
Package ‘RStoolbox’
July 24, 2019

Type Package

Title Tools for Remote Sensing Data Analysis

Version 0.2.6

Description Toolbox for remote sensing image processing and analysis such as
calculating spectral indices, principal component transformation, unsupervised
and supervised classification or fractional cover analyses.

URL http://bleutner.github.io/RStoolbox,

https://github.com/bleutner/RStoolbox

BugReports https://github.com/bleutner/RStoolbox/issues

Encoding UTF-8

Depends R (>= 3.5.0)

Imports raster (>= 2.3-40), caret (>= 6.0-79), sp, XML, geosphere,
ggplot2, reshape2, rgeos, rgdal, codetools, parallel,
doParallel, foreach, Rcpp, methods

Suggests randomForest, kernlab, e1071, gridExtra, pls, testthat

LinkingTo Rcpp, RcppArmadillo

License GPL (>= 3)

LazyData true

RoxygenNote 6.1.1

NeedsCompilation yes

Author Benjamin Leutner [cre, aut],
Ned Horning [aut],
Jakob Schwalb-Willmann [aut],
Robert J. Hijmans [ctb]

Maintainer Benjamin Leutner <rstoolboxpackage@gmail.com>

Repository CRAN

Date/Publication 2019-07-23 23:12:10 UTC

1

2 R topics documented:

R topics documented:
classifyQA . 2
cloudMask . 3
cloudShadowMask . 5
coregisterImages . 7
decodeQA . 9
encodeQA . 9
estimateHaze . 11
fCover . 12
fortify.raster . 14
getMeta . 15
getValidation . 18
ggR . 19
ggRGB . 21
histMatch . 24
ImageMetaData . 25
lsat . 27
mesma . 27
normImage . 29
oneHotEncode . 29
panSharpen . 30
pifMatch . 32
predict.superClass . 33
predict.unsuperClass . 34
radCor . 35
rasterCVA . 37
rasterEntropy . 38
rasterPCA . 39
readEE . 40
readMeta . 41
readSLI . 42
rescaleImage . 43
rlogo . 44
rsOpts . 45
RStoolbox . 45
sam . 46
saveRSTBX . 48
spectralIndices . 49
srtm . 52
stackMeta . 53
superClass . 54
tasseledCap . 56
topCor . 58
unsuperClass . 59
validateMap . 60
writeSLI . 62

classifyQA 3

classifyQA Classify Landsat QA bands

Description

extracts five classes from QA band: background, cloud, cirrus, snow and water.

Usage

classifyQA(img, type = c("background", "cloud", "cirrus", "snow",
"water"), confLayers = FALSE, sensor = "OLI",
legacy = "collection1", ...)

Arguments

img RasterLayer. Landsat 8 OLI QA band.

type Character. Classes which should be returned. One or more of c("background",
"cloud", "cirrus","snow", "water").

confLayers Logical. Return one layer per class classified by confidence levels, i.e. cloud:low,
cloud:med, cloud:high.

sensor Sensor to encode. Options: c("OLI","TIRS","ETM+","TM","MSS").

legacy Encoding systematic Options: c("collection1","pre_collection").
Default is "collection1" for the Landsat Collection 1 8-bit quality designations.
Use "pre_collection" for imagery downloaded before the Collection 1 quality
designations were introduced

... further arguments passed to writeRaster

Details

By default each class is queried for *high* confidence. See encodeQA for details. To return the
different confidence levels per condition use confLayers=TRUE. This approach corresponds to
the way LandsatLook Quality Images are produced by the USGS.

Value

Returns a RasterLayer with maximal five classes:

class value
background 1L

cloud 2L
cirrus 3L
snow 4L
water 5L

4 cloudMask

Values outside of these classes are returned as NA. If confLayers = TRUE then a RasterStack
with one layer per condition (except ’background’) is returned, whereby each layer contains the
confidence level of the condition.

Confidence value
low 1L
med 2L
high 3L

See Also

encodeQA decodeQA

Examples

library(raster)
qa <- raster(ncol = 100, nrow=100, val = sample(1:2^14, 10000))

QA classes
qacs <- classifyQA(img = qa)
Confidence levels
qacs_conf <- classifyQA(img = qa, confLayers = TRUE)

cloudMask Simple Cloud Detection

Description

Developed for use with Landsat data cloudMask relies on the distinctive difference between the
blue (or any other short-wave band) and thermal band for semi-automated creation of a cloud mask.
Since it relies on thermal information it doesn’t work well for sensors without thermal bands.

Usage

cloudMask(x, threshold = 0.8, blue = "B1_sre", tir = "B6_sre",
buffer = NULL, plot = FALSE, verbose)

Arguments

x RasterBrick or RasterStack with reflectance and brightness temperature OR the
mask of a previous run of cloudMask with returnDiffLayer=TRUE.

threshold Numeric. cloud detection threshold. If not provided it will be guessed. Ev-
erything *below* this threshold will be considered a cloud pixel (unless it is
removed by filtering afterwards).

blue Character or integer. Bandname or number for the blue band

tir Character or integer. Bandname or number for the thermal band

cloudMask 5

buffer Integer. Number of pixels to use as a buffer that will be added to the identified
cloud centers.

plot Logical. Plots of the cloud mask for all sub-steps (sanitizing etc.) Helpful to
find proper parametrization.

verbose Logical. Print messages or suppress.

Value

Returns a RasterStack with two layers: CMASK contains the binary cloud mask (1 = cloud, NA =
not-cloud) and NDTCI contains the cloud index.

Note

Typically clouds are cold in the thermal region and have high reflectance in short wavelengths
(blue). By calculating a normalized difference index between the two bands and thresholding a
rough cloud mask can be obtained. Before calculating the spectral cloud index (let’s call it Nor-
malized Difference Thermal Cloud Index (NDTCI)) the thermal band will be matched to the same
value range as the blue band. Therefore, it doesn’t matter whether you provide DN, radiance or
brightness temperature.

This approach to cloud masking is very simplistic. And aims only at rough removal of poten-
tially clouded areas. Nevertheless, it is able to provide satisfactory results. More sophisticated
approaches, including cloud cast shadow detection can be found elsewhere, e.g. fmask1.

It can make sense to find a suitable threshold on a cropped version of the scene. Also make sure you
make use of the returnDiffLayer argument to save yourself one processing step. Buffering
should be seen as final polishing, i.e. as long as the pure cloud centers are not detected properly,
you might want to turn it off. since it takes some time to calculate. Once your mask detects obvious
cloud pixels properly re-enable buffering for fine tuning if desired. Finally, once a suitable threshold
is established re-run cloudMask on the whole scene with this threshold and go get a coffee.

See Also

cloudShadowMask

Examples

library(raster)
library(ggplot2)
Import Landsat example subset
data(lsat)
We have two tiny clouds in the east
ggRGB(lsat, stretch = "lin")

Calculate cloud index
cldmsk <- cloudMask(lsat, blue = 1, tir = 6)
ggR(cldmsk, 2, geom_raster = TRUE)

Define threshold (re-use the previously calculated index)

1http://code.google.com/p/fmask

6 cloudShadowMask

Everything above the threshold is masked
In addition we apply a region-growing around the core cloud pixels
cldmsk_final <- cloudMask(cldmsk, threshold = 0.1, buffer = 5)

Plot cloudmask
ggRGB(lsat, stretch = "lin") +

ggR(cldmsk_final[[1]], ggLayer = TRUE, forceCat = TRUE, geom_raster = TRUE) +
scale_fill_manual(values = "red", na.value = NA)

#' ## Estimate cloud shadow displacement
Interactively (click on cloud pixels and the corresponding shadow pixels)
Not run: shadow <- cloudShadowMask(lsat, cldmsk_final, nc = 2)

Non-interactively. Pre-defined shadow displacement estimate (shiftEstimate)
shadow <- cloudShadowMask(lsat, cldmsk_final, shiftEstimate = c(-16,-6))

Plot
csmask <- raster::merge(cldmsk_final[[1]], shadow)
ggRGB(lsat, stretch = "lin") +

ggR(csmask, ggLayer = TRUE, forceCat = TRUE, geom_raster = TRUE) +
scale_fill_manual(values = c("blue", "yellow"),
labels = c("shadow", "cloud"), na.value = NA)

cloudShadowMask Cloud Shadow Masking for Flat Terrain

Description

Intended for interactive use, cloudShadowMask will ask the user to select a few corresponding
cloud/cloudShadow pixels which will be used to estimate coordinates for a linear cloudmask shift.

Usage

cloudShadowMask(img, cm, nc = 5, shiftEstimate = NULL,
preciseShift = NULL, quantile = 0.2, returnShift = FALSE)

Arguments

img Raster* object containing the scene

cm Raster* object. Cloud mask (typically the result of cloudMask)

nc Integer. Number of control points. A few points (default) are fine because the
final shift is estimated by coregisterImages.

shiftEstimate
NULL or numeric vector of length two (x,y). Estimated displacement of shad-
ows in map units. If NULL, the user will be asked to select control points inter-
actively.

cloudShadowMask 7

preciseShift NULL or numeric vector of length two (x,y). Use this if cloud/cloud-shadow
displacement is already known, e.g. from a previous run of cloudShadowMask.

quantile Numeric (between 0 and 1). Quantile threshold used for image co-registration.
By default the 20% quantile of the total intensity (sum) of the image is used as
potential shadow mask.

returnShift Logical. Return a numeric vector containing the shift parameters. Useful if you
estimate parameters on a subset of the image.

Details

This is a very simplistic approach to cloud shadow masking (simple shift of the cloud mask). It
is not image based and accuracy will suffer from clouds at different altitudes. However, just as
cloudMask this is a quick and easy to use tool for Landsat data if you’re just working on a few
scenes and don’t have fMask or CDR data at hand. Although for some test scenes it does perform
surprisingly well.

Value

Returns a RasterLayer with the cloud shadow mask (0 = shadow, NA = not-shadow).

See Also

cloudMask

Examples

library(raster)
library(ggplot2)
Import Landsat example subset
data(lsat)
We have two tiny clouds in the east
ggRGB(lsat, stretch = "lin")

Calculate cloud index
cldmsk <- cloudMask(lsat, blue = 1, tir = 6)
ggR(cldmsk, 2, geom_raster = TRUE)

Define threshold (re-use the previously calculated index)
Everything above the threshold is masked
In addition we apply a region-growing around the core cloud pixels
cldmsk_final <- cloudMask(cldmsk, threshold = 0.1, buffer = 5)

Plot cloudmask
ggRGB(lsat, stretch = "lin") +

ggR(cldmsk_final[[1]], ggLayer = TRUE, forceCat = TRUE, geom_raster = TRUE) +
scale_fill_manual(values = "red", na.value = NA)

#' ## Estimate cloud shadow displacement
Interactively (click on cloud pixels and the corresponding shadow pixels)
Not run: shadow <- cloudShadowMask(lsat, cldmsk_final, nc = 2)

8 coregisterImages

Non-interactively. Pre-defined shadow displacement estimate (shiftEstimate)
shadow <- cloudShadowMask(lsat, cldmsk_final, shiftEstimate = c(-16,-6))

Plot
csmask <- raster::merge(cldmsk_final[[1]], shadow)
ggRGB(lsat, stretch = "lin") +

ggR(csmask, ggLayer = TRUE, forceCat = TRUE, geom_raster = TRUE) +
scale_fill_manual(values = c("blue", "yellow"),
labels = c("shadow", "cloud"), na.value = NA)

coregisterImages Image to Image Co-Registration based on Mutual Information

Description

Shifts a slave image to match the reference image (master). Match is based on maximum mutual
information.

Usage

coregisterImages(slave, master, shift = 3, shiftInc = 1,
nSamples = 1e+05, reportStats = FALSE, verbose, nBins = 100, ...)

Arguments

slave Raster* object. Slave image to shift to master. Slave and master must have equal
numbers of bands.

master Raster* object. Reference image. Slave and master must have equal numbers of
bands.

shift Numeric or matrix. If numeric, then shift is the maximal absolute radius (in pix-
els of slave resolution) which slave is shifted (seq(-shift,shift,by=shiftInc)).
If shift is a matrix it must have two columns (x shift and y shift), then only these
shift values will be tested.

shiftInc Numeric. Shift increment (in pixels, but not restricted to integer). Ignored if
shift is a matrix.

nSamples Integer. Number of samples to calculate mutual information.

reportStats Logical. If FALSE it will return only the shifted images. Otherwise it will return
the shifted image in a list containing stats such as mutual information per shift
and joint histograms.

verbose Logical. Print status messages. Overrides global RStoolbox.verbose option.

nBins Integer. Number of bins to calculate joint histogram.

... further arguments passed to writeRaster.

coregisterImages 9

Details

Currently only a simple linear x - y shift is considered and tested. No higher order shifts (e.g.
rotation, non-linear transformation) are performed. This means that your imagery should already
be properly geometrically corrected.

Mutual information2 is a similarity metric originating from information theory. Roughly speaking,
the higher the mutual information of two data-sets, the higher is their shared information content,
i.e. their similarity. When two images are exactly co-registered their mutual information is maxi-
mal. By trying different image shifts, we aim to find the best overlap which maximises the mutual
information.

Value

reportStats=FALSE returns a Raster* object (x-y shifted slave image). reportStats=TRUE
returns a list containing a data.frame with mutual information per shift ($MI), the shift of max-
imum MI ($bestShift), the joint histograms per shift in a list ($jointHist) and the shifted image
($coregImg).

Examples

library(raster)
library(ggplot2)
library(reshape2)
data(rlogo)
reference <- rlogo
Shift reference 2 pixels to the right and 3 up
missreg <- shift(reference, 2, 3)

Compare shift
p <- ggR(reference, sat = 1, alpha = .5)
p + ggR(missreg, sat = 1, hue = .5, alpha = 0.5, ggLayer=TRUE)

Coregister images (and report statistics)
coreg <- coregisterImages(missreg, master = reference,

nSamples = 500, reportStats = TRUE)

Plot mutual information per shift
ggplot(coreg$MI) + geom_raster(aes(x,y,fill=mi))

Plot joint histograms per shift (x/y shift in facet labels)

df <- melt(coreg$jointHist)
df$L1 <- factor(df$L1, levels = names(coreg$jointHist))
df[df$value == 0, "value"] <- NA ## don't display p = 0
ggplot(df) + geom_raster(aes(x = Var2, y = Var1,fill=value)) + facet_wrap(~L1) +

scale_fill_gradientn(name = "p", colours = heat.colors(10), na.value = NA)

Compare correction
ggR(reference, sat = 1, alpha = .5) +
ggR(coreg$coregImg, sat = 1, hue = .5, alpha = 0.5, ggLayer=TRUE)

2https://en.wikipedia.org/wiki/Mutual_information

10 encodeQA

decodeQA Decode QA flags to bit-words

Description

Intended for use with Landsat 16-bit QA bands. Decodes pixel quality flags from integer to bit-
words.

Usage

decodeQA(x)

Arguments

x Integer (16bit)

See Also

encodeQA

Examples

decodeQA(53248)

encodeQA Encode QA Conditions to Integers

Description

Intended for use with Landsat 16-bit QA bands. Converts pixel quality flags from human readable
to integer, which can then be used to subset a QA image. Please be aware of the default settings
which differ for different parameters. Depending on, which sensor and legacy is selected,
some quality parameters are not used, since the sequences of available bitwise quality designations
differ per sensor and collection.

Usage

encodeQA(fill = "no", terrainOcclusion = "no", radSaturation = "na",
cloudMask = "all", cloud = "all", cloudShadow = "all",
snow = "all", cirrus = "all", droppedPixel = "no", water = "all",
droppedFrame = "no", sensor = "OLI", legacy = "collection1")

encodeQA 11

Arguments

fill Designated fill. Options: c("yes","no","all").

terrainOcclusion
Terrain induced occlusion. Options: c("yes","no","all").

radSaturation
Number of bands that contain radiometric saturation. Options: c("na","low","med","high","all")
for no bands, 1-2 bands, 3-4 bands, 5 or more bands contain saturation.

cloudMask Cloud mask. Options: c("yes","no","all").

cloud Cloud confidence. Options: c("na","low","med","high","all").

cloudShadow Cloud shadow confidence. Options: c("yes","no","all").

snow Snow / ice confidence. Options: c("na","low","med","high","all").

cirrus Cirrus confidence. Options: c("na","low","med","high","all").

droppedPixel Dropped pixel. Options: c("yes","no","all").

water Water confidence. Options: c("na","low","med","high","all").

droppedFrame Dropped frame. Options: c("yes","no","all").

sensor Sensor to encode. Options: c("OLI","TIRS","ETM+","TM","MSS").

legacy Encoding systematic Options: c("collection1","pre_collection").
Default is "collection1" for the Landsat Collection 1 8-bit quality designations.
Use "pre_collection" for imagery downloaded before the Collection 1 quality
designations were introduced

Value

Returns the Integer value for the QA values

Note

Only currently populated bits are available as arguments.

References

https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-1-level-1-quality-assessment-band
for Collection 1 quality designations (legacy = "collection1")

Examples

encodeQA(snow = "low", cirrus = c("med", "high"), cloud = "high")

12 estimateHaze

estimateHaze Estimate Image Haze for Dark Object Subtraction (DOS)

Description

estimates the digital number (DN) pixel value of *dark* objects for the visible wavelength range.

Usage

estimateHaze(x, hazeBands, darkProp = 0.01, maxSlope = TRUE,
plot = FALSE, returnTables = FALSE)

Arguments

x Raster* object or a previous result from estimateHazewith returnTables
= TRUE from which to estimate haze

hazeBands Integer or Character. Band number or bandname from which to estimate atmo-
spheric haze (optional if x contains only one layer)

darkProp Numeric. Proportion of pixels estimated to be dark.

maxSlope Logical. Use darkProp only as an upper boundary and search for the DN of
maximum slope in the histogram below this value.

plot Logical. Option to display histograms and haze values

returnTables Logical. Option to return the frequency table per layer. Only takes effect if x is
a Raster* object. If x is a result of estimateHaze tables will always be returned.

Details

It is assumed that any radiation originating from *dark* pixels is due to atmospheric haze and not
the reflectance of the surface itself (the surface is dark, i.e. it has a reflectance close to zero). Hence,
the haze values are estimates of path radiance, which can be subtracted in a dark object subtraction
(DOS) procedure (see radCor)

Atmospheric haze affects almost exclusively the visible wavelength range. Therefore, typically,
you’d only want to estimate haze in blue, green and red bands, occasionally also in the nir band.

Value

If returnTables is FALSE (default). Then a vector of length(hazeBands) containing the estimated
haze DNs will be returned. If returnTables is TRUE a list with two components will be returned.
The list element ’SHV’ contains the haze values, while ’table’ contains another list with the sampled
frequency tables. The latter can be re-used to try different darkProp thresholds without having to
sample the raster again.

fCover 13

Examples

data(lsat)

Estimate haze for blue, green and red band
haze <- estimateHaze(lsat, hazeBands = 1:3, plot = TRUE)
haze

Find threshold interactively
Return the frequency tables for re-use
avoids having to sample the Raster again and again
haze <- estimateHaze(lsat, hazeBands = 1:3, returnTables = TRUE)
Use frequency table instead of lsat and fiddle with
haze <- estimateHaze(haze, hazeBands = 1:3, darkProp = .1, plot = TRUE)
haze$SHV

fCover Fractional Cover Analysis

Description

fCover takes a classified high resolution image, e.g. vegetation and non-vegetation based on Landsat
and calculates cover fractions for pixels of a coarser resolution, e.g. MODIS.

Usage

fCover(classImage, predImage, nSamples = 1000, classes = 1,
model = "rf", tuneLength = 3, method = "cv", maxNA = 0,
clamp = TRUE, filename = NULL, verbose, ...)

Arguments

classImage high resolution RasterLayer containing a landcover classification, e.g. as ob-
tained by superClass.

predImage coarse resolution RasterLayer for which fractional cover will be estimated.

nSamples Integer. Number of pixels to sample from predImage to train the regression
model

classes Integer. Classes for which fractional cover should be estimated (one or more).

model Character. Which model to fit for image regression. See train for options. De-
faults to randomForest (’rf’)

tuneLength Integer. Number of levels for each tuning parameters that should be generated
by train. See Details and train.

method Character. Resampling method for parameter tuning. Defaults to 10 fold cross-
validation. See trainControl for options.

maxNA Numeric. Maximal proportion of NAs allowed in training pixels.

clamp Logical. Enforce results to stay within [0,1] interval. Values <0 are reset to 0
and values >1 to 1.

14 fCover

filename Character. Filename of the output raster file (optional).

verbose Logical. Print progress information.

... further arguments to be passed to trainControl and writeRaster

Details

fCover gets the pixel values in a high resolution classified image that correspond to randomly se-
lected moderate resolution pixels and then calculates the percent of the classified image pixels that
represent your cover type of interest. In other words, if your high resolution image has a pixel size
of 1m and your moderate resolution image has a pixel size of 30m the sampling process would take
a block of 900 of the 1m resolution pixels that correspond to a single 30m pixel and calculate the
percentage of the 1m pixels that are forest. For example, if there were 600 forest pixels and 300
non-forest pixels the value given for the output pixel would be 0.67 since 67

fCover relies on the train() function from the caret package which provides access to a huge number
of classifiers. Please see the available options at train. The default classifier (randomForest) we
chose has been shown to provide very good results in image regression and hence it is recomended
you start with this one. If you choose a different classifier, make sure it can run in regression mode.

Many models require tuning of certain parameters. Again, this is handled by train from the caret
package. With the tuneLength argument you can specify how many different values of each tuning
parameter should be tested. The Random Forest algorithm for example can be tuned by varying the
mtry parameter. Hence, by specifying tuneLength = 10, ten different levels of mtry will be tested in
a cross-validation scheme and the best-performing value will be chosen for the final model.

If you register a parallel backend before, model fitting will run in parallel.

If the total no-data values for a block of high resolution pixels is greater than maxNA then it will
not be included in the training data set since there is too much missing data to provide a reliable
cover percentage. If the no-data proporton is less then maxNA the no-data pixels are removed from
the total number of pixels when calculating the percent cover.

Value

Returns a list with two elements: models contains the fitted models evaluated in tenfold cross-
validation (caret train objects); fCover contains a RasterStack with a fractional cover layer for each
requested class.

See Also

superClass

Examples

library(raster)
library(caret)
Create fake input images
data(rlogo)
lsat <- rlogo
agg.level <- 9
modis <- aggregate(lsat, agg.level)

fortify.raster 15

Perform classification
lc <- unsuperClass(lsat, nClass=2)

Calculate the true cover, which is of course only possible in this example,
because the fake corse resolution imagery is exactly res(lsat)*9
trueCover <- aggregate(lc$map, agg.level, fun = function(x, ...){sum(x == 1, ...)/sum(!is.na(x))})

Run with randomForest and support vector machine (radial basis kernel)
Of course the SVM is handicapped in this example due to poor tuning (tuneLength)
par(mfrow=c(2,3))
for(model in c("rf", "svmRadial")){

fc <- fCover(
classImage = lc$map ,
predImage = modis,
classes=1,
model=model,
nSample = 50,
number = 5,
tuneLength=2

)

How close is it to the truth?
compare.rf <- trueCover - fc$map
plot(fc$map, main = paste("Fractional Cover: Class 1\nModel:", model))
plot(compare.rf, main = "Diffence\n true vs. predicted")
plot(trueCover[],fc$map[], xlim = c(0,1), ylim =c(0,1),

xlab = "True Cover", ylab = "Predicted Cover")
abline(coef=c(0,1))
rmse <- sqrt(cellStats(compare.rf^2, sum))/ncell(compare.rf)
r2 <- cor(trueCover[], fc$map[], "complete.obs")
text(0.9,0.1,paste0(paste(c("RMSE:","R2:"),

round(c(rmse, r2),3)),collapse="\n"), adj=1)
}

Reset par
par(mfrow=c(1,1))

fortify.raster Fortify method for classes from the raster package.

Description

Fortify method for classes from the raster package.

Usage

S3 method for class 'RasterLayer'
fortify(x, maxpixels = 50000)

16 getMeta

S3 method for class 'RasterBrick'
fortify(...)

S3 method for class 'RasterStack'
fortify(...)

Arguments

x Raster* object to convert into a dataframe.

maxpixels Integer. Maximum number of pixels to sample

... not used by this method

Value

Returns a data.frame with coordinates (x,y) and corresponding raster values.

Examples

library(ggplot2)
data(rlogo)
r_df <- fortify(rlogo)
head(r_df)

getMeta Extract bandwise information from ImageMetaData

Description

This is an accessor function to quickly access information stored in ImageMetaData, e.g. scale
factor per band. Intended for use with imagery which was imported using stackMeta. Will return
parameters using the actual band order in img.

Usage

getMeta(img, metaData, what)

Arguments

img Raster* or character vector with band names.

metaData ImageMetaData or path to meta data file.

what Character. Parameter to extract. Either data descriptors, or conversion parame-
ters (see Details for options)

getMeta 17

Details

Possible metadata parameters (what argument):

Data descriptors

18 getMeta

’FILES’
’QUANTITY’
’CATEGORY’
’NA_VALUE’
’SATURATE_VALUE’
’SCALE_FACTOR’
’DATA_TYPE’
’SPATIAL_RESOLUTION’

Conversion parameters

’CALRAD’ Conversion parameters from DN to radiance
’CALBT’ Conversion parameters from radiance to brightness temperature
’CALREF’ Conversion parameters from DN to reflectance (Landsat 8 only)

Value

If what is one of c('CALRAD','CALBT','CALREF') a data.frame is returned with bands
in rows (order corresponding to img band order). Otherwise a named numeric vector with the
corresponding parameter is returned (layernames as names).

Examples

Import example data
mtlFile <- system.file("external/landsat/LT52240631988227CUB02_MTL.txt", package="RStoolbox")
meta <- readMeta(mtlFile)
lsat <- stackMeta(mtlFile)

Get integer scale factors
getMeta(lsat, metaData = meta, what = "SCALE_FACTOR")

Conversion factors for brightness temperature
getMeta("B6_dn", metaData = meta, what = "CALBT")

Conversion factors to top-of-atmosphere radiance
Band order not corresponding to metaData order
getMeta(lsat[[5:1]], metaData = meta, what = "CALRAD")

Get integer scale factors
getMeta(lsat, metaData = meta, what = "SCALE_FACTOR")

Get file basenames
getMeta(lsat, metaData = meta, what = "FILES")

getValidation 19

getValidation Extract validation results from superClass objects

Description

Extract validation results from superClass objects

Usage

getValidation(x, from = "testset", metrics = "overall")

Arguments

x superClass object or caret::confusionMatrix

from Character. ’testset’ extracts the results from independent validation with testset.
’cv’ extracts cross-validation results.

metrics Character. Only relevant in classification mode (ignored for regression mod-
els). Select ’overall’ for overall accuracy metrics, ’classwise’ for classwise met-
rics, ’confmat’ for the confusion matrix itself and ’caret’ to return the whole
caret::confusionMatrix object.

Value

Returns a data.frame with validation results. If metrics = ’confmat’ or ’caret’ will return a table or
the full caret::confusionMatrix object, respectively.

Examples

library(pls)
Fit classifier (splitting training into 70\% training data, 30\% validation data)
train <- readRDS(system.file("external/trainingPoints.rds", package="RStoolbox"))
SC <- superClass(rlogo, trainData = train, responseCol = "class",

model="pls", trainPartition = 0.7)
Independent testset-validation
getValidation(SC)
getValidation(SC, metrics = "classwise")
Cross-validation based
getValidation(SC, from = "cv")

20 ggR

ggR Plot RasterLayers in ggplot with greyscale

Description

Plot single layer imagery in grey-scale. Can be used with any Raster* object.

Usage

ggR(img, layer = 1, maxpixels = 5e+05, alpha = 1, hue = 1,
sat = 0, stretch = "none", quantiles = c(0.02, 0.98),
coord_equal = TRUE, ggLayer = FALSE, ggObj = TRUE,
geom_raster = FALSE, forceCat = FALSE)

Arguments

img raster

layer Character or numeric. Layername or number. Can be more than one layer, in
which case each layer is plotted in a subplot.

maxpixels Integer. Maximal number of pixels to sample.

alpha Numeric. Transparency (0-1).

hue Numeric. Hue value for color calculation [0,1] (see \[grDevices]hsv). Change if
you need anything else than greyscale. Only effective if sat > 0.

sat Numeric. Saturation value for color calculation [0,1] (see \[grDevices]hsv).
Change if you need anything else than greyscale.

stretch Character. Either ’none’, ’lin’, ’hist’, ’sqrt’ or ’log’ for no stretch, linear, his-
togram, square-root or logarithmic stretch.

quantiles Numeric vector with two elements. Min and max quantiles to stretch to. De-
faults to 2% stretch, i.e. c(0.02,0.98).

coord_equal Logical. Force addition of coord_equal, i.e. aspect ratio of 1:1. Typically useful
for remote sensing data (depending on your projection), hence it defaults to
TRUE. Note however, that this does not apply if (ggLayer=FALSE).

ggLayer Logical. Return only a ggplot layer which must be added to an existing ggplot.
If FALSE s stand-alone ggplot will be returned.

ggObj Logical. Return a stand-alone ggplot object (TRUE) or just the data.frame with
values and colors

geom_raster Logical. If FALSE uses annotation_raster (good to keep aestetic mappings free).
If TRUE uses geom_raster (and aes(fill)). See Details.

forceCat Logical. If TRUE the raster values will be forced to be categorical (will be
converted to factor if needed).

ggR 21

Details

When img contains factor values and annotation=TRUE, the raster values will automatically
be converted to numeric in order to proceed with the brightness calculation. ä

The raster package provides a class lookup-table for categorical rasters (e.g. what you get if you
run superClass in classification mode). If your raster has a lookup-table ggR will automatically
treat it as categorical (see factor). However, the factor status of Raster objects is easily lost and the
values are interpreted as numeric. In such cases you should make use of the forceCat = TRUE
argument, which makes sure that ggplot2 uses a discrete scale, not a continuous one.

The geom_raster argument switches from the default use of annotation_raster to geom_raster. The
difference between the two is that geom_raster performs a meaningful mapping from pixel values
to fill colour, while annotation_raster is simply adding a picture to your plot. In practice this means
that whenever you need a legend for your raster you should use geom_raster = TRUE. This also
allows you to specify and modify the fill scale manually. The advantage of using annotation_raster
(geom_raster = TRUE) is that you can still use the scale_fill* for another variable. For example
you could add polygons and map a value to their fill colour. For more details on the theory behind
aestetic mapping have a look at the ggplot23 manuals.

Value

ggObj = TRUE: ggplot2 plot
ggLayer = TRUE: ggplot2 layer to be combined with an existing ggplot2
ggObj = FALSE: data.frame in long format suitable for plotting with ggplot2, includes the pixel values and the calculated colors

See Also

ggRGB, fortify

Examples

library(ggplot2)
library(raster)
data(rlogo); data(lsat); data(srtm)

Simple grey scale annotation
ggR(rlogo)

With linear stretch contrast enhancement
ggR(rlogo, stretch = "lin", quantiles = c(0.1,0.9))

ggplot with geom_raster instead of annotation_raster
and default scale_fill*
ggR(rlogo, geom_raster = TRUE)

with different scale

3https://CRAN.R-project.org/package=ggplot2/ggplot2.pdf

22 ggRGB

ggR(rlogo, geom_raster = TRUE) +
scale_fill_gradientn(name = "mojo", colours = rainbow(10)) +
ggtitle("**Funkadelic**")

Plot multiple layers

ggR(lsat, 1:6, geom_raster=TRUE, stretch = "lin") +
scale_fill_gradientn(colors=grey.colors(100), guide = FALSE) +
theme(axis.text = element_text(size=5),

axis.text.y = element_text(angle=90),
axis.title=element_blank())

Don't plot, just return a data.frame
df <- ggR(rlogo, ggObj = FALSE)
head(df, n = 3)

Layermode (ggLayer=TRUE)
data <- data.frame(x = c(0, 0:100,100), y = c(0,sin(seq(0,2*pi,pi/50))*10+20, 0))
ggplot(data, aes(x, y)) + ggR(rlogo, geom_raster= FALSE, ggLayer = TRUE) +

geom_polygon(aes(x, y), fill = "blue", alpha = 0.4) +
coord_equal(ylim=c(0,75))

Categorical data
In this case you probably want to use geom_raster=TRUE
in order to perform aestetic mapping (i.e. a meaningful legend)
rc <- raster(rlogo)
rc[] <- cut(rlogo[[1]][], seq(0,300, 50))
ggR(rc, geom_raster = TRUE)

Legend cusomization etc. ...
ggR(rc, geom_raster = TRUE) + scale_fill_discrete(labels=paste("Class", 1:6))

Creating a nicely looking DEM with hillshade background
terr <- terrain(srtm, c("slope", "aspect"))
hill <- hillShade(terr[["slope"]], terr[["aspect"]])
ggR(hill)

ggR(hill) +
ggR(srtm, geom_raster = TRUE, ggLayer = TRUE, alpha = 0.3) +
scale_fill_gradientn(colours = terrain.colors(100), name = "elevation")

ggRGB Create ggplot2 Raster Plots with RGB from 3 RasterLayers

Description

Calculates RGB color composite raster for plotting with ggplot2. Optional values for clipping and
and stretching can be used to enhance the imagery.

ggRGB 23

Usage

ggRGB(img, r = 3, g = 2, b = 1, scale, maxpixels = 5e+05,
stretch = "none", ext = NULL, limits = NULL,
clipValues = "limits", quantiles = c(0.02, 0.98), ggObj = TRUE,
ggLayer = FALSE, alpha = 1, coord_equal = TRUE,
geom_raster = FALSE, nullValue = 0)

Arguments

img RasterStack or RasterBrick
r Integer or character. Red layer in x. Can be set to NULL, in which case the red

channel will be set to zero.
g Integer or character. Green layer in x. Can be set to NULL, in which case the

green channel will be set to zero.
b Integer or character. Blue layer in x. Can be set to NULL, in which case the blue

channel will be set to zero.
scale Numeric. Maximum possible pixel value (optional). Defaults to 255 or to the

maximum value of x if that is larger than 255
maxpixels Integer. Maximal number of pixels used for plotting.
stretch Character. Either ’none’, ’lin’, ’hist’, ’sqrt’ or ’log’ for no stretch, linear, his-

togram, square-root or logarithmic stretch.
ext Extent object to crop the image
limits Vector or matrix. Can be used to reduce the range of values. Either a vector of

two values for all bands (c(min, max)) or a 3x2 matrix with min and max values
(columns) for each layer (rows).

clipValues Matrix, numeric vector, string or NA. Values to reset out of range (out of limits)
values to. By default (’limits’) values are reset to limits. A single value
(e.g. NA) will be recycled to all lower/higher clippings, A vector of length two
(c(min,max)) can be used to specify lower and higher replace values, applied to
all bands. A two column matrix (typically with three rows) can be used to fully
control lower and upper clipping values differently for each band.

quantiles Numeric vector with two elements. Min and max quantiles to stretch. Defaults
to 2% stretch, i.e. c(0.02,0.98).

ggObj Logical. If TRUE a ggplot2 object is returned. If FALSE a data.frame with
coordinates and color will be returned.

ggLayer Logical. If TRUE a ggplot2 layer is returned. This is useful if you want to add
it to an existing ggplot2 object. Note that if TRUE & annotate = FALSE you
have to add a scale_fill_identity() manually in your call to ggplot().

alpha Numeric. Transparency (0-1).
coord_equal Logical. Force addition of coord_equal, i.e. aspect ratio of 1:1. Typically useful

for remote sensing data (depending on your projection), hence it defaults to
TRUE. Note howver, that this does not apply if (ggLayer=FALSE).

geom_raster Logical. If FALSE annotation_raster is used, otherwise geom_raster()+scale_fill_identity
is used. Note that you can’t use scale_fill* in addition to the latter, because it
already requires scale_fill_identity().

24 ggRGB

nullValue Numeric. Intensity value used for NULL layers in color compositing. E.g. set
g=NULL and fix green value at 0.5 (defaults to 0).

Details

Functionality is based on plotRGB from the raster package.

Value

ggObj = TRUE: ggplot2 plot
ggLayer = TRUE: ggplot2 layer to be combined with an existing ggplot2
ggObj = FALSE: data.frame in long format suitable for plotting with ggplot2, includes the pixel values and the calculated colors

See Also

ggR, fortify

Examples

library(ggplot2)
data(rlogo)

ggRGB(rlogo, r=1, g=2, b=3)

Define minMax ranges
ggRGB(rlogo, r=1,g=2, b=3, limits = matrix(c(100,150,10,200,50,255), ncol = 2, by = TRUE))

Perform stong linear contrast stretch
ggRGB(rlogo, r = 1, g = 2, b = 3,stretch = "lin", quantiles = c(0.2, 0.8))

Use only two layers for color calculation
ggRGB(rlogo, r = 1, g = 2, b = NULL)

Return only data.frame
df <- ggRGB(rlogo, ggObj = FALSE)
head(df)

Use in layer-mode, e.g. to add to another plot
wave <- data.frame(x = c(0, 0:100,100), y = c(0,sin(seq(0,2*pi,pi/50))*10+20, 0))
p <- ggplot(wave, aes(x, y))
p + ggRGB(rlogo, ggLayer = TRUE) +

geom_polygon(aes(x, y), fill = "blue", alpha = 0.4) +
coord_equal(ylim=c(0,75))

histMatch 25

histMatch Image to Image Contrast Matching

Description

Performs image to image contrast adjustments based on histogram matching using empirical cumu-
lative distribution functions from both images.

Usage

histMatch(x, ref, xmask = NULL, refmask = NULL, nSamples = 1e+05,
intersectOnly = TRUE, paired = TRUE, forceInteger = FALSE,
returnFunctions = FALSE, ...)

Arguments

x Raster*. Source raster which is to be modified.

ref Raster*. Reference raster, to which x will be matched.

xmask RasterLayer. Mask layer for x to exclude pixels which might distort the his-
togram, i.e. are not present in ref. Any NA pixel in xmask will be ignored
(maskvalue = NA).

refmask RasterLayer. Mask layer for ref. Any NA pixel in refmask will be ignored
(maskvalue = NA).

nSamples Integer. Number of random samples from each image to build the histograms.
intersectOnly

Logical. If TRUE sampling will only take place in the overlap extent of the two
rasters. Otherwise the full rasters will be used for sampling.

paired Logical. If TRUE the corresponding pixels will be used in the overlap.

forceInteger Logical. Force integer output.
returnFunctions

Logical. If TRUE the matching functions will be returned instead of applying
them to x.

... Further arguments to be passed to writeRaster.

Value

A Raster* object of x adjusted to the histogram of ref. If returnFunctions = TRUE a list of
functions (one for each layer) will be returned instead.

Note

x and ref must have the same number of layers.

26 ImageMetaData

References

Richards and Jia: Remote Sensing Digital Image Analysis. Springer, Berlin, Heidelberg, Germany,
439pp.

Examples

library(ggplot2)
library(raster)
data(rlogo)
Original image a (+1 to prevent log(0))
img_a <- rlogo + 1
Degraded image b
img_b <- log(img_a)
Cut-off half the image (just for better display)
img_b[, 1:50] <- NA

Compare Images before histMatching
ggRGB(img_a,1,2,3)+

ggRGB(img_b, 1,2,3, ggLayer = TRUE, stretch = "lin", q = 0:1) +
geom_vline(aes(xintercept = 50))+
ggtitle("Img_a vs. Img_b")

Do histogram matching
img_b_matched <- histMatch(img_b, img_a)

Compare Images after histMatching
ggRGB(img_a, 1, 2, 3)+

ggRGB(img_b_matched, 1, 2, 3, ggLayer = TRUE, stretch = "lin", q = 0:1) +
geom_vline(aes(xintercept = 50))+
ggtitle("Img_a vs. Img_b_matched")

Histogram comparison
opar <- par(mfrow = c(1, 3), no.readonly = TRUE)
img_a[,1:50] <- NA
redLayers <- stack(img_a, img_b, img_b_matched)[[c(1,4,7)]]
names(redLayers) <- c("img_a", "img_b", "img_b_matched")

hist(redLayers)
Reset par
par(opar)

ImageMetaData ImageMetaData Class

Description

ImageMetaData Class

ImageMetaData 27

Usage

ImageMetaData(file = NA, format = NA, sat = NA, sen = NA,
scene = NA, proj = NA, date = NA, pdate = NA, path = NA,
row = NA, az = NA, selv = NA, esd = NA, files = NA,
bands = NA, quant = NA, cat = NA, na = NA, vsat = NA,
scal = NA, dtyp = NA, calrad = NA, calref = NA, calbt = NA,
radRes = NA, spatRes = NA)

Arguments

file Character. Metadata file

format Character. Metadata format, e.g. xml, mtl

sat Character. Satellite platform

sen Character. Sensor

scene Character. Scene_ID

proj CRS. Projection.

date POSIXct. Aquisition date.

pdate POSIXct. Processing date.

path Integer. Path.

row Integer. Row.

az Numeric. Sun azimuth

selv Numeric. Sun elevation

esd Numeric. Earth-sun distance

files Character vector. Files containing the data, e.g. tiff files

bands Character vector. Band names

quant Character vector. Quantity, one of c("dn", "tra", "tre", "sre", "bt", "idx")

cat Character vector. Category, e.g. c("image", "pan", "index", "qa")

na Numeric vector. No-data value per band

vsat Numeric vector. Saturation value per band

scal Numeric vector. Scale factor per band. e.g. if data was scaled to 1000*re-
flectance for integer conversion.

dtyp Character vector. Data type per band. See dataType for options.

calrad data.frame. Calibration coefficients for dn->radiance conversion. Must have
columns ’gain’ and ’offset’. Rows named according to bands.

calref data.frame. Calibration coefficients for dn->reflectance conversion. Must have
columns ’gain’ and ’offset’. Rows named according to bands.

calbt data.frame. Calibration coefficients for dn->brightness temperature conversion.
Must have columns ’K1’ and ’K2’. Rows named according to bands.

radRes Numeric vector. Radiometric resolution per band.

spatRes Numeric vector. Spatial resolution per band.

28 mesma

lsat Landsat 5TM Example Data

Description

Subset of Landsat 5 TM Scene: LT52240631988227CUB02 Contains all seven bands in DN format.

Usage

data(lsat)

Examples

data(lsat)
ggRGB(lsat, stretch = "lin")

mesma Multiple Endmember Spectral Mixture Analysis (Spectral Unmixing)

Description

mesma performs a multiple endmember spectral mixture analysis on a multiband raster image.

Usage

mesma(img, em, method = "NNLS", iterate = 400, tolerance = 1e-08,
..., verbose)

Arguments

img RasterBrick or RasterStack. Remote sensing imagery (usually hyperspectral).

em Matrix or data.frame with spectral endmembers. Rows represent a single end-
member of a class, columns represent the spectral bands (i.e. columns corre-
spond to number of bands in img). Number of rows needs to be > 1.

method Character. Select an unmixing method. Currently, only "NNLS" is imple-
mented. Default is "NNLS".

• NNLS: applies a non-negative least squares (NNLS) regression which is
using a sequential coordinate-wise algorithm (SCA) based on Franc et al.
(2005).

iterate Integer. Set maximum iteration per pixel. Processing time could increase the
more iterations are made possible. Default is 400.

tolerance Numeric. Tolerance limit representing a nearly zero minimal number. Default
is 1e-8.

... further arguments passed to writeRaster.

verbose Logical. Prints progress messages during execution.

mesma 29

Value

RasterBrick. The object will contain one band per endmember, with each value representing the
estimated presence probability of the endmember per pixel (0 to 1), and an RMSE band.

Note

Depending on iterate and tolerance settings, the sum of estimated presence probabilites per
pixel varies around 1.

Author(s)

Jakob Schwalb-Willmann

References

Franc, V., Hlaváč, V., & Navara, M. (2005). Sequential coordinate-wise algorithm for the non-
negative least squares problem. In: International Conference on Computer Analysis of Images and
Patterns (pp. 407-414). Berlin, Heidelberg.

Examples

#load packages
library(raster)
library(RStoolbox)

#load an example dataset
data(lsat)

#make up some endmember spectra: water and land
em_names <- c("water", "land")
pts <- data.frame(class=em_names, cell = c(47916,5294))
em <- lsat[pts$cell]
rownames(em) <- em_names

#unmix the image for water and land
probs <- mesma(lsat, em, method = "NNLS")

#take a look
raster::hist(probs$water)
raster::plot(probs$water, col = c("white","blue"))
raster::hist(probs$land)
raster::plot(probs$land, col = c("white","brown"))

30 oneHotEncode

normImage Normalize Raster Images: Center and Scale

Description

For each pixel subtracts the mean of the raster layer and optionally divide by its standard deviation.

Usage

normImage(img, norm = TRUE, ...)

Arguments

img Raster* object. Image to transform. Transformation will be performed sepa-
rately for each layer.

norm Logical. Perform normalization (scaling) in addition to centering, i.e. divide by
standard deviation.

... further arguments passed to writeRaster.

Value

Returns a Raster* with the same number layers as input layers with each layer being centered and
optionally normalized.

Examples

library(raster)
Load example data
data(rlogo)

Normalization: Center and Scale
rlogo_center_norm <- normImage(rlogo)
hist(rlogo_center_norm)

Centering
rlogo_center <- normImage(rlogo, norm = FALSE)

oneHotEncode One-hot encode a raster or vector

Description

Splits a categorical raster layer (or a vector) into a multilayer raster (or matrix).

panSharpen 31

Usage

oneHotEncode(img, classes, background = 0, foreground = 1,
na.rm = FALSE, ...)

Arguments

img RasterLayer or integer/numeric vector containing multiple classes

classes integer: vector of classes which should be extracted

background integer: background value (default = 0)

foreground integer: foreground value (default = 1)

na.rm logical: if TRUE, NAs will be coerced to the background value.

... further arguments passed to writeRaster. Ignored if img is not a RasterLayer,
but a numeric/integer vector

Value

A RasterBrick with as many layers as there are classes. Pixels matching the class of interest are set
to 1, backround values by default are set to 0 (see background argument)

Examples

library(raster)

example data
data(rlogo)
sc <- unsuperClass(rlogo, nClasses = 3)

one-hot encode
sc_oneHot <- oneHotEncode(sc$map, classes = c(1,2,3))

check results
sc_oneHot
plot(sc_oneHot)

panSharpen Pan Sharpen Imagery / Image Fusion

Description

provides different methods for pan sharpening a coarse resolution (typically multispectral) image
with a higher reolution panchromatic image. Values of the pan-chromatic and multispectral images
must be of the same scale, (e.g. from 0:1, or all DNs from 0:255)

Usage

panSharpen(img, pan, r, g, b, pc = 1, method = "brovey", norm = TRUE)

32 panSharpen

Arguments

img Raster* object. Coarse resolution multispectral image
pan RasterLayer. High resolution image, typically panchromatic.
r Character or Integer. Red band in img. Only relevant if method!='pca'
g Character or Integer. Green band in img. Only relevant if method!='pca'
b Character or Integer. Blue band in img. Only relevant if method!='pca'
pc Integer. Only relevant if method = 'pca'. Which principal component to

replace. Usually this should be the first component (default). Only if the first
component is dominated by something else than brightness it might be worth a
try to use the second component.

method Character. Choose method from c("pca", "ihs", "brovey").
norm Logical. Rescale pan image to match the 1st PC component. Only relevant if

method = 'pca'. If TRUE only min and max are matched to the 1st PC. If
FALSE pan will be histogram matched to the 1st PC.

Details

Pan sharpening options:

• method='pca': Performs a pca using rasterPCA. The first component is then swapped for
the pan band an the PCA is rotated backwards.

• method='ihs': Performs a color space transform to Intensity-Hue-Saturation space, swaps
intensity for the histogram matched pan and does the backwards transformation.

• method='brovey': Performs Brovey reweighting. Pan and img must be at the same value
scale (e.g. 0:1, or 0:255) otherwise you’ll end up with psychodelic colors.

Examples

library(raster)
library(ggplot2)

Load example data
data(lsat)
Fake panchromatic image (30m resolution covering
the visible range (integral from blue to red))
pan <- sum(lsat[[1:3]])
ggR(pan, stretch = "lin")

Fake coarse resolution image (150m spatial resolution)
lowResImg <- aggregate(lsat, 5)

Brovey pan sharpening
lowResImg_pan <- panSharpen(lowResImg, pan, r = 3, g = 2, b = 1, method = "brovey")
lowResImg_pan
Plot
ggRGB(lowResImg, stretch = "lin") + ggtitle("Original")
ggRGB(lowResImg_pan, stretch="lin") + ggtitle("Pansharpened (Brovey)")

pifMatch 33

pifMatch Pseudo-Invariant Features based Image Matching

Description

Match one scene to another based on linear regression of pseudo-invariant features (PIF).

Usage

pifMatch(img, ref, method = "cor", quantile = 0.95,
returnPifMap = TRUE, returnSimMap = TRUE, returnModels = FALSE)

Arguments

img RasterStack or RasterBrick. Image to be adjusted.
ref RasterStack or RasterBruck. Reference image.
method Method to calculate pixel similariry. Options: euclidean distance (’ed’), spectral

angle (’sam’) or pearson correlation coefficient (’cor’).
quantile Numeric. Threshold quantile used to identify PIFs
returnPifMap Logical. Return a binary raster map ot pixels which were identified as pesudo-

invariant features.
returnSimMap Logical. Return the similarity map as well
returnModels Logical. Return the linear models along with the adjusted image.

Details

The function consists of three main steps: First, it calculates pixel-wise similarity between the two
rasters and identifies pseudo-invariant pixels based on a similarity threshold. In the second step the
values of the pseudo-invariant pixels are regressed against each other in a linear model for each
layer. Finally the linear models are applied to all pixels in the img, thereby matching it to the
reference scene.

Pixel-wise similarity can be calculated using one of three methods: euclidean distance (method
= "ed"), spectral angle ("sam") or pearsons correlation coefficient ("cor"). The threshold is
defined as a similarity quantile. Setting quantile=0.95 will select all pixels with a similarity
above the 95% quantile as pseudo-invariant features.

Model fitting is performed with simple linear models (lm); fitting one model per layer.

Value

Returns a List with the adjusted image and intermediate products (if requested). #’

• img: the adjusted image
• simMap: pixel-wise similarity map (if returnSimMap = TRUE)
• pifMap: binary map of pixels selected as pseudo-invariant features (if returnPifMap =
TRUE)

• models: list of linear models; one per layer (if returnModels = TRUE)

34 predict.superClass

Examples

library(raster)

Import Landsat example data
data(lsat)

Create fake example data
In practice this would be an image from another acquisition date
lsat_b <- log(lsat)

Run pifMatch and return similarity layer, invariant features mask and models
lsat_b_adj <- pifMatch(lsat_b, lsat, returnPifMap = TRUE,

returnSimMap = TRUE, returnModels = TRUE)

Pixelwise similarity
ggR(lsat_b_adj$simMap, geom_raster = TRUE)

Pesudo invariant feature mask
ggR(lsat_b_adj$pifMap)

Histograms of changes
par(mfrow=c(1,3))
hist(lsat_b[[1]], main = "lsat_b")
hist(lsat[[1]], main = "reference")
hist(lsat_b_adj$img[[1]], main = "lsat_b adjusted")

Model summary for first band
summary(lsat_b_adj$models[[1]])

predict.superClass Predict a raster map based on a superClass model fit.

Description

useful to separate model fitting from spatial prediction, which can take some time.

Usage

S3 method for class 'superClass'
predict(object, img, predType = "raw",

filename = NULL, datatype = "INT2U", ...)

Arguments

object superClass object

img Raster object. Layernames must correspond to layernames used to train the
superClass model, i.e. layernames in the original raster image.

predict.unsuperClass 35

predType Character. Type of the final output raster. Either "raw" for class predictions
or "prob" for class probabilities. Class probabilities are not available for all
classification models (predict.train).

filename Character or NULL. Filename for output raster file.

datatype Datatype of output raster file.

... Further arguments passed to writeRaster.

Examples

Load training data
data(rlogo)
train <- readRDS(system.file("external/trainingPoints.rds", package="RStoolbox"))

Fit classifier
SC <- superClass(rlogo, trainData = train, responseCol = "class",

model = "rf", tuneLength = 1, predict = FALSE)

map <- predict(SC, rlogo)

predict.unsuperClass
Predict a raster map based on a unsuperClass model fit.

Description

applies a kmeans cluster model to all pixels of a raster. Useful if you want to apply a kmeans model
of scene A to scene B.

Usage

S3 method for class 'unsuperClass'
predict(object, img, ...)

Arguments

object unsuperClass object

img Raster object. Layernames must correspond to layernames used to train the
superClass model, i.e. layernames in the original raster image.

... Further arguments passed to writeRaster.

Examples

Load training data
data(rlogo)

Perform unsupervised classification
uc <- unsuperClass(rlogo, nClasses = 10)

36 radCor

Apply the model to another raster
map <- predict(uc, rlogo)

radCor Radiometric Calibration and Correction

Description

Implements several different methods for radiometric calibration and correction of Landsat data.
You can either specify a metadata file, or supply all neccesary values manually. With proper
parametrization apref and sdos should work for other sensors as well.

Usage

radCor(img, metaData, method = "apref", bandSet = "full", hazeValues,
hazeBands, atmosphere, darkProp = 0.01, clamp = TRUE, verbose)

Arguments

img raster object

metaData object of class ImageMetaData or a path to the meta data (MTL) file.

method Radiometric conversion/correction method to be used. There are currently four
methods available (see Details): "rad", "apref", "sdos", "dos", "costz".

bandSet Numeric or character. original Landsat band numbers or names in the form of
("B1", "B2" etc). If set to ’full’ all bands in the solar (optical) region will be
processed.

hazeValues Numeric. Either a vector with dark DNs per hazeBand (method = ’sdos’);
possibly estimated using estimateHaze. Or the ’starting haze value’ (DN) for the
relative scattering models in method = 'dos' or 'costz'. If not provided,
hazeValues will be estimated in an automated fashion for all hazeBands. Ar-
gument only applies to methods ’sdos’, ’dos’ and ’costz’.

hazeBands Character or integer. Bands corresponding to hazeValues (method = ’sdos’)
or band to select starting haze value from (’dos’ or ’costz’).

atmosphere Character. Atmospheric characteristics. Will be estimated if not expicilty pro-
vided. Must be one of "veryClear","clear","moderate","hazy"
or "veryHazy".

darkProp Numeric. Estimated proportion of dark pixels in the scene. Used only for auto-
matic guessing of hazeValues (typically one would choose 1 or 2%).

clamp Logical. Enforce valid value range. By default reflectance will be forced to stay
within [0,1] and radiance >= 0 by replacing invalid values with the correspinding
boundary, e.g. -0.1 will become 0.

verbose Logical. Print status information.

radCor 37

Details

The atmospheric correction methods (sdos, dos and costz) apply to the optical (solar) region of the
spectrum and do not affect the thermal band.

Dark object subtraction approaches rely on the estimation of atmospheric haze based on *dark*
pixels. Dark pixels are assumed to have zero reflectance, hence the name. It is then assumed
further that any radiation originating from such *dark* pixels is due to atmospheric haze and not
the reflectance of the surface itself.

The folloiwing methods are available:

rad Radiance
apref Apparent reflectance (top-of-atmosphere reflectance)
dos Dark object subtratction following Chavez (1989)
costz Dark object subtraction following Chavez (1996)
sdos Simple dark object subtraction. Classical DOS, Lhaze must be estimated for each band separately.

If either "dos" or "costz" are selected, radCor will use the atmospheric haze decay model described
by Chavez (1989). Depending on the atmosphere the following coefficients are used:

veryClear λ−4.0

clear λ−2.0

moderate λ−1.0

hazy λ−0.7

veryHazy λ−0.5

For Landsat 8, no values for extra-terrestrial irradiation (esun) are provided by NASA. These are,
however, neccessary for DOS-based approaches. Therefore, these values were derived from a stan-
dard reference spectrum published by Thuillier et al. (2003) using the Landsat 8 OLI spectral re-
sponse functions (for details, see http://bleutner.github.io/RStoolbox/r/2016/
01/26/estimating-landsat-8-esun-values).

The implemented sun-earth distances neglect the earth’s eccentricity. Instead we use a 100 year
daily average (1979-2070).

Value

RasterStack with top-of-atmosphere radiance (W/(m2 ∗ srad ∗ µm)), at-satellite brightness tem-
perature (K), top-of-atmosphere reflectance (unitless) corrected for the sun angle or at-surface re-
flectance (unitless).

Note

This was originally a fork of randcorr() function in the landsat package. This version works on
Raster* objects and hence is suitable for large rasters.

References

S. Goslee (2011): Analyzing Remote Sensing Data in R: The landsat Package. Journal of Statistical
Software 43(4).

38 rasterCVA

G. Thuillier et al. (2003) THE SOLAR SPECTRAL IRRADIANCE FROM 200 TO 2400 nm
AS MEASURED BY THE SOLSPEC SPECTROMETER FROM THE ATLAS AND EURECA
MISSIONS. Solar Physics 214(1): 1-22 (

Examples

library(raster)
Import meta-data and bands based on MTL file
mtlFile <- system.file("external/landsat/LT52240631988227CUB02_MTL.txt",

package="RStoolbox")
metaData <- readMeta(mtlFile)
lsat <- stackMeta(mtlFile)

Convert DN to top of atmosphere reflectance and brightness temperature
lsat_ref <- radCor(lsat, metaData = metaData, method = "apref")

Correct DN to at-surface-reflecatance with DOS (Chavez decay model)
lsat_sref <- radCor(lsat, metaData = metaData, method = "dos")

Correct DN to at-surface-reflecatance with simple DOS
Automatic haze estimation
hazeDN <- estimateHaze(lsat, hazeBands = 1:4, darkProp = 0.01, plot = TRUE)
lsat_sref <- radCor(lsat, metaData = metaData, method = "sdos",

hazeValues = hazeDN, hazeBands = 1:4)

rasterCVA Change Vector Analysis

Description

Calculates angle and magnitude of change vectors. Dimensionality is limited to two bands per
image.

Usage

rasterCVA(x, y, tmf = 2, ...)

Arguments

x RasterBrick or RasterStack with two layers. This will be the reference/origin for
the change calculations. Both rasters (y and y) need to correspond to each other,
i.e. same resolution, extent and origin.

y RasterBrick or RasterStack with two layers. Both rasters (y and y) need to cor-
respond to each other, i.e. same resolution, extent and origin.

rasterEntropy 39

tmf Numeric. Threshold median factor. Used to calculate a threshold magnitude for
which pixels are considered stable, i.e. no change. Defaults to 2 times the me-
dian non-zero magnitude. Calculated as tmf * median(magnitude[magnitude
> 0])

... further arguments passed to writeRaster

Details

Change Vector Analysis (CVA) is used to identify spectral changes between two identical scenes
which were acquired at different times. CVA is limited to two bands per image. For each pixel it
calculates the change vector in the two-dimensional spectral space. For example for a given pixel
in image A and B for the red and nir band the change vector is calculated for the coordinate pairs:
(red_A | nir_A) and (red_B | nir_B).

The coordinate system is defined by the order of the input bands: the first band defines the x-axis
and the second band the y-axis, respectively. Angles are returned *in degree* beginning with 0
degrees pointing ’north’, i.e. the y-axis, i.e. the second band.

Value

Returns a RasterBrick with two layers: change vector angle and change vector magnitude

Examples

library(raster)
Create example data
data(lsat)
pca <- rasterPCA(lsat)$map

Do change vector analysis
cva <- rasterCVA(pca[[1:2]], pca[[3:4]])
cva
plot(cva)

rasterEntropy Multi-layer Pixel Entropy

Description

Shannon entropy is calculated for each pixel based on it’s layer values. To be used with categorical
/ integer valued rasters.

Usage

rasterEntropy(img, ...)

Arguments

img RasterStack or RasterBrick
... additional arguments passed to writeRaster

40 rasterPCA

Details

Entropy is calculated as -sum(p log(p)); p being the class frequency per pixel.

Value

RasterLayer "entropy"

Examples

data(rlogo)
re <- rasterEntropy(rlogo)
ggR(re, geom_raster = TRUE)

rasterPCA Principal Component Analysis for Rasters

Description

Calculates R-mode PCA for RasterBricks or RasterStacks and returns a RasterBrick with multiple
layers of PCA scores.

Usage

rasterPCA(img, nSamples = NULL, nComp = nlayers(img), spca = FALSE,
maskCheck = TRUE, ...)

Arguments

img RasterBrick or RasterStack.

nSamples Integer or NULL. Number of pixels to sample for PCA fitting. If NULL, all
pixels will be used.

nComp Integer. Number of PCA components to return.

spca Logical. If TRUE, perform standardized PCA. Corresponds to centered and
scaled input image. This is usually beneficial for equal weighting of all lay-
ers. (FALSE by default)

maskCheck Logical. Masks all pixels which have at least one NA (default TRUE is rec-
comended but introduces a slow-down, see Details when it is wise to disable
maskCheck). Takes effect only if nSamples is NULL.

... further arguments to be passed to writeRaster, e.g. filename.

readEE 41

Details

Internally rasterPCA relies on the use of princomp (R-mode PCA). If nSamples is given the PCA
will be calculated based on a random sample of pixels and then predicted for the full raster. If
nSamples is NULL then the covariance matrix will be calculated first and will then be used to
calculate princomp and predict the full raster. The latter is more precise, since it considers all
pixels, however, it may be slower than calculating the PCA only on a subset of pixels.

Pixels with missing values in one or more bands will be set to NA. The built-in check for such
pixels can lead to a slow-down of rasterPCA. However, if you make sure or know beforehand that
all pixels have either only valid values or only NAs throughout all layers you can disable this check
by setting maskCheck=FALSE which speeds up the computation.

Standardised PCA (SPCA) can be useful if imagery or bands of different dynamic ranges are com-
bined. SPC uses the correlation matrix instead of the covariance matrix, which has the same effect
as using normalised bands of unit variance.

Value

Returns a named list containing the PCA model object ($model) and the RasterBrick with the prin-
cipal component layers ($object).

Examples

library(ggplot2)
library(reshape2)
data(rlogo)
ggRGB(rlogo, 1,2,3)

Run PCA
set.seed(25)
rpc <- rasterPCA(rlogo)
rpc

Model parameters:
summary(rpc$model)
loadings(rpc$model)

ggRGB(rpc$map,1,2,3, stretch="lin", q=0)
if(require(gridExtra)){
plots <- lapply(1:3, function(x) ggR(rpc$map, x, geom_raster = TRUE))
grid.arrange(plots[[1]],plots[[2]], plots[[3]], ncol=2)
}

readEE Tidy import tool for EarthExplorer .csv export files

Description

Imports and tidies CSV files exported from EarthExplorer into data.frames and annotates missing
fields.

42 readMeta

Usage

readEE(x)

Arguments

x Character, Character or list. One or more paths to EarthExplorer export files.

Details

The EarthExplorer4 CSV file can be produced from the search results page. Above the results click
on ’export results’ and select ’comma (,) delimited’.

Note that only a subset of columns is imported which was deemed interesting. Please contact the
maintainer if you think an omited column should be included.

Value

data.frame

Examples

library(ggplot2)
ee <- readEE(system.file("external/EarthExplorer_LS8.txt", package = "RStoolbox"))

Scenes with cloud cover < 20%
ee[ee$Cloud.Cover < 20,]

Available time-series
ggplot(ee) +

geom_segment(aes(x = Date, xend = Date, y = 0, yend = 100 - Cloud.Cover,
col = as.factor(Year))) +

scale_y_continuous(name = "Scene quality (% clear sky)")

readMeta Read Landsat MTL metadata files

Description

Reads metadata and deals with legacy versions of Landsat metadata files and where possible adds
missing information (radiometric gain and offset, earth-sun distance).

Usage

readMeta(file, raw = FALSE)

4http://earthexplorer.usgs.gov/

readSLI 43

Arguments

file path to Landsat MTL file (...MTL.txt)

raw Logical. If TRUE the full raw metadata will be returned as a list. if FALSE
(the default) all important metadata are homogenized into a standard format
(ImageMetaData) and some information is added.

Value

Object of class ImageMetaData

Examples

Example metadata file (MTL)
mtlFile <- system.file("external/landsat/LT52240631988227CUB02_MTL.txt", package="RStoolbox")

Read metadata
metaData <- readMeta(mtlFile)

Summary
summary(metaData)

readSLI Read ENVI spectral libraries

Description

read/write support for ENVI spectral libraries

Usage

readSLI(path)

Arguments

path Path to spectral library file with ending .sli.

Details

ENVI spectral libraries consist of a binary data file (.sli) and a corresponding header (.hdr, or
.sli.hdr) file.

Value

The spectral libraries are read into a data.frame. The first column contains the wavelengths and the
remaining columns contain the spectra.

44 rescaleImage

See Also

writeSLI

Examples

Example data
sliFile <- system.file("external/vegSpec.sli", package="RStoolbox")
sliTmpFile <- paste0(tempdir(),"/vegetationSpectra.sli")

Read spectral library
sli <- readSLI(sliFile)
head(sli)
plot(sli[,1:2], col = "orange", type = "l")
lines(sli[,c(1,3)], col = "green")

Write to binary spectral library
writeSLI(sli, path = sliTmpFile)

rescaleImage Linear Image Rescaling

Description

performs linear shifts of value ranges either to match min and max of another image (y) or to any
other min and max value (ymin and ymax).

Usage

rescaleImage(x, y, xmin, xmax, ymin, ymax, forceMinMax = FALSE)

Arguments

x Raster* object. Image to normalise.

y Raster* object. Reference image. Optional. Used to extract min and max values
if ymin or ymax are missing.

xmin Numeric. Min value of x. Either a single value or one value per layer in x. If
xmin is not provided it will be extracted from x.

xmax Numeric. Max value of x. Either a single value or one value per layer in x. If
xmax is not provided it will be extracted from x.

ymin Numeric. Min value of y. Either a single value or one value per layer in x. If
ymin is not provided it will be extracted from y.

ymax Numeric. Max value of y. Either a single value or one value per layer in x. If
ymax is not provided it will be extracted from y.

forceMinMax Logical. Forces update of min and max data slots in x or y.

rlogo 45

Details

Providing xmin and xmax values manually can be useful if the raster contains a variable of a known,
fixed value range, e.g. NDVI from -1 to 1 but the actual pixel values don’t encompass this entire
range. By providing xmin = -1 and xmax = 1 the values can be rescaled to any other range, e.g. 1
to 100 while comparability to other rescaled NDVI scenes is retained.

Value

Returns a Raster* object of the same dimensions as the input raster x but shifted and stretched to
the new limits.

See Also

histMatch

Examples

Create example data
data(lsat)
lsat2 <- lsat - 1000
lsat2

Rescale lsat2 to match original lsat value range
lsat2_rescaled <- rescaleImage(lsat2, lsat)
lsat2_rescaled

Rescale lsat to value range [0,1]
lsat2_unity <- rescaleImage(lsat2, ymin = 0, ymax = 1)
lsat2_unity

rlogo Rlogo as RasterBrick

Description

Tiny example of raster data used to run examples.

Usage

data(rlogo)

Examples

data(rlogo)
ggRGB(rlogo,r = 1,g = 2,b = 3)

46 RStoolbox

rsOpts Set global options for RStoolbox

Description

shortcut to options(RStoolbox.*)

Usage

rsOpts(verbose)

Arguments

verbose Logical. If TRUE many functions will print status messages about the current
processing step. By default verbose mode is disabled.

Examples

rsOpts(verbose=TRUE)

RStoolbox RStoolbox: A Collection of Remote Sensing Tools

Description

The RStoolbox package provides a set of functions which simplify performing standard remote
sensing tasks in R. Most functions have built-in parallel support. All that is required is to run
beginCluster beforehand.

Data Import and Export

• readMeta: import Landsat metadata from MTL or XML files

• stackMeta: load Landsat bands based on metadata

• readSLI & writeSLI: read and write ENVI spectral libraries

• saveRSTBX & readRSTBX: save and re-import RStoolbox classification objects (model and
map)

• readEE: import and tidy EarthExplorer search results

sam 47

Data Pre-Processing

• radCor: radiometric conversions and corrections. Primarily, yet not exclusively, intended for
Landsat data processing. DN to radiance to reflectance conversion as well as DOS approaches

• topCor: topographic illumination correction

• cloudMask & cloudShadowMask: mask clouds and cloud shadows in Landsat or other
imagery which comes with a thermal band

• classifyQA: extract layers from Landsat 8 QA bands, e.g. cloud confidence

• rescaleImage: rescale image to match min/max from another image or a specified min/max
range

• normImage: normalize imagery by centering and scaling

• histMatch: matches the histograms of two scenes

• coregisterImages: co-register images based on mutual information

• panSharpen: sharpen a coarse resolution image with a high resolution image (typically
panchromatic)

Data Analysis

• spectralIndices: calculate a set of predefined multispectral indices like NDVI

• tasseledCap: tasseled cap transformation

• sam: spectral angle mapper

• rasterPCA: principal components transform for raster data

• rasterCVA: change vector analysis

• unsuperClass: unsupervised classification

• superClass: supervised classification

• fCover: fractional cover of coarse resolution imagery based on high resolution classification

Data Display

• ggR: single raster layer plotting with ggplot2

• ggRGB: efficient plotting of remote sensing imagery in RGB with ggplot2

sam Spectral Angle Mapper

Description

Calculates the angle in spectral space between pixels and a set of reference spectra (endmembers)
for image classification based on spectral similarity.

Usage

sam(img, em, angles = FALSE, ...)

48 sam

Arguments

img RasterBrick or RasterStack. Remote sensing imagery (usually hyperspectral)

em Matrix or data.frame with endmembers. Each row should contain the endmem-
ber spectrum of a class, i.e. columns correspond to bands in img. It is rec-
comended to set the rownames to class names.

angles Logical. If TRUE a RasterBrick containing each one layer per endmember will
be returned containing the spectral angles.

... further arguments to be passed to writeRaster

Details

For each pixel the spectral angle mapper calculates the angle between the vector defined by the
pixel values and each endmember vector. The result of this is one raster layer for each endmember
containing the spectral angle. The smaller the spectral angle the more similar a pixel is to a given
endmember class. In a second step one can the go ahead an enforce thresholds of maximum angles
or simply classify each pixel to the most similar endmember.

Value

RasterBrick or RasterLayer If angles = FALSE a single Layer will be returned in which each
pixel is assigned to the closest endmember class (integer pixel values correspond to row order of
em.

Examples

library(raster)
library(ggplot2)
Load example data-set
data(lsat)

Sample endmember spectra
First location is water, second is open agricultural vegetation
pts <- data.frame(x = c(624720, 627480), y = c(-414690, -411090))
endmembers <- extract(lsat, pts)
rownames(endmembers) <- c("water", "vegetation")

Calculate spectral angles
lsat_sam <- sam(lsat, endmembers, angles = TRUE)
plot(lsat_sam)

Classify based on minimum angle
lsat_sam <- sam(lsat, endmembers, angles = FALSE)

ggR(lsat_sam, forceCat = TRUE, geom_raster=TRUE) +
scale_fill_manual(values = c("blue", "green"), labels = c("water", "vegetation"))

saveRSTBX 49

saveRSTBX Save and Read RStoolbox Classification Results

Description

Saves objects of classes unsuperClass, superClass, rasterPCA and fCover to file. Useful to archive
the fitted models.

Usage

saveRSTBX(x, filename, format = "raster", ...)

readRSTBX(filename)

Arguments

x RStoolbox object of classes c("fCover", "rasterPCA", "superClass", "unsuper-
Class")

filename Character. Path and filename. Any file extension will be ignored.

format Character. Driver to use for the raster file

... further arguments passed to writeRaster

Value

The output of writeRSTBX will be at least two files written to disk: a) an .rds file containing the
object itself and b) the raster file (depending on the driver you choose this can be more than two
files).

Functions

• saveRSTBX: Save RStoolbox object to file

• readRSTBX: Read files saved with saveRSTBX

Note

All files must be kept in the same directory to read the full object back into R by means of
readRSTBX. You can move them to another location but you’ll have to move *all* of them (just
like you would with Shapefiles). In case the raster file(s) is missing, readRSTBX will still return
the object but the raster will be missing.

writeRSTBX and readRSTBX are convenience wrappers around saveRDS, readRDS. This means
you can read all files created this way also with base functionality as long as you don’t move your
files. This is because x$map is a Raster* object and hence contains only a static link to the file on
disk.

50 spectralIndices

Examples

Not run:
input <- brick(system.file("external/rlogo.grd", package="raster"))
Create filename
file <- paste0(tempdir(), "/test", runif(1))
Run PCA
rpc <- rasterPCA(input, nSample = 100)
Save object
saveRSTBX(rpc, filename=file)
Which files were written?
list.files(tempdir(), pattern = basename(file))
Re-read files
re_rpc <- readRSTBX(file)
Remove files
file.remove(list.files(tempdir(), pattern = basename(file), full = TRUE))

End(Not run)

spectralIndices Spectral Indices

Description

Calculate a suite of multispectral indices such as NDVI, SAVI etc. in an efficient way.

Usage

spectralIndices(img, blue = NULL, green = NULL, red = NULL,
nir = NULL, redEdge1 = NULL, redEdge2 = NULL, redEdge3 = NULL,
swir1 = NULL, swir2 = NULL, swir3 = NULL, scaleFactor = 1,
skipRefCheck = FALSE, indices = NULL, index = NULL,
maskLayer = NULL, maskValue = 1, coefs = list(L = 0.5, G = 2.5,
L_evi = 1, C1 = 6, C2 = 7.5, s = 1, swir2ccc = NULL, swir2coc = NULL),
...)

Arguments

img Raster* object. Typically remote sensing imagery, which is to be classified.

blue Character or integer. Blue band.

green Character or integer. Green band.

red Character or integer. Red band.

nir Character or integer. Near-infrared band (700-1100nm).

redEdge1 Character or integer. Red-edge band (705nm)

redEdge2 Character or integer. Red-edge band (740nm)

redEdge3 Character or integer. Red-edge band (783nm)

spectralIndices 51

swir1 not used

swir2 Character or integer. Short-wave-infrared band (1400-1800nm).

swir3 Character or integer. Short-wave-infrared band (2000-2500nm).

scaleFactor Numeric. Scale factor for the conversion of scaled reflectances to [0,1] value
range (applied as reflectance/scaleFactor) Neccesary for calculating EVI/EVI2
with scaled reflectance values.

skipRefCheck Logical. When EVI/EVI2 is to be calculated there is a rough heuristic check,
whether the data are inside [0,1]+/-0.5 (after applying a potential scaleFactor).
If there are invalid reflectances, e.g. clouds with reflectance > 1 this check will
result in a false positive and skip EVI calculation. Use this argument to skip this
check in such cases *iff* you are sure the data and scaleFactor are valid.

indices Character. One or more spectral indices to calculate (see Details). By default
(NULL) all implemented indices given the spectral bands which are provided
will be calculated.

index Character. Alias for indices.

maskLayer RasterLayer containing a mask, e.g. clouds, for which pixels are set to NA.
Alternatively a layername or -number can be provided if the mask is part of
img.

maskValue Integer. Pixel value in maskLayer which should be masked in output, i.e. will
be set to NA in all calculated indices.

coefs List of coefficients (see Details).

... further arguments such as filename etc. passed to writeRaster

Details

spectralIndices calculates all indices in one go in C++, which is more efficient than calcu-
lating each index separately (for large rasters). By default all indices which can be calculated given
the specified indices will be calculated. If you don’t want all indices, use the indices argument
to specify exactly which indices are to be calculated. See the table bellow for index names and
required bands.

Index values outside the valid value ranges (if such a range exists) will be set to NA. For example a
pixel with NDVI > 1 will be set to NA.

Index Description Source Bands Formula
CLG Green-band Chlorophyll Index Gitelson2003 redEdge3, green redEdge3/green− 1
CLRE Red-edge-band Chlorophyll Index Gitelson2003 redEdge3, redEdge1 redEdge3/redEdge1− 1
CTVI Corrected Transformed Vegetation Index Perry1984 red, nir (NDV I + 0.5)/sqrt(abs(NDV I + 0.5))
DVI Difference Vegetation Index Richardson1977 red, nir s ∗ nir − red
EVI Enhanced Vegetation Index Huete1999 red, nir, blue G ∗ ((nir − red)/(nir + C1 ∗ red− C2 ∗ blue+ Levi))
EVI2 Two-band Enhanced Vegetation Index Jiang 2008 red, nir G ∗ (nir − red)/(nir + 2.4 ∗ red+ 1)
GEMI Global Environmental Monitoring Index Pinty1992 red, nir (((nir2 − red2) ∗ 2 + (nir ∗ 1.5) + (red ∗ 0.5))/(nir + red+ 0.5)) ∗ (1− ((((nir2 − red2) ∗ 2 + (nir ∗ 1.5) + (red ∗ 0.5))/(nir + red+ 0.5)) ∗ 0.25))− ((red− 0.125)/(1− red))
GNDVI Green Normalised Difference Vegetation Index Gitelson1998 green, nir (nir − green)/(nir + green)
MCARI Modified Chlorophyll Absorption Ratio Index Daughtery2000 green, red, redEdge1 ((redEdge1− red)− (redEdge1− green)) ∗ (redEdge1/red)
MNDWI Modified Normalised Difference Water Index Xu2006 green, swir2 (green− swir2)/(green+ swir2)
MSAVI Modified Soil Adjusted Vegetation Index Qi1994 red, nir nir + 0.5− (0.5 ∗ sqrt((2 ∗ nir + 1)2 − 8 ∗ (nir − (2 ∗ red))))
MSAVI2 Modified Soil Adjusted Vegetation Index 2 Qi1994 red, nir (2 ∗ (nir + 1)− sqrt((2 ∗ nir + 1)2 − 8 ∗ (nir − red)))/2

52 spectralIndices

MTCI MERIS Terrestrial Chlorophyll Index DashAndCurran2004 red, redEdge1, redEdge2 (redEdge2− redEdge1)/(redEdge1− red)
NBRI Normalised Burn Ratio Index Garcia1991 nir, swir3 (nir − swir3)/(nir + swir3)
NDREI1 Normalised Difference Red Edge Index 1 GitelsonAndMerzlyak1994 redEdge2, redEdge1 (redEdge2− redEdge1)/(redEdge2 + redEdge1)
NDREI2 Normalised Difference Red Edge Index 2 Barnes2000 redEdge3, redEdge1 (redEdge3− redEdge1)/(redEdge3 + redEdge1)
NDVI Normalised Difference Vegetation Index Rouse1974 red, nir (nir − red)/(nir + red)
NDVIC Corrected Normalised Difference Vegetation Index Nemani1993 red, nir, swir2 (nir − red)/(nir + red) ∗ (1− ((swir2− swir2ccc)/(swir2coc− swir2ccc)))
NDWI Normalised Difference Water Index McFeeters1996 green, nir (green− nir)/(green+ nir)
NDWI2 Normalised Difference Water Index Gao1996 nir, swir2 (nir − swir2)/(nir + swir2)
NRVI Normalised Ratio Vegetation Index Baret1991 red, nir (red/nir − 1)/(red/nir + 1)
REIP Red Edge Inflection Point GuyotAndBarnet1988 red, redEdge1, redEdge2, redEdge3 0.705 + 0.35 ∗ ((red+ redEdge3)/(2− redEdge1))/(redEdge2− redEdge1)
RVI Ratio Vegetation Index red, nir red/nir
SATVI Soil Adjusted Total Vegetation Index Marsett2006 red, swir2, swir3 (swir2− red)/(swir2 + red+ L) ∗ (1 + L)− (swir3/2)
SAVI Soil Adjusted Vegetation Index Huete1988 red, nir (nir − red) ∗ (1 + L)/(nir + red+ L)
SLAVI Specific Leaf Area Vegetation Index Lymburger2000 red, nir, swir2 nir/(red+ swir2)
SR Simple Ratio Vegetation Index Birth1968 red, nir nir/red
TTVI Thiam’s Transformed Vegetation Index Thiam1997 red, nir sqrt(abs((nir − red)/(nir + red) + 0.5))
TVI Transformed Vegetation Index Deering1975 red, nir sqrt((nir − red)/(nir + red) + 0.5)
WDVI Weighted Difference Vegetation Index Richardson1977 red, nir nir − s ∗ red

Some indices require additional parameters, such as the slope of the soil line which are specified
via a list to the coefs argument. Although the defaults are sensible values, values like the soil
brightnes factor L for SAVI should be adapted depending on the characteristics of the scene. The
coefficients are:

Coefficient Description Affected Indices
s slope of the soil line DVI, WDVI
L_evi, C1, C2, G various EVI
L soil brightness factor SAVI, SATVI
swir2ccc minimum swir2 value (completely closed forest canopy) NDVIC
swir2coc maximum swir2 value (completely open canopy) NDVIC

The wavelength band names are defined following Schowengertd 2007, p10. The last column shows
exemplarily which Landsat 5 TM bands correspond to which wavelength range definition.

Band Description Wavl_min Wavl_max Landsat5_Band Sentinel2_Band
vis visible 400 680 1,2,3 2,3,4
red-edge1 red-edge1 680 720 - 5
red-edge2 red-edge2 720 760 - 6
red-edge3 red-edge3 760 800 - 7
nir near infra-red 800 1100 4 8/8a
swir1 short-wave infra-red 1100 1351 - 9,10
swir2 short-wave infra-red 1400 1800 5 11
swir3 short-wave infra-red 2000 2500 7 12
mir1 mid-wave infra-red 3000 4000 - -
mir2 mid-wave infra-red 45000 5000 - -
tir1 thermal infra-red 8000 9500 - -
tir2 thermal infra-red 10000 140000 6 -

srtm 53

Value

RasterBrick or a RasterLayer if length(indices) == 1

Examples

library(ggplot2)
library(raster)
data(lsat)

Calculate NDVI
ndvi <- spectralIndices(lsat, red = "B3_dn", nir = "B4_dn", indices = "NDVI")
ndvi
ggR(ndvi, geom_raster = TRUE) +

scale_fill_gradientn(colours = c("black", "white"))

Calculate all possible indices, given the provided bands
Convert DNs to reflectance (required to calculate EVI and EVI2)
mtlFile <- system.file("external/landsat/LT52240631988227CUB02_MTL.txt", package="RStoolbox")
lsat_ref <- radCor(lsat, mtlFile, method = "apref")

SI <- spectralIndices(lsat_ref, red = "B3_tre", nir = "B4_tre")
plot(SI)

srtm SRTM Digital Elevation Model

Description

DEM for the Landsat example area taken from SRTM v3 tile: s04_w050_1arc_v3.tif

Usage

data(srtm)

Examples

data(srtm)
ggR(srtm)

54 stackMeta

stackMeta Import separate Landsat files into single stack

Description

Reads Landsat MTL or XML metadata files and loads single Landsat Tiffs into a rasterStack. Be
aware that by default stackMeta() does NOT import panchromatic bands nor thermal bands with
resolutions != 30m.

Usage

stackMeta(file, quantity = "all", category = "image",
allResolutions = FALSE)

Arguments

file Character. Path to Landsat MTL metadata (*_MTL.txt) file or an Landsat CDR
xml metadata file (*.xml).

quantity Character vector. Which quantity should be returned. Options: digital num-
bers (’dn’), top of atmosphere reflectance (’tre’), at surface reflectance (’sre’),
brightness temperature (’bt’), spectral index (’index’), all quantities (’all’).

category Character vector. Which category of data to return. Options ’image’: image
data, ’pan’: panchromatic image, ’index’: multiband indices, ’qa’ quality flag
bands, ’all’: all categories.

allResolutions
Logical. if TRUE a list will be returned with length = unique spatial resolutions.

Value

Returns one single RasterStack comprising all requested bands. If allResolutions = TRUE
and there are different resolution layers (e.g. a 15m panchromatic band along wit 30m imagery)
a list of RasterStacks will be returned.

Note

Be aware that by default stackMeta() does NOT import panchromatic bands nor thermal bands with
resolutions != 30m. Use the allResolutions argument to import all layers. Note that nowadays the
USGS uses cubic convolution to resample the TIR bands to 30m resolution.

Examples

library(rgdal)
Example metadata file (MTL)
mtlFile <- system.file("external/landsat/LT52240631988227CUB02_MTL.txt", package="RStoolbox")

Read metadata
metaData <- readMeta(mtlFile)

superClass 55

summary(metaData)

Load rasters based on metadata file
lsat <- stackMeta(mtlFile)
lsat

superClass Supervised Classification

Description

Supervised classification both for classification and regression mode based on vector training data
(points or polygons).

Usage

superClass(img, trainData, valData = NULL, responseCol = NULL,
nSamples = 1000, polygonBasedCV = FALSE, trainPartition = NULL,
model = "rf", tuneLength = 3, kfold = 5, minDist = 2,
mode = "classification", predict = TRUE, predType = "raw",
filename = NULL, verbose, overwrite = TRUE, ...)

Arguments

img Raster* object. Typically remote sensing imagery, which is to be classified.

trainData SpatialPolygonsDataFrame or SpatialPointsDataFrame containing the training
locations.

valData SpatialPolygonsDataFrame or SpatialPointsDataFrame containing the valida-
tion locations (optional).

responseCol Character or integer giving the column in trainData, which contains the re-
sponse variable. Can be omitted, when trainData has only one column.

nSamples Integer. Number of samples per land cover class.
polygonBasedCV

Logical. If TRUE model tuning during cross-validation is conducted on a per-
polygon basis. Use this to deal with overfitting issues. Does not affect training
data supplied as SpatialPointsDataFrames.

trainPartition
Numeric. Partition (polygon based) of trainData that goes into the training
data set between zero and one. Ignored if valData is provided.

model Character. Which model to use. See train for options. Defaults to random-
Forest (’rf’). In addition to the standard caret models, a maximum likelihood
classification is available via model = 'mlc'.

tuneLength Integer. Number of levels for each tuning parameter (see train for details).

kfold Integer. Number of cross-validation resamples during model tuning.

56 superClass

minDist Numeric. Minumum distance between training and validation data, e.g. minDist=1
clips validation polygons to ensure a minimal distance of one pixel (pixel size
according to img) to the next training polygon. Requires all data to carry valid
projection information.

mode Character. Model type: ’regression’ or ’classification’.

predict Logical. Produce a map (TRUE, default) or only fit and validate the model
(FALSE).

predType Character. Type of the final output raster. Either "raw" for class predictions
or "prob" for class probabilities. Class probabilities are not available for all
classification models (predict.train).

filename Path to output file (optional). If NULL, standard raster handling will apply, i.e.
storage either in memory or in the raster temp directory.

verbose Logical. prints progress and statistics during execution

overwrite logical. Overwrite spatial prediction raster if it already exists.

... further arguments to be passed to train

Details

SuperClass performs the following steps:

1. Ensure non-overlap between training and validation data. This is neccesary to avoid biased
performance estimates. A minimum distance (minDist) in pixels can be provided to enforce
a given distance between training and validation data.

2. Sample training coordinates. If trainData (and valData if present) are SpatialPolygons-
DataFrames superClass will calculate the area per polygon and sample nSamples loca-
tions per class within these polygons. The number of samples per individual polygon scales
with the polygon area, i.e. the bigger the polygon, the more samples.

3. Split training/validation If valData was provided (reccomended) the samples from these
polygons will be held-out and not used for model fitting but only for validation. If trainPartition
is provided the trainingPolygons will be divided into training polygons and validation poly-
gons.

4. Extract raster data The predictor values on the sample pixels are extracted from img

5. Fit the model. Using caret::train on the sampled training data the model will be fit, including
parameter tuning (tuneLength) in kfold cross-validation. polygonBasedCV=TRUE
will define cross-validation folds based on polygons (reccomended) otherwise it will be per-
formed on a per-pixel basis.

6. Predict the classes of all pixels in img based on the final model.

7. Validate the model with the independent validation data.

Value

A list containing [[1]] the model, [[2]] the predicted raster and [[3]] the class mapping

See Also

train

tasseledCap 57

Examples

library(caret)
library(randomForest)
library(e1071)
library(raster)
data(rlogo)
train <- readRDS(system.file("external/trainingPoints.rds", package="RStoolbox"))

Plot training data
olpar <- par(no.readonly = TRUE) # back-up par
par(mfrow=c(1,2))
colors <- c("yellow", "green", "deeppink")
plotRGB(rlogo)
plot(train, add = TRUE, col = colors[train$class], pch = 19)

Fit classifier (splitting training into 70\% training data, 30\% validation data)
SC <- superClass(rlogo, trainData = train, responseCol = "class",
model = "rf", tuneLength = 1, trainPartition = 0.7)
SC

Plots
plot(SC$map, col = colors, legend = FALSE, axes = FALSE, box = FALSE)
legend(1,1, legend = levels(train$class), fill = colors , title = "Classes",
horiz = TRUE, bty = "n")
par(olpar) # reset par

tasseledCap Tasseled Cap Transformation

Description

Calculates brightness, greenness and wetness from multispectral imagery. Currently implemented
Landsat 4 TM, Landsat 5 TM, Landsat 7ETM+, Landsat 8 OLI, MODIS, QuickBird, Spot5 and
RapidEye.

Usage

tasseledCap(img, sat, ...)

Arguments

img RasterBrick or RasterStack. Input image. Band order must correspond to sensor
specifications (see Details and Examples)

sat Character. Sensor; one of: c("Landsat4TM", "Landsat5TM", "Landsat7ETM",
"Landsat8OLI", "MODIS", "QuickBird", "Spot5", "RapidEye"). Case is irrele-
vant.

... Further arguments passed to writeRaster.

58 tasseledCap

Details

Currently implemented: Landsat 4 TM, Landsat 5 TM, Landsat 7ETM+, Landsat 8 OLI, MODIS,
QuickBird, Spot5, RapdiEye. Input data must be in top of atmosphere reflectance. Moreover, bands
must be provided in ascending order as listed in the table below. Irrelevant bands, such as Landsat
Thermal Bands or QuickBird/Spot5 Panchromatic Bands must be omitted. Required bands are:

sat bands coefficients data unit
Landsat4TM 1,2,3,4,5,7 Crist 1985 reflectance
Landsat5TM 1,2,3,4,5,7 Crist 1985 reflectance

Landsat7ETM 1,2,3,4,5,7 Huang 2002 reflectance
Landsat8OLI 2,3,4,5,6,7 Baig 2014 reflectance

MODIS 1,2,3,4,5,6,7 Lobser 2007 reflectance
QuickBird 2,3,4,5 Yarbrough 2005 reflectance

Spot5 2,3,4,5 Ivtis 2008 reflectance
RapidEye 1,2,3,4,5 Schoenert 2014 reflectance

Value

Returns a RasterBrick with the thee bands: brigthness, greenness, and (soil) wetness.

References

Crist (1985) "A TM Tasseled Cap Equivalent Transformation for Reflectance Factor Data." Remote
Sensing of Environment 17 (3): 301-306

Huang et al. (2002) "Derivation of a Tasselled Cap Transformation Based on Landsat 7 At-Satellite
Reflectance." International Journal of Remote Sensing 23 (8): 1741-1748

Baig et al. (2014) "Derivation of a Tasselled Cap Transformation Based on Landsat 8 At-Satellite
Reflectance." Remote Sensing Letters 5 (5): 423-431.

Lobser et al. (2007) "MODIS Tasselled Cap: Land Cover Characteristics Expressed through Trans-
formed MODIS Data." International Journal of Remote Sensing 28 (22): 5079-5101.

Yarbrough et al. (2005) "QuickBird 2 tasseled cap transform coefficients: a comparison of deriva-
tion methods." Pecora 16 Global Priorities in Land Remote Sensing: 23-27.

Ivits et al. (2008) "Orthogonal transformation of segmented SPOT5 images." Photogrammetric
Engineering & Remote Sensing 74 (11): 1351-1364.

Schoenert et al. (2014) "Derivation of tasseled cap coefficients for RapidEye data." Earth Resources
and Environmental Remote Sensing/GIS Applications V (9245): 92450Qs.

Examples

library(raster)
data(lsat)

Run tasseled cap (exclude thermal band 6)
lsat_tc <- tasseledCap(lsat[[c(1:5,7)]], sat = "Landsat5TM")
lsat_tc
plot(lsat_tc)

topCor 59

topCor Topographic Illumination Correction

Description

account and correct for changes in illumination due to terrain elevation.

Usage

topCor(img, dem, metaData, solarAngles = c(), method = "C",
stratImg = NULL, nStrat = 5, illu, ...)

Arguments

img Raster*. Imagery to correct

dem Raster*. Either a digital elevation model as a RasterLayer or a RasterStack/Brick
with pre-calculated slope and aspect (see terrain) in which case the layers must
be named ’slope’ and ’aspect’. Must have the same dimensions as img.

metaData Character, ImageMetaData. Either a path to a Landsat meta-data file (MTL) or
an ImageMetaData object (see readMeta)

solarAngles Numeric vector containing sun azimuth and sun zenith (in radians and in that
order). Not needed if metaData is provided

method Character. One of c("cos", "avgcos", "minnaert", "C", "stat", "illu"). Choosing
’illu’ will return only the local illumination map.

stratImg RasterLayer to define strata, e.g. NDVI. Or the string ’slope’ in which case
stratification will be on nStrat slope classes. Only relevant if method =
'minnaert'.

nStrat Integer. Number of bins or quantiles to stratify by. If a bin has less than
50 samples it will be merged with the next bin. Only relevant if method =
'minnaert'.

illu Raster*. Optional pre-calculated ilumination map. Run topCor with method="illu"
to calculate an ilumination map

... arguments passed to writeRaster

Details

For detailed discussion of the various approaches please see Riano et al. (2003).

The minnaert correction can be stratified for different landcover characteristics. If stratImg =
'slope' the analysis is stratified by the slope, i.e. the slope values are divided into nStrat
classes and the correction coefficient k is calculated and applied separately for each slope class. An
alternative could be to stratify by a vegetation index in which case an additional raster layer has to
be provided via the stratImg argument.

60 unsuperClass

References

Riano et al. (2003) Assessment of different topographic correction in Landsat-TM data for mapping
vegetation types. IEEE Transactions on Geoscience and Remote Sensing.

Examples

Load example data
metaData <- system.file("external/landsat/LT52240631988227CUB02_MTL.txt", package="RStoolbox")
metaData <- readMeta(metaData)
lsat <- stackMeta(metaData)
data(srtm)

Minnaert correction, solar angles from metaData
lsat_minnaert <- topCor(lsat, dem = srtm, metaData = metaData, method = "minnaert")

C correction, solar angles provided manually
lsat_C <- topCor(lsat, dem = srtm, solarAngles = c(1.081533, 0.7023922), method = "C")

unsuperClass Unsupervised Classification

Description

Unsupervised clustering of Raster* data using kmeans clustering

Usage

unsuperClass(img, nSamples = 10000, nClasses = 5, nStarts = 25,
nIter = 100, norm = FALSE, clusterMap = TRUE,
algorithm = "Hartigan-Wong", ...)

Arguments

img Raster* object.
nSamples Integer. Number of random samples to draw to fit cluster map. Only relevant if

clusterMap = TRUE.
nClasses Integer. Number of classes.
nStarts Integer. Number of random starts for kmeans algorithm.
nIter Integer. Maximal number of iterations allowed.
norm Logical. If TRUE will normalize img first using normImage. Normalizing is

beneficial if your predictors have different scales.
clusterMap Logical. Fit kmeans model to a random subset of the img (see Details).
algorithm Character. kmeans algorithm. One of c("Hartigan-Wong", "Lloyd", "Mac-

Queen")
... further arguments to be passed to writeRaster, e.g. filename

validateMap 61

Details

Clustering is done using kmeans. This can be done for all pixels of the image (clusterMap=FALSE),
however this can be slow and is not memory safe. Therefore if you have large raster data (>
memory), as is typically the case with remote sensing imagery it is advisable to choose clus-
terMap=TRUE (the default). This means that a kmeans cluster model is calculated based on a
random subset of pixels (nSamples). Then the distance of *all* pixels to the cluster centers is cal-
culated in a stepwise fashion using predict. Class assignment is based on minimum euclidean
distance to the cluster centers.

The solution of the kmeans algorithm often depends on the initial configuration of class centers
which is chosen randomly. Therefore, kmeans is usually run with multiple random starting configu-
rations in order to find a convergent solution from different starting configurations. The nStarts
argument allows to specify how many random starts are conducted.

Examples

library(raster)
input <- brick(system.file("external/rlogo.grd", package="raster"))

Plot
olpar <- par(no.readonly = TRUE) # back-up par
par(mfrow=c(1,2))
plotRGB(input)

Run classification
set.seed(25)
unC <- unsuperClass(input, nSamples = 100, nClasses = 5, nStarts = 5)
unC

Plots
colors <- rainbow(5)
plot(unC$map, col = colors, legend = FALSE, axes = FALSE, box = FALSE)
legend(1,1, legend = paste0("C",1:5), fill = colors,

title = "Classes", horiz = TRUE, bty = "n")

par(olpar) # reset par

validateMap Map accuracy assessment

Description

validate a map from a classification or regression model. This can be useful to update the accuracy
assessment after filtering, e.g. for a minimum mapping unit.

Usage

validateMap(map, valData, responseCol, nSamples = 500,
mode = "classification", classMapping = NULL)

62 validateMap

Arguments

map RasterLayer. The classified map.

valData SpatialPolygonsDataFrame or SpatialPointsDataFrame with validation data.

responseCol Character. Column containing the validation data in attribute table of valData.

nSamples Integer. Number of pixels to sample for validation (only applies to polygons).

mode Character. Either ’classification’ or ’regression’.

classMapping optional data.frame with columns 'class' and 'classID' defining the map-
ping from raster integers to class names.

Note

Polygons, which are smaller than the map resolution will only be considered if they overlap with a
pixel center coordinate, otherwise they will be ignored.

Examples

Not run:
library(caret)
library(raster)

Training data
data(lsat)
poly <- readRDS(system.file("external/trainingPolygons.rds", package="RStoolbox"))

Split training data in training and validation set (50%-50%)
splitIn <- createDataPartition(poly$class, p = .5)[[1]]
train <- poly[splitIn,]
val <- poly[-splitIn,]

Classify (deliberately poorly)
sc <- superClass(lsat, trainData = train, responseCol = "class", nSamples = 50, model = "mlc")

Polish map with majority filter

polishedMap <- focal(sc$map, matrix(1,3,3), fun = modal)

Validation
Before filtering
val0 <- validateMap(sc$map, valData = val, responseCol = "class",

classMapping = sc$classMapping)
After filtering
val1 <- validateMap(polishedMap, valData = val, responseCol = "class",

classMapping = sc$classMapping)

End(Not run)

writeSLI 63

writeSLI Write ENVI spectral libraries

Description

Writes binary ENVI spectral library files (sli) with accompanying header (.sli.hdr) files OR ASCII
spectral library files in ENVI format.

Usage

writeSLI(x, path, wavl.units = "Micrometers", scaleF = 1,
mode = "bin", endian = .Platform$endian)

Arguments

x data.frame with first column containing wavelengths and all other columns con-
taining spectra.

path path to spectral library file to be created.

wavl.units wavelength units. Defaults to Micrometers. Nanometers is another typical op-
tion.

scaleF optional reflectance scaling factor. Defaults to 1.

mode character string specifying output file type. Must be one of "bin" for binary
.sli files or "ASCII" for ASCII ENVI plot files.

endian character. Optional. By default the endian is determined based on the platform,
but can be forced manually by setting it to either "little" or "big".

Details

ENVI spectral libraries with ending .sli are binary arrays with spectra saved in rows.

See Also

readSLI

Examples

Example data
sliFile <- system.file("external/vegSpec.sli", package="RStoolbox")
sliTmpFile <- paste0(tempdir(),"/vegetationSpectra.sli")

Read spectral library
sli <- readSLI(sliFile)
head(sli)
plot(sli[,1:2], col = "orange", type = "l")
lines(sli[,c(1,3)], col = "green")

64 writeSLI

Write to binary spectral library
writeSLI(sli, path = sliTmpFile)

