Package ‘RMixtComp’

June 25, 2020

Type Package

Title Mixture Models with Heterogeneous and (Partially) Missing Data
Version 4.1.2

Date 2020-06-17

Copyright Inria - Université de Lille - CNRS

License AGPL-3

Description Mixture Composer <https://github.com/modal-

inria/MixtComp> is a project to build mixture models with

heterogeneous data sets and partially missing data management.

It includes 8 models for real, categorical, counting, functional and ranking data.
URL https://github.com/modal-inria/MixtComp,

https://massiccc.lille.inria.fr/

BugReports https://github.com/modal-inria/MixtComp/issues
Imports RMixtComplO(>= 4.0.4), ggplot2, plotly, scales
Depends R (>=2.10), RMixtCompUtilities (>= 4.1.2)

Suggests testthat, xml2, Rmixmod, blockcluster, knitr, ClusVis,
markdown

RoxygenNote 7.1.0
Encoding UTF-8
VignetteBuilder knitr
NeedsCompilation no

Author Vincent Kubicki [aut],
Christophe Biernacki [aut],
Quentin Grimonprez [aut, cre],
Matthieu Marbac-Lourdelle [ctb],
Etienne Goffinet [ctb],

Serge Iovleff [ctb]

Maintainer Quentin Grimonprez <quentin.grimonprez@inria.fr>
Repository CRAN
Date/Publication 2020-06-25 15:40:06 UTC

https://github.com/modal-inria/MixtComp
https://massiccc.lille.inria.fr/
https://github.com/modal-inria/MixtComp/issues

2 RMixtComp-package

R topics documented:

RMixtComp-package o 2
CanadianWeather L 3
extractMixtCompObject L 5
mixtCompLearn 6
plotMixtCompLearn 12
PlotCrit e e e e 13
predict MixtComp e e e 14
printMixtCompLearn 15
PIOState e e e e e 16
simData e 17
slopeHeuristic e e 18
summary.MixtCompLearn e 20
HEANIC e e e e e 21

Index 23

RMixtComp-package RMixtComp
Description

MixtComp (Mixture Composer, https://github.com/modal-inria/MixtComp) is a model-based
clustering package for mixed data.

It has been engineered around the idea of easy and quick integration of all new univariate models,
under the conditional independence assumption. Five basic models (Gaussian, Multinomial, Pois-
son, Weibull, NegativeBinomial) are implemented, as well as two advanced models (Func_CS and
Rank_ISR). MixtComp has the ability to natively manage missing data (completely or by interval).

Online SaaS version (not up-to-date): https://massiccc.lille.inria.fr/

Details

Main functions are mixtCompLearn for clustering, mixtCompPredict for predicting the cluster of
new samples with a model learnt with mixtCompLearn. createAlgo gives you default values for
required parameters.

Read the help page of mixtCompLearn for available models and data format. A summary of these
information can be accessed with the function availableModels.

All utility functions (getters, graphical) are in the RMixtCompUtilities-package package.

In order to have an overview of the output, you can use print. MixtCompLearn, summary.MixtCompLearn
and plot.MixtCompLearn functions,

Getters are available to easily access some results (see. mixtCompLearn for output format): getBIC,
getICL, getCompletedData, getParam, getProportion, getTik, getEmpiricTik, getPartition, getType,
getModel, getVarNames.

You can compute discriminative powers and similarities with functions: computeDiscrimPower-
Class, computeDiscrimPowerVar, computeSimilarityClass, computeSimilarity Var.

https://github.com/modal-inria/MixtComp
https://massiccc.lille.inria.fr/

CanadianWeather 3

Graphics functions are plot.MixtComp, plot.MixtCompLearn, heatmapClass, heatmapTikSorted,
heatmap Var, histMisclassif, plotConvergence, plotDataBoxplot, plotDataClI, plotDiscrimClass, plot-
DiscrimVar, plotProportion, plotCrit.

Datasets with running examples are provided: titanic, CanadianWeather, prostate, simData.

Documentation about input and output format is available: vignette("dataFormat") and vignette("mixtCompOutput”).

See Also

mixtCompLearn availableModels RMixtCompUtilities-package, RMixtCompIO-package. Other
clustering packages: Rmixmod, blockcluster

Examples

data(simData)

define the algorithm's parameters: you can use createAlgo function
algo <- list(nbBurnInlter = 50,

nbIter = 50,

nbGibbsBurnInlter = 50,

nbGibbsIter = 50,

nInitPerClass = 20,

nSemTry = 20,

confidencelLevel = 0.95)

run RMixtComp for learning using only 3 variables
resLearn <- mixtCompLearn(simData$datalLearn$matrix, simData$model$unsupervised[1:3], algo,
nClass = 1:2, nRun = 2, nCore = 1)

summary (resLearn)
plot(resLearn)

run RMixtComp for predicting
resPred <- mixtCompPredict(simData$dataPredict$matrix, simData$model$unsupervised[1:3], algo,
resLearn)

partitionPred <- getPartition(resPred)
print(resPred)

CanadianWeather Canadian average annual weather cycle

Description

Daily temperature and precipitation at 35 different locations in Canada averaged over 1960 to 1994.
Data from fda package.

4 CanadianWeather

Usage

data(CanadianWeather)

Format

A list containing 5 elements:
* tempav: a matrix of dimensions (365, 35) giving the average temperature in degrees celcius
for each day of the year.

» precav: a matrix of dimensions (365, 35) giving the average rainfall in millimeters for each
day of the year.

* time: sequence from 1 to 365.
* coordinates: a matrix giving *N.latitude’ and *W.longitude’ for each place.

 region: Which of 4 climate zones contain each place: Atlantic, Pacific, Continental, Arctic.

Source

Ramsay, James O., and Silverman, Bernard W. (2006), Functional Data Analysis, 2nd ed., Springer,
New York.

Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer,
New York

See Also

Other data: prostate, simData, titanic

Examples

data(CanadianWeather)

convert functional to MixtComp format
dat <- list(tempav = apply(CanadianWeather$tempav, 2,
function(x) createFunctional(CanadianWeather$time, x)),
precav = apply(CanadianWeather$precav, 2,
function(x) createFunctional(CanadianWeather$time, x)))

create model with 4 subregressions ans 2 coefficients per regression
model <- list(tempav = list(type = "Func_CS", paramStr = "nSub: 4, nCoeff: 2"),
precav = list(type = "Func_CS", paramStr = "nSub: 4, nCoeff: 2"))

create algo
algo <- createAlgo()

run clustering
resLearn <- mixtCompLearn(dat, model, algo, nClass = 2:4, criterion = "ICL", nRun = 3, nCore = 1)

summary (resLearn)

extractMixtCompObject

plot(resLearn)

getPartition(resLearn)
getTik(resLearn, log = FALSE)

extractMixtCompObject Extract a MixtComp object

Description

Extract a MixtComp object from a MixtCompLearn object

Usage

extractMixtCompObject(object, K)

Arguments

object mixtCompLearn output

K number of classes of the model to extract
Value

a MixtComp object containing the clustering model with K classes

Author(s)

Quentin Grimonprez

Examples

run clustering
resLearn <- mixtCompLearn(data.frame(x = rnorm(500)), nClass = 1:3, criterion = "ICL",
nRun = 1, nCore = 1)

extract the model with 2 classes
clustModel <- extractMixtCompObject(resLearn, K = 2)

mixtCompLearn

mixtCompLearn

Learn and predict using RMixtComp

Description

Estimate the parameter of a mixture model or predict the cluster of new samples. It manages
heterogeneous data as well as missing and incomplete data.

Usage

mixtCompLearn(

data,

model = NULL,
createAlgo(),

algo =
nClass,

criterion

C("BIC" , HICLH) ,

hierarchicalMode = c("auto”, "yes"”, "no"),

nRun =

nCore =
verbose

min(max(1, ceiling(detectCores()/2)), nRun),
TRUE

mixtCompPredict(

data,

model = NULL,

algo = reslLearn$algo,

resLearn,

nClass = NULL,

nRun = 1,

nCore = min(max(1, ceiling(detectCores()/2)), nRun),
verbose = FALSE

Arguments

data a data.frame, a matrix or a named list containing the data (see Details and Data
format sections).

model a named list containing models and hyperparameters (see Details section).

algo a list containing the parameters of the SEM-Gibbs algorithm (see Details or
createAlgo).

nClass the number of classes of the mixture model. Can be a vector for mixtCompLearn
only.

criterion "BIC" or "ICL". Criterion used for choosing the best model.

hierarchicalMode

non

"auto", "yes" or "no". If "auto", it performs a hierarchical version of MixtComp
(clustering in two classes then each classes is split in two ...) when a functional
variable is present.

mixtCompLearn 7

nRun number of runs for every given number of class. If >1, SEM is run nRun times
for every number of class, and the best according to observed likelihood is kept.
nCore number of cores used for the parallelization of the nRun runs.
verbose if TRUE, print some informations.
resLearn output of mixtCompLearn (only for mixtCompPredict function).
Details

The data object can be a matrix, a data.frame or a list. In the case of a matrix or data.frame, each
column must be names and corresponds to a variable. In the case of a list, each element correponds
to a variable, each element must be named. Missing and incomplete data are managed, see section
Data format for how to format them.

The model object is a named list containing the variables to use in the model. All variables listed in
the model object must be in the data object. model can contain less variables than data. An element
of the list is the model’s name to use (see below for the list of available models). For example,
model <-list(reall = "Gaussian",countingl = "Poisson"”) indicates a mixture model with 2
variables named reall and countingl with Gaussian and Poisson as model. Some models require
hyperparameters in this case, the model is described by a list of 2 elements: type containing the
model name and paramStr containing the hyperparameters. For example: model <-list(func
=1list(type = "Func_CS",paramStr = "nSub: 4,nCoeff: 2"),countingl = "Poisson”). If the
model is NULL, data are supposed to be provided in data.frame or list with R format (numeric,
factor, character, NA as missing value). Models will be imputed as follows: "Gaussian" for numeric
variable, "Multinomial” for character or factor variable and "Poisson" for integer variable. A sum-
mary of available models (and associated hyperparameters and missing format) can be accessed by
calling the availableModels function.

Eight models are available in RMixtComp: Gaussian, Multinomial, Poisson, NegativeBinomial,
Weibull, Func_CS, Func_SharedAlpha_CS, Rank_ISR. Func_CS and Func_SharedAlpha_CS mod-
els require hyperparameters: the number of subregressions of functional and the number of co-
efficients of each subregression. These hyperparameters are specified by: nSub: i, nCoeff: k in
the paramStr field of the model object. The Func_SharedAlpha_CS is a variant of the Func_CS
model with the alpha parameter shared between clusters. It means that the start and end of each
subregression will be the same across the clusters.

To perform a (semi-)supervised clustering, user can add a variable named z_class in the data and
model objects with LatentClass as model in the model object.

The algo object is a list containing the different number of iterations for the algorithm. This list can
be generated using the createAlgo function. The algorithm is decomposed in a burn-in phase and a
normal phase. Estimates from the burn-in phase are not shown in output.

* nbBurnlnlter: Number of iterations of the burn-in part of the SEM algorithm.

* nblter: Number of iterations of the SEM algorithm.

* nbGibbsBurnInlter: Number of iterations of the burn-in part of the Gibbs algorithm.

* nbGibbslter: Number of iterations of the Gibbs algorithm.

¢ nlnitPerClass: Number of individuals used to initialize each cluster (default = 10).

* nSemTry: Number of try of the algorithm for avoiding an error.

* confidenceLevel: confidence level for confidence bounds for parameter estimation

8 mixtCompLearn

* ratioStableCriterion: stability partition required to stop earlier the SEM

 nStableCriterion: number of iterations of partition stability to stop earlier the SEM

Value

An object of classes MixtCompLearn and MixtComp for mixtCompLearn function. An object of
class MixtComp for mixtCompPredict.

Data format

See https://github.com/modal-inria/MixtComp/blob/master/MixtComp/docs/dataFormat.
md.

- Gaussian data: Gaussian data are real values with the dot as decimal separator. Missing data are
indicated by a ?. Partial data can be provided through intervals denoted by [a:b] where a (resp. b)
is areal or -inf (resp. +inf).

- Categorical Data: Categorical data must be consecutive integer with 1 as minimal value. Missing
data are indicated by a ?. For partial data, a list of possible values can be provided by a_1,...,a_j,
where a_i denotes a categorical value.

- Poisson and NegativeBinomial Data: Poisson and NegativeBinomial data must be positive integer.
Missing data are indicated by a ?. Partial data can be provided through intervals denoted by [a:b]
where a and b are positive integers. b can be +inf.

- Weibull Data: Weibull data are real positive values with the dot as decimal separator. Missing data
are indicated by a ?. Partial data can be provided through intervals denoted by [a:b] where a and b
are positive reals. b can be +inf.

- Rank data: The format of a rank is: o_1, ..., o_j where o_1 is an integer corresponding to the
number of the object ranked in Ist position. For example: 4,2,1,3 means that the fourth object is
ranked first then the second object is in second position and so on. Missing data can be specified by
replacing and object by a ? or a list of potential object, for example: 4, {2 3}, {2 1}, 7 means that
the object ranked in second position is either the object number 2 or the object number 3, then the
object ranked in third position is either the object 2 or 1 and the last one can be anything. A totally
missing rank is spedified by 2,7,...,?

- Functional data: The format of a fonctional data is: time_I:value_1,. .., time_j:value_j. Between
individuals, functional data can have different length and different time. i is the number of subre-
gressions in a functional data and k the number of coefficients of each regression (2 = linear, 3 =
quadratic, ...). Missing data are not supported.

- z_class: To perform a (semi-)supervised clustering, user can add a variable named ‘z_class‘ (with
eventually some missing values) with "LatentClass" as model. Missing data are indicated by a ?.
For partial data, a list of possible values can be provided by a_1,...,a_j, where a_i denotes a class
number.

MixtComp object

A MixtComp object is a result of a single run of MixtComp algorithm. It is a list containing three
elements mixture, variable and algo. If MixtComp fails to run, the list contains a single element:
warnLog containing error messages.

The mixture element contains

https://github.com/modal-inria/MixtComp/blob/master/MixtComp/docs/dataFormat.md
https://github.com/modal-inria/MixtComp/blob/master/MixtComp/docs/dataFormat.md

mixtCompLearn 9

* BIC: value of BIC

 ICL: value of ICL

* nbFreeParameters: number of free parameters of the mixture
* InObservedLikelihood: observed loglikelihood

* InCompletedLikelihood: completed loglikelihood

» IDClass: entropy used to compute the discriminative power of variable: ->_"_| t;x;l0g(t1;)/(n*
log(K))

* IDClassBar: entropy used to compute the discriminative power of variable: -> . (1 —
tirj)log (1 — tix;))/ (n * log(K))

e delta: similarities between variables (see heatmap Var)

» completedProbabilityLogBurnln: evolution of the completed log-probability during the burn-
in period (can be used to check the convergence and determine the ideal number of iteration)

» completedProbabilityLogRun: evolution of the completed log-probability after the burn-in
period (can be used to check the convergence and determine the ideal number of iteration)

» runTime: list containing the total execution time in seconds and the execution time of some
subpart.

* InProbaGivenClass: log-proportion + log-probability of x_i for each class

The algo list contains a copy of algo parameter with extra elements: nInd, nClass, mode ("learn" or
"predict").

The variable list contains 3 lists : data, type and param. Each of these lists contains a list for each
variable (the name of each list is the name of the variable) and for the class of samples (z_class).
The type list contains the model used for each variable.

Each list of the data list contains the completed data in the completed element and some statistics
about them (stat).

The estimated parameter can be found in the szat element in the param list (see Section View of an
output object). For more details about the parameters of each model, you can refer to rnorm, rpois,
rweibull, rnbinom, rmultinom, or references in the References section.

View of a MixtComp object

Example of output object with variables named "categorical", "gaussian", "rank", "functional",

"poisson”, "nBinom" and "weibull" with respectively Multinomial, Gaussian, Rank_ISR, Func_CS
(or Func_SharedAlpha_CS), Poisson, NegativeBinomial and Weibull as model.

output
| algo __ nbBurnInlter
I |_ nblter
| |_ nbGibbsBurnInlter
| |_ nbGibbslter
| |_ nInitPerClass
I |_nSemTry
[|_ ratioStableCriterion
| |_ nStableCriterion
| |_ confidencelLevel

10

variable

|
|_pi
|

I_

paramStr

|_ mode
|_nInd
|_nClass
mixture __ BIC
|_ICL
|_ InCompletedLikelihood
|_ InObservedLikelihood
|_ IDClass
|_ IDClassBar
|_ delta
|_ runTime
|_ nbFreeParameters
|_ completedProbabilityLogBurnln
|_ completedProbabilityLogRun
|_ InProbaGivenClass
__type 7z _class
I |_ categorical
| |_ gaussian
I I_
|
|_ data 7z _class __ completed
[[|_ stat
[|_ categorical __ completed
| | |_ stat
| ...
| |_ functional = data
[|_ time
|
|_param __z_class __ stat
I |_log
| |_ paramStr
|_ functional = __ alpha
| |
| |_ beta
| |
| |_sd
I |
| |_ paramStr
|_ rank __mu
|
|
|
|
|

mixtCompLearn

__ stat
I_log
__ stat
I_log
__ stat
I_log

__ stat
I_log
__ stat
I_log

mixtCompLearn 11

|_ gaussian __ stat

| |_log

| |_ paramStr
|_ poisson __ stat

| |_log

[|_ paramStr
I

See https://github.com/modal-inria/MixtComp/blob/master/MixtComp/docs/objectOutput.
md

MixtCompLearn object

The MixtCompLearn object is the result of a run of the mixtCompLearn function. It is a list contain-
ing nClass: the vector of number of classes given by user, res a list of MixtComp object (one per
element of nbClass), criterion the criterion used to choose the best model, crif a matrix containing
BIC and ICL for each run, and finally the elements of the MixtComp object with the best criterion
value (algo, mixture, variable or warnlLog).

Author(s)

Quentin Grimonprez

References

Julien Jacques, Christophe Biernacki. Model-based clustering for multivariate partial ranking data.
Journal of Statistical Planning and Inference, Elsevier, 2014, 149, pp.201-217.

Allou Samé, Faicel Chamroukhi, Gérard Govaert, Patrice Aknin. Model-based clustering and seg-

mentation of time series with change in regime. Advances in Data Analysis and Classification,
2011, 5(4):301-321

See Also

Graphical and utility functions in RMixtCompUtilities. Other clustering packages: Rmixmod,
blockcluster

Examples

data(simData)

define the algorithm's parameters

algo <- list(nbBurnInlter = 50,
nbIter = 50,
nbGibbsBurnInlter = 50,
nbGibbsIter = 50,
nInitPerClass = 20,
nSemTry = 20,
confidencelLevel = 0.95)

run RMixtComp in unsupervised clustering mode + data as matrix

https://github.com/modal-inria/MixtComp/blob/master/MixtComp/docs/objectOutput.md
https://github.com/modal-inria/MixtComp/blob/master/MixtComp/docs/objectOutput.md

12 plot. MixtCompLearn

resLearn1 <- mixtCompLearn(simData$datalLearn$matrix, simData$model$unsupervised[1:3], algo,
nClass = 1:2, nRun = 2, nCore = 1)

run RMixtComp in supervised clustering mode + data as matrix
resLearn2 <- mixtCompLearn(simData$datalLearn$data.frame, simData$model$supervised[1:3], algo,
nClass = 1:2, nRun = 2, nCore = 1)

run RMixtComp in predict mode + data as list
resPredict <- mixtCompPredict(simData$dataPredict$list, simData$model$unsupervised[1:3], algo,
resLearnl, nClass = 2, nCore = 1)

plot.MixtCompLearn Plot of a MixtCompLearn object

Description

Plot of a MixtCompLearn object

Usage

S3 method for class 'MixtCompLearn'
plot(
X,
nVarMaxToPlot = 3,
nClass = NULL,
pkg = c("ggplot2”, "plotly"”),
plotData = c("CI", "Boxplot"),

Arguments

X MixtCompLearn object

nVarMaxToPlot number of variables to display

nClass number of classes of the model to plot

pkg "ggplot2" or "plotly". Package used to plot

plotData "CI" or "Boxplot". If "CI", uses plotDataCI function. If "Boxplot", uses plot-
DataBoxplot

extra parameter for plotDataClI or plotDataBoxplot

Author(s)

Quentin Grimonprez

plotCrit

See Also

mixtCompLearn mixtCompPredict

Other plot: plotCrit()

Examples
data(iris)

run RMixtComp in unsupervised clustering mode and in basic mode
resLearn <- mixtCompLearn(iris[, -5], nClass = 2:4)

plot(resLearn)
plot(resLearn, nClass = 3, plotData = "Boxplot")

13

plotCrit Plot BIC and ICL

Description

Plot BIC and ICL

Usage
plotCrit(output, pkg = c("ggplot2”, "plotly"”), ...)
Arguments
output MixtCompLearn object
pkg "ggplot2" or "plotly". Package used to plot
arguments to be passed to plot_ly
Author(s)

Quentin Grimonprez

See Also

Other plot: plot.MixtCompLearn()

14

Examples

data(iris)

define the algorithm's parameters
algo <- createAlgo()

keep only 3 variables
model <- list(Petal.Width = "Gaussian”, Petal.lLength = "Gaussian”,
Sepal.Width = "Gaussian"”, Sepal.Length = "Gaussian")

run RMixtComp in unsupervised clustering mode + data as matrix
res <- mixtCompLearn(iris, model, algo, nClass = 1:4)

plot
plotCrit(res)

predict. MixtComp

predict.MixtComp Predict using RMixtComp

Description

Predict the cluster of new samples.

Usage

S3 method for class 'MixtComp'
predict(
object,
newdata = NULL,
type = c("partition”, "probabilities”),
nClass = NULL,

)
Arguments

object output of mixtCompLearn function.

newdata a data.frame, a matrix or a named list containing the data (see Details and Data
format sections in mixtCompLearn documentation). If NULL, use the data in
object.

type if "partition", returns the estimated partition. If "probabilities”, returns the prob-
abilities to belong to each class (tik).

nClass the number of classes of the mixture model to use from object. If NULL, uses

the number maximizing the criterion.

other parameters of mixtCompPredict function.

print. MixtCompLearn

Details

15

This function is based on the generic method "predict". For a more complete output, use mixtComp-

Predict function.

Value

if type = "partition”, it returns the estimated partition as a vector. If type = "probabilities”,
it returns the probabilities to belong to each class (tik) as a matrix.

Author(s)

Quentin Grimonprez

See Also

mixtCompPredict

Examples

data(iris)

model <- list(Sepal.Length = "Gaussian”, Sepal.Width
Petal.Length = "Gaussian”, Petal.Width

= "Gaussian",
= "Gaussian")

resLearn <- mixtCompLearn(iris[-c(1, 51, 101), 1, model = model, nClass = 1:3, nRun

return the partition
predict(resLearn)

return the tik for the 3 new irises for 2 and 3 classes
predict(resLearn, newdata = iris[c(1, 51, 101), 1, type =

predict(resLearn, newdata = iris[c(1, 51, 101), 1, type =

"probabilities”, nClass
"probabilities”, nClass

2)
3)

print.MixtCompLearn Print Values

Description

Print a MixtCompLearn object

Usage

S3 method for class 'MixtCompLearn'

print(x, nVarMaxToPrint = 5, nClass

NULL,

16 prostate

Arguments
X MixtCompLearn object
nVarMaxToPrint number of variables to display (including z_class)
nClass number of classes of the model to print
Not used.
Author(s)

Quentin Grimonprez

See Also

mixtCompLearn mixtCompPredict
Examples
data(iris)

run RMixtComp in unsupervised clustering mode and in basic mode
resLearn <- mixtCompLearn(iris[, -5], nClass = 2:4)

print(resLearn)
print(resLearn, nClass = 3)

prostate Prostate Cancer Data

Description
This data set was obtained from a randomized clinical trial comparing four treatments for n = 506
patients with prostatic cancer grouped on clinical criteria into two Stages 3 and 4 of the disease.
Usage

data(prostate)

Format

A list containing of 2 elements data and model. data contains 506 individuals described by 12
variables:

* Age: Age (Continuous)

* HG: Index of tumour stage and histolic grade (Continuous)

* Wt: Weight (Continuous)

* AP: Serum prostatic acid phosphatase C (Continuous)

simData 17

* SBP: Systolic blood pressure (Continuous)

* PF: Performance rating (Categorical)

* DBP: Diastolic blood pressure (Continuous)

* HX: Cardiovascular disease history (Categorical)
* SG: Serum haemoglobin (Continuous)

* BM: Bone metastasis (Categorical)

e SZ: Size of primary tumour (Continuous)

* EKG: Electrocardiogram code (Categorical)

Source

Yakovlev, Goot and Osipova (1994), The choice of cancer treatment based on covariate information.
Statist. Med., 13: 1575-1581. doi:10.1002/sim.4780131508

See Also

Other data: CanadianWeather, simData, titanic

Examples

data(prostate)

algo <- createAlgo(nInitPerClass = 50)

run clustering

resLearn <- mixtCompLearn(prostate$data, prostate$model, algo, nClass = 2:5, criterion = "ICL",
nRun = 3, nCore = 1)

summary(resLearn)

plot(resLearn)

simData Simulated Heterogeneous data

Description

Simulated Heterogeneous data

Usage

data(simData)

18 slopeHeuristic

Format

A list containing three elements: dataLearn, dataPredict and model.

* dataLearn is a list containing the data in the three accepted format (list, data.frame and ma-
trix). Data consists of 200 individuals and 9 variables.

* dataPredict is a list containing the data in the three accepted format (list, data.frame and
matrix). Data consists of 100 individuals and 8 variables.

* model is a list containing the model lists used for clustering model$unsupervised and classifi-
cation model$supervised.
See Also

Other data: CanadianWeather, prostate, titanic

Examples

data(simData)
str(simData)

slopeHeuristic Slope heuristic

Description

Criterion to choose the number of clusters

Usage

slopeHeuristic(object, K@ = floor(max(object$nClass) x 0.4))

Arguments

object output of mixtCompLearn

Ko number of class for computing the constant value (see details)
Details

The slope heuristic criterion is: LL_k - 2 C * D_k, with LL_k the loglikelihood for k classes, D_k
the number of free parameters for k classes, C is the slope of the linear regression between D_k and
LL_k for (k> KO)

Value

the values of the slope heuristic

slopeHeuristic 19

Author(s)

Quentin Grimonprez

References

Cathy Maugis, Bertrand Michel. Slope heuristics for variable selection and clustering via Gaus-
sian mixtures. [Research Report] RR-6550, INRIA. 2008. inria-00284620v2 Jean-Patrick Baudry,
Cathy Maugis, Bertrand Michel. Slope Heuristics: Overview and Implementation. 2010. hal-
00461639

Examples

data(titanic)

Use the MixtComp format
dat <- titanic

refactor categorical data: survived, sex, embarked and pclass

dat$sex <- refactorCategorical(dat$sex, c("male”, "female", NA), c(1, 2, "?"))
dat$embarked <- refactorCategorical(dat$embarked, c("C", "Q", "S", NA), c(1, 2, 3, "?"))
dat$survived <- refactorCategorical(dat$survived, c(@, 1, NA), c(1, 2, "?"))

dat$pclass <- refactorCategorical(dat$pclass, c("1st”, "2nd"”, "3rd"), c(1, 2, 3))

replace all NA by ?
dat[is.na(dat)] = "?"

create model

model <- list(pclass = "Multinomial”,
survived = "Multinomial”,
sex = "Multinomial”,
age = "Gaussian”,
sibsp = "Poisson”,
parch = "Poisson”,
fare = "Gaussian”,
embarked = "Multinomial”)

create algo
algo <- createAlgo()

run clustering
resLearn <- mixtCompLearn(dat, model, algo, nClass = 2:25, criterion = "ICL", nRun = 3, nCore = 1)

out <- slopeHeuristic(resLearn, Ko = 6)

20

summary.MixtCompLearn

summary.MixtCompLearn MixtCompLearn Object Summaries

Description

Summary of a MixtCompLearn object

Usage
S3 method for class 'MixtCompLearn'
summary(object, nClass = NULL, ...)
Arguments
object MixtCompLearn object
nClass number of classes of the model to print
Not used.
Author(s)

Quentin Grimonprez

See Also

mixtCompLearn print.MixtCompLearn

Examples

data(iris)

run RMixtComp in unsupervised clustering mode and in basic mode

resLearn <- mixtCompLearn(iris[, -5], nClass = 2:4)

summary (resLearn)
summary(resLearn, nClass = 3)

titanic

21

titanic Titanic data set

Description

The data set provides information on the passengers of Titanic.

Usage

data(titanic)

Format

A data.frame with 1309 individuals and 8 variables.

Source

survived: 0 = No, 1 = Yes (factor)

pclass: ticket class 1st, 2nd, 3rd (factor)

sex: male or female (factor)

age: age in years

sibsp: number of siblings/spouses aboard the Titanic
parch: number of parents/children aboard the Titanic
fare: ticket price in pounds

embarked: port of Embarkation C = Cherbourg, Q = Queenstown, S = Southampton (factor)

Titanic People Database, Encyclopedia Titanica, https://www.encyclopedia-titanica.org/
titanic-survivors/

http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.x1ls

See Also

Other data: CanadianWeather, prostate, simData

Examples

data(titanic)

head(titanic)

Use the MixtComp format
dat <- titanic

refactor categorical data: survived, sex, embarked and pclass
dat$sex <- refactorCategorical(dat$sex, c("male”, "female", NA), c(1, 2, "?"))

https://www.encyclopedia-titanica.org/titanic-survivors/
https://www.encyclopedia-titanica.org/titanic-survivors/
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.xls

22

titanic

dat$embarked <- refactorCategorical(dat$embarked, c("C", "Q", "S", NA), c(1, 2, 3, "?"))
dat$survived <- refactorCategorical(dat$survived, c(@, 1, NA), c(1, 2, "?"))
dat$pclass <- refactorCategorical(dat$pclass, c("1st”, "2nd"”, "3rd"), c(1, 2, 3))

replace all NA by ?
dat[is.na(dat)] = "?"

create model

model <- list(pclass = "Multinomial”,
survived = "Multinomial”,
sex = "Multinomial”,
age = "Gaussian”,
sibsp = "Poisson”,
parch = "Poisson”,
fare = "Gaussian”,
embarked = "Multinomial”)

create algo
algo <- createAlgo()

run clustering

resLearn <- mixtCompLearn(dat, model, algo, nClass = 2:15, criterion = "ICL", nRun = 3, nCore = 1)

summary (resLearn)

plot(resLearn)

Use standard data.frame and R format because titanic contains only standard variables.
mixtCompLearn in "basic"” mode without model parameters and data as a data.frame.

A Multinomial model is used for factor variables, a Poisson for integer

and a Gaussian for numeric.

resLearn <- mixtCompLearn(titanic, nClass = 2:15, nRun = 3, nCore = 1)

imputed model
getType(resLearn)

Index

*Topic data
CanadianWeather, 3
prostate, 16
simData, 17
titanic, 21

+Topic package
RMixtComp-package, 2

availableModels, 2, 3, 7

CanadianWeather, 3,3, 17, 18, 21
computeDiscrimPowerClass, 2
computeDiscrimPowerVar, 2
computeSimilarityClass, 2
computeSimilarityVar, 2
createAlgo, 2,6, 7

extractMixtCompObject, 5

getBIC, 2
getCompletedData, 2
getEmpiricTik, 2
getICL, 2
getModel, 2
getParam, 2
getPartition, 2
getProportion, 2
getTik, 2
getType, 2
getVarNames, 2

heatmapClass, 3
heatmapTikSorted, 3
heatmapVar, 3, 9
histMisclassif, 3

mixtCompLearn, 2, 3, 5,6, 13, 14, 16, 18, 20

mixtCompPredict, 2, 13-16

mixtCompPredict (mixtCompLearn), 6

plot.MixtComp, 3

plot.MixtCompLearn, 2, 3,12, 13
plotConvergence, 3
plotCrit, 3, 13,13
plotDataBoxplot, 3, 12
plotDataCl, 3, 12
plotDiscrimClass, 3
plotDiscrimvVar, 3
plotProportion, 3
predict.MixtComp, 14
print.MixtCompLearn, 2, 15
prostate, 3, 4, 16, 18, 21

RMixtComp-package, 2
rmultinom, 9
rnbinom, 9

rnorm, 9

rpois, 9

rweibull, 9

simData, 3, 4, 17,17, 21
slopeHeuristic, 18
summary .MixtCompLearn, 2, 20

titanic, 3, 4,17, 18,21

	RMixtComp-package
	CanadianWeather
	extractMixtCompObject
	mixtCompLearn
	plot.MixtCompLearn
	plotCrit
	predict.MixtComp
	print.MixtCompLearn
	prostate
	simData
	slopeHeuristic
	summary.MixtCompLearn
	titanic
	Index

