maurits Kaptein

Maintainer: Maurits Kaptein <maurits @ mauritskaptein.com>

RStorm-package

See Also

ddply RStorm Topology

Examples

HHHHHHHHHHAHEEHHHHEH
a simple stream to compute a sum:
HHHHHHAEE

create some data:
x <- seq(1, 1000)

start a topology
topology <- Topology(data.frame(x=x))

define a bolt and add it to the topology
computeSum <- function(x, ...){

sum <- GetHash("sum")
if(is.data.frame(sum)){

x <= sum + (x[11)

3

SetHash("sum”, x)

3
topology <- AddBolt(topology, Bolt(computeSum))

Run the stream:
result <- RStorm(topology)

Inspect the result
print(GetHash("sum”, result))

#plot (topology)

HHHHHHARHE AR

Example of a stream to compare two

methods of streaming variance computation:
HHHHHHAEE A

Generate some data

set.seed(10)

t <- 100

x <- rnorm(t,0,1)

Look at the variance as computed by var():
var(x)

Start a topology
topology <- Topology(data.frame(x=x))

Bolt for "Sum of Squares Method” with tracking over time
var.SS <- function(x, ...){

RStorm-package

params <- GetHash("params1")
if(!is.data.frame(params)){

params <- list()

params$n <- params$sum <- params$sum2 <- @
3

n <- params$n + 1

sum <- params$sum + as.numeric(x[1])

sum2 <- params$sum2 + as.numeric(x[1]172)
if(n>1){

var <= 1/(n*x(n-1)) * (n*sum2 - sum*2)

} else {

var <- 0

3

SetHash("params1”, data.frame(n=n, sum=sum, sum2=sum2, var=var))
TrackRow("var.SS", data.frame(var=var))

}

Bolt for "Welford's"” Method:

var.Welford <- function(x, ...){

x <- as.numeric(x[1])

params <- GetHash("params2")
if(!is.data.frame(params)){

params <- list()

params$M <- x

params$S <- params$n <- @

}

n <- params$n + 1

M <- params$M + (x - params$M) / n
S <- params$S + (x - params$M)=*(x-M)

if(n>1){

var <- S / (n-1)

} else {

var <- 0

3

SetHash("params2"”, data.frame(n=n, M=M, S=S, var=var))
TrackRow("var.Welford”, data.frame(var=var))

}

Add both topologies to a Stream:

topology <- AddBolt(topology, Bolt(var.SS))
topology <- AddBolt(topology, Bolt(var.Welford))
result <- RStorm(topology)

Plot the results over the stream
plot(c(1:t), GetTrack("var.Welford”, result)$var, type="1")
lines(c(1:t), GetTrack("var.SS", result)$var, col="red")

Similar, but with a dataset
in which the mean is very large compared to the variance:

AddBolt 5

x2 <= rnorm(t,10°8,1)

topology2 <- Topology(data.frame(x=x2))

topology2 <- AddBolt(topology2, Bolt(var.SS))
topology2 <- AddBolt(topology2, Bolt(var.Welford))
result2 <- RStorm(topology?)

This time the standard SS methods screws up (mind the different y scale):
(And mind the fact that the SS method gives NEGATIVE variance)

plot(c(1:t), GetTrack("var.Welford”, result2)$var, type="1", ylim=c(-10, 11))
lines(c(1:t), GetTrack("var.SS", result2)$var, col="red")

AddBolt Function to add a Bolt to a Topology object to specify a stream.

Description

AddBolt is an auxiliary function for building up a RStorm topology. After initializing a Topology
object the AddBolt function can be used to build the topology and specify the order of the Bolts. A
Bolt receives as its first argument the Tuple emitted by the previous element in the Stream.

Usage

AddBolt(topology, bolt, .verbose = TRUE)

Arguments
topology a Topology object to add the bolt to.
bolt aBolt to add to the topology. These are created using the Bolt() function.
.verbose a logical indicator to state whether or not verbose output should be printed.
Default TRUE.
Value

An object of type Topology which is a list containing the following elements:

spout the data.frame passed as a spout
bolts a list of bolts, see Bolt
finailze the finalize function to be used for the stream

The specified Bolt has now been added to the list of bolts. See Topology for more info.

Warning

Functions which get added to a Topology using the AddBolt functionality should always use the ...
argument. This argument is used to facilitate the processing of the stream. See example below for
a minimal functional example of a correctly specified bolt.

6 AddFinalize

Author(s)

Maurits Kaptein

See Also

See Also: Topology, Bolt, RStorm

Examples

Create a topology and add a bolt to it.

bolt1 <- function(x, ...){print(x)}

topology <- Topology(data.frame(x=c(1:10)))

topology <- AddBolt(topology, Bolt(boltl, listen=0))
topology

AddFinalize Function to add a finalize function to a Topology

Description

AddFinalize is an auxiliary function for building up a RStorm topology. After initializing a
Topology object the AddFinalize function can be used to add a final function, which receives as its
parameter a list of all hashMaps stored during the stream. After running the stream GetHashList
can be used to receive an object that is the same as the object received by the finalize function.

Arguments

topology a Topology object to add the bolt to.

bolt aBolt to add to as the finalize function.

.verbose a logical indicator to state whether or not verbose output should be printed.
Value

An object of type Topology which is a list containing the following elements:

spout the data.frame passed as a spout
bolts a list of bolts, see Bolt
finailze the finalize function to be used for the stream

The specified Bolt has now been added to the finalize function. See Topology for more info.

Author(s)

Maurits Kaptein

Bolt 7

See Also

See Also: Topology, Bolt, RStorm

Examples

bolt1 <- function(x, ...){print(x)}

topology <- Topology(data.frame(x=c(1:10)))
topology <- AddFinalize(topology, Bolt(boltl))
topology

Bolt Function to create a Bolt object to add to a stream

Description
Function to create a Bolt object. A Bolt object consists of a function which receives as its first
argument the Tuple emitted by the element the Bolt listens to.

Usage
Bolt(FUNC, listen = 0, boltID = 0)

Arguments
FUNC a [R] function with a first argument which receive a Tuple and using the ,...
specification to receive arguments auxiliary to the functioning of the stream.
listen a number indicating which element in the topology to listen too. 0 indicates
the Spout itself, while other integers refer to the Tuples emitted by other Bolts
along the Stream. Default is 0. Printing the Topology allows one to see the
position number of each Bolt.
boltID (optional) the ID of this bolt. A given name — mostly a number — to pass the
name of the bolt to the bolt itself which can be used to create (e.g.) a hashMap
that is distinct for the current bolt.
Value

An object of type Bolt which is a list containing the following elements:

name the name of the function that was passed when initializing the Bolt
func the function itself
listen the identifier of the element in the stream from which the Bolt receives its Tuples
id the id of the current Bolt
Warning

Functions used as bolt in a stream should always use the dots argument (...) to facilitate the internal
working of RStorm.

8 ChangeSpout

Additional Info

The is.Bolt function checks whether an object is of Type Bolt and is used internally.

Author(s)

Maurits Kaptein

See Also

See Also: Topology, AddBolt, RStorm

Examples

Create a Bolt:
bolt1 <- function(x, ...){print(x)}
Bolt(boltl, listen=0, boltID=12)

ChangeSpout Function to change the Spout of a Topology

Description
The ChangeSpout function is used to change the spout of an topology that was already defined. It
can be used (e.g) for the simulation of a data stream process on multiple data-sets.

Usage

ChangeSpout (topology, spout)

Arguments

topology a RStorm Topology object.

spout a new spout. E.g., a new codedata.frame.
Value

An object of class Topology which is a list containing the following elements:

spout the data.frame passed as a spout

bolts a list of bolts, see Bolt

finailze the finalize function to be used for the stream
Warning

Functions used as bolt in a stream should always use the dots argument (...) to facilitate the internal
working of RStorm.

Emit

Additional Info

The is.Bolt function checks whether an object is of Type Bolt and is used internally.

Author(s)

Maurits Kaptein

See Also

See Also: Topology, AddBolt, RStorm

Examples

create a data set.
x <- seq(1, 100)
topology <- Topology(data.frame(x=x))

Setup a simple topology to compute a sum
computeSum <- function(x, ...){

sum <- GetHash("sum")
if(is.data.frame(sum)){

x <= sum + (x[11)

3

SetHash("sum”, x)

3

Run the stream

topology <- AddBolt(topology, Bolt(computeSum))
result <- RStorm(topology)

print(GetHash("sum”, result))

Create an alternative dataset
x2 <- seq(2, 100)

Change the dataset in the existing topology
topology <- ChangeSpout(topology, data.frame(x=x2))

Run the new dataset
result <- RStorm(topology)
print(GetHash("sum”, result))

Emit Function to emit a Tuple along the stream. The emitted data x should
be a single row of a data.frame.

10 Emit

Description

Function to emit a Tuple along the stream. The emitted data x should be a single row of a
data.frame. Tuples are the main data format passed around in an RStorm stream, and each emitted
object is checked by the Emit function to be of class Tuple.

Usage
Emit(x, .name = NULL, ...)
Arguments
X a Tuple. The only arguments that needs to be provided by the user.
.name (internal) the name of the emitter. Used internally.
Additional arguments.
Value

TRUE. The Emit function does not return anything but rather adds the emitted Tuple to the internal
list of emitted objects to be used by Spouts listening to the Spout or Bolt from which the data
is emitted. The ...argument always needs to be passed in a call to Emit() since it facilitates the
internal working of the RStorm.

Author(s)

Maurits Kaptein

See Also

See Also: Topology, AddBolt, RStorm

Examples

This example can only be run within a Stream.

If run outside the Steam the Emit function will issue an error.
Not run:

x <- data.frame(varl = c("test"”, "test2"), var2 = c(2,5))
Emit(Tuple(x[1,1), ...)

End(Not run)

GetHash 11

GetHash Function to retrieve objects stored locally during the running of the
Stream.

Description

Within bolts in used in a RStorm the GetHash and SetHash functions can be used to access a local
store (or hashmap) during the stream. This corresponds to the ability of tracking parameters over the
stream using a hashmap or database system as implemented in production streaming software. The
function is overloaded to retrieve the state of the hashmap at the end of a stream from an RStorm
result object. See the examples for the two usages.

Usage

GetHash(name, object = NULL)

Arguments
name a string containing the name of the hashmap that is accessed from within the
Stream.
object (optional) the RStorm result object. If used outside of a bolt in a stream the
result object needs to be passed in which the end-state of the hashmaps created
in the stream are stored.
Value

a dataframe containing whatever was set using the SetHash function.

Author(s)

Maurits Kaptein

See Also

See Also: SetHash, GetHashList, GetHashNames

Examples

Create a topology with a spout:
topology <- Topology(data.frame(x=rnorm(100,0,1)))

declare a bolt and add it to the topology
computeSum <- function(x, ...){

sum <- GetHash("sum") # get from local store
if(is.data.frame(sum)){

x <= sum + (x[1])

}

12 GetHashList

SetHash(”sum”, x) # add to local store

3
topology <- AddBolt(topology, Bolt(computeSum))

run the stream
result <- RStorm(topology)

access the local store
print(GetHash("sum”, result))

GetHashList Function to retrieve a list of locally stored object resulting from the
stream.

Description
Function retrieves from an RStorm result object (after running a stream) all the items stored in
during the stream (using SetHash) as a list.

Usage
GetHashList(object = NULL)

Arguments

object a RStorm result object

Value

a list containing all objects stored using SetHash during a stream.

Author(s)

Maurits Kaptein

See Also

See Also: SetHash, GetHash, GetHashNames

Examples

Create a topology
topology <- Topology(data.frame(x=rnorm(100,0,1)))

Create two bolts and add them to the topology
computeSum <- function(x, ...){

sum <- GetHash("sum")

if(is.data.frame(sum)){

GetHashNames 13

x <= sum + (x[11)

3

SetHash("sum”, x)

}

computeSumSquared <- function(x, ...){

sum2 <- GetHash("sum2")

if(is.data.frame(sum2)){

X <= sum2 + (x[1]*2)

3

SetHash("sum2", x)

3

topology <- AddBolt(topology, Bolt(computeSum))
topology <- AddBolt(topology, Bolt(computeSumSquared))

Run the stream
result <- RStorm(topology)

Get the names of all the stored objects during the stream
names (GetHashList(result))

GetHashNames Function to retrieve the names of locally stored objects in the stream.

Description

Function retrieves from an RStorm result object (after running a stream) all the names of all items
stored in during the stream (using SetHash) as a list.

Usage

GetHashNames(object)
Arguments

object a RStorm result object
Value

a list containing all names stored using SetHash during a stream.

Author(s)

Maurits Kaptein

See Also

See Also: SetHash, GetHash, GetHashNames

14 GetTrack

Examples

Create a topology
topology <- Topology(data.frame(x=rnorm(100,0,1)))

Create two bolts and add them to the topology
computeSum <- function(x, ...){

sum <- GetHash("sum")

if(is.data.frame(sum)){

X <= sum + (x[11)

3

SetHash("sum”, x)

3

computeSumSquared <- function(x, ...){

sum2 <- GetHash("sum2")

if(is.data.frame(sum2)){

X <= sum2 + (x[1]*2)

3

SetHash("sum2"”, x)

3

topology <- AddBolt(topology, Bolt(computeSum))
topology <- AddBolt(topology, Bolt(computeSumSquared))

Run the stream
result <- RStorm(topology)

Get the names of all the stored objects during the stream
print(GetHashNames(result))

GetTrack Function to retrieve objects stored using the SetTrack functionality
during a stream.

Description

Within bolts in a RStorm stream the TrackRow function can be used to store the state of variables
at that point during the stream. The TrackRow function will store values incrementally during the
stream. Thus, TrackRow enables one to store a set of parameter at each event in a Bolt. The current
GetTrack function allows for inspection of these stored values after running the Stream by passing
the RStorm result object.

Usage

GetTrack(name, x)

GetTrackNames 15

Arguments
name a string with the name of the tracked parameter values. Name corresponds to the
name used in the call to the TrackRow function during the stream.
X a RStorm result object.
Value

a data.frame containing the parameters that are tracked at each iteration of a bolt.

Author(s)

Maurits Kaptein

See Also

See Also: TrackRow, SetHash, GetHash, GetTrackNames

Examples

Create a topology with a spout
topology <- Topology(data.frame(x=c(1:10)))

Add a bolt to the topology

computeSum <- function(x, ...){

sum <- GetHash("sum")
if(is.data.frame(sum)){

x <- sum + (x[11)

3

SetHash("sum”, x)

Track the current state during the stream:
TrackRow("sum”, data.frame(x=x))

3

topology <- AddBolt(topology, Bolt(computeSum))

Run the stream
result <- RStorm(topology)

Inspect the sums during the stream
GetTrack("sum”, result)

GetTrackNames Function to retrieve the names of all tracked objects using SetTrack

16 GetTrackNames

Description

Within bolts in a RStorm stream the TrackRow function can be used to store the state of variables
at that point during the stream. The TrackRow function will store values incrementally during the
stream. Thus, TrackRow enables one to store a set of parameter at each event in a Bolt. The current
GetTrackNames function allows to inspect all the tracked objects of a stream by passing the RStorm
result object.

Usage

GetTrackNames(x)
Arguments

X a RStorm result object.
Value

A list of names of the tracked objects during the stream.

Author(s)

Maurits Kaptein

See Also

See Also: TrackRow, SetHash, GetHash, GetTrack

Examples

Create a topology with a spout
topology <- Topology(data.frame(x=c(1:10)))

Add a bolt to the topology

computeSum <- function(x, ...){

sum <- GetHash("sum")
if(is.data.frame(sum)){

x <= sum + (x[11)

3

SetHash("sum”, x)

Track the current state during the stream:
TrackRow("sum”, data.frame(x=x))

3
topology <- AddBolt(topology, Bolt(computeSum))

Run the stream
result <- RStorm(topology)

Inspect the sums during the stream
GetTrackNames(result)

RStorm

17

RStorm

Main function to run a stream.

Description

RStorm provides the main functionality of the RStorm package. The RStorm function is used to run
a stream defined using a Topology. The Topology defines the spout (the data-source for the stream)
and the order of processing units (bolts). See example below and in the main package description
for examples of the usage of RStorm.

More details of the package, examples of streaming algorithms, and examples of the use of RStorm
can be found at http://software.mauritskaptein.com/RStorm

Usage
RStorm(topology, .verbose = TRUE, .debug = FALSE, .batches = 100, ...)
Arguments

topology a topology object specified using Topology. The topology contains all the nec-
essary information (the definition of the spouts, the bolts, and the order of pro-
cessing) for the stream to run in full.

.verbose a logical indicator for verbose output. Default is TRUE.

.debug a logical indicator for debug mode. If in debug mode all objects stored during
the running of the stream will persist in memory and can be accessed using
standard calls to 1s(). Default is FALSE.

.batches a number. Determines the size of batches processed by a stream. While RStorm
simulates streaming processing, in actuality the rows of the data.frame defined
in the spout are iterated through in batches to prevent memory overflow when
the spout contains a large number of rows. This argument sets the size of these
batches and with it limits the size of memory allocated to emitted data during
the stream. Default batch size is 100.
additional arguments to pass to (e.g.) bolts or plotting functions.

Value

An object of type RStorm which is a list containing the following elements:

data

track

finalize

a list containing all the hashmaps stored during the stream using SetHash. Can
be accessed by passing the result object to GetHash.

a list containing all the data.frames stored using the TrackRow functionality. Can
be accessed by passing the result object of an RStorm to GetTrack.

the result of the finalize function. If a finalize function is added to the Topology
this field will contain whatever was returned by the finalize function and can be
accessed directly using ShowFinalize. If no finalize function was added to the
topology or the finalize function does not return anything the value of finalize
will be false

18 RStorm

Additional Info

The is.RStorm function checks whether an object is of Type RStorm and is used internally.

Author(s)

Maurits Kaptein

References

http://software.mauritskaptein.com/RStorm

See Also

See Also: Topology, Bolt, Tuple, Emit, TrackRow, SetHash, GetHash, GetTrack

Examples

Run a simple RStorm. First, create some data:
x <- seq(1, 1000)

Second, we start defining the topology
topology <- Topology(data.frame(x=x))

Third, we define a bolt.

This bolt computes the sum of a number stored
in a local Hashmap and the Tuple (x) that is received
computeSum <- function(x, boltID, ...){

sum <- GetHash(paste("sum”, boltID))
if(is.data.frame(sum)){

x <= sum + (x[11)

3

SetHash(paste(”sum”, boltID), x)
Emit(Tuple(x=x), ...)

3

Add the bolts to the topology.

Here the first bolt computes the sum of the sequence

and the second bolt computes the sum of summed elements
topology <- AddBolt(topology, Bolt(computeSum, listen=0, boltID=1))
topology <- AddBolt(topology, Bolt(computeSum, listen=1, boltID=2))
result <- RStorm(topology)

print(GetHash("sum 1", result))

print(GetHash("sum 2", result))

RStorm.env 19

RStorm.env Environment used by RStorm for internal storage of objects.

Description

Environment used by RStorm for internal storage of objects. These objects facilitate the functioning
of the Stream and store the emitted Tuples in between Bolts.

Author(s)

Maurits Kaptein

See Also

See Also: RStorm

sentences Sentences of the first section of the paper by Student Introducing the
T-Test.

Description

This dataset gives a number of sentences — the first sentences from the article “The probable error
of a mean” by Student.

Usage

rivers

Format
A data.frame containing two columns, one with an ID (number) for each sentence, and one with the
sentences itself.

Source

The probable error of a mean, Biometrica, 1908

References

Student (1908) The probable error of a mean. Biometrica, 6, 1, 1-25.

20 SetHash

SetHash Function to store a data. frame during a stream.

Description

Within bolts in used in a RStorm the GetHash and SetHash functions can be used to access a local
store (or hashmap) during the stream. This corresponds to the ability of tracking parameters over
the stream using a hashmap or database system as implemented in production streaming software.

Usage
SetHash(name, data, ...)

Arguments
name a string containing the name of the stored object
data a data.frame (or scalar) to be stored

Value

If storing the value is successful returns TRUE.

Author(s)

Maurits Kaptein

See Also

See Also: TrackRow, SetHash, GetHash, GetTrack

Examples

topology <- Topology(data.frame(x=rnorm(100,0,1)))
computeSum <- function(x, ...){

sum <- GetHash("sum")

if(is.data.frame(sum)){

x <= sum + (x[1])

3

SetHash("sum”, x)

3

topology <- AddBolt(topology, Bolt(computeSum))
result <- RStorm(topology)

print(GetHash("”sum"”, result))

ShowFinalize 21

ShowFinalize Function to display the name of the finalize function.

Description

Utility function to display the finalize function of a RStorm topology object or display the result of
a finalize function of an RStorm result object.

Usage

ShowFinalize(x)

Arguments

X a topology created using Topology

Value

prints the finalize function of a Topology object.

Author(s)

Maurits Kaptein

See Also

See Also: Topology, RStorm, GetHash,

Examples

Simple display of the finalize function itself
topology <- Topology(data.frame(x=c(1:10), y=rep(1,10)))

bolt.1 <- function(x, ...){ SetHash("finalize", data.frame(x=99)) }
topology <- AddBolt(topology, Bolt(bolt.1))

comp.av <- function(object, ...){
return(rep(object$finalize$x, 10)) }

topology <- AddFinalize(topology, Bolt(comp.av))
ShowFinalize(topology)

and in the result object:
result <- RStorm(topology)
ShowFinalize(result)

22 Topology

Topology Function to create a topology

Description

By passing a spout (dataframe) to this function and storing its return object you can start building a
topology for a RStorm stream. See codeRStorm for more detailed examples of the use of Topology.
The Topology is the most important concept when defining a RStorm stream.

Usage

Topology(spout, name = NULL, .verbose = TRUE)

Arguments
spout a data.frame containing multiple rows of data which are to be iterated through
in the stream.
name an optional name of this topology.
.verbose an optional boolean to indicate whether you want verbose output or not. Default
is TRUE
Value

An object of class Topology which is a list containing the following elements:

spout the data.frame passed as a spout

bolts a list of bolts, see Bolt

finailze the finalize function to be used for the stream
Additional Info

The is.Topology function checks whether an object is of Type Topology and is used internally.

Note

For examples see www.mauritskaptein.com/software/RStorm

Author(s)

Maurits Kaptein

See Also

Bolt, Tuple, RStorm

Topology

Examples

HHHHHHHHHHAHEHHHHHHEH A
Example of a stream to compare two methods of streaming variance computation:
B s S

Generate some data

set.seed(10)

t <- 100

x <= rnorm(t,0,1)

Look at the variance as computed by var():
var(x)

Start a topology
topology <- Topology(data.frame(x=x))

Bolt for "Sum of Squares Method” with tracking over time
var.SS <- function(x, ...){

params <- GetHash("params1")

if(!is.data.frame(params)){

params <- list()

params$n <- params$sum <- params$sum2 <- @

3

n <- params$n + 1

sum <- params$sum + as.numeric(x[1]1)

sum2 <- params$sum2 + as.numeric(x[1]*2)

if(n>1){

var <- 1/(nx(n-1)) * (n*sum2 - sum*2)

} else {

var <- 0

3

SetHash("params1”, data.frame(n=n, sum=sum, sum2=sum2, var=var))
TrackRow("var.SS", data.frame(var=var))

3

Bolt for "Welford's"” Method:

var.Welford <- function(x, ...){

x <- as.numeric(x[1])

params <- GetHash("params2")
if(!is.data.frame(params)){

params <- list()

params$M <- x

params$S <- params$n <- @

3

n <- params$n + 1

M <- params$M + (x - params$M) / n
S <- params$S + (x - params$M)=*(x-M)

if(n>1){

23

24 TrackRow
var <= S / (n-1)
} else {
var <- 0
}
SetHash("params2”, data.frame(n=n, M=M, S=S, var=var))
TrackRow("var.Welford”, data.frame(var=var))
}
Add both topologies to a Stream:
topology <- AddBolt(topology, Bolt(var.SS))
topology <- AddBolt(topology, Bolt(var.Welford))
result <- RStorm(topology)
Plot the results over the stream
plot(c(1:t), GetTrack("var.Welford”, result)$var, type="1")
lines(c(1:t), GetTrack("var.SS", result)$var, col="red")
Now the same variance calculation,
but with a dataset in which the mean is
very large compared to the variance:
x2 <= rnorm(t,10°8,1)
topology2 <- Topology(data.frame(x=x2))
topology2 <- AddBolt(topology2, Bolt(var.SS))
topology2 <- AddBolt(topology2, Bolt(var.Welford))
result2 <- RStorm(topology?2)
This time the standard SS methods screws up (mind the different y scale):
(And mind the fact that the SS method gives NEGATIVE variance)
plot(c(1:t), GetTrack("var.Welford”, result2)$var, type="1", ylim=c(-10, 11))
lines(c(1:t), GetTrack("var.SS", result2)$var, col="red")
TrackRow Function to store the value of some object in the stream over time.

Description

Within bolts in a RStorm stream the TrackRow function can be used to store the state of variables
at that point during the stream. The TrackRow function will store values incrementally during the
stream. Thus, TrackRow enables one to store a set of parameter at each event in a Bolt.

Usage

TrackRow(name, row)

Tuple 25

Arguments
name a string with the name of the object that is stored.
row a single row data.frame containing the parameters that are supposed to be tracked
over time. See example.
Value

TRUE if the row is correctly stored.

Author(s)

Maurits Kaptein

See Also
Topology, GetTrack, GetTrackNames

Examples

Create a topology with a simple spout
topology <- Topology(data.frame(x=c(1:10)))

Define the bolt and add it

computeSum <- function(x, ...){

sum <- GetHash("sum")

if(is.data.frame(sum)){

x <- sum + (x[11)

3

SetHash("sum”, x)

TrackRow("sum", data.frame(x=x))

3

topology <- AddBolt(topology, Bolt(computeSum))

Run the stream
result <- RStorm(topology)

Insepct the result over the timepoints in the stream
GetTrack("sum”, result)

Tuple Function to create an object of type Tuple to emit down a stream.

Description

A Tuple is the main data object that is passed around in a stream. The spout emits Tuples to the
different Bolts, and Bolts can Emit Tuples to one another depending on the Topology. The Emit
function checks whether indeed objects of type Tuple are emitted. A Tuple object is a single row
data.frame.

26

Usage
Tuple(x, ...)
Arguments
X a single row data.frame
any other argument
Value

an object of type Tuple to be used by an RStorm emitter function

Additional Info

The is.Tuple function checks whether an object is of Type Tuple and is used internally.

Author(s)

Maurits Kaptein

See Also

Emit, Topology, RStorm

Examples

Example of a simple object emitted down a stream
spout <- data.frame(x=seq(1,4))
topology <- Topology(spout)

The Emit function will check if the emitted object is indeed a Tuple

bolt.1 <- function(x, ...){
Emit(Tuple(x), ...)

3

bolt.2 <- function(x, ...){
X <- as.numeric(x[1])
print(x*2)

3

topology <- AddBolt(topology, Bolt(bolt.1, listen=0))
topology <- AddBolt(topology, Bolt(bolt.1, listen=1))
topology <- AddBolt(topology, Bolt(bolt.2, listen=2))

result <- RStorm(topology)
#plot (topology)

Tuple

Index

+Topic datasets

sentences, 19

+Topic programming

AddBolt, 5
AddFinalize, 6
Bolt, 7
ChangeSpout, 8
Emit, 9
GetHash, 11
GetHashList, 12
GetHashNames, 13
GetTrack, 14
GetTrackNames, 15
RStorm, 17
RStorm.env, 19
SetHash, 20
ShowFinalize, 21
Topology, 22
TrackRow, 24
Tuple, 25

+Topic utilities

AddBolt, 5
AddFinalize, 6
Bolt, 7
ChangeSpout, 8
Emit, 9
GetHash, 11
GetHashList, 12
GetHashNames, 13
GetTrack, 14
GetTrackNames, 15
RStorm, 17
RStorm.env, 19
SetHash, 20
ShowFinalize, 21
Topology, 22
TrackRow, 24
Tuple, 25

AddBolt, 5, 8-10

27

AddFinalize, 6
Bolt, 6, 7,7, 18, 22
ChangeSpout, 8
ddply, 3

Emit, 9, 18, 26

GetHash, 11, 12, 13, 15, 16, 18, 20, 21

GetHashList, /17, 12
GetHashNames, //-13, 13
GetTrack, 14, 16, 18, 20, 25
GetTrackNames, /15, 15, 25

is.Bolt (Bolt), 7
is.RStorm (RStorm), 17
is.Topology (Topology), 22
is.Tuple (Tuple), 25

plot.RStorm (RStorm), 17
plot.Topology (Topology), 22
print.RStorm (RStorm), 17
print.Topology (Topology), 22

RStorm, 3, 6-10, 17, 19, 21, 22, 26
RStorm-package, 2
RStorm.env, 19

sentences, 19
SetHash, 11-13, 15, 16, 18, 20, 20
ShowFinalize, 21

Topology, 3, 5-10, 18, 21, 22, 25, 26

TrackRow, 15, 16, 18, 20, 24
Tuple, 18, 22,25

	RStorm-package
	AddBolt
	AddFinalize
	Bolt
	ChangeSpout
	Emit
	GetHash
	GetHashList
	GetHashNames
	GetTrack
	GetTrackNames
	RStorm
	RStorm.env
	sentences
	SetHash
	ShowFinalize
	Topology
	TrackRow
	Tuple
	Index

