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Abstract

The InfluenceFunctions package (RPEIF) computes the influence functions for risk and performance
estimators based on the returns of individual assets or groups of assets, the latter for example in the
context of an investment portfolio.. This initial release of the package treats five risk estimators and seven
performance estimators, including amont others, the standard deviation, value at risk, expected shortfall,
Sharpe ratio, Sortino ratio estimators. The influence function of a risk or performance estimator provides a
basis for computing an estimate of the finite-sample standard error when returns are serially uncorrelated,
and also when the returns are serially correlated, as discussed in Chen and Martin [2019]. This RPEIF
package is used in the package RPESE to compute the time series of influence function transformed returns
needed to compute the standard errors of risk and performance estimators

1 Influence Functions Theoretical Background

The Influence Functions package (RPEIF) makes use of the definition and theory of influence functions in
robust statistics, as introduced by Hampel (1974), further treated in Hampel et al. (1986). Recent use of
influence functions for the analysis of parametric and nonparametric expected shortfall (ES) is discussed in
Martin and Zhang (2018), and use of influence functions for computing standard errors of risk and perfomance
estimators with serially correlated returns is discussed in Chen and Martin (2019). Here we provide the
definition and basic properties of influence functions, with a view toward their use for understanding the
influence of outiers on risk and performance estimators, and for computing standard errors of such estimators
for both uncorrelated and serially correlated returns.

1.1 Risk and Performance Estimator Functional Representations

The large-sample value (as sample size n tends to infinity) of a risk or performance estimator may be
represented as a functional T = T'(F) of the marginal distribution function F' of a time series r1,72,...,7,
of returns.! For example the functional for the mean (expected value) is

IThe term functional refers to a function whose domain is an infinite dimensional space, e.g., the space of distribution
functions.



u(F) = [ rdr () )
and the functional for the standard deviation (returns volatility) is
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Given a functional representation T'(F') of an estimator, a finite-sample non-parametric estimator T, is easily
obtained by replacing the unknown distribution F by the empirical distribution F}, that has a jump of height
1/n at each of the observed returns values r1,rg,...,ry,:

T, =T(F,) =T(r1,re,...,Tn). (3)

For example, the finite-sample non-parametric estimators of the mean and standard deviation are the sample
mean and sample standard deviation, respectively:
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We note that one can also derive parametric estimators from parametric functional representation obtained
by replacing F' by Fy, where 0 is the parameter vector for a parametric distribution function. In this case
one obtains the finite-sample estimator by replacing the unknown parameter by its estimator, typically
the maximum-likelihood estimator (MLE). See for example, Martin and Zhang (2018) for a treatment of
parametric and non-parametric ES estimators for normal and t-distributions. However, this first version of
the RPEIF package only deals with non-parametric risk and performance estimators.

1.2 Estimator Influence Function Definition

Influence Functions are based on the use of the following mixture distribution perturbation of a fixed target
distribution F'(z) :

F,(x) = (1= ) () + 76, (x), 0 < 7 < 1/2 (5)

where §,.(z) is a point mass discrete distribution function with a jump of height one located at value r . The
influence function of an estimator with functional form T'(F) is defined as:

IF(r; T, F) = limy M = %T(F»y)lw:o (6)

The influence function is a special directional derivative (i.e., a Gateaux derivative) of the functional T'(F)
in the direction of a point mass distributions J,., evaluated at F'.



It is straightforward, and more or less tedious, to derive formulas for the influence functions of risk and
performance estimators. For example, the influence function of the sample mean is:

IF(riym F)=r—pu (7)

where 4 = p(F) depends on the underlying returns marginal distributon F. The above influence function
has the property that its expected value is zero, which is a reflection of the general property than an influence
function has zero expected value:

E[IF(r;T,F)] = 0. (8)

1.3 A Key Influence Function Property

A key influence function property is that for well behaved estimator functionals, the finite-sample estimator
T, = T(F,) = T(r1,r,...,r,) can be expressed as the following linear combination of influence-function
transformed returns:

1 n
T,—T(F)= - Z IF(ry; T, F) 4+ remainder 9)

t=1

where the IF(r;; T, F) are influence-functon (IF') transformed returns, and the remainder goes to zero in a
probablistic sense as n — oco. Thus the finite sample variance of T;, is approximately given by

1 n
- § IF(rt7T7F)
n

t=1

Var (T,) = Var (10)

and in the special case where the returns r; are i.i.d., the IF-transformed returns are i.i.d., and the variance
of T, reduces to

Var (T,) = %E[IFz(rl;T, ). (11)

and the expectation on the right-hand side can be evaluated empirically as the sample mean of the I F(ry; T, F),t =
1,2, ,n.

However, when the v, t = 1,2,...,n are serially correlated, the IF-transformed returns time series I F'(r; T, F')
will generally have serial correlation that needs to be accounted for in calculating the variance on the the
right-hand-side of (10). Spectral analysis theory, extensively used in science and engineering, shows that
the variance of the sum of the values of a serially correlated stationary time series is given by the spectral
density of the time series at zero frequency. Thus the problem of estimating the variance (10), with possibly
serially correlated returns, reduces to the problem of estimating the spectral density at zero frequency at zero
frequncy of the the time series I F(ry; T, F')/n. Chen and Martin [2019] show how to do this by a polynomial
gneralized linear model (GLM) fitting method, with elastic net (EN) regularization, that works well when
the returns are serially correlated, as well as when they are uncorrelated. Their methodology, which we refer
to as the CM method, is implemented in the Estimator Standard Error (ESE) package, which in turn makes
fundamental use of the RPEIF package we are discussing here.



2 RPEIF Package Estimators and their Influence Functions

Table 1 lists the symbolic or acronymn names and descriptions of the risk and performance estimators for
which the RPEIF package computes influence functions. Each estimator has a functional representation, a
sample based estimator as a function of a time series of asset returns, and an influence function formula. We
illustrate this below for the case of the standard deviation and Sharpe ratio estimators.

Name  Estimator Description

w Mean

o Standard deviation

SSD Semi-standard deviation

LPM Lower partial moment of order 1 or 2 with threshold ¢

ES Expected shortfall with tail probability a
VaR Value-at-risk with tail probability «
SR Sharpe ratio

SoR Sortino ratio with threshold the mean or a constant c

ESratio  Mean excess return to ES ratio with tail probability «

VaRratio Mean excess return to VaR ratio with tail probability «

Omega  Omega ratio with threshold ¢

RachR ~ Rachev ratio with lower upper tail probabilities a and

Table 1: Estimator Names and Descriptions

Standard Deviation (SD)

The functional representation o(F') of the sample standard deviation estimator is given by (2), and the
formula for the influence function of the sample standard deviation estimator is

IF(r;0;F) = (20) Y ((r — p)? — o) (12)

where p = p(F) and 0 = o(F). The sample standard deviation estimator is given in (4).

Sharpe Ratio (SR)

The formula for the functional reprsentation of the Sharpe ratio is

W(F) — 1y pelF)

SRE) = =2 = o

(13)



where p.(F) is the mean excess return over the risk-free rate ¢, and the SR influence function formula is:

SRy = _He 2 Lo Be
IF(r; SR; F) = 553 (r—p)+ a(r )+ 5 (14)
The sample estimator of the Sharpe ratio is:
SR, =t 1S (15)

where [i,, and &,, are the sample mean and sample standard deviation.

The functional forms, and derivations of the influence function formulas for all the estimators in Table 1 may
be found in Zhang et al. [2020]. For the convenience of interested readers, the influence functions of all the
estimators in Table 1 are provided in Appendix A.

Nuisance Parameters

We note that the influence functon formulas above, as well as in Appendix A, contain one or more nuisance
parameters that need to be specified in order to compute influence function values for various values of a
return r. For example, the IF of the sample standard deviation depends on the two nuisance parameters
u = p(F) and o = o(F'), and the Sharpe ratio IF depends on the three nuisance parameters y = u(F),
o =o(F), and SR = SR(F). The third column of Table 2 contains the nuisance parameters for each risk
and performance estimator, along with the user specificed parameters such as tail probabilities, Sortino ratio
threshold, etc. The fourth column of Table (2) contains the values of the nuisance parameters for the case of
monthly returns distribution with mean p = 0.01, volatility o = 0.05 and risk-free rate ry = 0. The formulas
for the nuisance parameters and R code to calculate their values are contained in Appendix B.

3 Using the RPEIF Package to Evaluate Influence Functions and
Compute Influence-Function Transformed Returns

Load and install and load the RPEIF package with the code:

library(devtools)
install_github("AnthonyChristidis/RPEIF")

The RPEIF package computes the influence functions time series of the returns for the risk and performance
measures in RPESE, which in turn is used in PerformanceAnalytics if the user wishes to return the standard
errors for the risk and performance measures. The RPEIF package is therefore required by the RPESE package.

To demonstrate the usage of the RPEIF package, we will make use of the edhec data set from the package
previously mentioned, PerformanceAnalytics. This data set contains hedge fund returns from January,
1997 to August, 2008. You can load that data set, and confirm that it is an xts time series object with the
following R code.



library (RPEIF)
data(edhec, package = 'PerformanceAnalytics')
class(edhec)

## [1] "xts" "zoo"

Use of the code line

colnames (edhec, package = 'PerformanceAnalytics')

will reveal to you that the hedge fund style names are too long to display well in plots. So use the following
code to replace those long names with shorter names as follows, and view the first six values of the CA fund.

colnames (edhec) = c("CA", "CTAG", "DIS", "EM","EMN", "ED", "FIA",
||GM||’ HLS", IIMA", ”Rv”, ||SS||’ ”FOF")
colnames (edhec)

## [1] ”CA" IICTAGII IIDISII IIEM” IIEMNII IIEDII IlFIAlI ||GMII IILSII
## [10] HMA" lIRVH IISSII IIFOFH

head(edhec[,"CA"])

## [1] 0.0119 0.0123 0.0078 0.0086 0.0156 0.0212

To see what functions are contained in the RPEIF package, use the code line:

library (RPEIF)
1s("package:RPEIF")

The list of functions you see as a result of the above code will include the functions shown in the second
column of 2. We use the term IF.xxxx as a generic for any one of the functions in the second column. The
third column lists the names of nuisance parameters that need to be specified one way or another to compute
the values of an influence function at various values of the influence function argument. The fourth column
contains normal distribution “typical” values for the nuisance parameters.

You can get help on any of the functions IF.xxxx with a commond like the following:

# Help T for the IF function

help(IF.SD)



Estimator IF Function Nuisance Parameters Normal Dist. Nuisance Pars
W IF .mean I .005

o IF.SD Wy O .005, .07

SSD IF.SemiSD w, SSD, SMEAN .005, .0495, -0.0279
LPM1 IF.LPM LPM1, .0255

LPM2 IF.LPM LPM2,. .00218

ES IF.ES Go, ESq -.0847, .273

VaR IF.VaR o, f(4a) -.0847, 2.507

SR IF.SR le, 0, SR, .01, .05, .20

SoR. IF.SoR wy, LPM2., SoR, .01, .00898, .3337

SoR,, IF.SoR w, SSD, SMEAN, SoR,, .01, .0354, -.0199, .2929
ESratio IF.ESratio Wy Qo ESo, ESTatio .01, -.0541, .0777, .129
VaRratio IF.VaRratio iy 9o, f(qa), VaRratio .01, -.0541, 3.99, .185
RachR IF.RachR Gos ESa, q1—p, EGg, RachR  -.0541, .0777, .0741, 0.0977, 1.257
Omega IF .Omega LPM1.,, UPM1,, Q .0153, .0253, 1.652

Table 2: IF R Code Functions and Corresponding Nuisance Parameters

The R IF.xxxx functions are used for two distinct purposes. The first is to evaluate an estimator influence
function at a set of argument values, and plot them to display the shape of the influence function. This
allows the user to expolore the different shapes of the influence functions of different estimators. The second
and primary purpose of the functions is to compute influence-function transformed time series of returns, as
a first step in the overall method of computing standard errors for risk and perfromance estimators.

The arguments of the R functions in Table (2) are all the same, except for the nuisance parameters which
are estimator specific. For example, the arguments of IF.SD and IF.SR are as follows.

args(IF.SD)

## function (returns = NULL, evalShape = FALSE, retVals = NULL,
NULL, k = 4, IFplot = FALSE, IFprint = TRUE, prewhiten = FALSE,
cleanOutliers = FALSE, cleanMethod = c("locScaleRob",

#it nuisPars =

#i# ar.prewhiten.order = 1,
## "Boudt") [1], eff =
## NULL

args(IF.SR)

0.99, alpha.robust = 0.05,

.

## function (returns = NULL, evalShape = FALSE, retVals = NULL,
NULL, k = 4, IFplot = FALSE, IFprint = TRUE, rf = O,

#i# nuisPars =



#i# prewhiten = FALSE, ar.prewhiten.order = 1, cleanOutliers = FALSE,

## cleanMethod = c("locScaleRob", "Boudt")[1], eff = 0.99, alpha.robust = 0.05,
## oY)
## NULL

You see that the arguments of the two functions are the same except for the nuisance parameters arguments
parsSD.IF and parsSR. IF.

Note that you get no results using an IF.xxxx function with no arguements, for example try IF.mean() and
see what you get. You need to either set evalShape = T, or supply a returns xts object for the argument
returns =, in order for an IF.xxxx function to compute results.

3.1 Evaluating and Plotting Influence Functions for Shape Comparisons

In order to compute the values and plot the shapes of influence functions using the R IF.xxxx functions in
Table 2, the values of the nuisance parameters in the third column of 2 need to be specified, and there are
two basic methods of doing so. The first method is to use “typical” values for those parameters in the case
of a specific returns distribution. Such valures are provided for the case of a normal returns distribution in
the fourth column of the Table 2. Details concerning how these values are obtained are provided in Szhang
et al. (2019). The second method is to provide a time series of returns of an asset of interest as one of the
functon’s arguments, and in that case the R function will estimate the values of the nuisance parameters
from the time series of returns.

Evaluating and Plotting Influence Functions Using Default Nuisance Parameter Values

Using the argument evalShape = T and IFplot = T as follows, you can easily get influence function plots.
For example, you get plots of the influence functions of the standard deviation and Sharpe ratio estimators
using the following code.

par (mfrow = c(1,2),pty = "s")

outSD = IF.SD(evalShape = T, IFplot = T, IFprint = T)
outSR = IF.SR(evalShape = T, IFplot = T, IFprint = T)
par (mfrow = c(1,1))

The plots are shown in Figure 1.
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Figure 1: Influence Functions of Standard Deviation and Sharpe Ratio (“typical” nuisance parameters values)

Evaluating and Plotting Influence Functions with User-Specified Nuisance Parameter Values

Using the nuisParsFn function, you can generate nuisance parameters by specifying “typical” values based on
some assumed returns distribution. For the risk measure estimators and performance measure estimators, the
nuisParsFn function assumes follow the normal distribution, with monthly mean return of 1% and risk-free
rate vy = 0, and monthly volatility of 5% (the corresponding annual mean and volatility are 12% and 17.3%,
respectively). We also note that we use o = 0.10 for quantiles, VaR and ES, use that value along with the
value $ = 0.10 for the Rachev ratio, and use ¢ = 0 for lower partial moments and Sortino ratio with fixed
threshold.

To see the default values from the nuisParsFn function, you can look at the arguments of the function. The
default arguments are the ones used to generate the values in Table 2.

args(nuisParsFn)

## function (mu = 0.01, sd = 0.05, ¢ = 0, alpha = 0.1, beta = 0.1)
## NULL

To generate nuisance parameters using different default settings for any of the arguments, you can specify
the new values in the arguments of the function. For example, if you want to generate nuisance parameters
by using a mean return of 2% instead of 1% and a volatility of 15% instead of 5% (the defaults) to generate
the influence functions plots for the standard deviation and the Sharpe ratio, you can use the nuisPars
argument as in the following code.



par (mfrow = c(1,2),pty = "s")
outSD = IF.SD(evalShape = T, IFplot = T, IFprint = T, nuisPars=nuisParsFn(mu=0.02, sd=0.15))

outSR = IF.SR(evalShape = T, IFplot = T, IFprint = T, nuisPars=nuisParsFn(mu=0.02, sd=0.15))
par (mfrow = c(1,1))
SD SR
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Figure 2: Influence Functions of Standard Deviation and Sharpe Ratio (user-specified nuisance parameters)

Evaluating and Plotting Influence Functions Using Nuisance Parameter Values Estimated from
a Returns Time Series

You can also compute influence function shapes using nuisance parameter values that are estimated from
a retirms time series of interest, the latter of which is specified by using the argument returns = of the
IF.xxxx functions. For example, you could use the CA hedge fund time series for this purpose by using the
following code, the results of which are shown in Figure 3. Note that in using the IF.SD and IF.SR functions,
the evalShape = T is retained.

library(xts)

retCA = edhec$CA

par (mfrow = c(1,2),pty = "s")

outSD = IF.SD(returns = retCA, evalShape = T, IFplot = T, IFprint = T)
outSR = IF.SR(returns = retCA, evalShape = T, IFplot = T, IFprint = T)
par (mfrow = c(1,1))

]
]
]

10
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Figure 3: Influence Functions of Standard Deviation and Sharpe Ratio (estimated nuisance parameters values)

3.2 Evaluating and Plotting Influence-Function Transformed Returns Time Se-
ries

The general method of estimating standard errors of risk and performance estimators, described in Chen
and Martin (2019), consists of computing a good estimate of the variance of time series sample average of
influence-function transformed returns shown on the right-hand-side of (10). In case you are interested in
seeing what influence-function transformed returns look like for actual returns data, can easily compute such
returns with the IF.xxxx function. For example,you can do so for SD and SR estimators for the CA hedge
fund returns with the following code, whose results for the CA returns, and for the SD and SR estimator
influence function transformed returns are shown in Figure 4.

retCA = edhec$CA

outSD = IF.SD(returns = retCA, IFplot
outSR = IF.SR(returns
par (mfrow = c(3,1))
plot(retCA,lwd = .8, ylab = "Returns", main = "CA Hedge Fund Returns")
plot(outSD,lwd = .8, main "IF.SD Transformed Returns")
plot(outSR,1lwd .8, main = "IF.SR Transformed Returns")

T, IFprint = T)
retCA, IFplot = T, IFprint = T)

11



CA Hedge Fund Returns 1997-01-31/2019-11-30
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Figure 4: Standard Deviation and Sharpe Ratio Influence-Function Transformed Returns for CA Hedge Fund

4 OQOutlier Cleaning

A very reliable outlier cleaning method that shrinks outliers can be obtained based on a robust location
M-estimator and an associated robust scale estimator 5. A location M-estimator is computed as a solution
of the equation

2o () o a

where ¢ = ¢(z) is a suitable odd “psi” function, and § is a robust scale estimate of the residuals ¢, = r; — fias.
For an introduction to location M-estimators and their computation, see Sections 2.3 and 2.7 of Maronna et
al. (2019).

Here we use the special optimal psi function

a

+
5 (x)> ,with a = 0.002449 (17)

Yopn(x) = SGN(z) (|x| n
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where ¢(x) is the standard normal density function, and a plot of this psi function is displayed in Figure 5.
The function ,p(z) has a “smooth rejection” character in that the function is continuous, and all returns
with a scaled residual (r; — fipr)/$ larger in magnitude than 3.568 are “rejected”; in the sense that such returns
have no influence on the estimate fips since such terms are set to zero in (16). For further details on the
function 9op (), see Section 5.8 of Maronna et al. (2019).

-4 -2 a 2 4

Scaled Residual

Figure 5: Optimal Bias Robust Psi Function with 1., (x) = 0 for |z| > 3.568 and 99% Normal Distribution
Efficiency.

Based on a location estimate fij; and associated scale estimate §, it is natural to define returns outliers as
those returns r; that fall outside the interval [fips — 3.568 - §, fips + 3.568 - §]. Such outliers are then “cleaned”
by shrinking them to the nearest boundary of that interval.

For the fixed income arbitrage (FIA) hedge fund returns, it turns out that fip, = .00640 and § = .00547
is [-.0131, .0259]. Correspondingly, FIA returns with values less than -.0131, or greater than .0259, are
detected as outliers and shrunk accordingly. The following code results in Figure 6, which shows the sample
mean IF transformed FIA returns (which are equal to FIA returns minus the very small mean of the FIA
returns) in the top plot, and the outlier cleaned IF tranformaed FIA returns in the bottom plot.

retFIA = edhec$FIA

iftrFIA = IF.mean(returns = retFIA,IFprint = T)

iftrFIAclean = IF.mean(returns = retFIA, cleanQutliers = T, eff = 0.99, IFprint = T)
par (mfrow = c(2,1))

plot(iftrFIA,main = "FIA Returns",lwd = .8)

plot(iftrFIAclean,main = "Qutlier Cleaned FIA Returns",lwd = .8)

par (mfrow = c(1,1))

13
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Figure 6: FIA Returns and Outlier Cleaned FIA Returns

Just as a check to compare the FIA returns and outlier cleaned FIA returns, we show in Figure 7 the former
plot with a solid line, and the latter as overlaid dots

plot (iftrFIA, lwd = 0.8, main =

"FIA Returns (line) and Outlier Cleaned FIA Returns (dots)")
points(iftrFIAclean,pch = 16)

14
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Figure 7: Overlaid FIA Returns (line) and Outlier Cleaned Returns (dots)

5 Prewhitening

Spectral density function estimation is a frequently used method in the field of signal processing, and in other
engineering and science applications. Prewhitening is a technique often used to improve the performance of
spectral density estimators. Since the core of the method described in Chen and Martin [2019] is estimation of
a spectral density at frequency zero of an influence-function transformed returns time series I F}, it is natural
to be able to use prewhitening of that time series. The seCorIFPW variant of the basic seCorlF method in
the EstimatorStandardError package implement such prewhitening..

A prewhitened version IF}" of the IF; time series is computed as

IFPY = IF, — pIF,_, (18)

where p is a lag-one serial correlation coefficient estimat of the IF;. In general the TFP" series is not a serially
uncorrelated (white noise) series, but it has considerably less serial correlation than I'F;, and a periodogram
estimator based on IFP" will suffer from relatively little bias compared with one based on IF}.

The following code computes, and plots in Figure 8, the IF.SR transformed FIA returns, and the prewhitened
IF.SR transformed FIA returns.

15



iftrFIA = IF.SR(returns = retFIA,IFprint = T)

PWiftrFIA = IF.SR(returns = retFIA,prewhiten = T, IFprint = T)

par (mfrow = c(2,1))

plot(iftrFIA,main = "IF.SR Transformed FIA Returns'",lwd = .8)

plot (PWiftrFIA,main = "Prewhitened IF.SR Transformed FIA Returns",lwd = .8)
par (mfrow = c(1,1))
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Figure 8: IF.SR Transformed FIA Returns (top) and Prewhitened Version of the Same (bottom)

The following code computes and displays the lag-1 through lag-5 autocorrelations of the time series in Figure
8:

corr.iftrFIA = acf(iftrFIA, lag.max = 5, plot = F)

corr .PWiftrFIA = acf(PWiftrFIA, lag.max = 5, plot = F)

out = data.frame(round(rbind(corr.iftrFIA$acf,corr.PWiftrFIA$actf),2))
names (out) = c("Lag0","Lagl","Lag2","Lag3","Lag4","Lagb")

row.names (out) = c("autocorr: IF.SR FIA ret","autocorr: PW IF.SR FIA ret")
out[-1]

## Lagl Lag2 Lag3 Lag4 Lagb
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## autocorr: IF.SR FIA ret 0.44 0.10 0.01 0.01 -0.06
## autocorr: PW IF.SR FIA ret 0.05 -0.09 -0.05 0.04 -0.07

Outlier Cleaning Prior to Prewhitening

Since outliers can have adverse influence not only on risk and performance estimators, but also on the
estimator p used for prewhitening, it is always a good idea to apply the outlier cleaning mehod of Section
4 before prewhitening. We illustrate doing this with the following code and plots, and autocorrelation
calculations.

iftrFIAcl = IF.mean(returns = retFIA,cleanQutliers = T, IFprint = T)

PWiftrFIAcl = IF.mean(returns = retFIA,cleanOutliers = T,prewhiten = T, IFprint = T)
par (mfrow = c(2,1))

plot (iftrFIAcl,type = "b", main = "FIA Qutlier Cleaned Returns",lwd = .8)

plot (PWiftrFIAcl,type = "b", main = "Prewhitened FIA Qutlier Cleaned Returns",lwd = .8)
par (mfrow = c(1,1))
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Figure 9: IF.SR Transformed Outlier Cleaned FIA Returns (top) and Prewhitened Version of the Same
(bottom)



The following code computes and displays the lag-1 through lag-5 autocorrelations of the time series in Figure
9:

corr.iftrFIAcl = acf(iftrFIAcl, lag.max = 5, plot = F)

corr .PWiftrFIAcl = acf (PWiftrFIAcl, lag.max = 5, plot = F)

out = data.frame(round(rbind(corr.iftrFIAcl$acf,corr.PWiftrFIAcl$acf),2))
names (out) = c("Lag0","Lagl","Lag2","Lag3","Lag4","Lagb")

row.names(out) = c("autocorr: IF.SR Cleaned FIA ret","autocorr: PW IF.SR Cleaned FIA ret")
out[,-1]

## Lagl Lag2 Lag3 Lag4 Lagb

## autocorr: IF.SR Cleaned FIA ret 0.43 0.21 0.26 0.14 -0.01

## autocorr: PW IF.SR Cleaned FIA ret -0.02 -0.05 0.19 0.08 -0.08

Appendix A. Estimator Functional Forms and Influence Function
Formulas

Here we provide the functional form of all the estimators in Table2, and the formulas for their influence
functions. The interested reader can find the derivations of these formulas in Zhang et al. (2019).

Mean

The functional representation p(F') of the sample mean estimator is given by (1), and the formula for the
influence function of the sample mean is:

IF(riym F)=r—pu (19)

where p = p(F).

Standard Deviation

The functional form of standard deviation is

o) = ([ (o= ) 2ar ) " (20)

and the formula for the influence function of the standard deviation is:



Semi-Standard Deviation (SemiSD)

The functional respresentation SSD(F') of the sample semi-standard deviaton is

u(F) 1/2
SSD(F) = ( / (x—u(F))2dF(:r)> (22)

and the formula for the influence function of the sample semi-standard deviation is:
(r—uw? I(r <p)—2-SMEAN - (r — p) — SSD?
2.-SSD
where p = p(F), SSD = SSD(F), and SMEAN is the “semi-mean” SMEAN(F) = [*_(z — p)dF (x).

IF(r; SSD; F) =

(23)

Lower Partial Moment (LPM)

There are two versions of LPM available, the lower partial moment of order one LPM1., and the lower
partial moment of order two LPM2., whose functional representation are special cases of the order n lower
partial moment

LPMn.(F) = /C (¢ —x)"dF(x) (24)

—o00
where c is a user specified constant “threshold”. This threshold is oftern referred to as the minimum acceptable
return, (M AR).

The influence function formulas of these two lower partial moments are:

IF(r; LPM1,F) = (c—r)I(r <c¢)—LPM1, (25)

where LPM1, = LPM1,(F), and
IF(r; LPM2,;F) = (¢ —r)° I(r < ¢) — LPM2, (26)

where LPM2, = LPM.(F),

Value-at-Risk (VaR)

The functional form for value-at-risk is

VaRo(F) = —qa(F). (27)

The formula for the influence function of VaR is:

IF(r;VaR,; F) = (I(r < gn) — @) (28)

f(QQ)
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Expected Shortfall (ES)

The functional form of expected shortfall is

1
BSo(F) = —— / v dF(z). (29)
The formula for the influence function of the ES is:
I(r <
IF(r; ES;F) = — (r;qa)-(r—qa)—qa—ESa (30)

Sharpe Ratio (SR)

The functional reprsentation of the Sharpe ratio is

SR(F) = 31
and the influence function for the Sharpe-Ratio is
1
IF(r;SR; F) = - fe (r—,u)2—|—*(r—u)—|—&
203 o 20
where pe = pe(F) =p(F) — 14, and 0 = o(F).
Sortino Ratio (SoR)
There are two versions of the Sortino ratio. The first version of SoR has the functional representation
F)— JF
SoR(F) — ME) =15 pelF) .

- VLPM2.(F) +/LPM2.(F)

where the subscript c reflects the use of the constant threshold in the denominator lower partial moment of
order two.

The second version of SoR has the functional form

B H(F)fr . Ne(F)
SoR,(F) = SSD(F)f ~ SSD(F)

(33)

where the subscript p indicates the use of the mean in the denominator semi-standard deviaton.

The influence function for SoR.(F) is
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’SORC'I(TSC)(rfc)z’Jri(rfu)Jr

[F(r; SoRe; F) = — 50 LPM?2

where p = p(F),LPM2, = LPM2.(F), SoR. = SoR.(F).

The influence function for SoR,,(F) is

IF(r;SoR,; F) =

5. 55D2 SSD? )

where = u(F),SSD = SSD(F'), SoR, = SoR,(F).

Expected Shortfall Ratio (ESratio)

The functional form is

W) =1 pe(F)
ES,(F) ES,(F)

ESratio(F) =

The formula for the influence function of the ESratio is:

_ ; <
IF(r; ESratio; F) = U ESratio < — qo — ESo — I(r < ga) (r— Qa))
«

ES, ES,

Value-at-Risk Ratio (VaRratio)

The functional form of the VaR ratio is:

M<F> —Tf _ ,ue(F)
VaR(F)  —qa(F)

VaRratio(F) =

The formula for the influence function of the VaRratio is:

IF(r;VaRratioy F) = —
( ) qo qa f(qa)

21

- VaRratio I(r < q.) —
r—p _ VaBratio (r <qa) a

7SoRu~I(r§u)(r7 )2+(SOR#'SMEAN 1 )(r )+SORu

2

(35)

(36)

(37)

(38)

(39)



Rachev Ratio (RachR)

The functional form is:

1 too
= xdF(z)
RachR(F) = f?(;ﬁ - 61 fql*‘;
a ——. fih;o xdF(x)
o

where ES, = ES,(F) is the expected shortfall at level « and EGg = EGg(F') is the expected tail gain at
upper S-quantile defined by the following equation

IR
EGg = 3 / xdF(x)
q1—p3

The formula for the influence function of the Rachev ratio is:

>
IF(r; RaR; F) = 1 (I(r Z q1-p) (r— Q15)+Q1ﬁ—EG5) -

RachR (—I(r < qq)
ES.\" B ( (

ESa r— qa)_ch_ESa>
Omega Ratio (Omega)

The functional is:

_ UPM1.(F)

UE) = TP )~ T (e—w) f()da

The formula for the influence function of the Omega ratio is:

1
LPM1,

Q

IF(r;Q F) = ——
(4 F) TPML

<(7‘ —¢)-I(r>¢)— UPMlc> ((c —r)I(r<c)— LPMIC> (41)

Appendix B. IF Nuisance Parameters Calculation for Normally Dis-
tributed Returns

In order to compute the values of any of the influence functions presented in Section 3, values of the nuisance
parameters listed in the third column of Table (2) are needed. One way of obtaining the nuisance parameters
is to specify them with “typical” values based an assumed returns distribution. For the risk measure estimators
and performance measure estimators, we shall do so here for an assumed returns normal distribution, with
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monthly mean return of 1% and risk-free rate ry = 0, and monthly volatility of 5% (the corresponding annual
mean and volatility are 12% and 17.3%, respectively). We also note that we use o« = 0.10 for quantiles, VaR,
and ES, use that « value along with the value S = 0.10 for the Rachev ratio, and use ¢ = 0 for lower partial
moments and Sortino ratio with fixed threshold. Below we display the calculation of the corresponding values
shown in the third column of Table (2).

SemiSD

0?2 =202 =2.SemiSD?, and so SSD = o/+/2. Thus SemiSD = 0.0353.

semisd

SMean

— )2 _
SMean = ffoo(r —u)f(r)dr, and for f(r|u,o) = (r= 1) ), we have SMean — — 2 = —0.0199.

1
— exp (L H

Vo p( 202 Vo
LPM1

Under normal distribution N (u,0%), LPM1, = LPM1.(11,0) as a function of y and o is

LPM1.(p,0) = /C (c —z)f(x|p,0)dx

— 00

d
/ (d—y)f(]0, )dy - o

—00

(d-®(d) + ¢(d)) - o

c—p

where d = and ® and ¢ are the cdf and pdf of the standard normal distribution function.

For the given values of i, o, and ¢ = 0, we have:

LPM1,. = .0153.

LPM2

For the normal distribution N(u,0?), LPM2, = LPM?2.(u1,0) as a function of y and o is

LPM2.(u,0) /c (c — )% f(z|p, o)dx

— 00

d
/ (d— 9)* F(y]0, 1)dy - o

— 00

((@* +1) - ®(d) +d - ¢(d)) - o

where d = cTH

and ® and ¢ are the cdf and pdf of the standard normal distribution function. For the

given value of = 1%, 0 = 5% and ¢ = 0, we have

LPM?2. = .000898.
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Expected Shortfall

The formula for expected shortfall for a normal distribution is

ESy=—-u+o- $(za)
a

where ¢ is the standard normal density function and z, is the lower a-quantile of the standard normal
distribution. For the specified parameters, we have ES, = .0777.

Alpha Quantile

For the specified normal distribution, this quantile is g, = ¢.10 = —0.0541.

VaR

For VaR the nuisance parameter f(q,) is the normal density formai(7; 1, 0?) evaluated at r = g, and for
the specified parameters we have f,ormai(qa; pt, 02) = 3.51.

Sharpe Ratio (SR)

For the specified normal distribution with y = p. = 1% and o = 5%, the Sharpe ratio is SR = 0.2.

Sortino Ratio (SoR) with Mean Threshold

For the specified normal distribution with p = p. = 1% and o = 5%, we have SemiSD = o/v/2 = .0354,
SMEAN = —¢(0) - 0 = —.0199, and SoR,, =

Sortino Ratio (SoR) with Constant Threshold ¢

For the specified normal distribution with g = p, = 1% and o = 5%, d = €7 H _ _ 9. Therefore LPM2, =
g

((d*+1) - @(d) +d- ¢(d)) - 0> = .000898.

Sortino ratio with constant threshold c is SoR,. = #.M?c = .3337.

Expected Shortfall Ratio (ESratio)

For the specified normal distribution with y = pe = 1% and o = 5%, we have ¢, = ¢10 = —.0541. The

expected shortfall is ES, = —pu+ o - M = .0777 and ES ratio is ESratio = ;—; =.129.
e

(e
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VaR Ratio (VaRratio)

For the specified normal distribution with u = p. = 1% and o = 5%, we have ¢, = q.10 = —.0541. The VaR
He
= .185.

ratio is VaRratio =
da

Rachev Ratio (RachR)

For the normal distribution N (p, 0?), the upper S-quantile is ¢1_5 = p+21-5-0 = .01+ 1.2816 x .05 = .0741.
The expected tail gain at upper S-quantile is

1 [T
Gy = 5[ afelno)ir()
6 q1-8
1 [T
= 5[ e
B Z1-p
U
= L[ rwlondy + 5 / v+ (50, 1)dy
B z1-8 z21-8
N o /+oo 1 < —y )
= MHT 3 Y- .
B 21-8 2 2
- g (52
B f
o
= M+B'¢(217ﬁ)
With the specified parameters, EGg = .0977.
E .
The Rachev ratio is RachR = Egj = % = 1.257.

Omega Ratio (Omega)

For the given parameters, the LPM1 is LPM1.(u,0) = (d- ®(d) + ¢(d)) - 0 = .0153.

The upper partial moment is

+oo
UPMl.(4,0) = / (2 — ¢) f(xln, 0)da

+o0 ¢
— [ @-ofEmos- [ @- o faluoyis
)

— 0o

= u—c+/ (c—x)f(x|p,0)dx

— 00

uw—c+ LPM1.(u,0)
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.0153

Therefore UPM1.(p,0) = .01 — 0+ .0153 = .0253 and the Omega ratio is Q = 0353

= 1.652.

Code for Above Calculations

The following code is in essence used in the RPEIF package function nuisParsFn.

#
##lNuisance parameter for risk estimators

mu=0.01
sd=0.05
c=0
alpha=0.1

##SemvSD
SemiSD=sd/sqrt (2)
SemiSD

## [1] 0.03535534

SMEAN=-dnorm(0) *sd
SMEAN

## [1] -0.01994711

##LPH1

d=(c-mu)/sd
LPM1=(d*pnorm(d)+dnorm(d)) *sd
LPM1

## [1] 0.01534473

#H#LPMR2

d=(c-mu)/sd
LPM2=((d~2+1) *pnorm(d) +d*dnorm(d) ) *sd~2
LPM2

## [1] 0.0008984034

#HEES
q_alpha=mu+qnorm(alpha)*sd
q_alpha
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## [1] -0.05407758

ES=-mu+dnorm(gnorm(alpha))/alpha*sd
ES

## [1] 0.07774917

##VaR
q_alpha=mu+qnorm(alpha)*sd
q_alpha

## [1] -0.05407758

f_q_alpha=dnorm(q_alpha,mu,sd)
f_q_alpha

## [1] 3.509967

#i##k#t###lluisance parameters for performance estimators
mu=0.01

sd=0.05

c=0

alpha=0.1

beta=0.1

##SR
SR=mu/sd
SR

## [1] 0.2

##SoR_c

d=(c-mu)/sd
LPM2=((d~2+1) *pnorm(d) +d*dnorm(d) ) *sd~2
LPM2

## [1] 0.0008984034

SoRc=mu/sqrt (LPM2)
SoRc

## [1] 0.3336294
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##SoR_mu
SemiSD=sd/sqrt (2)
SemiSD

## [1] 0.03535534

SMEAN=-dnorm(0) *sd
SMEAN

## [1] -0.01994711

SoRmu=mu/SemiSD
SoRmu

## [1] 0.2828427

##ESratio
g_alpha=mutqnorm(alpha)*sd
q_alpha

## [1] -0.05407758

ES=-mu+dnorm(qnorm(alpha)) /alpha*sd
ES

## [1] 0.07774917

ESratio=mu/ES
ESratio

## [1] 0.1286187

##VaRratio
g_alpha=mu+qnorm(alpha)*sd
q_alpha

## [1] -0.05407758

VaRratio=-mu/q_alpha
VaRratio

## [1] 0.1849195
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f_q_alpha=dnorm(q_alpha,mu,sd)
f_q_alpha

## [1] 3.509967

##RachR
q_alpha=mu+gnorm(alpha)*sd
q_alpha

## [1] -0.05407758

ES=-mu+dnorm(gnorm(alpha)) /alpha*sd
ES

## [1] 0.07774917

q_one_minus_beta=mu+gnorm(1l-beta)*sd
g_one_minus_beta

## [1] 0.07407758

EG=mu+dnorm(qnorm(1-beta)) /beta*sd
EG

## [1] 0.09774917

RachR=EG/ES
RachR

## [1] 1.257237

##0mega

d=(c-mu)/sd
LPM1=(d*pnorm(d)+dnorm(d)) *sd
LPM1

## [1] 0.01534473

UPM1=LPM1+mu-c
UPM1

## [1] 0.02534473

Omega=UPM1/LPM1
Omega

## [1] 1.651689
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