library(RScelestial)
# We load igraph for drawing trees. If you do not want to draw,
# there is no need to import igraph.
library(igraph)
#>
#> Attaching package: 'igraph'
#> The following objects are masked from 'package:stats':
#>
#> decompose, spectrum
#> The following object is masked from 'package:base':
#>
#> union
The RScelestial package could be installed easily as follows
Here we show a simulation. We build a data set with following command.
# Following command generates ten samples with 20 loci.
# Rate of mutations on each edge of the evolutionary tree is 1.5.
D = synthesis(10, 20, 5, seed = 7)
D
#> $seqeunce
#> C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
#> L1 3 1 3 0 0 1 3 1 3 3
#> L2 1 1 3 0 0 0 3 3 0 3
#> L3 1 0 3 0 3 3 0 3 3 0
#> L4 1 3 3 3 3 3 0 1 0 3
#> L5 1 0 1 0 3 0 3 0 0 1
#> L6 0 3 3 3 3 3 3 3 3 3
#> L7 0 3 0 3 0 3 3 1 0 3
#> L8 3 3 0 1 1 3 3 3 3 1
#> L9 1 0 3 0 3 1 3 3 0 1
#> L10 3 3 0 0 0 1 3 1 0 0
#> L11 3 0 3 3 0 3 0 3 3 0
#> L12 1 0 0 3 3 0 0 0 3 1
#> L13 3 3 1 3 0 3 0 0 1 3
#> L14 0 3 3 3 3 3 3 3 0 3
#> L15 3 1 0 1 0 0 0 0 0 0
#> L16 3 0 0 0 3 3 0 0 1 0
#> L17 0 3 3 3 3 0 3 3 0 3
#> L18 3 3 3 3 3 3 1 3 3 3
#> L19 1 0 3 1 0 3 3 0 3 3
#> L20 0 0 3 0 3 3 3 3 0 0
#>
#> $true.sequence
#> C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
#> L1 0 0 0 0 0 0 0 0 0 0
#> L2 0 0 0 0 0 0 0 0 0 0
#> L3 0 0 0 0 0 0 0 0 0 0
#> L4 0 0 0 0 0 0 0 0 0 0
#> L5 1 0 1 0 0 0 0 0 0 1
#> L6 0 0 0 0 0 0 0 0 0 0
#> L7 0 0 0 0 0 0 0 0 0 0
#> L8 0 0 0 0 0 0 0 0 1 0
#> L9 1 0 1 0 0 0 0 0 0 1
#> L10 0 0 0 0 0 0 0 0 0 0
#> L11 0 0 0 0 0 0 0 0 0 0
#> L12 0 0 0 0 0 0 0 0 0 0
#> L13 0 0 0 0 0 0 0 0 1 0
#> L14 0 0 0 0 0 0 0 0 1 0
#> L15 0 0 0 0 0 0 0 0 0 0
#> L16 0 0 0 0 0 0 0 0 1 0
#> L17 0 0 0 0 0 0 0 0 0 0
#> L18 0 0 0 0 0 0 0 0 0 0
#> L19 0 0 0 0 0 0 0 0 0 0
#> L20 0 0 0 0 0 0 0 0 0 0
#>
#> $true.clone
#> $true.clone$N1
#> [1] "C6" "C7"
#>
#> $true.clone$N2
#> [1] "C2" "C5" "C8"
#>
#> $true.clone$N3
#> [1] "C4"
#>
#> $true.clone$N5
#> [1] "C1" "C3" "C10"
#>
#> $true.clone$N6
#> [1] "C9"
#>
#>
#> $true.tree
#> src dest len
#> 1 N2 N1 1
#> 2 N3 N1 1
#> 3 N5 N1 1
#> 4 N6 N1 2
seq = as.ten.state.matrix(D$seqeunce)
SP = scelestial(seq, return.graph = TRUE)
SP
#> $input
#> V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19
#> C1 ./. C/C C/C C/C C/C A/A A/A ./. C/C ./. ./. C/C ./. A/A ./. ./. A/A ./. C/C
#> C10 ./. ./. A/A ./. C/C ./. ./. C/C C/C A/A A/A C/C ./. ./. A/A A/A ./. ./. ./.
#> C2 C/C C/C A/A ./. A/A ./. ./. ./. A/A ./. A/A A/A ./. ./. C/C A/A ./. ./. A/A
#> C3 ./. ./. ./. ./. C/C ./. A/A A/A ./. A/A ./. A/A C/C ./. A/A A/A ./. ./. ./.
#> C4 A/A A/A A/A ./. A/A ./. ./. C/C A/A A/A ./. ./. ./. ./. C/C A/A ./. ./. C/C
#> C5 A/A A/A ./. ./. ./. ./. A/A C/C ./. A/A A/A ./. A/A ./. A/A ./. ./. ./. A/A
#> C6 C/C A/A ./. ./. A/A ./. ./. ./. C/C C/C ./. A/A ./. ./. A/A ./. A/A ./. ./.
#> C7 ./. ./. A/A A/A ./. ./. ./. ./. ./. ./. A/A A/A A/A ./. A/A A/A ./. C/C ./.
#> C8 C/C ./. ./. C/C A/A ./. C/C ./. ./. C/C ./. A/A A/A ./. A/A A/A ./. ./. A/A
#> C9 ./. A/A ./. A/A A/A ./. A/A ./. A/A A/A ./. ./. C/C A/A A/A C/C A/A ./. ./.
#> V20
#> C1 A/A
#> C10 A/A
#> C2 A/A
#> C3 ./.
#> C4 A/A
#> C5 ./.
#> C6 ./.
#> C7 ./.
#> C8 ./.
#> C9 A/A
#>
#> $sequence
#> V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19
#> C1 A/A C/C C/C C/C C/C A/A A/A C/C C/C A/A A/A C/C A/A A/A A/A A/A A/A A/A C/C
#> C10 A/A A/A A/A A/A C/C A/A A/A C/C C/C A/A A/A C/C A/A A/A A/A A/A A/A A/A A/A
#> C2 C/C C/C A/A C/C A/A A/A C/C C/C A/A C/C A/A A/A A/A A/A C/C A/A A/A C/C A/A
#> C3 A/A A/A A/A A/A C/C A/A A/A A/A A/A A/A A/A A/A C/C A/A A/A A/A A/A A/A A/A
#> C4 A/A A/A A/A A/A A/A A/A A/A C/C A/A A/A A/A A/A C/C A/A C/C A/A A/A A/A C/C
#> C5 A/A A/A A/A A/A C/C A/A A/A C/C C/C A/A A/A C/C A/A A/A A/A A/A A/A A/A A/A
#> C6 C/C A/A A/A C/C A/A A/A C/C A/A C/C C/C A/A A/A A/A A/A A/A A/A A/A A/A A/A
#> C7 A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A C/C A/A
#> C8 C/C A/A A/A C/C A/A A/A C/C A/A A/A C/C A/A A/A A/A A/A A/A A/A A/A A/A A/A
#> C9 A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A C/C A/A A/A C/C A/A A/A A/A
#> V20
#> C1 A/A
#> C10 A/A
#> C2 A/A
#> C3 A/A
#> C4 A/A
#> C5 A/A
#> C6 A/A
#> C7 A/A
#> C8 A/A
#> C9 A/A
#>
#> $tree
#> src dest len
#> 1 C6 C8 7.50022
#> 2 C2 C8 8.00019
#> 3 C5 C10 8.00021
#> 4 C4 C9 8.50017
#> 5 C1 C10 8.50018
#> 6 C2 C4 8.50018
#> 7 C5 C9 8.50019
#> 8 C2 C7 8.50021
#> 9 C3 C9 9.00020
#>
#> $graph
#> IGRAPH 8d8b072 UNW- 10 9 --
#> + attr: name (v/c), weight (e/n)
#> + edges from 8d8b072 (vertex names):
#> [1] C6 --C8 C8 --C2 C5 --C10 C4 --C9 C10--C1 C2 --C4 C5 --C9 C2 --C7
#> [9] C9 --C3
You can draw the graph with following command
Also, we can make a rooted tree with cell “C8” as the root of the tree as follows:
SP = scelestial(seq, root.assign.method = "fix", root = "C8", return.graph = TRUE)
tree.plot(SP, vertex.size = 30)
Setting root.assign.method to “balance” lets the algorithm decide for a root that produces minimum height tree.
SP = scelestial(seq, root.assign.method = "balance", return.graph = TRUE)
tree.plot(SP, vertex.size = 30)
Following command calculates the distance array between pairs of samples.
D.distance.matrix <- distance.matrix.true.tree(D)
D.distance.matrix
#> C6 C7 C2 C5 C8 C4
#> C6 0.000000000 0.000000000 0.007246377 0.007246377 0.007246377 0.007246377
#> C7 0.000000000 0.000000000 0.007246377 0.007246377 0.007246377 0.007246377
#> C2 0.007246377 0.007246377 0.000000000 0.000000000 0.000000000 0.014492754
#> C5 0.007246377 0.007246377 0.000000000 0.000000000 0.000000000 0.014492754
#> C8 0.007246377 0.007246377 0.000000000 0.000000000 0.000000000 0.014492754
#> C4 0.007246377 0.007246377 0.014492754 0.014492754 0.014492754 0.000000000
#> C1 0.007246377 0.007246377 0.014492754 0.014492754 0.014492754 0.014492754
#> C3 0.007246377 0.007246377 0.014492754 0.014492754 0.014492754 0.014492754
#> C10 0.007246377 0.007246377 0.014492754 0.014492754 0.014492754 0.014492754
#> C9 0.014492754 0.014492754 0.021739130 0.021739130 0.021739130 0.021739130
#> C1 C3 C10 C9
#> C6 0.007246377 0.007246377 0.007246377 0.01449275
#> C7 0.007246377 0.007246377 0.007246377 0.01449275
#> C2 0.014492754 0.014492754 0.014492754 0.02173913
#> C5 0.014492754 0.014492754 0.014492754 0.02173913
#> C8 0.014492754 0.014492754 0.014492754 0.02173913
#> C4 0.014492754 0.014492754 0.014492754 0.02173913
#> C1 0.000000000 0.000000000 0.000000000 0.02173913
#> C3 0.000000000 0.000000000 0.000000000 0.02173913
#> C10 0.000000000 0.000000000 0.000000000 0.02173913
#> C9 0.021739130 0.021739130 0.021739130 0.00000000
SP.distance.matrix <- distance.matrix.scelestial(SP)
SP.distance.matrix
#> C1 C10 C2 C3 C4 C5
#> C1 0.000000000 0.003687630 0.018221247 0.014750545 0.014533617 0.007158358
#> C10 0.003687630 0.000000000 0.014533617 0.011062915 0.010845987 0.003470728
#> C2 0.018221247 0.014533617 0.000000000 0.011279808 0.003687630 0.011062889
#> C3 0.014750545 0.011062915 0.011279808 0.000000000 0.007592178 0.007592187
#> C4 0.014533617 0.010845987 0.003687630 0.007592178 0.000000000 0.007375259
#> C5 0.007158358 0.003470728 0.011062889 0.007592187 0.007375259 0.000000000
#> C6 0.024945783 0.021258154 0.006724537 0.018004345 0.010412166 0.017787426
#> C7 0.021908889 0.018221260 0.003687643 0.014967451 0.007375272 0.014750532
#> C8 0.021691966 0.018004336 0.003470719 0.014750527 0.007158349 0.014533608
#> C9 0.010845992 0.007158362 0.007375255 0.003904553 0.003687625 0.003687634
#> C6 C7 C8 C9
#> C1 0.024945783 0.021908889 0.021691966 0.010845992
#> C10 0.021258154 0.018221260 0.018004336 0.007158362
#> C2 0.006724537 0.003687643 0.003470719 0.007375255
#> C3 0.018004345 0.014967451 0.014750527 0.003904553
#> C4 0.010412166 0.007375272 0.007158349 0.003687625
#> C5 0.017787426 0.014750532 0.014533608 0.003687634
#> C6 0.000000000 0.010412179 0.003253817 0.014099792
#> C7 0.010412179 0.000000000 0.007158362 0.011062898
#> C8 0.003253817 0.007158362 0.000000000 0.010845974
#> C9 0.014099792 0.011062898 0.010845974 0.000000000
## Difference between normalized distance matrices
vertices <- rownames(SP.distance.matrix)
sum(abs(D.distance.matrix[vertices,vertices] - SP.distance.matrix))
#> [1] 0.7237071