
Package ‘RMark’
November 6, 2019

Version 2.2.7

Date 2019-11-4

Title R Code for Mark Analysis

Author Jeff Laake <jefflaake@gmail.com> with code contributions from Eldar
Rakhimberdiev, Ben Augustine, Daniel Turek and Brett McClintock and example data and anal-
ysis
from Bret Collier, Jay Rotella, David Pavlacky, Andrew Paul, Luke Eberhart-
Phillips, Jake Ivan, and Connor Wood.

Description An interface to the software package MARK that constructs input
files for MARK and extracts the output. MARK was developed by Gary White
and is freely available at <http://www.phidot.org/software/mark/downloads/>
but is not open source.

SystemRequirements notepad.exe, mark.exe (>= 8.0) (or mark32.exe and
mark64.exe) and rel_32.exe (see README.txt)

Depends R (>= 2.13.0),

Imports parallel, matrixcalc, msm, coda

Suggests lattice, splines, nlme, plotrix

LazyLoad yes

License GPL (>= 2)

Maintainer Jeff Laake <jefflaake@gmail.com>

Encoding UTF-8

RoxygenNote 6.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2019-11-06 21:00:02 UTC

R topics documented:
ABeginnersGuide . 4
add.design.data . 6

1

2 R topics documented:

adjust.parameter.count . 8
adjust.value . 9
Blackduck . 11
brownie . 13
Burnham . 14
cleanup . 16
coef.mark . 17
collect.model.names . 18
collect.models . 19
compute.design.data . 20
compute.link . 22
compute.links.from.reals . 23
compute.real . 24
convert.inp . 26
convert.link.to.real . 28
covariate.predictions . 29
crdms . 35
create.mark.mcmc . 37
create.model.list . 38
deer . 40
deltamethod.special . 42
Density . 44
deriv_inverse.link . 46
dipper . 47
Donovan.7 . 53
Donovan.8 . 54
edwards.eberhardt . 55
example.data . 57
export.chdata . 58
export.MARK . 59
export.model . 61
extract.indices . 62
extract.mark.output . 64
fill.covariates . 65
find.covariates . 67
get.link . 68
get.real . 69
IELogitNormalMR . 71
import.chdata . 72
inverse.link . 74
killdeer . 75
larksparrow . 76
load.model . 78
LogitNormalMR . 79
make.design.data . 80
make.mark.model . 86
make.time.factor . 93
mallard . 95

R topics documented: 3

mark . 100
mark.wrapper . 105
mark.wrapper.parallel . 106
mata.wald . 109
merge.mark . 111
merge_design.covariates . 112
model.average . 113
model.average.list . 114
model.average.marklist . 117
model.table . 120
mstrata . 123
MStruncate . 125
MS_popan . 126
NicholsMSOccupancy . 127
NSpeciesOcc . 128
Paradise_shelduck . 129
PIMS . 131
PoissonMR . 132
Poisson_twoMR . 132
popan.derived . 133
predict_real . 135
print.mark . 137
print.marklist . 138
print.summary.mark . 139
process.ch . 140
process.data . 141
RDMultScalOcc . 144
RDOccupancy . 145
RDSalamander . 151
read.mark.binary . 152
release.gof . 153
remove.mark . 154
rerun.mark . 155
robust . 157
run.mark.model . 160
run.models . 163
salamander . 164
setup.model . 165
setup.parameters . 166
skagit . 168
splitCH . 169
store . 171
strip.comments . 171
summary.mark . 172
summary_ch . 174
TransitionMatrix . 175
valid.parameters . 178
var.components . 179

4 ABeginnersGuide

var.components.reml . 180
weta . 182
Whatsnew . 184
wwdo.popan . 210

Index 214

ABeginnersGuide A beginners introduction and guide to RMark

Description

The RMark package is a collection of R functions that can be used as an interface to MARK for
analysis of capture-recapture data.

Details

The library contains various functions that import/export capture data, build capture-recapture mod-
els, run the FORTRAN program MARK.EXE, and extract and display output. Program MARK has
its own user interface; however, model development can be rather tedious and error-prone because
the parameter structure and design matrix are created by hand. This interface in R was created to
use the formula and design matrix functions in R to ease model development and reduce errors.
This R interface has the following advantages: 1) Uses model notation to create design matrices
rather than designing them by hand in MARK or in EXCEL, which makes model development
faster and more reliable. All-different PIMS are automatically created for each group (if any). 2)
Allows models based on group (factor variables) and individual covariates with groups created on
the fly. Age, cohort, group and time variables are pre-defined for use in formulas. 3) Both real
and beta labels are automatically added for easy output interpretation. 4) Input, output and specific
results (eg parameter estimates, AICc etc) are stored in an R object where they can be manipulated
as deemed useful (eg plotting, further calculations, simulation etc). 5) Parameter estimates can be
displayed in triangular PIM format (if appropriate) for ease of interpretation. 6) Easy setup of batch
jobs and the calls to the R functions document the model specifications and allow models to be
easily reproduced or re-run if data are changed. 7) Covariate-specific estimates of real parameters
can be computed within R without re-running the analysis.

The MARK capture-recapture models that are currently supported are provided in MarkModels.pdf
which is installed in the RMark directory of your R library. You can also find a list in MARK
under Help/Data Types. ’ There is one limitation of this interface. All models in this interface
are developed via a design matrix approach rather than coding the model structure via parameter
index matrices (PIMS). In most cases, a logit or other link is used by default which has implications
for ability of MARK to count the number of identifiable parameters (see dipper for an example).
However, beginning with v1.7.6 the sin link is now supported if the formula specifies an identity
design matrix for the parameter.

Before you begin, you must have installed MARK (http://www.phidot.org/software/mark/) on your
computer or at least have a current copy of MARK.EXE. As long as you selected the default location
for the MARK install (c:/Program Files/Mark), the RMark library will be able to find it. If for some
reason, you choose to install it in a different location, see the note section in mark for instructions
on setting the variable MarkPath to specify the path. In addition to installing MARK, you must

ABeginnersGuide 5

have installed the RMark library into the R library directory. Once done with those tasks, run R and
enter library(RMark) (or put it in your .First function) to attach the library of functions.

The following is a categorical listing of the functions in the library with a link to the help for each
function. To start, read the help for functions import.chdata and mark to learn how to import
your data and fit a simple model. The text files for the examples shown in import.chdata are
in the subdirectory data within the R Library directory in RMark. Next look at the example data
sets and analyses dipper, edwards.eberhardt, and example.data. After you see the structure of
the examples and the use of functions to fit a series of analyses, explore the remaining functions
under Model Fitting, Batch Analyses, Model Selection and Summary and Display. If your data and
models contain individual covariates, read the section on Real Parameter Computation to learn how
to compute estimates of real parameters at various covariate values.

Input/Output data & results

import.chdata,read.mark.binary, extract.mark.output

Exporting Models to MARK interface

export.chdata, export.model

Model Fitting

mark, process.data, make.design.data, add.design.data, make.mark.model, run.mark.model
merge_design.covariates

Batch analyses with functions

run.models, collect.models, create.model.list, mark.wrapper

Summary and display

summary.mark, print.mark, print.marklist, get.real, compute.real, print.summary.mark

Model Selection/Goodness of fit

adjust.chat, adjust.parameter.count, model.table , release.gof, model.average

Real Parameter computation

find.covariates, fill.covariates, compute.real , covariate.predictions

Utility and internal functions

collect.model.names, compute.design.data, extract.mark.output, inverse.link, deriv.inverse.link,
setup.model, setup.parameters, valid.parameters, cleanup

For examples, see dipper for CJS and POPAN, see example.data for CJS with multiple grouping
variables, see edwards.eberhardt for various closed-capture models, see mstrata for Multistrata,
and see Blackduck for known fate. The latter two are examples of the use of mark.wrapper for a
shortcut approach to creating a series of models. Other examples have been added for the various
other models. In MarkModels.pdf it also lists the name of examples that are provided for each
model.

Author(s)

Jeff Laake

References

MARK: Dr. Gary White, Department of Fishery and Wildlife Biology, Colorado State University,
Fort Collins, Colorado, USA http://www.phidot.org/software/mark/

6 add.design.data

add.design.data Add design data

Description

Creates new design data fields in (ddl) that bin the fields cohort, age or time. Other fields (e.g.,
effort value for time) can be added to ddl with R commands.

Usage

add.design.data(data, ddl, parameter, type = "age", bins = NULL,
name = NULL, replace = FALSE, right = TRUE)

Arguments

data processed data list resulting from process.data

ddl current design dataframe initially created with make.design.data

parameter name of model parameter (e.g., "Phi" for CJS models)

type either "age", "time" or "cohort"

bins bins for grouping

name name assigned to variable in design data

replace if TRUE, replace any variable with same name as name

right If TRUE, bin intervals are closed on the right

Details

Design data can be added to the parameter specific design dataframes with R commands. Often the
additional fields will be functions of cohort, age or time. add.design.data provides an easy way
to add fields that bin (put into intervals) the original values of cohort, age or time. For example,
age may have levels from 0 to 10 which means the formula ~age will have 11 parameters, one for
each level of the factor. It might be more desirable and more parimonious to have a simpler 2 age
class model of young and adults. This can be done easily by adding a new design data field that
bins age into 2 intervals (age 0 and 1+) as in the following example:

ddl=make.design.data(proc.example.data)
ddl=add.design.data(proc.example.data,ddl,parameter="Phi",type="age",
bins=c(0,.5,10),name="2ages")

By default, the bins are open on the left and closed on the right (i.e., binning x by (x1,x2] is
equivalent to x1<x<=x2) except for the first interval which is closed on the left. Thus, for the
above example, the age bins are [0,.5] and (.5,10]. Since the ages in the example are 0,1,2... using
any value >0 and <1 in place of 0.5 would bin the ages into 2 classes of 0 and 1+. This behavior
can be modified by changing the argument right=FALSE to create an interval that is closed on the
left and open on the right. In some cases this can make reading the values of the levels somewhat
easier. It is important to recognize that the new variable is only added to the design data for the

add.design.data 7

defined parameter and can only be used in model formula for that parameter. Multiple calls to
add.design.data can be used to add the same or different fields for the various parameters in the
model. For example, the same 2 age class variable can be added to the design data for p with the
command:

ddl=add.design.data(proc.example.data,ddl,parameter="p",type="age",
bins=c(0,.5,10),name="2ages")

The name must be unique within the parameter design data, so they should not use pre-defined values
of group,age,Age,time,Time,cohort,Cohort. If you choose a name that already exists in the
design data for the parameter, it will not be added but it can replace the variable if replace=TRUE.
For example, the 2ages variable can be re-defined to use 0-1 and 2+ with the command:

ddl=add.design.data(proc.example.data,ddl,parameter="Phi",type="age",
bins=c(0,1,10),name="2ages",replace=TRUE)

Keep in mind that design data are stored with the mark model object so if a variable is redefined, as
above, this could become confusing if some models have already been constructed using a different
definition for the variable. The model formula and names would appear to be identical but they
would have a different model structure. The difference would be apparent if you examined the
design data and design matrix of the model object but would the difference would be transparent
based on the model names and formula. Thus, it would be best to avoid constructing models from
design data fields with different structures but the same name.

Value

Design data list with new field added for the specified parameter. See make.design.data for a
description of the list structure.

Note

For the specific case of "closed" capture models, the parameters p (capture probability) and c (recap-
ture probability) can be treated in a special fashion. Because they really the same type of parameter,
it is useful to be able to share a common model structure (i.e., same columns in the design matrix).
This is indicated with the share=TRUE element in the model description for p. If the parameters are
shared then the additional covariate c is added to the design data, which is c=0 for parameter p and
c=1 for parameter c. This enables an additive model to be developed where recapture probabilities
mimic the pattern in capture probabilities except for an additive constant. The covariate c can only
be used in the model for p if share=TRUE. If the latter is not set using c in a formula will result in
an error. Likewise, if share=TRUE, then the design data for p and c must be the same because the
design data are merged in constructing the design matrix. Thus if you add design data for parame-
ter p, you should add a similar field for parameter c if you intend to fit shared models for the two
parameters. If the design data do not match and you try to fit a shared model, an error will result.

Author(s)

Jeff Laake

8 adjust.parameter.count

See Also

make.design.data, process.data

Examples

This example is excluded from testing to reduce package check time
data(example.data)
example.data.proc=process.data(example.data)
ddl=make.design.data(example.data.proc)
ddl=add.design.data(example.data.proc,ddl,parameter="Phi",type="age",

bins=c(0,.5,10),name="2ages")
ddl=add.design.data(example.data.proc,ddl,parameter="p",type="age",
bins=c(0,.5,10),name="2ages")
ddl=add.design.data(example.data.proc,ddl,parameter="Phi",type="age",
bins=c(0,1,10),name="2ages",replace=TRUE)

adjust.parameter.count

Adjust count of estimated parameters

Description

Modifies number of estimated parameters and the resulting AICc value for model selection.

Usage

adjust.parameter.count(model, npar)

Arguments

model MARK model object

npar Value of count of estimated parameters

Details

When a model is run the parameter count determined by MARK is stored in results$npar and
the AICc value is stored in results$AICc. If the argument adjust is set to TRUE in the call
to run.mark.model and MARK determined that the design matrix was not full rank (i.e., the
parameter count is less than the columns of the design matrix), then the parameter count from
MARK is stored in results$npar.unadjusted and AICc in results$AICc.unadjusted and
results$npar is set to the number of columns of the design matrix and results$AICc uses the as-
sumed full rank value of npar. This function allows the parameter count to be reset to any value less
than or equal to the number of columns in the design matrix. If results$npar.unadjusted exists
it is kept as is. If it doesn’t exist, then the current values of results$npar and results$AICc are
stored in the .unadjusted fields to maintain the values from MARK, and the new adjusted values

adjust.value 9

defined by the function argument npar are stored in results$npar and results$AICc. In the ex-
ample below, the CJS model Phi(t)p(t) is fitted with the call to mark which defaults to adjust=TRUE.
This is used to show how adjust.parameter.count can be used to adjust the count to 11 from
the full rank count of 12. Alternatively, the argument adjust=FALSE can be added to prevent the
adjustment which is appropriate in this case because Phi(6) and p(6) are confounded.

Value

model: the mark model object with the adjustments made

Author(s)

Jeff Laake

See Also

run.mark.model,model.table

Examples

This example is excluded from testing to reduce package check time
data(dipper)
ptime=list(formula=~time)
Phitime=list(formula=~time)
dipper.phitime.ptime=mark(dipper,model.parameters=list(Phi=Phitime, p=ptime))
dipper.phitime.ptime=adjust.parameter.count(dipper.phitime.ptime,11)
dipper.phitime.ptime=mark(dipper,model.parameters=list(Phi=Phitime, p=ptime),

adjust=FALSE)

adjust.value Adjust over-dispersion scale or a result value such as effective sample
size

Description

Adjust value of over-dispersion constant or another result value for a collection of models which
modifies model selection criterion and estimated standard errors.

Usage

adjust.value(field="n",value,model.list)
adjust.chat(chat=1,model.list)

10 adjust.value

Arguments

field Character string containing name of the field; either chat or a field in model$results
such as n for sample size used in AICc or QAICc

value new value for field

model.list marklist created by the function collect.models which has each model object
and a model.table at the end. For the entire collection of models each chat is
adjusted. If the argument type is specified the collected models are limited to
mark analyses with that specific type of model ("CJS")

chat Over-dispersion scale

Details

The value of chat is stored with the model object except when there is no over-dispersion (chat=1).
This function assigns a new value of chat for the collection of models specified by model.list
and/or type. The value of chat is used by model.table for model selection in computing QAICc
unless chat=1. It is also used in summary.mark, get.real and compute.real to adjust stan-
dard errors and confidence intervals. Note that the standard errors and confidence intervals in
results$beta,results$beta.vcv results$real, results$derived and results$derived.vcv
are not modified and always assume chat=1.

It can also be used to modify a field in model$results such as n which is ESS (effective sample
size) from MARK output that is used in AICc/QAICc calculations.

Value

model.list with all models given the new chat value and model.table adjusted for chat values

Note

See note in collect.models

Author(s)

Jeff Laake

See Also

model.table, summary.mark, get.real ,compute.real

Examples

#
The following are examples only to demonstrate selecting different
model sets for adjusting chat and showing model selection table.
It is not a realistic analysis.
#

This example is excluded from testing to reduce package check time
data(dipper)

Blackduck 11

do_example=function()
{
mod1=mark(dipper)
mod2=mark(dipper,model.parameters=list(Phi=list(formula=~time)))
mod3=mark(dipper,model="POPAN",initial=1)
cjs.results=collect.models(type="CJS")
cjs.results # show model selection results for "CJS" models
}
cjs.results=do_example()
cjs.results
adjust chat for all models to 2
cjs.results=adjust.chat(2,cjs.results)
cjs.results

Blackduck Black duck known fate data

Description

A known fate data set on Black ducks that accompanies MARK as an example analysis using the
Known model.

Format

A data frame with 48 observations on the following 5 variables.

ch a character vector containing the encounter history of each bird

BirdAge the age of the bird: a factor with levels 0 1 for young and adult

Weight the weight of the bird at time of marking

Wing_Len the wing-length of the bird at time of marking

condix the condition index of the bird at time of marking

Details

This is a data set that accompanies program MARK as an example for Known fate. The data can be
stratified using BirdAge as a grouping variable. The function run.Blackduck defined below in the
examples creates some of the models used in the dbf file that accompanies MARK.

Note that in the MARK example the variable is named Age. In the R code, the fields "age" and
"Age" have specific meanings in the design data related to time since release. These will override
the use of a field with the same name in the individual covariate data, so the names "time", "Time",
"cohort", "Cohort", "age", and "Age" should not be used in the individual covariate data with possi-
bly the exception of "cohort" which is not defined for models with "Square" PIMS such as POPAN
and other Jolly-Seber type models.

12 Blackduck

Examples

data(Blackduck)
Change BirdAge to numeric; starting with version 1.6.3 factor variables are
no longer allowed. They can work as in this example but they can be misleading
and fail if the levels are non-numeric. The real parameters will remain
unchanged but the betas will be different.
Blackduck$BirdAge=as.numeric(Blackduck$BirdAge)-1
run.Blackduck=function()
{
#
Process data
#
bduck.processed=process.data(Blackduck,model="Known")
#
Create default design data
#
bduck.ddl=make.design.data(bduck.processed)
#
Add occasion specific data min < 0; I have no idea what it is
#
bduck.ddlSmin=c(4,6,7,7,7,6,5,5)
#
Define range of models for S
#
S.dot=list(formula=~1)
S.time=list(formula=~time)
S.min=list(formula=~min)
S.BirdAge=list(formula=~BirdAge)
#
Note that in the following model in the MARK example, the covariates
have been standardized. That means that the beta parameters will be different
for BirdAge, Weight and their interaction but the likelihood and real parameter
estimates are the same.
#
S.BirdAgexWeight.min=list(formula=~min+BirdAge*Weight)
S.BirdAge.Weight=list(formula=~BirdAge+Weight)
#
Create model list and run assortment of models
#
model.list=create.model.list("Known")
bduck.results=mark.wrapper(model.list,data=bduck.processed,ddl=bduck.ddl,

invisible=FALSE,threads=1)

#
Return model table and list of models
#
return(bduck.results)
}
bduck.results=run.Blackduck()
bduck.results

brownie 13

brownie San Luis Valley mallard data

Description

A recovery data set for mallards in San Luis Valley Colorado

Format

A data frame with 108 observations on the following 5 variables.

ch a character vector containing the encounter history of each bird

freq frequency of that encounter history

ReleaseAge the age of the bird when it was released

Details

This is a data set that accompanies program MARK as an example for Brownie and Seber recovery
model. In those input files it is in a summarized format. Here it is in the LD encounter history
format. The data can be stratified using ReleaseAge (Adult, Young) as a grouping variable.

Note that in the MARK example the variable is named Age. In the R code, the fields "age" and
"Age" have specific meanings in the design data related to time since release. These will override
the use of a field with the same name in the individual covariate data, so the names "time", "Time",
"cohort", "Cohort", "age", and "Age" should not be used in the individual covariate data with possi-
bly the exception of "cohort" which is not defined for models with "Square" PIMS such as POPAN
and other Jolly-Seber type models.

Examples

brownie=import.chdata("brownie.inp",field.types=c("n","f"))

This example is excluded from testing to reduce package check time
data(brownie)

default ordering of ReleaseAge is alphabetic so it is
Adult, Young which is why initial.ages=c(1,0)
Seber Recovery
br=process.data(brownie,model="Recovery",groups="ReleaseAge",age.var=1,initial.ages=c(1,0))
br.ddl=make.design.data(br,parameters=list(S=list(age.bins=c(0,1,10)),

r=list(age.bins=c(0,1,10))),right=FALSE)
mod=mark(br,br.ddl,model.parameters=list(S=list(formula=~-1+age:time,link="sin"),

r=list(formula=~-1+age:time,link="sin")))
Brownie Recovery
br=process.data(brownie,model="Brownie",groups="ReleaseAge",age.var=1,initial.ages=c(1,0))
br.ddl=make.design.data(br,parameters=list(S=list(age.bins=c(0,1,10)),

f=list(age.bins=c(0,1,10))),right=FALSE)

14 Burnham

mod=mark(br,br.ddl,model.parameters=list(S=list(formula=~-1+age:time,link="sin"),
f=list(formula=~-1+age:time,link="sin")))

mod=mark(br,br.ddl,model.parameters=list(S=list(formula=~-1+age,link="sin"),
f=list(formula=~-1+age,link="sin")))

#Random effects Seber recovery
br=process.data(brownie,model="REDead",groups="ReleaseAge",age.var=1,initial.ages=c(1,0))
br.ddl=make.design.data(br,parameters=list(S=list(age.bins=c(0,1,10)),

r=list(age.bins=c(0,1,10))),right=FALSE)
mod=mark(br,br.ddl,model.parameters=list(S=list(formula=~age),r=list(formula=~age)))
#Pledger Mixture Seber recovery
br=process.data(brownie,model="PMDead",groups="ReleaseAge",

mixtures=3,age.var=1,initial.ages=c(1,0))
br.ddl=make.design.data(br,parameters=list(S=list(age.bins=c(0,1,10)),

r=list(age.bins=c(0,1,10))),right=FALSE)
mod=mark(br,br.ddl,model.parameters=list(pi=list(formula=~mixture),

S=list(formula=~age+mixture),r=list(formula=~age)))
br=process.data(brownie,model="PMDead",groups="ReleaseAge",

mixtures=2,age.var=1,initial.ages=c(1,0))
br.ddl=make.design.data(br,parameters=list(S=list(age.bins=c(0,1,10)),

r=list(age.bins=c(0,1,10))),right=FALSE)
mod=mark(br,br.ddl,model.parameters=list(pi=list(formula=~age),

S=list(formula=~age+mixture),r=list(formula=~age)))

Burnham Burnham Live-Dead Model

Description

An example of the Burnham live-dead model using simulated data LD1.inp from Chapter 9 of
Cooch and White

Author(s)

Luke Eberhart-Phillips<luke.eberhart at gmail.com>

Examples

###
RMARK script for conducting the Burnham model tutorial in Chapter 9.3
#################### the of the Cooch and White MARK book #####################
###
##################### Code by: Luke Eberhart-Phillips #########################
Dept. Animal Behaviour, Bielefeld University, Bielefeld, Germany
##################### email: luke.eberhart at gmail.com ##########################
###

import/convert the simulated "LD1.inp" MARK capture history into an RMARK
dataframe, while defining the two groups as "Y" for individuals marked as

Burnham 15

young, and "A" for individuals marked as adults
NOTE: the "LD1.inp" file is found in the zipped folder downloaded when you
click on "Example data files" in the drop-down menu of the MARK book webpage
\url{http://www.phidot.org/software/mark/docs/book/}
pathtodata=paste(path.package("RMark"),"extdata",sep="/")
LD=convert.inp(paste(pathtodata,"ld1",sep="/"),

group.df=data.frame(age_marked=c("Y","A")))
process the data by defining the model type as "Burnham" and the groups in
the data. In this case the only group is the age at which individuals were
marked
LD.proc=process.data(data = LD,
model = "Burnham",
groups=c("age_marked"),
age.var=1,
initial.age=c(1,0))

make the design data from the process data above
LD.ddl=make.design.data(LD.proc)

add the correct binning to the design data so that individuals that were
marked as young are adults in their second year of life, where as those
marked as adults are adults for their entire life.
LD.ddl=add.design.data(data = LD.proc,
ddl = LD.ddl,
parameter="S",
type = "age",
bins = c(0,1,8),
right = FALSE,
name = "age",
replace = TRUE)

do the same to the F parameter
LD.ddl=add.design.data(data = LD.proc,
ddl = LD.ddl,
parameter="F",
type = "age",
bins = c(0,1,8),
right = FALSE,
name = "age",
replace = TRUE)

check parameter matrix to see if groups were binned correctly in the S matrix
PIMS(mark(data = LD.proc,
ddl = LD.ddl,
model.parameters=list(S=list(formula=~age)),
output=FALSE,
model = "Burnham"),
"S")

Create the formulas that describe variation in the parameter we want to test.
In this case we want to test for an age effect on survival and fidelity,
while keeping recapture and recovery probabilities constant.
S.age=list(formula=~age) # S(age)

16 cleanup

p.dot=list(formula=~1) # p(.)
F.age=list(formula=~age) # F(age)
r.dot=list(formula=~1) # r(.)

Run the model
LD.model.age.F.S=mark(data = LD.proc,
ddl = LD.ddl,
model.parameters = list(S = S.age, p = p.dot,
F =F.age, r = r.dot),
invisible = FALSE,
model = "Burnham")

Check the paramter estimates, they should be the same as those generated
when doing the tutorial in chapter 9.3 of the in MARK Book (table on pg 9-8)
LD.model.age.F.S$results$real

Clean your working directory
cleanup(ask=FALSE)

cleanup Removes unused MARK output files

Description

Identifies all unused (orphaned) mark*.inp, .vcv, .res and .out and .tmp files in the working directory
and removes them. The orphaned files are determined by examining all mark objects and lists of
mark objects (created by collect.models) to create a list of files in use. All other files are treated
as orphans to delete.

Usage

cleanup(lx = NULL, ask = TRUE, prefix = "mark")

Arguments

lx listing of R objects; defaults to list of workspace from calling environment; if
NULL it uses ls(envir=parent.frame())

ask if TRUE, prompt whether each file should be removed. Typically will be used
with ask=FALSE but default of TRUE may avoid problems

prefix prefix for filename if different than "mark"

Details

This function removes orphaned output files from MARK. This occurs when there are output files
in the subdirectory that are not associated with a mark object in the current R session (.Rdata). For
example, if you repeat an analysis or set of analyses and store them in the same object then the
original set of output files would no longer be linked to an R object and would be orphaned.

coef.mark 17

As an example, consider the mallard analysis. The first time you run the analysis script in an
empty subdirectory it would create 9 sets of MARK output files (mark001.out,.vcv,.res,.inp to
mark009.out,.vcv,.res,.inp) and each would be linked to one of the objects in nest.results. When
the command AgePpnGrass=nest.results$AgePpnGrass was issued, both of those mark objects
were linked to the same set of output files. Now if you were to repeat the above commands and re-
run the models and stored the results into nest.results again, it would create files with prefixes 10
to 18. Because that would have replaced nest.results, none of the files numbered 1 to 9 would
be linked to an object. cleanup(ask=FALSE) automatically removes those orphan files. If you
delete all objects in the R session with the command rm(list=ls(all=TRUE)), then subsequently
cleanup(ask=FALSE) will delete all MARK output files because all of them will be orphans. Out-
put files can also become orphans if MARK finishes but for some reason R crashes or you forget
to save your session before you exit R. Orphan output files can be re-linked to an R object without
re-running MARK by re-running the mark function in R and specifing the filename argument to
match the base portion of the orphaned output file (eg "mark067"). It will create all of the necessary
R objects and then asks if you want to use the existing file. If you respond affirmatively it will link
to the orphaned files.

Value

None

Author(s)

Jeff Laake

coef.mark MARK model beta parameters

Description

MARK model beta parameters

Usage

S3 method for class 'mark'
coef(object,...)

Arguments

object a MARK model object
... additional non-specified argument for S3 generic function

Value

A vector or dataframe of beta estimates

Author(s)

Jeff Laake

18 collect.model.names

collect.model.names Collect names of MARK model objects from list of R objects (internal
function)

Description

Either names of all mark model objects (type=NULL) or names of mark model objects of a specific
type (type) are extracted from a vector of R objects (lx) that was collected from the parent en-
vironment (frame) of the function that calls collect.model.names. Thus, it is two frames back
(parent.frame(2)).

Usage

collect.model.names(lx, type = NULL, warning = TRUE)

Arguments

lx vector of R object names from parent.frame(2)

type either NULL (for all types) or a character model type (eg "CJS")

warning if TRUE warning given when models of different types are collected

Details

If type=NULL then the names of all objects of class(x)[1]="mark" in lx are returned. If type is
specified, then the names of all objects of class(x)=c("mark",type) in lx are returned.

This function was written with the intention that it would be called from other functions (e.g.,
collect.models, run.models) but it will work if called directly (e.g., collect.model.names(
lx=ls())). While this function returns a vector of model names, collect.models returns a list of
model objects. The latter can be used to easily create a list of models created in a function to be
used as a return value without listing all the names of the functions. It uses collect.model.names
to perform that function.

Value

model.list: a vector of mark model names

Author(s)

Jeff Laake

See Also

collect.models, run.models, model.table

collect.models 19

collect.models Collect MARK models into a list and optionally construct a table of
model results

Description

Collects mark models contained in lx of specified type (if any) and returns models in a list with a
table of model results if table=TRUE.

Usage

collect.models(lx = NULL, type = NULL, table = TRUE, adjust = TRUE,
external = FALSE)

Arguments

lx if NULL, constructs vector of object names (ls()) from frame of calling func-
tion otherwise it uses specifed names in lx

type either NULL (for all types) or a character vector model type (e.g. type="CJS")

table if TRUE, a table of model results is also included in the returned list

adjust if TRUE, adjusts number of parameters (npar) to number of columns in design
matrix which modifies AIC

external if TRUE the mark objects are saved externally rather than in the resulting mark-
list; the filename for each object is kept in its place

Details

If lx is NULL a vector of object names in the parent frame is constructed for lx. Within lx all mark
model objects (i.e., class(x)[1]=="mark") are returned if type is NULL. If type is specified
and is valid, then the names of all mark model objects of the specified type (i.e., class(x) =
c("mark",type)) in lx are returned. If table=TRUE a table of model selection results is also
included in the returned list.

This function was written to be able to easily collect a series of mark models in a list without
specifying the names of each model object. This is useful in constructing a return value of a function
that runs a series of models for a particular analysis. For an example see dipper.

Value

model.list: a list of mark models and optionally a table of model results.

Note

This function and others that use it or use collect.model.names to collect a series of models or
assign a value to a series of models (e.g., adjust.chat) should be used with a degree of caution.
It is important to understand the scope of the collection. If the call to this function is made at the
R prompt, then it will collect all models (of a particular type if any) within the current .Rdata

20 compute.design.data

file. If the call to this function (or one like it) is called from within a function that runs a series of
analyses then the collection is limited to the function frame (i.e., only models defined within the
function). Thus, it is wise to either use a different .Rdata file for each data set (e.g., one for dipper,
another for edwards.eberhardt, etc) or to run everything within functions as illustrated by dipper
or edwards.eberhardt. Using a separate .Rdata file is equivalent to having separate .DBF/.FPT
files with MARK. It is important to note that functions such as adjust.chat will adjust the value
of chat across analyses unless specifically given a list of models to adjust.

Author(s)

Jeff Laake

See Also

merge.mark,remove.mark, collect.model.names,run.models,model.table,dipper

Examples

see examples in dipper, edwards.eberhardt and example.data

compute.design.data Compute design data for a specific parameter in the MARK model
(internal use)

Description

For a specific type of parameter (e.g., Phi, p, r etc), it creates a data frame containing design data for
each parameter of that type in the model as structured by an all different PIM (parameter information
matrix). The design data are used in constructing the design matrix for MARK with user-specified
model formulae as in make.mark.model.

Usage

compute.design.data(data, begin, num, type = "Triang", mix = FALSE,
rows = 0, pim.type = "all", secondary, nstrata = 1,
tostrata = FALSE, strata.labels = NULL,
subtract.stratum = strata.labels, common.zero = FALSE,
sub.stratum = 0, limits = NULL, events = NULL, use.events = NULL,
mscale = 1, subtract.events = NULL)

Arguments

data data list created by process.data

begin 0 for survival type, 1 for capture type

num number of parameters relative to number of occasions (0 or -1)

compute.design.data 21

type type of parameter structure (Triang (STriang) or Square)

mix if TRUE this is a mixed parameter

rows number of rows relative to number of mixtures

pim.type type of pim structure; either all (all-different) or time

secondary TRUE if a parameter for the secondary periods of robust design

nstrata number of strata for multistrata

tostrata set to TRUE for transition parameters

strata.labels labels for strata as identified in capture history
subtract.stratum

for each stratum, the to.strata that is computed by subtraction or for HidMarkov
it is the strata computed by subtraction for pi parameter

common.zero if TRUE, uses a common begin.time to set origin (0) for Time variable defaults
to FALSE for legacy reasons but should be set to TRUE for models that share
formula like p and c with the Time model

sub.stratum the number of strata to subtract for parameters that use mlogit across strata like
pi and Omega for RDMSOpenMisClass

limits For RDMSOccRepro values that set row and col (if any) start on states

events vector of events if needed for parameter

use.events if TRUE, adds events to design data

mscale scalar for multi-scale occupancy model (number of mixtures)
subtract.events

for each stratum either the stratum or event to compute by subtraction for mlogit
parameter

Details

This function is called by make.design.data to create all of the default design data for a particular
type of model and by add.design.data to add binned design data fields for a particular type of
parameter. The design data created by this function include group, age, time and cohort as factors
variables and continuous (non-factor) versions of all but group. In addition, if groups have been
defined for the data, then a data column is added for each factor variable used to define the groups.
Also for specific closed capture heterogeneity models (model="HetClosed", "FullHet", "HetHug",
"FullHetHug") the data column mixture is added to the design data. The arguments for this function
are defined for each model by the function setup.model.

Value

design.data: a data frame containing all of the design data fields for a particular type of parameter

group group factor level

age age factor level

time time factor level

cohort cohort factor level

Age age as a continuous variable

22 compute.link

Time time as a continuous variable

Cohort cohort as a continuous variable

mixture mixture factor level

other fields any factor variables used to define groups

Author(s)

Jeff Laake

See Also

make.design.data, add.design.data

compute.link Compute estimates of link values

Description

Computes link values (design*beta) for real parameters, and var-cov from design matrix (design)
and coefficients (beta)

Usage

compute.link(model, beta = NULL, design = NULL, data = NULL,
parm.indices = NULL, vcv = TRUE)

Arguments

model MARK model object

beta Estimates of beta parameters

design numeric design matrix for MARK model with any covariate values filled in

data dataframe with covariate values that are averaged for estimates

parm.indices index numbers from PIMS for rows in design matrix to use

vcv logical; if TRUE, returns v-c matrix of link values

Details

This function is very similar to compute.real except that it provides estimates of link values before
they are transformed to real estimates using the inverse-link. It is called by get.link to make
calculations but can be called separately. The value is always a dataframe for the estimates and
design data and optionally a variance-covariance matrix. See get.real for further details about the
arguments.

Value

estimates: If vcv=TRUE, a list is returned with elements vcv.link and the dataframe estimates. If
vcv=FALSE, only the estimates dataframe is returned which has the same structure as in get.real.

compute.links.from.reals 23

Author(s)

Jeff Laake

See Also

get.link

compute.links.from.reals

Compute link values from real parameters

Description

Computes link values from reals using 1-1 real to beta(=link) transformation. Also, creates a v-c
matrix for the link values if vcv.real is specified.

Usage

compute.links.from.reals(x, model, parm.indices = NULL,
vcv.real = NULL, use.mlogits = TRUE)

Arguments

x vector of real estimates to be converted to link values

model MARK model object used only to obtain model structure/links etc. If function
is being called for model averaged estimates, then any model in the model list
used to construct the estimates is sufficient

parm.indices index numbers from PIMS for rows in design matrix(non-simplified indices);
x[parm.indices] are computed

vcv.real v-c matrix for the real parameters

use.mlogits logical; if FALSE then parameters with mlogit links are transformed with logit
rather than mlogit for creating confidence intervals for each value

Details

It has 2 uses both related to model averaged estimates. Firstly, it is used to transform model av-
eraged estimates so the normal confidence interval can be constructed on the link values and then
back-transformed to real space. The second function is to enable parametric bootstrapping in which
the error distbution is assumed to be multivariate normal for the link values. From a single model,
the link values are easily constructed from the betas and design matrix so this function is not needed.
But for model averaging there is no equivalent because the real parameters are averaged over a va-
riety of models with the same real parameter structure but differing design structures. This function
allows for link values and their var-cov matrix to be created from the model averaged real estimates.

24 compute.real

Value

A list with the estimates (link values) and the links that were used. If vcv.real = TRUE, then the v-c
matrix of the links is also returned.

Author(s)

Jeff Laake

See Also

model.average

compute.real Compute estimates of real parameters

Description

Computes real estimates and var-cov from design matrix (design) and coefficients (beta) using spec-
ified link functions

Usage

compute.real(model, beta = NULL, design = NULL, data = NULL,
se = TRUE, vcv = FALSE)

Arguments

model MARK model object

beta estimates of beta parameters for real parameter computation

design design matrix for MARK model

data dataframe with covariate values that are averaged for estimates

se if TRUE returns std errors and confidence interval of real estimates

vcv logical; if TRUE, sets se=TRUE and returns v-c matrix of real estimates

Details

The estimated real parameters can be derived from the estimated beta parameters, a completed de-
sign matrix, and the link function specifications. MARK produces estimates of the real parameters,
se and confidence intervals but there are at least 2 situations in which it is useful to be able to
compute them after running the analysis in MARK: 1) adjusting confidence intervals for estimated
over-dispersion, and 2) making estimates for specific values of covariates. The first case is done in
get.real with a call to this function. It is done by adjusting the estimated standard error of the
beta parameters by multiplying it by the square root of chat to adjust for over-dispersion. A normal
95 +/- 1.96*se) and this is then back-transformed to the real parameters using inverse.link with
the appropriate inverse link function for the parameter to construct a 95 There is one exception. For
parameters using the mlogit transformation, a logit transformation of each individual real Psi and

compute.real 25

its se are used to derive the confidence interval. The estimated standard error for the real parameter
is also scaled by the square root of the over-dispersion constant chat stored in model$chat. But,
the code actually computes the variance-covariance matrix rather than relying on the values from
the MARK output because real estimates will depend on any individual covariate values used in the
model which is the second reason for this function.

New values of the real parameter estimates can easily be computed by simply changing the values
of the covariate values in the design matrix and computing the inverse-link function using the beta
parameter estimates. The covariate values to be used can be specified in one of 2 ways. 1) Prior to
making a call to this function, use the functions find.covariates to extract the rows of the design
matrix with covariate values and either fill in those values aautomatically with the options provided
by find.covariates or edit those values to be the ones you want and then use fill.covariates
to replace the values into the design matrix and use it as the value for the argument design, or 2)
automate this step by specifying a value for the argument data which is used to take averages of
the covariate values to fill in the covariate entries of the design matrix. In computing real parameter
estimates from individual covariate values it is important to consider the scale of the individual
covariates. By default, an analysis with MARK will standardize covariates by subtracting the mean
and dividing by the standard deviation of the covariate value. However, in the RMark library all calls
to MARK.EXE do not standardize the covariates and request real parameter estimates based on the
mean covariate values. This was done because there are many instances in which it is not wise
to use the standardization implemented in MARK and it is easy to perform any standardization of
the covariates with R commands prior to fitting the models. Also, with pre-standardized covariates
there is no confusion in specifying covariate values for computation of real estimates. If the model
contains covariates and the argument design is not specified, the design matrix is extracted from
model and all individual covariate values are assigned their mean value to be consistent with the
default in the MARK analysis.

If a value for beta is given, those values are used in place of the estimates model$results$beta$estimate.

Value

A data frame (real) is returned if vcv=FALSE; otherwise, a list is returned also containing vcv.real:

real data frame containing estimates, and if se=TRUE or vcv=TRUE it also contains
standard errors and confidence intervals and notation of whether parameters are
fixed or at a boundary

vcv.real variance-covariance matrix of real estimates

Author(s)

Jeff Laake

See Also

get.real,fill.covariates,find.covariates,inverse.link,deriv_inverse.link

Examples

see examples in fill.covariates

26 convert.inp

convert.inp Convert MARK input file to RMark dataframe

Description

Converts encounter history inp files used to create a MARK project into a dataframe for use with
RMark. Group structure in frequencies is converted to factor variables that can be used to create
groups in RMark. Covariates are copied straight across. Only works with encounter history format
for input files and not specialized ones for known-fate or Brownie models.

Usage

convert.inp(inp.filename, group.df = NULL, covariates = NULL,
use.comments = FALSE)

Arguments

inp.filename name of input file; inp extension is assumed and does not need to be specified

group.df dataframe with grouping variables that contains a row for each group defined in
the input file row1=group1, row2=group2 etc. Names and number of columns
in the dataframe is set by user to define grouping variables in RMark dataframe

covariates names to be assigned to the covariates defined in the inp file

use.comments if TRUE values within /* and */ on data lines are used as row.names for the
RMark dataframe. Only use this option if they are unique values.

Details

The encounter history format for MARK is structured as follows: capture (encounter) history, fol-
lowed by a frequency field for each group, followed by any covariates and then a semi-colon at
the end of the line. Comments are allowed within /* and */. The RMark format is a dataframe
with a different structure. Each record(row) in the dataframe is for one or more animals within a
single group and if there is group structure then the dataframe contains factor variables that can be
used to create groups. For example, the following is a little snippet of the same data with 2 groups
Males/Females and a covariate weight in the two different formats:

MARK encounter history file (in make believe test.inp): 1001
1 0 10; 1101 0 2 5; 0101 3 1 6;

RMark dataframe: ch freq sex weight 1001 1 M 10 1101 2 F 5 0101 3 M 6 0101 1
F 6

To convert from the MARK format to the RMark format it is necessary to define the variables used
to define the groups (if any) and to define the covariate field names (if any). For the example above,
if test.inp is in the same directory as the current working directory, the call would be:

test = convert.inp("test",group.df=data.frame(sex=c("M","F")),
covariates="weight")

convert.inp 27

Comments spanning lines in the .inp file are ignored and deleted as are blank lines. If each line has
a unique identifier in the comments then by setting use.comments=TRUE, the text of the comment
(e.g.,tag number) will be assigned as the row name in the RMark dataframe. This will only work if
each line only represents a single animal or a set of animals in a single group. If file was structured
as follows:

MARK encounter history file (in make believe test.inp): 1001
1 0 10 /*1*/; 1101 0 2 5 /*2*/; 0101 3 1 6 /*3*/;

an error would occur

Error in convert.inp("test", group.df = data.frame(sex =
c("M", "F")),: Row names not unique. Set use.comments to default value FALSE

because it would try to use "3" as the row name for the 3 males and the 1 female represented by the
last row.

The extension .inp is optional for files with that extension. If the file has a different extension the
entire filename must be specified.

Note that there are limitations to this function. You cannot have extra blank lines in the file, the
number of columns (tab, space or comma delimited) must be the same in each line unless the line
is just a comment line /* */. In the latter case, the /* must begin the line and the */ must end the line
with no extra characters (blanks included) in before or after.

Value

Dataframe with fields ch(character encounter history), freq (frequency of encounter history), fol-
lowed by grouping variables (if any) and then covariates (if any)

Author(s)

Jeff Laake

See Also

process.data

Examples

This example is excluded from testing to reduce package check time
MARK example input file
pathtodata=paste(path.package("RMark"),"extdata",sep="/")
dipper=convert.inp(paste(pathtodata,"dipper",sep="/"),

group.df=data.frame(sex=c("M","F")))
Example input files that accompany the MARK electronic book
\url{http://www.phidot.org/software/mark/docs/book/}
bd=convert.inp(paste(pathtodata,"blckduck",sep="/"),

covariates=c("age","weight","winglen","ci"),use.comments=TRUE)
aa=convert.inp(paste(pathtodata,"aa",sep="/"),

group.df=data.frame(sex=c("Poor","Good")))

28 convert.link.to.real

adult=convert.inp(paste(pathtodata,"adult",sep="/"))
age=convert.inp(paste(pathtodata,"age",sep="/"))
age_ya=convert.inp(paste(pathtodata,"age_ya",sep="/"),

group.df=data.frame(age=c("Young","Adult")))
capsid=convert.inp(paste(pathtodata,"capsid",sep="/"))
clogit_demo=convert.inp(paste(pathtodata,"clogit_demo",sep="/"))
deer=convert.inp(paste(pathtodata,"deer",sep="/"))
ed_males=convert.inp(paste(pathtodata,"ed_males",sep="/"))
F_age=convert.inp(paste(pathtodata,"f_age",sep="/"))
indcov1=convert.inp(paste(pathtodata,"indcov1",sep="/"),

covariates=c("cov1","cov2"))
indcov2=convert.inp(paste(pathtodata,"indcov2",sep="/"),

covariates=c("cov1","cov2"))
island=convert.inp(paste(pathtodata,"island",sep="/"))
linear=convert.inp(paste(pathtodata,"linear",sep="/"))
young=convert.inp(paste(pathtodata,"young",sep="/"))
transient=convert.inp(paste(pathtodata,"transient",sep="/"))
ms_gof=convert.inp(paste(pathtodata,"ms_gof",sep="/"))
m_age=convert.inp(paste(pathtodata,"m_age",sep="/"))
ms_cjs=convert.inp(paste(pathtodata,"ms_cjs",sep="/"))
ms_directional=convert.inp(paste(pathtodata,"ms_directional",sep="/"))
ed=convert.inp(paste(pathtodata,"ed",sep="/"),

group.df=data.frame(sex=c("Male","Female")))
multigroup=convert.inp(paste(pathtodata,"multi_group",sep="/"),

group.df=data.frame(sex=c(rep("Female",2),rep("Male",2)),
Colony=rep(c("Good","Poor"),2)))

LD1=convert.inp(paste(pathtodata,"ld1",sep="/"),
group.df=data.frame(age=c("Young","Adult")))

yngadt=convert.inp(paste(pathtodata,"yngadt",sep="/"),
group.df=data.frame(age=c("Young","Adult")))

effect_size=convert.inp(paste(pathtodata,"effect_size",sep="/"),
group.df=data.frame(colony=c("Poor","Good")))

effect_size3=convert.inp(paste(pathtodata,"effect_size3",sep="/"),
group.df=data.frame(colony=c("1","2","3")))

convert.link.to.real Convert link values to real parameters

Description

Computes real parameters from link values

Usage

convert.link.to.real(x, model = NULL, links = NULL, fixed = NULL)

covariate.predictions 29

Arguments

x Link values to be converted to real parameters

model MARK model object

links vector of character strings specifying links to use in computation of reals

fixed vector of fixed values for real parameters that are needed for calculation of reals
from mlogits when some are fixed

Details

Computation of the real parameter from the link value is relatively straightforward for most links
and the function inverse.link is used. The only exception is parameters that use the mlogit
link which requires the transformation across sets of parameters. This is a convenience function
that does the necessary work to convert from link to real for any set of parameters. The appropriate
links are obtained from model$links unless the argument links is specified and they will over-ride
those in model.

Value

vector of real parameter values

Author(s)

Jeff Laake

See Also

inverse.link,compute.real

covariate.predictions Compute estimates of real parameters for multiple covariate values

Description

Computes real estimates for a dataframe of covariate values and the var-cov matrix of the real
estimates.

Usage

covariate.predictions(model, data = NULL, indices = NULL,
drop = TRUE, revised = TRUE, mata = FALSE, normal.lm = FALSE,
residual.dfs = 0, alpha = 0.025, ...)

30 covariate.predictions

Arguments

model MARK model object or marklist

data dataframe with covariate values used for estimates; if it contains a field called
index the covariates in each row are only applied to the parameter with that index
and the argument indices is not needed; if data is not specified or all individual
covariate values are not specified, the mean individual covariate value is used
for prediction.

indices a vector of indices from the all-different PIM structure for parameters to be
computed (model.index value in the design data)

drop if TRUE, models with any non-positive variance for betas are dropped

revised if TRUE it uses eq 6.12 from Burnham and Anderson (2002) for model averaged
se; otherwise it uses eq 4.9

mata if TRUE, create model averaged tail area confidence intervals as described by
Turek and Fletcher

normal.lm Specify normal.lm=TRUE for the normal linear model case, and normal.lm=FALSE
otherwise. When normal.lm=TRUE, the argument ’residual.dfs’ must also be
supplied. See USAGE section, and Turek and Fletcher (2012) for additional
details.

residual.dfs A vector containing the residual (error) degrees of freedom under each candidate
model. This argument must be provided when the argument normal.lm=TRUE.

alpha The desired lower and upper error rate. Specifying alpha=0.025 corresponds to a
95 alpha=0.05 to a 90 Default value is alpha=0.025. This argument now works to
set standard confidence interval as well using qnorm(1-alpha) for critical value.

... additional arguments passed to specific functions

Details

This function has a similar use as compute.real except that it is specifically designed to com-
pute real parameter estimates for multiple covariate values for either a single model or to compute
model averaged estimates across a range of models within a marklist. This is particularly useful for
computing and plotting the real parameter as a function of the covariate with pointwise confidence
bands (see example below). The function also computes a variance-covariance matrix for the real
parameters. For example, assume you had a model with two age classes of young and adult and
survial for young was a function of weight and you wanted to estimate survivorship to some adult
age as a function of weight. To do that you need the survival for young as a function of weight, the
adult survival, the variance of each and their covariance. This function will allow you to accomplish
tasks like these and many others.

When a variance-covariance matrix is computed for the real parameters, it can get too large for
available memory for a large set of real parameters. Most models contain many possible real pa-
rameters to accomodate the general structure even if there are very few unique ones. It is necessary
to use the most general structure to accomodate model averaging. Most of the time you will only
want to compute the values of a limited set of real parameters but possibly for a range of covariate
values. Use the argument indices to select the real parameters to be computed. The index is the
value that the real parameter has been assigned with the all-different PIM structure. If you looked
at the row numbers in the design data for the dipper example, you would see that the parameter

covariate.predictions 31

for p and Phi are both numbered 1 to 21. But to deal with multiple parameters effectively they
are given a unique number in a specific order. For the CJS model, p follows Phi, so for the dipper
example, Phi are numbered 1 to 21 and then p are numbered 22 to 42. You can use the function
PIMS to lookup the parameter numbers for a parameter type if you use simplified=FALSE. For
example, with the dipper data, you could enter PIMS(dipper.model,"p",simplified=FALSE)
and you would see that they are numbered 22 to 42. Alternatively, you can use summary.mark with
the argument se=TRUE to see the list of indices named all.diff.index. They are included in a
dataframe for each model parameter which enables them to be selected based on the attached data
values (e.g., time, group etc). For example, if you fitted a model called dipper.model then you
could use summary(dipper.model,se=TRUE)$real to list the indices for each parameter.

The argument data is a dataframe containing values for the covariates used in the models. The
names for the fields should match the names of the covariates used in the model. If a time-varying
covariate is used then you need to specify the covariate name with the time index included as it is
specified in the data. You do not need to specify all covariates that were used. If a covariate in one
or more models is not included in data then the mean value will be used for each missing covariate.
That can be very useful when you are only interested in prediction for one type of parameters (eg
Phi) when there are many covariates that are not interesting in another parameter (e.g., p). For each
row in data, each parameter specified in indices is computed with those covariate values. So if
there were 5 rows in data and 10 parameters were specified there would be 10 sets of 5 (50) estimates
produced. If you do not want the full pairing of data and estimates, create a field called index in
data and the estimate for that parameter will be computed with those specific values. For example,
if you wanted parameter 1 to be computed with 5 different values of a covariate and then parameter
7 with 2 different covariate values, you could create a dataframe with 5 rows each having an index
with the value 1 along with the relevant covariate data and an additional 2 rows with the index with
the value 7. If you include the field index in data then you do not need to give a value for the
argument indices. However, if you are making the computations for parameters that use an mlogit
link you must use the separate indices argument. If you try to use the data.frame(index=...,cov)
approach with mlogit parameters and you have covariate values, the function will stop with an
error. Also, if you only include a portion of the indices in an mlogit set, it will also stop and issue an
error and tell you the set of indices that should be included for that mlogit set. If you were allowed
to exclude some indices the result would be incorrect.

Value

A list is returned containing a dataframe of estimates, a var-cov matrix, and a reals list:

estimates data frame containing estimates, se, confidence interval and the data values used
to compute the estimates

vcv variance-covariance matrix of real estimates

reaks list of dataframes with the estimate and se used for each model

Author(s)

Jeff Laake

See Also

compute.real,model.average

32 covariate.predictions

Examples

pathtodata=paste(path.package("RMark"),"extdata",sep="/")

This example is excluded from testing to reduce package check time
#
indcov1.R
#
CJS analysis of the individual covariate data from 12.2 of
Cooch and White
#
Import data (indcov1.inp) and convert it from the MARK inp file
format to the RMark format using the function convert.inp
It is defined with 1 group but 2 individual covariates of mass and
sqmass
#
indcov1=convert.inp(paste(pathtodata,"indcov1",sep="/"),

covariates=c("mass","sqmass"))
#
Next create the processed dataframe and the design data.
#

ind1.process=process.data(indcov1,model="CJS")
ind1.ddl=make.design.data(ind1.process)

#
Next create the function that defines and runs the set of models
and returns a marklist with the results and a model.table.
It does not have any arguments but does use the ind1.process
and ind1.ddl objects created above in the workspace. The function
create.model.list is the function that creates a dataframe of the
names of the parameter specifications for each parameter in that
type of model. If none are given for any parameter, the default
specification will be used for that parameter in mark. The
first argument of mark.wrapper is the model list of parameter
specifications. Remaining arguments that are passed to
mark must be specified using the argument=value specification
because the arguments of mark were not repeated in mark.wrapper
so they must be passed using the argument=value syntax.
#
ind1.models=function()
{

Phi.dot=list(formula=~1)
Phi.mass=list(formula=~mass)
Phi.mass.plus.mass.squared=list(formula=~mass + sqmass)
p.dot=list(formula=~1)
cml=create.model.list("CJS")
results=mark.wrapper(cml,data=ind1.process,ddl=ind1.ddl,adjust=FALSE)
return(results)

}
#
Next run the function to create the models and store the results in
ind1.results which is a marklist. Note that beta estimates will differ
from Cooch and White results because we are using covariate values
directly rather than standardized values.

covariate.predictions 33

#
ind1.results=ind1.models()
#
Next compute real parameter values for survival as a function of
mass which are model-averaged over the fitted models.
#
minmass=min(indcov1$mass)
maxmass=max(indcov1$mass)
mass.values=minmass+(0:30)*(maxmass-minmass)/30
Phibymass=covariate.predictions(ind1.results,

data=data.frame(mass=mass.values,sqmass=mass.values^2),
indices=c(1))

#
Plot predicted model averaged estimates by weight with pointwise
confidence intervals
#
plot(Phibymass$estimates$mass, Phibymass$estimates$estimate,

type="l",lwd=2,xlab="Mass(kg)",ylab="Survival",ylim=c(0,.65))
lines(Phibymass$estimates$mass, Phibymass$estimates$lcl,lty=2)
lines(Phibymass$estimates$mass, Phibymass$estimates$ucl,lty=2)

indcov2.R
#
CJS analysis of the individual covariate data from 12.3 of
Cooch and White
#
Import data (indcov2.inp) and convert it from the MARK inp file
format to the RMark format using the function convert.inp It is
defined with 1 group but 2 individual covariates of mass and
sqmass
#
indcov2=convert.inp(paste(pathtodata,"indcov2",sep="/"),

covariates=c("mass","sqmass"))
#
Standardize covariates
#
actual.mass=indcov2$mass
standardize=function(x,z=NULL)
{

if(is.null(z))
{

return((x-mean(x))/sqrt(var(x)))
}else
{

return((x-mean(z))/sqrt(var(z)))
}

}
indcov2$mass=standardize(indcov2$mass)
indcov2$sqmass=standardize(indcov2$sqmass)
#
Next create the processed dataframe and the design data.
#

ind2.process=process.data(indcov2,model="CJS")

34 covariate.predictions

ind2.ddl=make.design.data(ind2.process)
#
Next create the function that defines and runs the set of models and
returns a marklist with the results and a model.table. It does not
have any arguments but does use the ind1.process and ind1.ddl
objects created above in the workspace. The function create.model.list
is the function that creates a dataframe of the names of the parameter
specifications for each parameter in that type of model. If none are
given for any parameter, the default specification will be used for
that parameter in mark. The first argument of mark.wrapper is the
model list of parameter specifications. Remaining arguments that are
passed to mark must be specified using the argument=value specification
because the arguments of mark were not repeated in mark.wrapper so
they must be passed using the argument=value syntax.
#
ind2.models=function()
{

Phi.dot=list(formula=~1)
Phi.time=list(formula=~time)
Phi.mass=list(formula=~mass)
Phi.mass.plus.mass.squared=list(formula=~mass + sqmass)
Phi.time.x.mass.plus.mass.squared=

list(formula=~time:mass + time:sqmass)
Phi.time.mass.plus.mass.squared=

list(formula=~time*mass + sqmass+ time:sqmass)
p.dot=list(formula=~1)
cml=create.model.list("CJS")
results=mark.wrapper(cml,data=ind2.process,ddl=ind2.ddl,adjust=FALSE,threads=2)
return(results)

}
#
Next run the function to create the models and store the results in
ind2.results which is a marklist. Note that beta estimates will differ
because we are using covariate values directly rather than
standardized values.
#
ind2.results=ind2.models()
#
Next compute real parameter values for survival as a function of
mass which are model-averaged over the fitted models. They are
standardized individually so the values have to be chosen differently.
#
minmass=min(actual.mass)
maxmass=max(actual.mass)
mass.values=minmass+(0:30)*(maxmass-minmass)/30
sqmass.values=mass.values^2
mass.values=standardize(mass.values,actual.mass)
sqmass.values=standardize(sqmass.values,actual.mass^2)
Phibymass=covariate.predictions(ind2.results,
data=data.frame(mass=mass.values,sqmass=sqmass.values),
indices=c(1:7))

#
Plot predicted model averaged estimates by weight with pointwise

crdms 35

confidence intervals
#
par(mfrow=c(4,2))
for (i in 1:7)
{

mass=minmass+(0:30)*(maxmass-minmass)/30
x=Phibymass$estimates
plot(mass,x$estimate[x$par.index==i],type="l",lwd=2,
xlab="Mass(kg)",ylab="Survival",ylim=c(0,1),main=paste("Time",i))
lines(mass, x$lcl[x$par.index==i],lty=2)
lines(mass, x$ucl[x$par.index==i],lty=2)

}

crdms Example data for Closed Robust Design Multistrata

Description

Data and Script to simulate the MSCRD example of 15.7.1 from the MARK book Cooch and White

Format

A data frame with 557 observations on the following 2 variables.

ch a character vector of encounter histories

freq a numeric vector of frequencies of each history

Source

This example was constructed by Andrew Paul who is with Fish and Wildlife Division of the Alberta
Provincial Government

References

For Cooch and White book see http://www.phidot.org/software/mark/

Examples

This example is excluded from testing to reduce package check time
#Script to simulate the MSCRD
#example of 15.7.1 from the MARK
#book
#created by AJP 21 Dec 2010

#convert .inp data - only needed to create crdms
#ch.data<-convert.inp("rd_simple1.inp")

http://www.phidot.org/software/mark/

36 crdms

data(crdms)
#set time intervals
#4 primary periods each with 3 secondary occasions
t.int<-c(rep(c(0,0,1),3),c(0,0))

#process data for RMark
crdms.data<-process.data(crdms,model="CRDMS",time.interval=t.int,
strata.labels=c("1","U"))
#change Psi parameters that are obtained by subtraction
crdms.ddl<-make.design.data(crdms.data,
parameters=list(Psi=list(subtract.stratum=c("1","1"))))

#create grouping index for unobserved p and c (i.e., always zero)
up=as.numeric(row.names(crdms.ddl$p[crdms.ddl$p$stratum=="U",]))

#create grouping index to fix Psi for unobs to unbos at time 1
#this isn't necessary but it allows this Psi to be fixed to a value
#that can be flagged and not erroneously interpreted
Psiuu1=as.numeric(row.names(crdms.ddl$Psi[crdms.ddl$Psi$stratum=="U"&
crdms.ddlPsitime==1,]))

#create dummy variable for constraining last Psi in Markovian model
#variable is called ctime for constrained time
crdms.ddlPsictime=crdms.ddlPsitime
crdms.ddlPsictime[crdms.ddlPsitime==3]=2
do_example=function()
{
#Initial assumptions
S.dot=list(formula=~1) #S equal for both states and constant over time
p.session=list(formula=~session, share=TRUE, #p=c varies with session
fixed=list(index=up,value=0)) #p set to zero for unobs

#Model 1 - Markovian movement
Psi.markov=list(formula=~ctime+stratum,
fixed=list(index=Psiuu1,value=9e-99)) #9e-99 is a flag
model.1=mark(crdms.data,ddl=crdms.ddl,
model.parameters=list(S=S.dot,
p=p.session,
Psi=Psi.markov),threads=2)

#Model 2 - Random movement
Psi.rand=list(formula=~time)
model.2=mark(crdms.data,ddl=crdms.ddl,
model.parameters=list(S=S.dot,
p=p.session,
Psi=Psi.rand),threads=2)

#Model 3 - No movement
Psi.fix=list(formula=~1,fixed=0)
model.3=mark(crdms.data,ddl=crdms.ddl,
model.parameters=list(S=S.dot,
p=p.session,
Psi=Psi.fix),threads=2)

create.mark.mcmc 37

#collect and store models
crdms.res<-collect.models()

print(crdms.res)
invisible()
}
do_example()

create.mark.mcmc Create mcmc object for analysis with coda

Description

Reads in mcmc file from program MARK in binary and returns an mcmc object that can be used
with coda functions which are most easily accessed via codamenu().

Usage

create.mark.mcmc(filename, ncovs, nmeans, ndesigns, nsigmas, nrhos, nlogit,
include = F)

Arguments

filename name of file containing mcmc values

ncovs number of covariates

nmeans number of means

ndesigns number of designs

nsigmas number of sigmas

nrhos number of rhos

nlogit number of logits

include if TRUE it includes ir/propJumps fields

Value

An mcmc object if one chain and an mcmc list if more than one chain. Each can be used with the
coda package

Author(s)

Jeff Laake

38 create.model.list

create.model.list Creates a dataframe of all combinations of parameter specifications

Description

Creates a dataframe of all combinations of parameter specifications for each parameter in a partic-
ular type of MARK model. It is used together with mark.wrapper to run a series of models from
sets of parameter specifications.

Usage

create.model.list(model)

Arguments

model character string identifying the type of model (e.g., "CJS")

Details

This function scans the frame of the calling enviroment and collects all list objects that contain a for-
mula and have names that match parameter. where parameter is the name of a type of parameter in
the model type. For example, it looks for Phi. and p. for model="CJS". Any number of characters
can follow the period. Each of the named objects should specify a list that matches the structure of
a parameter specification as described in make.mark.model. It only collects list objects that contain
an element named formula, thus it will not collect one like Phi.fixed=list(fixed=1). If you
want to do something like that, specify it as Phi.fixed=list(formula=~1,fixed=1). It is safest
to use this inside a function that defines all of the parameter specifications as shown in the example
below. The primary use for this function is to create a dataframe which is passed to mark.wrapper
to construct and run each of the models. It was written as a separate function to provide flexibility
to add/delete/modify the list prior to passing to mark.wrapper. For example, only certain combi-
nations may make sense for some parameter specifications. Thus you could define a set to create
all the combinations and then delete the ones from the dataframe that do not make sense. you want,
add others and re-run the function and merge the resulting dataframes. If there are no specifica-
tions found for a particular model parameter, it is not included in the list and when it is passed to
make.mark.model, the default specification will be used for that parameter.

Value

dataframe of all combinations of parameter specifications for a model. Each field (column) is the
name of a type of parameter (e.g., p and Phi for CJS). The values are character strings identifying
particular parameter specifications.

Author(s)

Jeff Laake

create.model.list 39

See Also

mark.wrapper

Examples

This example is excluded from testing to reduce package check time
#
Compare this to the run.dipper shown under ?dipper
It is only necessary to create each parameter specification and
create.model.list and mark.wrapper will create and run models for
each combination. Notice that the naming of the parameter
specifications has been changed to accommodate format for
create.model.list. Only a subset of the parameter specifications
are used here in comparison to other run.dipper
#
data(dipper)
run.dipper=function()
{

#
Process data
#
dipper.processed=process.data(dipper,groups=("sex"))
#
Create default design data
#
dipper.ddl=make.design.data(dipper.processed)
#
Add Flood covariates for Phi and p that have different values
#
dipper.ddlPhiFlood=0
dipper.ddlPhiFlood[dipper.ddlPhitime==2 |

dipper.ddlPhitime==3]=1
dipper.ddlpFlood=0
dipper.ddlpFlood[dipper.ddlptime==3]=1
#
Define range of models for Phi
#
Phi.dot=list(formula=~1)
Phi.time=list(formula=~time)
Phi.sex=list(formula=~sex)
Phi.Flood=list(formula=~Flood)
#
Define range of models for p
#
p.dot=list(formula=~1)
p.time=list(formula=~time)
p.Flood=list(formula=~Flood)
#
Run all pairings of models
#
dipper.model.list=create.model.list("CJS")

40 deer

dipper.results=mark.wrapper(dipper.model.list,
data=dipper.processed,ddl=dipper.ddl)

#
Return model table and list of models
#
return(dipper.results)

}
dipper.results=run.dipper()

deer White-tailed deer double observer spotlight capture-recapture analy-
sis

Description

This data represents a set of independent double observer road-transect survey data of white-tailed
deer on Brosnan Forest, South Carolina surveyed in August, 2005-2009. The primary reason for
this package is to provide a completely reproducible example of the analysis from Collier et al.
(2012). We used a Huggins closed capture model implemented in MARK http://www.phidot.
org/software/mark/ via RMark both of which will need to be installed on the system to use this
package. The data have 2 time periods (primary observer (t1) was a thermal imager, secondary ob-
server (t2) was a spotlight observer in the same vehicle on the same side) with the primary objective
of the study being to evaluate the detection (recapture) rates of white-tailed deer using spotlights as
a survey method.

Format

The format is a data frame with 4508 observations on the following 7 variables.

SL (spotlight) 0/1 whether deer was missed/seen by the spotlight observer

TI (thermal imager) 0/1 whether deer was missed/seen by the thermal imager observer

Group Factor with 79 levels representing each unique paired (TI-SL) survey conducted

Year Factor with 5 levels for year of survey

MaxCount Count of maximum number of deer seen for each survey, only needed for bootstrapp
analysis in MARK, not used in bfdeeR package

Cluster Value assigning each deer to a specific observation cluster, only needed for bootstrapp
analysis in MARK, not used in bfdeeR package

MgmtUnit Management unit identification

Details

In addition to detailing the analysis used by Collier et al. (2012), this example documents the
use of the share argument in the RMark parameter specification because there is presently very
little documentation on the use of share. Parameters in MARK models rarely share columns of
the design matrix. For example while you might want to use the same covariate for survival and

http://www.phidot.org/software/mark/
http://www.phidot.org/software/mark/

deer 41

capture probability, you would never use the same beta (same column of the design matrix) for each
parameter. However, there are exceptions when the parameters represent similar quantities and that
is when the share argument is useful. For example, in the closed capture models p is initial capture
probability and c is recapture probability. In this case, it would make perfect sense to use the same
column of the design matrix for both parameters. The most obvious case is to fit a model in which
p=c.

In RMark, certain pairs of parameters have been identified as similar and shareable. These can be
found in the file parameters.txt which is in the RMark directory in your R library. With each pair that
is shareable, the first one listed is the primary parameter. When you want to share columns in the de-
sign matrix, share=TRUE is added to the specification of the primary parameter. A parameter spec-
ification is not given for the other secondary parameter when they are shared. When RMark, sees
that the parameters are to be shared it creates a pooled set of design data and adds a column with the
name of the secondary parameter and its value is 0 for the rows for the primary parameter and 1 for
the rows for the secondary parameter. For example, with the closed capture model if share=TRUE
is added to the parameter specification for p, a model is not specified for c, and the pooled design
data set contains a field called c. The added field allows construction of models where there are
restricted differences between the parameters. For example, p=list(formula=~time+c,share=TRUE)
will fit a model in which capture probability varies by time and recapture probability includes an
additive difference on the link scale. Because the design data are pooled when you share parame-
ters, if you modify design data for one of the parameters, the other most be modified as as well, so
the columns of the design data for both parameters are the same or RMark will give an error.

The argument share is used in all the candidate models in the below example analysis. As a
simplified example of how share works, look at the candidate models in the bfrun{} function call
named mod.2 and mod.2a (note that mod.2a was not included in the supplemental file available from
the Journal of Wildlife Management and is only included in this package). Both of these models are
conducting the exact same analysis, with the first mod.2, we used the formula ~time (if you don’t
know what this means go read the MARKBOOK at http://www.phidot.org/software/mark/.
Notice, however, we used the argument share in mod.2, which tells RMark to share columns of the
MARK design matrix. For comparison, so you can evaluate how share works for yourself, mod.2a
recreates the same analysis as mod.2, but uses the approach more typical to MARK analyses where
each parameter is specified independently and uniquely.

Author(s)

Bret Collier

References

Collier, B. A., S. S. Ditchkoff, J. B. Raglin, and C. R. Ruth. 2012. Spotlight surveys for white-tailed
deer: monitoring panacea or exercise in futility? Journal of Wildlife Management, In Press.

Examples

This example is excluded from testing to reduce package check time
data(deer)
x=data.frame(ch=paste(deer$TI, deer$SL, sep=""), Survey=factor(deer$Group),

Year=factor(deer$Year), Cluster=deer$Cluster, MgtUnit=factor(deer$MgmtUnit))

http://www.phidot.org/software/mark/

42 deltamethod.special

x$ch=as.character(x$ch)
bfrun=function(){
x.proc=process.data(x, model="Huggins", groups=c("Survey", "Year", "MgtUnit"))
x.ddl=make.design.data(x.proc)

#Silly Null model, constant p & c sharing 1 parameter (one detection estimate)
p.shared=list(formula=~1,share=TRUE)
mod.1=mark(x.proc, x.ddl, model.parameters=list(p=p.shared), invisible=FALSE)

#2 Parameter Null Model, constant p, constant c, different p and c (one estimate for each; p ne c)
#p(time), c(-), share=TRUE, detection is time dependent, with recapture parameter shared
p.sharetime=list(formula=~time, share=TRUE)
mod.2=mark(x.proc, x.ddl, model.parameters=list(p=p.sharetime), invisible=FALSE)

#2a Parameter Null Model, constant p, constant c,
different p and c (one estimate for each; p ne c) not using share
mod.2a=mark(x.proc, x.ddl, model.parameters=list(p=list(formula=~1), c=list(formula=~1)))

#Fully parameterized model, different p and c for each survey transect replicate,
management unit, method (TI or SL) and any observers
p.survey=list(formula=~Survey*time, share=TRUE)
mod.3=mark(x.proc, x.ddl, model.parameters=list(p=p.survey), invisible=FALSE)

#p(MU), c(MU), initial detection and recapture differ and are management unit dependent
p.mu=list(formula=~MgtUnit*time, share=TRUE)
mod.4=mark(x.proc, x.ddl, model.parameters=list(p=p.mu), invisible=FALSE)

#p(MU) detection is management unit dependent
p.mu=list(formula=~MgtUnit, share=TRUE)
mod.5=mark(x.proc, x.ddl, model.parameters=list(p=p.mu), invisible=FALSE)

#p(Yr + MgtUnit), detection is year + MgtUnit
p.yearMgtUnit=list(formula=~Year*time+MgtUnit, share=TRUE)
mod.6=mark(x.proc, x.ddl, model.parameters=list(p=p.yearMgtUnit), invisible=FALSE)

#p(Year), initial detection and recapture are year dependent
p.year=list(formula=~Year*time, share=TRUE)
mod.7=mark(x.proc, x.ddl, model.parameters=list(p=p.year), invisible=FALSE)

return(collect.models())
}
bf.out=bfrun()
bf.out

#export function to send dataset and covariates data to MARK for bootstrap analysis
#(not run but here for completeness)
#export.MARK(x.proc, "BFdeer", mod.3, replace=TRUE, ind.covariates="all")

deltamethod.special 43

deltamethod.special Compute delta method variance for sum, cumsum, prod and cumprod
functions

Description

This function computes the delta method std errors or v-c matrix for a sum, cumsum (vector of cum-
mulative sums), prod (product), or cumprod(vector of cummulative products) of a set of estimates.

Usage

deltamethod.special(function.name, mean, cov, ses = TRUE)

Arguments

function.name Quoted character string of either "sum", "cumsum", "prod" or "cumprod"

mean vector of estimates used in the function

cov variance-covariance matrix of the estimates

ses if TRUE it returns a vector of estimated standard errors of the function of the
estimates and if FALSE it returns the variance-covariance matrix

Details

This function computes the delta method std errors or v-c matrix for a sum, cumsum (vector of cum-
mulative sums), prod (product), or cumprod(vector of cummulative products). It uses the function
deltamethod from the msm package and constructs the necessary formula for these special cases. It
will load the msm pacakge but assumes that it has already been installed. See the msm documenta-
tion for a complete description on how the deltamethod function works. If ses=TRUE, it returns a
vector of std errors for each of functions of the estimates contained in mean. If ses=F, then it returns
a v-c matrix for the functions of the estimates contained in mean. cov is the input v-c matrix of the
estimates.

Value

either a vector of standard errors (ses=TRUE) or a variance-covariance matrix (ses=FALSE)

Author(s)

Jeff Laake

Examples

This example is excluded from testing to reduce package check time
#
The following are examples only to demonstrate selecting different
model sets for adjusting chat and showing model selection table.
It is not a realistic analysis.
#

44 Density

data(dipper)
mod=mark(dipper,model.parameters=list(Phi=list(formula=~time)))
rr=get.real(mod,"Phi",se=TRUE,vcv=TRUE)
deltamethod.special("prod",rr$estimates$estimate[1:6],rr$vcv.real)
deltamethod.special("cumprod",rr$estimates$estimate[1:6],rr$vcv.real,ses=FALSE)
deltamethod.special("sum",rr$estimates$estimate[1:6],rr$vcv.real)
deltamethod.special("cumsum",rr$estimates$estimate[1:6],rr$vcv.real,ses=FALSE)

Density Density Estimation with Telemetry

Description

The annotated code below is a companion to A Gentle Introduction to Program MARK, Chap-
ter 20: Density Estimation (http://www.phidot.org/software/mark/docs/book/pdf/chap20.
pdf). It requires the file "Density.txt", which is the RMark analog to the example Density Estima-
tion input file distributed with MARK. These are simulated data intended to mimic a study of small
mammals, such as deer mice, sampled at 2 sites (habitat types), A and B. Each habitat type was sam-
pled with a (10 x 10) live-trapping grid (10m trap spacing). There are 5 occasions. In addition to
marking each mouse with an individually identifiable ear tag, 50 percent of the individuals captured
were fitted with a small VHF transmitter. These radio-tagged individuals were located once during
the day and once at night for 5 days immediately after mark-recapture sampling (n = 10 locations
total per animal) and each location was recorded as in or out of the study site. The single covariate
we recorded is the distance to the edge (DTE) of the of the site from the mean trap location of each
individual (i.e., compute the mean trap location for each individual captured >1 time, then compute
the minimum distance from this mean location to the edge of the site).

Format

A data frame with 32 observations of 5 variables

ch a character vector containing the capture history for 5 occasions

TotalLocations The total number of telemetry locations if telemetered; otherwise a .

TotalIn total number of locations in the original site if telemetered; otherwise a .

Site the original site A or B

DTE distance to the edge of the site when originally caught

Author(s)

Jake Ivan

http://www.phidot.org/software/mark/docs/book/pdf/chap20.pdf
http://www.phidot.org/software/mark/docs/book/pdf/chap20.pdf

Density 45

Examples

#Read in Density Estimation input file specific to RMark

#Add 2 covariates that will be used for threshhold models - see below & p. 20-14, 20-15
#Specify data type - use "Densitypc" for this example, which is "Density Estimation with
Huggins p and c". Could also use "DensityRanpc" (Huggins p and c with random effects),
#"DensityHet" (Huggins heterogeniety with pi and p), "DensityFHet" (Huggins full
#heterogeneity with pi and p) and DensityFHet (Huggins Full heterogeniety with pi, p, and c).
#Be sure to specify areas argument in process.data for this model. It will not run if you don't
give it the area of each study site

data(Density)
#Create variables for threshhold model - see below & p. 20-14, 20-15
Density$Thresh15 <- ifelse(Density$DTE<15, Density$DTE, 15)
#Create variables for threshhold model - see below & p. 20-14, 20-15
Density$Thresh25 <- ifelse(Density$DTE<25, Density$DTE, 25)
data_proc <- process.data(Density, model="Densitypc", groups = c("Site"), areas=rep(0.81,2))
data_ddl <- make.design.data(data_proc)

#Run model p(.)p~(.) from p. 20-9, 20-10. View results.
p_dot <- list(formula = ~1, share=TRUE)
ptilde_dot <- list(formula = ~1)
model1 <- mark(data_proc,data_ddl,model.parameters=list(p=p_dot,ptilde=ptilde_dot))
model1

#Run models p(site)p~(.) and p(.)p~(site) as indicated on p. 20-11. View results.
p_site <- list(formula = ~1 + Site, share=TRUE)
ptilde_site <- list(formula = ~1 + Site)
model2 <- mark(data_proc, data_ddl, model.parameters=list(p=p_dot, ptilde=ptilde_site))
model3 <- mark(data_proc, data_ddl, model.parameters=list(p=p_site, ptilde=ptilde_dot))
model2

#Run model p(DTE)p~(DTE) as indicated on p. 20-12. View results.
p_DTE <- list(formula = ~1 + DTE, share=TRUE)
ptilde_DTE <- list(formula= ~1 + DTE)
model4 <- mark(data_proc, data_ddl, model.parameters = list(p=p_DTE, ptilde=ptilde_DTE))
model4

#Compute Model Selection Table that appears on p. 20-12. View results.
ModSelTable <- collect.models(type="Densitypc")
ModSelTable

#Run Threshhold models from p. 20-15.
p_DTE_Thresh15 <- list(formula = ~1 + Thresh15, share=TRUE)
p_DTE_Thresh25 <- list(formula = ~1 + Thresh25, share=TRUE)
model5 <- mark(data_proc, data_ddl, model.parameters = list(p=p_DTE_Thresh15, ptilde=ptilde_DTE))
model6 <- mark(data_proc, data_ddl, model.parameters = list(p=p_DTE_Thresh25, ptilde=ptilde_DTE))

46 deriv_inverse.link

#Re-compute Model Selection Table that appears on p. 20-16
ModSelTable <- collect.models(type="Densitypc")
ModSelTable

deriv_inverse.link Derivatives of inverse of link function (internal use)

Description

Computes derivatives of inverse of link functions (real estimates) with respect to the beta parameters
which are used for delta method computation of the var-cov matrix of real parameters.

Usage

deriv_inverse.link(real, x, link)

Arguments

real Vector of values of real parameters

x Matrix of design values

link Type of link function (e.g., "logit")

Details

Note: that function was renamed to deriv_inverse.link to avoid S3 generic class conflicts. The
derivatives of the inverse of the link functions are simple computations using the real values and the
design matrix values. The body of the function is as follows:

switch(link, logit=x*real*(1-real), log=x*real,
loglog=-real*x*log(real), cloglog=-log(1-real)*x*(1-real), identity=x,
mlogit=x*real*(1-real))

Value

Vector of derivative values computed at values of real parameters

Author(s)

Jeff Laake

See Also

inverse.link, compute.real

dipper 47

dipper Dipper capture-recapture data

Description

A capture-recapture data set on European dippers from France that accompanies MARK as an
example analysis using the CJS and POPAN models. The dipper data set was orginally described
as an example by Lebreton et al (1992).

Format

A data frame with 294 observations on the following 2 variables.

ch a character vector containing the encounter history of each bird

sex the sex of the bird: a factor with levels Female Male

Details

This is a data set that accompanies program MARK as an example for CJS and POPAN anal-
yses. The data can be stratified using sex as a grouping variable. The functions run.dipper,
run.dipper.alternate, run.dipper.popan defined below in the examples mimic the models
used in the dbf file that accompanies MARK. Note that the models used in the MARK example
use PIM coding with the sin link function which is often better at identifying the number of es-
timable parameters. The approach used in the R code uses design matrices and cannot use the sin
link and is less capable at counting parameters. These differences are illustrated by comparing the
results of run.dipper and run.dipper.alternate which fit the same set of "CJS" models. The
latter fits the models with constraints on some parameters to achieve identifiability and the former
does not. Although it does not influence the selection of the best model it does infleunce parameter
counts and AIC ordering of some of the less competitive models. In using design matrices it is
best to constrain parameters that are confounded (e.g., last occasion parameters in Phi(t)p(t) CJS
model) when possible to achieve more reliable counts of the number of estimable parameters. See
adjust.parameter.count for more dicussion on this point.

Note that the covariate "sex" defined in dipper has values "Male" and "Female". It cannot be used
directly in a formula for MARK without using it do define groups because MARK.EXE will be
unable to read in a covariate with non-numeric values. By using groups="sex" in the call the
process.data a factor "sex" field is created that can be used in the formula. Alternatively, a new
covariate could be defined in the data with say values 0 for Female and 1 for Male and this could
be used without defining groups because it is numeric. This can be done easily by translating the
values of the coded variables to a numeric variable. Factor variables are numbered 1..k for k levels
in alphabetic order. Since Female < Male in alphabetic order then it is level 1 and Male is level 2.
So the following will create a numeric sex covariate.

dipper$numeric.sex=as.numeric(dipper$sex)-1

See export.chdata for an example that creates a .inp file for MARK with sex being used to de-
scribe groups and a numeric sex covariate.

48 dipper

Source

Lebreton, J.-D., K. P. Burnham, J. Clobert, and D. R. Anderson. 1992. Modeling survival and test-
ing biological hypotheses using marked animals: case studies and recent advances. Ecol. Monogr.
62:67-118.

Examples

This example is excluded from testing to reduce package check time
data(dipper)
dipper.model=mark(dipper)
run.dipper=function()
{
#
Process data
#
dipper.processed=process.data(dipper,groups=("sex"))
#
Create default design data
#
dipper.ddl=make.design.data(dipper.processed)
#
Add Flood covariates for Phi and p that have different values
#
dipper.ddlPhiFlood=0
dipper.ddlPhiFlood[dipper.ddlPhitime==2 | dipper.ddlPhitime==3]=1
dipper.ddlpFlood=0
dipper.ddlpFlood[dipper.ddlptime==3]=1
#
Define range of models for Phi
#
Phidot=list(formula=~1)
Phitime=list(formula=~time)
Phisex=list(formula=~sex)
Phisextime=list(formula=~sex+time)
Phisex.time=list(formula=~sex*time)
PhiFlood=list(formula=~Flood)
#
Define range of models for p
#
pdot=list(formula=~1)
ptime=list(formula=~time)
psex=list(formula=~sex)
psextime=list(formula=~sex+time)
psex.time=list(formula=~sex*time)
pFlood=list(formula=~Flood)
#
Run assortment of models
#
dipper.phidot.pdot =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phidot,p=pdot))
dipper.phidot.pFlood =mark(dipper.processed,dipper.ddl,

dipper 49

model.parameters=list(Phi=Phidot,p=pFlood))
dipper.phidot.psex =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phidot,p=psex))
dipper.phidot.ptime =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phidot,p=ptime))
dipper.phidot.psex.time =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phidot,p=psex.time))
dipper.phitime.ptime =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phitime, p=ptime))
dipper.phitime.pdot =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phitime,p=pdot))
dipper.phitime.psex =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phitime,p=psex))
dipper.phitime.psex.time =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phitime,p=psex.time))
dipper.phiFlood.pFlood =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=PhiFlood, p=pFlood))
dipper.phisex.pdot =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phisex,p=pdot))
dipper.phisex.psex =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phisex,p=psex))
dipper.phisex.psex.time =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phisex,p=psex.time))
dipper.phisex.ptime =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phisex,p=ptime))
dipper.phisextime.psextime =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phisextime,p=psextime))
dipper.phisex.time.psex.time =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phisex.time,p=psex.time))
dipper.phisex.time.psex =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phisex.time,p=psex))
dipper.phisex.time.pdot =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phisex.time,p=pdot))
dipper.phisex.time.ptime =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phisex.time,p=ptime))
#
Return model table and list of models
#
return(collect.models())
}

dipper.results=run.dipper()

run.dipper.alternate=function()
{
#
Process data
#
dipper.processed=process.data(dipper,groups=("sex"))
#
Create default design data
#
dipper.ddl=make.design.data(dipper.processed)

50 dipper

#
Add Flood covariates for Phi and p that have different values
#
dipper.ddlPhiFlood=0
dipper.ddlPhiFlood[dipper.ddlPhitime==2 | dipper.ddlPhitime==3]=1
dipper.ddlpFlood=0
dipper.ddlpFlood[dipper.ddlptime==3]=1
#
Define range of models for Phi
#
Phidot=list(formula=~1)
Phitime=list(formula=~time)
Phitimec=list(formula=~time,fixed=list(time=6,value=1))
Phisex=list(formula=~sex)
Phisextime=list(formula=~sex+time)
Phisex.time=list(formula=~sex*time)
PhiFlood=list(formula=~Flood)
#
Define range of models for p
#
pdot=list(formula=~1)
ptime=list(formula=~time)
ptimec=list(formula=~time,fixed=list(time=7,value=1))
psex=list(formula=~sex)
psextime=list(formula=~sex+time)
psex.time=list(formula=~sex*time)
psex.timec=list(formula=~sex*time,fixed=list(time=7,value=1))
pFlood=list(formula=~Flood)
#
Run assortment of models
#
dipper.phidot.pdot =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phidot,p=pdot))
dipper.phidot.pFlood =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phidot,p=pFlood))
dipper.phidot.psex =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phidot,p=psex))
dipper.phidot.ptime =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phidot,p=ptime))
dipper.phidot.psex.time =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phidot,p=psex.time))
dipper.phitime.ptimec =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phitime, p=ptimec))
dipper.phitime.pdot =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phitime,p=pdot))
dipper.phitime.psex =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phitime,p=psex))
dipper.phitimec.psex.time =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phitimec,p=psex.time))
dipper.phiFlood.pFlood =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=PhiFlood, p=pFlood))
dipper.phisex.pdot =mark(dipper.processed,dipper.ddl,

model.parameters=list(Phi=Phisex,p=pdot))

dipper 51

dipper.phisex.psex =mark(dipper.processed,dipper.ddl,
model.parameters=list(Phi=Phisex,p=psex))

dipper.phisex.psex.time =mark(dipper.processed,dipper.ddl,
model.parameters=list(Phi=Phisex,p=psex.time))

dipper.phisex.ptime =mark(dipper.processed,dipper.ddl,
model.parameters=list(Phi=Phisex,p=ptime))

dipper.phisextime.psextime =mark(dipper.processed,dipper.ddl,
model.parameters=list(Phi=Phisextime,p=psextime),adjust=FALSE)

dipper.phisex.time.psex.timec =mark(dipper.processed,dipper.ddl,
model.parameters=list(Phi=Phisex.time,p=psex.timec))

dipper.phisex.time.psex =mark(dipper.processed,dipper.ddl,
model.parameters=list(Phi=Phisex.time,p=psex))

dipper.phisex.time.pdot =mark(dipper.processed,dipper.ddl,
model.parameters=list(Phi=Phisex.time,p=pdot))

dipper.phisex.time.ptimec =mark(dipper.processed,dipper.ddl,
model.parameters=list(Phi=Phisex.time,p=ptimec))

#
Return model table and list of models
#
return(collect.models())
}
dipper.results.alternate=run.dipper.alternate()
#
Merge two sets of models into a single model list and include the
initial model as a demo for merge.mark
#
dipper.cjs=merge.mark(dipper.results,dipper.results.alternate,dipper.model)
dipper.cjs
#
next delete some of the models to show how this is done with remove.mark
#
dipper.cjs=remove.mark(dipper.cjs,c(2,4,9))
dipper.cjs

run.dipper.popan=function()
{
#
Process data
#
dipper.processed=process.data(dipper,model="POPAN",group="sex")
#
Create default design data
#
dipper.ddl=make.design.data(dipper.processed)
#
Add Flood covariates for Phi and p that have different values
#
dipper.ddlPhiFlood=0
dipper.ddlPhiFlood[dipper.ddlPhitime==2 | dipper.ddlPhitime==3]=1
dipper.ddlpFlood=0
dipper.ddlpFlood[dipper.ddlptime==3]=1
#
Define range of models for Phi

52 dipper

#
Phidot=list(formula=~1)
Phitime=list(formula=~time)
Phisex=list(formula=~sex)
Phisextime=list(formula=~sex+time)
Phisex.time=list(formula=~sex*time)
PhiFlood=list(formula=~Flood)
#
Define range of models for p
#
pdot=list(formula=~1)
ptime=list(formula=~time)
psex=list(formula=~sex)
psextime=list(formula=~sex+time)
psex.time=list(formula=~sex*time)
pFlood=list(formula=~Flood)
#
Define range of models for pent
#
pentsex.time=list(formula=~sex*time)
#
Define range of models for N
#
Nsex=list(formula=~sex)
#
Run assortment of models
#
dipper.phisex.time.psex.time.pentsex.time=mark(dipper.processed,dipper.ddl,
model.parameters=list(Phi=Phisex.time,p=psex.time,pent=pentsex.time,N=Nsex),
invisible=FALSE,adjust=FALSE)
dipper.phisex.time.psex.pentsex.time=mark(dipper.processed,dipper.ddl,
model.parameters=list(Phi=Phisex.time,p=psex,pent=pentsex.time,N=Nsex),
invisible=FALSE,adjust=FALSE)
#
Return model table and list of models
#
return(collect.models())
}

dipper.popan.results=run.dipper.popan()

Here is an example of user specified links for each real parameter
data(dipper)
dipper.proc=process.data(dipper)
dipper.ddl=make.design.data(dipper.proc)

dummy run of make.mark.model to get links and design data.
parm.specific set to TRUE so it will create a link for
each parameter because for this model they are all the
same (logit) and if this was not specified you'ld get a vector with one element
dummy=make.mark.model(dipper.proc,dipper.ddl,simplify=FALSE,parm.specific=TRUE)
input.links=dummy$links

get model indices for p where time=4

Donovan.7 53

log.indices=dipper.ddlpmodel.index[dipper.ddlptime==4]
assign those links to log
input.links[log.indices]="Log"

Now these can be used with any call to mark
mymodel=mark(dipper.proc,dipper.ddl,input.links=input.links)
summary(mymodel)

Donovan.7 Exercise 7 example data

Description

An example occupancy data set used as exercise 7 in the occupancy website developed by Donovan
and Hines.

Format

A data frame with 20 observations (sites) on the following 2 variables.

ch a character vector containing the presence (1) and absence (0) for each of 5 visits to the site
freq frequency of sites (always 1)

Details

This is a data set from exercise 7 of Donovan and Hines occupancy web site (http://www.uvm.
edu/rsenr/vtcfwru/spreadsheets/?Page=occupancy/occupancy.htm).

Examples

Donovan.7 can be created with
Donovan.7=convert.inp("Donovan.7.inp")

do.exercise.7=function()
{

data(Donovan.7)
Estimates from following agree with estimates on website but the
log-likelihood values do not agree. Maybe a difference in whether the
constant binomial coefficients are included.

Donovan.7.poisson=mark(Donovan.7,model="OccupRNPoisson",invisible=FALSE,threads=1)
THe following model was not in exercise 7.

Donovan.7.negbin=mark(Donovan.7,model="OccupRNNegBin",invisible=FALSE,threads=1)
return(collect.models())

}
exercise.7=do.exercise.7()
Remove # to see output
print(exercise.7)

http://www.uvm.edu/rsenr/vtcfwru/spreadsheets/?Page=occupancy/occupancy.htm
http://www.uvm.edu/rsenr/vtcfwru/spreadsheets/?Page=occupancy/occupancy.htm

54 Donovan.8

Donovan.8 Exercise 8 example data

Description

An example occupancy data set used as exercise 8 in the occupancy website developed by Donovan
and Hines.

Format

A data frame with 20 observations (sites) on the following 2 variables.

ch a character vector containing the counts for each of 5 visits to the site

freq frequency of sites (always 1)

Details

This is a data set from exercise 8 of Donovan and Hines occupancy web site (http://www.uvm.
edu/rsenr/vtcfwru/spreadsheets/?Page=occupancy/occupancy.htm). In MARK, it uses 2
digits to allow a count of 0 to 99 at each site, so the history has 10 digits for 5 visits (occasions).

Examples

This example is excluded from testing to reduce package check time
Donovan.8 can be created with
Donovan.8=convert.inp("Donovan.8.inp")
do.exercise.8=function()
{

data(Donovan.8)
Results agree with the values on the website.

Donovan.8.poisson=mark(Donovan.8,model="OccupRPoisson",invisible=FALSE,threads=2)
The following model was not in exercise 8. The NegBin model does
better if it is initialized with the r and lambda from the poisson.

Donovan.8.negbin=mark(Donovan.8,model="OccupRNegBin",
initial=Donovan.8.poisson,invisible=FALSE,threads=2)

return(collect.models())
}
exercise.8=do.exercise.8()
Remove # to see output
print(exercise.8)

http://www.uvm.edu/rsenr/vtcfwru/spreadsheets/?Page=occupancy/occupancy.htm
http://www.uvm.edu/rsenr/vtcfwru/spreadsheets/?Page=occupancy/occupancy.htm

edwards.eberhardt 55

edwards.eberhardt Rabbit capture-recapture data

Description

A capture-recapture data set on rabbits derived from Edwards and Eberhardt (1967) that accompa-
nies MARK as an example analysis using the closed population models.

Format

A data frame with 76 observations on the following variable.

ch a character vector

Details

This data set is used in MARK to illustrate the various closed population models including "Closed",
"HetClosed", "FullHet","Huggins","HugHet", and "FullHugHet". The first 3 include N in the like-
lihood whereas the last 3 are based on the Huggins approach which does not use N in the likelihood.
The Het... and FullHet... models are based on the Pledger mixture model approach. Some of the
examples demonstrate the use of the share argument in the model.parameters list for parameter
p which allows sharing common values for p and c.

Source

Edwards, W.R. and L.L. Eberhardt 1967. Estimating cottontail abundance from live trapping data.
J. Wildl. Manage. 31:87-96.

Examples

This example is excluded from testing to reduce package check time
#
get data
#
data(edwards.eberhardt)
#
create function that defines and runs the analyses as defined in
MARK example dbf file
#
run.edwards.eberhardt=function()
{
#
Define parameter models
#
pdotshared=list(formula=~1,share=TRUE)
ptimeshared=list(formula=~time,share=TRUE)
ptime.c=list(formula=~time+c,share=TRUE)
ptimemixtureshared=list(formula=~time+mixture,share=TRUE)

56 edwards.eberhardt

pmixture=list(formula=~mixture)
#
Run assortment of models
#
#
Capture Closed models
#
constant p=c
ee.closed.m0=mark(edwards.eberhardt,model="Closed",

model.parameters=list(p=pdotshared))
constant p and constant c but different
ee.closed.m0c=mark(edwards.eberhardt,model="Closed")
time varying p=c
ee.closed.mt=mark(edwards.eberhardt,model="Closed",

model.parameters=list(p=ptimeshared))
#
Closed heterogeneity models
#
2 mixtures Mh2
ee.closed.Mh2=mark(edwards.eberhardt,model="HetClosed",

model.parameters=list(p=pmixture))
Closed Mth2 - p different for time; mixture additive
ee.closed.Mth2.additive=mark(edwards.eberhardt,model="FullHet",

model.parameters=list(p=ptimemixtureshared),adjust=TRUE)
#
Huggins models
#
p=c constant over time
ee.huggins.m0=mark(edwards.eberhardt,model="Huggins",

model.parameters=list(p=pdotshared))
p constant c constant but different; this is default model for Huggins
ee.huggins.m0.c=mark(edwards.eberhardt,model="Huggins")
Huggins Mt
ee.huggins.Mt=mark(edwards.eberhardt,model="Huggins",

model.parameters=list(p=ptimeshared),adjust=TRUE)
#
Huggins heterogeneity models
#
Mh2 - p different for mixture
ee.huggins.Mh2=mark(edwards.eberhardt,model="HugHet",

model.parameters=list(p=pmixture))
Huggins Mth2 - p different for time; mixture additive
ee.huggins.Mth2.additive=mark(edwards.eberhardt,model="HugFullHet",

model.parameters=list(p=ptimemixtureshared),adjust=TRUE)
#
Return model table and list of models
#
return(collect.models())
}
#
fit models in mark by calling function created above
#
ee.results=run.edwards.eberhardt()

example.data 57

example.data Simulated data from Cormack-Jolly-Seber model

Description

A simulated data set from CJS model to demonstrate use of grouping variables and individual co-
variates in an analysis of a mark model. The true model for the simulated data is S(age+year)p(year).

Format

A data frame with 6000 observations on the following 5 variables.

ch a character vector

weight a numeric vector

age a factor with levels 1 2 3

sex a factor with levels F M

region a factor with levels 1 2 3 4

Details

The weight, age and region are static variables that are defined based on the values when the
animal was released. age is a factor variable representing an age level. The actual ages (at time of
release) are 0,1,2 for the 3 levels respectively.

Examples

This example is excluded from testing to reduce package check time
data(example.data)
run.example=function()
{
PhiTime=list(formula=~time)
pTimec=list(formula=~time,fixed=list(time=7,value=1))
pTime=list(formula=~time)
PhiAge=list(formula=~age)
Phidot=list(formula=~1)
PhiweightTime=list(formula=~weight+time)
PhiTimeAge=list(formula=~time+age)
mod1=mark(example.data,groups=c("sex","age","region"),

initial.ages=c(0,1,2))
mod2=mark(example.data,model.parameters=list(p=pTimec,Phi=PhiTime),

groups=c("sex","age","region"),initial.ages=c(0,1,2))
mod3=mark(example.data,model.parameters=list(Phi=Phidot,p=pTime),

groups=c("sex","age","region"),initial.ages=c(0,1,2))
mod4=mark(example.data,model.parameters=list(Phi=PhiTime),

groups=c("sex","age","region"),initial.ages=c(0,1,2))

58 export.chdata

mod5=mark(example.data,model.parameters=list(Phi=PhiTimeAge),
groups=c("sex","age","region"),initial.ages=c(0,1,2))

mod6=mark(example.data,model.parameters=list(Phi=PhiAge,p=pTime),
groups=c("sex","age","region"),initial.ages=c(0,1,2))

mod7=mark(example.data,model.parameters=list(p=pTime,Phi=PhiweightTime),
groups=c("sex","age","region"),initial.ages=c(0,1,2))

mod8=mark(example.data,model.parameters=list(Phi=PhiTimeAge,p=pTime),
groups=c("sex","age","region"),initial.ages=c(0,1,2))

return(collect.models())
}
example.results=run.example()

export.chdata Export capture-history data to MARK .inp format

Description

Creates a MARK .inp file from processed data list that can be used to create a MARK .dbf file for
use with MARK directly rather than with the RMark package.

Usage

export.chdata(data, filename, covariates = NULL, replace = FALSE)

Arguments

data processed data list resulting from process.data

filename quoted filename (without .inp extension)

covariates vector of names of covariate variables in data to include

replace if file exists and replace=TRUE, file will be over-written

Details

The default is to include none of the covariates in the processed data list. All of the covariates can
be passed by setting covariates="all".

After you have created the MARK .dbf/.fpt files with the exported .inp file, then you can use
export.chdata to export models that can be imported into the MARK interface. However note
the following: ***Warning*** Make sure that you use the .inp created by export.chdata with
your processed data to create the MARK .dbf file rather than using a separate similar .inp file. It
is essential that the group structure and ordering of groups matches between the .inp file and the
exported models or you can get erroneous results.

Value

None

export.MARK 59

Author(s)

Jeff Laake

See Also

import.chdata

Examples

data(dipper)
dipper$numeric.sex=as.numeric(dipper$sex)-1
dipper.processed=process.data(dipper,group="sex")
export.chdata(dipper.processed, filename="dipper",

covariates="numeric.sex",replace=TRUE)
#
Had sex been used in place of numeric.sex in the above command,
MARK would have been unable to use it as a covariate
because it is not a numeric field

export.MARK Export data and models for import in MARK

Description

Creates a .Rinp, .inp and optionally renamed output files that can be imported into MARK to create
a new MARK project with all the data and output files.

Usage

export.MARK(x, project.name, model = NULL, replace = FALSE, chat = 1,
title = "", ind.covariates = "all")

Arguments

x processed data list used to build models

project.name character string to be used for prefix of filenames and for MARK project name;
do not use "." in the filename

model either a single mark model or a marklist

replace if TRUE it will replace any existing files

chat user-specified chat value if desired

title MARK project title string

ind.covariates vector of character strings specifying names of individual covariates or "all" to
use all present

60 export.MARK

Details

If you use Nest model and NestAge covariate you should use the processed data list (model$data)
from a model using NestAge in the formula because the necessary individual covariates are added
to the processed data list. Also, use default of ind.covariates="all".

After running this function to export the data and models to the working directory, start program
MARK and select the File/RMARK Import menu item. Navigate to the working directory and select
the "project.name".Rinp file. MARK will take over and create the project files and will import any
specified model output files.

DO NOT use a "project name" that is the same as a filename you use as input (*.inp) to RMark
because this function will create a file "project name".inp and it would over-write your existing file
and the format could change. If you try this, the code will return an error that the filename is invalid
because the file already exists.

Value

None

Author(s)

Jeff Laake

See Also

export.chdata, export.model

Examples

This example is excluded from testing to reduce package check time
data(mallard)
Dot=mark(mallard,nocc=90,model="Nest",
model.parameters=list(S=list(formula=~1)))
mallard.proc=process.data(mallard,nocc=90,model="Nest")
export.MARK(mallard.proc,"mallard",Dot,replace=TRUE)
data(robust)
time.intervals=c(0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0)
S.time=list(formula=~time)
p.time.session=list(formula=~-1+session:time,share=TRUE)
GammaDoublePrime.random=list(formula=~time,share=TRUE)
model.1=mark(data = robust, model = "Robust",
time.intervals=time.intervals,
model.parameters=list(S=S.time,
GammaDoublePrime=GammaDoublePrime.random,p=p.time.session))
robust.proc=process.data(data = robust, model = "Robust",
time.intervals=time.intervals)
export.MARK(robust.proc,"robust",model.1,replace=TRUE)

export.model 61

export.model Export output files for appending into MARK .dbf/.fpt format

Description

Creates renamed versions of the output,vcv and residual files so they can be appended into a MARK
.dbf file.

Usage

export.model(model, replace = FALSE)

Arguments

model a mark model object or marklist object

replace if file exists and replace=TRUE, file will be over-written

Details

If model is a marklist then it exports each model in the marklist. The function simply copies the
files with new names so the MARK interface will recognize them. The marknnn.out is copied as
marknnnY.tmp, marknnn.res is copied as marknnnx.tmp and marknnn.vcv is copied as marknnnV.tmp.
You can create a MARK .dbf by using export.chdata to create an input file for MARK, opening
MARK (MARKINT.EXE) to create a new .dbf with the input file, and then using the Output/Append
to select the output file (marknnnY.tmp) to append the model with its files. Then you can use any
facilities of MARK that are not already included in RMark.

Warning Make sure that you use the .inp created by export.chdata with your processed
data to create the MARK .dbf file rather than using a separate similar .inp file. It is essential that
the group structure and ordering of groups matches between the .inp file and the exported models
or you can get erroneous results.

Value

None

Author(s)

Jeff Laake

See Also

export.chdata

62 extract.indices

Examples

data(dipper)
mymodel=mark(dipper,threads=1)
export.model(mymodel,replace=TRUE)

extract.indices Various utility functions

Description

Miscellaneous set of functions that can be used with results from the package.

Usage

extract.indices(model,parameter,df)

nat.surv(model,df)

pop.est(ns,ps,design,p.vcv)

compute.Sn(x,df,criterion)

logitCI(x,se)

search.output.files(x,string)

Arguments

model a mark model object

parameter character string for a type of parameter for that model (eg, "Phi","p")

df dataframe containing the columns group, row, column which specify the group
number, the row number and column number of the PIM

ns vector of counts of animals captured

ps vector of capture probability estimates which match counts

design design matrix that specifies how counts will be aggregate

p.vcv variance-covariance matrix for capture probability estimates

x marklist of models for compute.Sn and a vector of real estimates for logitCI

se vector of std errors for real estimates

criterion vector of model selection criterion values (eg AICc)

string string to be found in output files contained in models in x

extract.indices 63

Details

Function extract.indices extracts the parameter indices from the parameter index matrices (PIMS)
for a particular type of parameter that match a set of group numbers and rows and columns that
are defined in the dataframe df. It returns a vector of indices which can be used to specify the set of
real parameters to be extracted by covariate.predictions using the index column in data or the
indices argument. If df is NULL, it returns a dataframe with all of the indices with model.index
being the unique index across all parameters and the par.index which is an index to the row in the
design data. If parameter is NULL then the the dataframe is given for all of the parameters.

Function nat.surv produces estimates of natural survival (Sn) from total survival (S) and recovery
rate (r) from a joint live-dead model in which all harvest recoveries are reported. In that case, Taylor
et al 2005 suggest the following estimator of natural survival Sn=S + (1-S)*r. The arguments for
the function are a mark model object and a dataframe df that defines the set of groups and times
(row,col) for the natural survival computations. It returns a list with elements: 1) Sn - a vector of
estimates for natural survival; one for each entry in df and 2) vcv - a variance-covariance matrix
for the estimates of natural survival.

Function pop.est produces estimates of abundance using a vector of counts of animals captured
(ns) and estimates of capture probabilities (ps). The estimates can be aggregated or averaged using
the design matrix argument. If individual estimates are needed, use an nxn identity matrix for
design where n is the length of ns. To get a total of all the estimates use a nx1 column matrix of 1s.
Any other design matrix can be specified to subset, aggregate and/or average the estimates. The
argument p.vcv is needed to compute the variance-covariance matrix for the abundance estimates
using the formula described in Taylor et al. (2002). The function returns a list with elements: 1)
Nhat - a vector of abundance estimates and 2) vcv - variance-covariance matrix for the abundance
estimates.

Function Compute.Sn creates list structure for natural survival using nat.surv to be used for model
averaging natural survival estimates (e.g., model.average(compute.Sn(x,df,criterion))). It
returns a list with elements estimates, vcv, weight: 1) estimates - matrix of estimates of natural
survival, 2)vcv - list of var-cov matrix for the estimates, and 3) weight - vector of model weights.

Function search.output.filessearches for occurrence of a specific string in output files associ-
ated with models in a marklist x. It returns a vector of model numbers in the marklist which have
an output file containing the string.

Author(s)

Jeff Laake

References

TAYLOR, M. K., J. LAAKE, H. D. CLUFF, M. RAMSAY and F. MESSIER. 2002. Managing the
risk from hunting for the Viscount Melville Sound polar bear population. Ursus 13: 185-202.

TAYLOR, M. K., J. LAAKE, P. D. MCLOUGHLIN, E. W. BORN, H. D. CLUFF, S. H. FER-
GUSON, A. ROSING-ASVID, R. SCHWEINSBURG and F. MESSIER. 2005. Demography and
viability of a hunted population of polar bears. Arctic 58: 203-214.

Examples

64 extract.mark.output

This example is excluded from testing to reduce package check time
Example of computing N-hat for occasions 2 to 7 for the p=~time model
data(dipper)
md=mark(dipper,model.parameters=list(p=list(formula=~time),

Phi=list(formula=~1)))
Create a matrix from the capture history strings
xmat=matrix(as.numeric(unlist(strsplit(dipper$ch,""))),

ncol=nchar(dipper$ch[1]))
sum number of captures in each column but don't use the first
column because p[1] can't be estimated
ns=colSums(xmat)[-1]
extract the indices and then get covariate predictions for p(2),...,p(7)
which are row-colums 1-6 in PIM for p
p.indices=extract.indices(md,"p",df=data.frame(group=rep(1,6),

row=1:6,col=1:6))
p.list=covariate.predictions(md,data=data.frame(index=p.indices))
call pop.est using diagonal design matrix to get
separate estimate for each occasion
pop.est(ns,p.list$estimates$estimate,

design=diag(1,ncol=6,nrow=6),p.list$vcv)

extract.mark.output Extract results from MARK output file (internal use)

Description

Extracts the lnl, AICc, npar, beta and real estimates and returns a list of these results for inclusion
in the mark object. The elements beta and real are dataframes with fields estimate,se,lcl,ucl. This
function was written for internal use and is called by run.mark.model. It is documented here for
more advanced users that might want to modify the code or adapt for their own use.

Usage

extract.mark.output(out, model, adjust, realvcv = FALSE, vcvfile)

Arguments

out output from MARK analysis (model$output)

model mark model object

adjust if TRUE, adjusts number of parameters (npar) to number of columns in design
matrix, modifies AIC and records both

realvcv if TRUE the vcv matrix of the real parameters is extracted and stored in the
model results

vcvfile name of vcv file output

fill.covariates 65

Value

result: list of extracted output elements

lnl -2xLog-likelihood

deviance Difference between saturated model and lnl

npar Number of model parameters

AICc Small-sample corrected AIC value using npar and n
npar.unadjusted

Number of model parameters as reported by MARK if npar was adjusted
AICc.unadjusted

Small-sample corrected AIC value using npar.unadjusted and n

n Effective sample size reported by MARK; used in AICc calculation

beta Dataframe of beta parameters with fields: estimate, se, lcl, ucl

real Dataframe of real parameters with fields: estimate, se, lcl, ucl

derived.vcv variance-covariance matrix for derived parameters if any
covariate.values

dataframe with fields Variable and Value which are the covariate names and
value used for real parameter estimates in the MARK output

singular indices of beta parameters that are non-estimable or at a boundary

real.vcv variance-covariance matrix for real parameters (simplified) if realvcv=TRUE

Author(s)

Jeff Laake

See Also

run.mark.model

fill.covariates Fill covariate entries in MARK design matrix with values

Description

Replaces covariate names in design matrix with specific values to compute estimates of real param-
eters at those values using the dataframe from find.covariates after any value replacement.

Usage

fill.covariates(model, values)

66 fill.covariates

Arguments

model MARK model object

values a dataframe matching structure of output from find.covariates with the user-
defined values entered

Details

The design matrix for a MARK model with individual covariates contains the covariate names used
in the model. In computing the real parameters for the encounter history of an individual it replaces
instances of covariate names with the individual covariate values. This function replaces the cells in
the design matrix that contain individidual covariates with user-specified values which is an edited
version (if needed) of the dataframe returned by find.covariates.

Value

New design matrix with user-defined covariate values entered in place of covariate names

Author(s)

Jeff Laake

See Also

find.covariates, compute.real

Examples

data(dipper)
dipper$nsex=as.numeric(dipper$sex)-1
dipper$weight=rnorm(294)
#NOTE: This generates random valules for the weights so the answers using
~weight will vary each time it is run
mod=mark(dipper,model.parameters=list(Phi=list(formula=~nsex+weight)))
Show approach using individual calls to find.covariates, fill.covariates
and compute.real
fc=find.covariates(mod,dipper)
fc$value[fc$var=="nsex"]=0 # assign sex value to Female
design=fill.covariates(mod,fc) # fill design matrix with values
compute and output survivals for females at average weight
female.survival=compute.real(mod,design=design)[1,]
female.survival
Next show same thing with a call to compute.real and a data frame for
females and then males
compute and output survivals for females at average weight
female.survival=compute.real(mod,data=

data.frame(nsex=0,weight=mean(dipper$weight)))[1,]
female.survival
male.survival=compute.real(mod,data=data.frame(nsex=1,

weight=mean(dipper$weight)))[1,]
male.survival

find.covariates 67

Fit model using sex as a group/factor variable and
compute v-c matrix for estimates
mod=mark(dipper,groups="sex",

model.parameters=list(Phi=list(formula=~sex+weight)))
survival.by.sex=compute.real(mod,data=dipper,vcv=TRUE)
survival.by.sex$real[1:2] # estimates
survival.by.sex$se.real[1:2] # std errors
survival.by.sex$vcv.real[1:2,1:2] # v-c matrix
survival.by.sex$vcv.real[1,2]/prod(survival.by.sex$se.real[1:2])
sampling correlation of the estimates

find.covariates Find covariates in MARK design matrix

Description

Finds and extracts cells in MARK design matrix containing covariates. Computes mean values of
the covariates and assigns those as default values. Returns dataframe that can be edited to replace
default values which are then inserted into the design matrix with fill.covariates to enable
computation of estimates of real parameters with compute.real.

Usage

find.covariates(model, data = NULL, usemean = TRUE)

Arguments

model MARK model object

data dataframe used to construct MARK model object; not processed data list

usemean logical; if TRUE uses mean value of covariate for default and otherwise uses 0

Details

The design matrix for a MARK model with individual covariates contains entries with the covariate
names used in the model. In computing the real parameters for the encounter history of an individual
it replaces instances of covariate names with the individual covariate values. This function finds all
of the cells in the design matrix that contain individidual covariates and constructs a dataframe of
the name of the real parameter, the position (row, col) in the design matrix and a default value for
the covariate. The default field value is assigned to one of three values in the following priority
order: 1) the mean value for the covariates in data (if data is not NULL), 2) the mean values used in
the MARK output (if data=NULL,usemean=TRUE), 3) 0 (if usemean=FALSE and data=NULL).
The values can also be modified using fc=edit(fc) where fc is the value from this function.

68 get.link

Value

A dataframe with the following fields

rnames name of real parameter

row row number in design matrix (equivalent to parm.indices in call to compute.real

col column number in design matrix

var name of covariate

value value for covariate

Author(s)

Jeff Laake

See Also

fill.covariates, compute.real

Examples

see examples in fill.covariates

get.link Compute sets of link values for real parameters

Description

Computes link values for real parameters for a particular type of parameter (parameter) and returns
in a table (dataframe) format.

Usage

get.link(model, parameter, beta = NULL, design = NULL, data = NULL,
vcv = FALSE)

Arguments

model MARK model object

parameter type of parameter in model (character) (e.g.,"Phi")

beta values of beta parameters for computation of link values

design a numeric design matrix with any covariate values filled in with numerical values

data covariate data to be averaged for estimates if design=NULL

vcv if TRUE computes and returns the v-c matrix of the subset of the link values

get.real 69

Details

This function is very similar to get.real except that it provides estimates of link values before
they are transformed to real estimates using the inverse-link. Also, the value is always a dataframe
for the estimates and design data and optionally a variance-covariance matrix. See get.real for
further details about the arguments.

Value

estimates: If vcv=TRUE, a list is returned with elements vcv.link and the dataframe estimates. If
vcv=FALSE, only the estimates dataframe is returned which has the same structure as in get.real.

Author(s)

Jeff Laake

See Also

compute.link,get.real

get.real Extract or compute sets of real parameters

Description

Extracts or computes real parameters for a particular type of parameter (parameter) and returns in
either a table (dataframe) format or in PIM format.

Usage

get.real(model, parameter, beta = NULL, se = FALSE, design = NULL,
data = NULL, vcv = FALSE, show.fixed = TRUE, expand = FALSE,
pim = TRUE)

Arguments

model MARK model object
parameter type of parameter in model (character) (e.g.,"Phi")
beta values of beta parameters for computation of real parameters
se if TRUE uses table format and extracts se and confidence intervals, if FALSE

uses PIM format with estimates only
design a numeric design matrix with any covariate values filled in with numerical values
data covariate data to be averaged for estimates if design=NULL
vcv if TRUE computes and returns the v-c matrix of the subset of the real parameters
show.fixed if TRUE fixed values are returned rather than NA in place of fixed values
expand if TRUE, returns vcv matrix for unique parameters and only simplified unique

parameters if FALSE
pim if TRUE and se=FALSE, returns a list of estimates in PIM format

70 get.real

Details

This function is called by summary.mark to extract(from model$results$real) sets of parameters
for display. But, it can also be useful to compute particular sets of real parameters for output,
manipulation or plotting etc. It is closely related to compute.real and it uses that function when
it computes (rather than extracts) real parameters. It provides an easier way to extract/compute real
estimates of a particular type (parameter).

The real parameter estimates are computed when either 1) model$chat > 1, 2) design, data, or
beta are specified with non-NULL values for those arguments, or 3) vcv=TRUE. If none of the
above hold, then the estimates are extracted.

If se=FALSE and estimates are shown in triangular or square PIM structure depending on the model
and parameter. For triangular, the lower half of the matrix is shown as NA (not applicable in this
case). If se=TRUE, the estimate, standard error and confidence interval for the real parameters with
the accompanying design data are combined into a dataframe.

If the model contains individual covariates, there are 3 options for specifying the covariate values
that are used for the real estimates. If neither design nor data are specified, then the real esti-
mates are computed with the average covariate values used in the MARK output. This is what
is done in the call from summary.mark. Alternatively, the argument design can be given a nu-
meric design matrix for the model with the covariates given specific values. This can be done with
find.covariates and fill.covariates. Finally, a quicker approach is to specify a dataframe
for data which is averaged for the numeric covariate values and these are automatically filled
into the design matrix of the model with calls to find.covariates and fill.covariates from
compute.real which is used for computation. The second and third options are essentially the
same but creating the completed design matrix will be quicker if multiple calls are made with the
same completed design matrix for different parameters. The dataframe for data can contain a single
entry to specify certain values for computation.

Value

estimates: if se=FALSE and Beta=NULL, a matrix of estimates or list of matrices for more than one
group, and if se=TRUE or beta=is not NULL and vcv=FALSE a dataframe of estimates with attached
design data. If vcv=TRUE, a list is returned with elements vcv.real and the dataframe estimates
as returned with se=TRUE.

Author(s)

Jeff Laake

See Also

summary.mark,compute.real

Examples

data(example.data)
pregion=list(formula=~region)
PhiAge=list(formula=~Age)
mod=mark(example.data,model.parameters=list(p=pregion,Phi=PhiAge),

IELogitNormalMR 71

groups=c("sex","age","region"),age.var=2,initial.ages=c(0,1,2),threads=1)
extract list of Phi parameter estimates for all groups in PIM format
Phi.estimates=get.real(mod,"Phi")
print out parameter estimates in triangular PIM format
for(i in 1:length(Phi.estimates))
{

cat(names(Phi.estimates)[i],"\n")
print(Phi.estimates[[i]]$pim,na.print="")

}
require(plotrix)
#extract parameter estimates of capture probability p with se and conf intervals
p.table=get.real(mod,"p",se=TRUE)
print(p.table[p.table$region==1,]) # print values from region 1
estimates=by(p.table$estimate,p.table$region,mean)
lcl=by(p.table$lcl,p.table$region,mean)
ucl=by(p.table$ucl,p.table$region,mean)
plotCI(c(1:4),estimates,ucl-estimates,estimates-lcl,xlab="Region",

ylab="Capture probability",
ylim=c(.5,1),main="Capture probability estimates by region")

IELogitNormalMR Example of Immigration-Emigration LogitNormal Mark-Resight
model

Description

Data and example illustrating Immigration-Emigration LogitNormal Mark-Resight model

Format

A data frame with 34 observations on the following variable.

ch a character vector

Examples

This example is excluded from testing to reduce package check time
data(IELogitNormalMR)
IElogitNor.proc=process.data(IELogitNormalMR,model="IELogitNormalMR",
counts=list("Marked Superpopulation"=c(28, 29, 30, 30, 30, 33, 33, 33, 33, 34, 34, 34),
"Unmarked Seen"=c(264, 161, 152, 217, 217, 160, 195, 159, 166, 152, 175, 190),
"Marked Unidentified"=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)),

time.intervals=c(0,0,0,1,0,0,0,1,0,0,0))
IElogitNor.ddl=make.design.data(IElogitNor.proc)
mod1=mark(IElogitNor.proc,IElogitNor.ddl,
model.parameters=list(p=list(formula=~-1+session),

sigma=list(formula=~session),

72 import.chdata

alpha=list(formula=~-1+session:time),
Nstar=list(formula=~session),
Nbar=list(formula=~session)))

summary(mod1)
You can use the initial value to get a better estimate.
mod2=mark(IElogitNor.proc,IElogitNor.ddl,
model.parameters=list(p=list(formula=~-1+session:time),
sigma=list(formula=~session),
alpha=list(formula=~-1+session:time),
Nstar=list(formula=~session),
Nbar=list(formula=~session)),
initial=mod1)
summary(mod2)

import.chdata Import capture-recapture data sets from space or tab-delimited files

Description

A relatively flexible function to import capture history data sets that include a capture (encounter)
history read in as a character string and an arbitrary number of user specified covariates for the
analysis.

Usage

import.chdata(filename, header = TRUE, field.names = NULL,
field.types = NULL, use.comments = TRUE)

Arguments

filename file name and path for file to be imported; fields in file should be space or tab-
delimited

header TRUE/FALSE; if TRUE first line is name of variables

field.names vector of field names if header=FALSE; first field should always be ch - capture
history remaining number of fields and their names are arbitrary

field.types vector identifying whether fields (beyond ch) are numeric ("n") or factor ("f") or
should be skipped ("s")

use.comments if TRUE values within /* and */ on data lines are used as row.names for the
RMark dataframe. Only use this option if they are unique values.

Details

This function was written both to be a useful tool to import data and as an example for more specific
import functions that a user may want to write for data files that do not satisfy the requirements of
this function. In particular this function will not handle files with fixed-width format files that
do not contain appropriate tab or space delimiters between the fields. It also requires that the

import.chdata 73

first field is the capture (encounter) history which is named "ch" and is a character string. The
remaining fields are arbitrary in number and type and are user defined based on the arguments to
the functions. Variables that will be used for grouping should be defined with the field.type="f".
Numeric individual covariates (e.g., weight) should be input as field.type="n". Fields in the file
that should not be imported should be assigned field.type="s". The examples below illustrate
different uses of the calling arguments to import several different data sets that meet the modest
requirements of this function.

If you specify a frequency for the encounter history, the field name must be freq. If you use any
other name or spelling it will not be recognized and the default frequency of 1 will be used for
each encounter history. This function should not be used with files structured for input into the
MARK interface. To use those types of files, see convert.inp. It is not neccessary to use either
function to create a dataframe for RMark. All you need to is create a dataframe that meets the
specification of the RMark format. For example, if you are simulating data, you only need to create
a dataframe with the fields ch, freq (if differs from 1) and any covariates you want and then you can
use process.data on the dataframe.

If you have comments in your data file, they should not have a column header (field name in first
row). If use.comments=TRUE the comments are used as row names of the data frame and they must
be unique. If use.comments=FALSE and the file contains comments they are stripped out.

Value

A dataframe for use in MARK analysis with obligate ch character field representing the capture
(encounter) history and optional covariate/grouping variables.

Author(s)

Jeff Laake

See Also

export.chdata

Examples

This example is excluded from testing to reduce package check time
pathtodata=paste(path.package("RMark"),"extdata",sep="/")
example.data<-import.chdata(paste(pathtodata,"example.data.txt",sep="/"),

field.types=c("n","f","f","f"))
edwards.eberhardt<-import.chdata(paste(pathtodata,"edwardsandeberhardt.txt",

sep="/"),field.names="ch",header=FALSE)
dipper<-import.chdata(paste(pathtodata,"dipper.txt",sep="/"),

field.names=c("ch","sex"),header=FALSE)

74 inverse.link

inverse.link Inverse link functions (internal use)

Description

Computes values of inverse of link functions for real estimates.

Usage

inverse.link(x, link)

Arguments

x Matrix of design values multiplied by the vector of the beta parameter values

link Type of link function (e.g., "logit")

Details

The inverse of the link function is the real parameter value. They are simple functions of X*Beta
where X is the design matrix values and Beta is the vector of link function parameters. The body of
the function is as follows:

switch(link, logit=exp(x)/(1+exp(x)), log=exp(x),
loglog=exp(-exp(-x)), cloglog=1-exp(-exp(x)), identity=x,
mlogit=exp(x)/(1+sum(exp(x))))

The link="mlogit" only works if the set of real parameters are limited to those within the set
of parameters with that specific link. For example, in POPAN, the pent parameters are of type
"mlogit" so the probabilities sum to 1. However, if there are several groups then each group will
have a different set of pent parameters which are identified by a different grouping of the "mlogit"
parameters (i.e., "mlogit(1)" for group 1, "mlogit(2)" for group 2 etc). Thus, in computing real
parameter values (see compute.real) which may have varying links, those with "mlogit" are not
used with this function using link="mlogit". Instead, the link is temporarily altered to be of type
"log" (i.e., inverse=exp(x)) and then summed over sets with a common value for "mlogit(j)" to
construct the inverse for "mlogit" as exp(x)/(1+sum(exp(x)).

Value

Vector of real values computed from x=X*Beta

Author(s)

Jeff Laake

See Also

compute.real,deriv_inverse.link

killdeer 75

killdeer Killdeer nest survival example data

Description

A data set on killdeer that accompanies MARK as an example analysis for the nest survival model.

Format

A data frame with 18 observations on the following 6 variables.

id a MARK comment field with a nest id

FirstFound the day the nest was first found

LastPresent the last day that chicks were present

LastChecked the last day the nest was checked

Fate the fate of the nest; 0=hatch and 1 depredated

Freq the frequency of nests with this data; usually 1

Details

This is a data set that accompanies program MARK as an example for nest survival. The data
structure for the nest survival model is completely different from the capture history structure used
for most MARK models. To cope with these data you must import them into a dataframe using R
commands and assign the specific variable names shown above. The id and Freq fields are optional.
Freq is assumed to be 1 if not given. You cannot import the MARK .inp file structure directly into
R without some manipulation. Also note that import.chdata and convert.inp do NOT work for
nest survival data. In the examples section below, the first section of code provides an example of
converting the killdeer.inp file into a dataframe for RMark.

If your dataframe contains a variable AgeDay1, which is the age of the nest on the first occasion
then you can use a variable called NestAge which will create a set of time-dependent covariates
named NestAge1,NestAge2 ...NestAge(nocc-1) which will provide a way to incorporate the age of
the nest in the model. This was added because the age covariate in the design data for S assumes all
nests are the same age and is not particularly useful. This effect could be incorporated by using the
add() function in the design matrix but RMark does not have any capability for doing that and it is
easier to create a time-dependent covariate to do the same thing.

Examples

This example is excluded from testing to reduce package check time
EXAMPLE CODE FOR CONVERSION OF .INP TO NECESSARY DATA STRUCTURE
read in killdeer.inp file
#killdeer=scan("killdeer.inp",what="character",sep="\n")
strip out ; and write out all but first 2 lines which contain comments
#write(sub(";","",killdeer[3:20]),"killdeer.txt")
read in as a dataframe and assign names

76 larksparrow

#killdeer=read.table("killdeer.txt")
#names(killdeer)=c("id","FirstFound","LastPresent","LastChecked","Fate","Freq")
#
EXAMPLE CODE TO RUN MODELS CONTAINED IN THE MARK KILLDEER.DBF
data(killdeer)
produce summary
summary(killdeer)
Define function to run models that are in killdeer.dbf
You must specify either the number of occasions (nocc) or the time.intervals
between the occasions.
run.killdeer=function()
{

Sdot=mark(killdeer,model="Nest",nocc=40)
STime=mark(killdeer,model="Nest",

model.parameters=list(S=list(formula=~I(Time+1))),nocc=40,threads=2)
STimesq=mark(killdeer,model="Nest",

model.parameters=list(S=list(formula=~I(Time+1)+I((Time+1)^2))),nocc=40,threads=2)
STime3=mark(killdeer,model="Nest",

model.parameters=list(S=list(formula=~I(Time+1)+I((Time+1)^2)+I((Time+1)^3))),
nocc=40,threads=2)

return(collect.models())
}
run defined models
killdeer.results=run.killdeer()

larksparrow Lark Sparrow

Description

An example of Multiple Scale Occupancy model for some lark sparrow data that was contributed
by David Pavlacky at Rocky Mountain bird observatory. The study design was a GRTS selection
of paired "Deferred" and "Grazed" pastures. The point count locations within each pasture were a
random selection of systematic point count locations separated by 250 m. Each point count had a
radius of 125m. A removal design was used to the set the data to missing after the first detection.
The point count data were set to missing when fewer than nine points were surveyed.

Format

A data frame with 52 observations on the following 20 variables.

ch a character vector containing the encounter history
ceap a factor with two levels "Deferred" and "Grazed" corresponding to a rest rotation grazing sys-

tem with pastures either rested (Deferred) or grazed (Grazed) during the spring bird breeding
season.

cwx a continuous covariate for primary occasion x, representing an ocular estimate of the propor-
tion of area covered by crested wheatgrass in a 50-m radius around the point count location.

tdx a continuous covariate for primary occasion x, representing the starting time (h) of each 6-min
point count survey measured on the ratio scale (1.5 h = 1 h 30 min).

larksparrow 77

Examples

This example is excluded from testing to reduce package check time
Create dataframe
data(LASP)
mscale=LASP

Process data with MultScalOcc model and use group variables

mscale.proc=process.data(mscale,model="MultScalOcc",groups=c("ceap"),begin.time=1,mixtures=3)

Create design data

ddl=make.design.data(mscale.proc)

Create function to build models

do.Species=function()
{
p.1=list(formula=~1)
p.2=list(formula=~ceap)
p.3=list(formula=~td)

Theta.1=list(formula=~1)
Theta.2=list(formula=~ceap)
Theta.3=list(formula=~cw)

Psi.1=list(formula=~1)
Psi.2=list(formula=~ceap)

cml=create.model.list("MultScalOcc")
return(mark.wrapper(cml,data=mscale.proc,ddl=ddl,adjust=FALSE,realvcv=TRUE))
}

Run function to get results

Species.results=do.Species()

Output model table and estimates

Species.results$model.table

Species.results[[as.numeric(rownames(Species.results$model.table[1,]))]]$results$real
Species.results[[as.numeric(rownames(Species.results$model.table[1,]))]]$results$beta

write.csv(Species.results$model.table,file="lasp_model_selection.csv",row.names=FALSE)

write.csv(Species.results[[as.numeric(rownames(Species.results$model.table[1,]))]]$results$real,
file="lasp_m1_real.csv")

write.csv(Species.results[[as.numeric(rownames(Species.results$model.table[1,]))]]$results$beta,
file="lasp_m1_beta.csv")

78 load.model

Covariate prediction and model averaging

p(time of day)

mintd <- min(mscale[,12:20])
maxtd <- max(mscale[,12:20])
td.values <- mintd+(0:100)*(maxtd-mintd)/100

PIMS(Species.results[[1]],"p",simplified=FALSE)

td <- covariate.predictions(Species.results,data=data.frame(td1=td.values),indices=c(21))

write.table(td$estimates,file="lasp_cov_pred_p_td.csv",sep=",",col.names=TRUE,row.names=FALSE)

Theta(crested wheatgrass cover)

mincw <- min(mscale[,3:11])
maxcw <- max(mscale[,3:11])
cw.values <- mincw+(0:100)*(maxcw-mincw)/100

PIMS(Species.results[[1]],"Theta",simplified=FALSE)

cw <- covariate.predictions(Species.results,data=data.frame(cw1=cw.values),indices=c(3))

write.table(cw$estimates,file="lasp_cov_pred_theta_cw.csv",sep=",",col.names=TRUE,row.names=FALSE)

Psi(ceap grazing for wildlife practice)

ceap.values <- as.data.frame(matrix(c(1,2),ncol=1))
names(ceap.values) <- c("index")

PIMS(Species.results[[1]],"Psi",simplified=FALSE)

ceap <- covariate.predictions(Species.results,data=data.frame(ceap=ceap.values))

write.table(ceap$estimates,file="lasp_cov_pred_psi_ceap.csv",sep=",",col.names=TRUE,row.names=FALSE)

load.model Load external model

Description

Loads external model into workspace with name model

Usage

load.model(model)

LogitNormalMR 79

Arguments

model name of MARK model object stored externally

Value

None; side effect only to load object with name model (not name given to model)

Author(s)

Jeff Laake

LogitNormalMR Example of LogitNormal Mark-Resight model

Description

Data and example illustrating LogitNormal Mark-Resight model.

Format

A data frame with 35 observations on the following variable.

ch a character vector

Examples

data(LogitNormalMR)
logitNor.proc=process.data(LogitNormalMR,model="LogitNormalMR",
counts=list("Unmarked seen"=c(96,68,59),

"Marked Unidentified"=c(0,0,0,0,1,1,1,0,0,3,0,1)),
time.intervals=c(0,0,0,1,0,0,0,1,0,0,0))

logitNor.ddl=make.design.data(logitNor.proc)
Note that to get good starting values yo should specify a formula that allows use of the sin link
MARK will ignore the use of the sin link and use log for parameters N and sigma
after fitting this intial model you can use it for starting values with other model that
do not require the sin link but always check to make sure the model is converging to
reasonable values.
mod=mark(logitNor.proc,logitNor.ddl,
model.parameters=list(N=list(formula=~-1+session,link="sin"),
sigma=list(formula=~-1+session,link="sin"),p=list(formula=~1,link="sin")))

summary(mod)

80 make.design.data

make.design.data Create design dataframes for MARK model specification

Description

For each type of parameter in the analysis model (e.g, p, Phi, r), this function creates design data
based on the parameter index matrix (PIM) in MARK terminology. Design data relate parameters to
the sampling and data structures; whereas data relate to the object(animal) being sampled. Design
data relate parameters to time, age, cohort and group structure. Any variables in the design data can
be used in formulas to specify the model in make.mark.model.

Usage

make.design.data(data, parameters = list(), remove.unused = FALSE,
right = TRUE, common.zero = FALSE)

Arguments

data Processed data list; resulting value from process.data

parameters Optional list containing a list for each type of parameter (list of lists); each
parameter list is named with the parameter name (eg Phi); each parameter list
can contain vectors named age.bins,time.bins and cohort.bins

subtract.stratum a vector of strata letters (one for each strata)
that specifies the tostratum that is computed by subtraction
for mlogit parameters like Psi

age.bins bins for binning ages
time.bins bins for binning times
cohort.bins bins for binning cohorts
pim.type either "all" for all different, "time" for column time structure, or

"constant" for all values the same within the PIM

remove.unused If TRUE, unused design data are deleted; see details below

right If TRUE, bin intervals are closed on the right

common.zero if TRUE, uses a common begin.time to set origin (0) for Time variable defaults
to FALSE for legacy reasons but should be set to TRUE for models that share
formula like p and c with the Time model

Details

After processing the data, the next step is to create the design data for building the models which
is done with this function. The design data are different than the capture history data that relates to
animals. The types of parameters and design data are specific to the type of analysis. For example,
consider a CJS analysis that has parameters Phi and p. If there are 4 occasions, there are 3 cohorts
and potentially 6 different Phi and 6 different p parameters for a single group. The format for

make.design.data 81

each parameter information matrix (PIM) in MARK is triangular. RMark uses the all different
formulation for PIMS by default, so the PIMs would be

Phi p 1 2 3 7 8 9 4 5 10 11 6 12

If you chose pim.type="time" for each parameter in "CJS", then the PIMS are structured as

Phi p 1 2 3 4 5 6 2 3 5 6 3 6

That structure is only useful if there is only a single release cohort represented by the PIM. If you
choose this option and there is more than one cohort represented by the PIM then it will restrict the
possible set of models that can be represented.

Each of these parameters relates to different times, different cohorts (time of initial release) and
different ages (at least in terms of time since first capture). Thus we can think of a data frame for
each parameter that might look as follows for Phi for the all different structure:

Index time cohort age 1 1 1 0 2 2 1 1 3 3 1 2 4 2 2 0 5 3 2 1
6 3 3 0

With this design data, one can envision models that describe Phi in terms of the variables time,
cohort and age. For example a time model would have a design matrix like:

Int T2 T3 1 1 0 0 2 1 1 0 3
1 0 1 4 1 1 0 5 1 0 1 6 1 0 1

Or a time + cohort model might look like

Int T2 T3 C2 C3 1 1 0 0 0 0 2 1 1 0 0 0 3 1 0 1 0 0 4 1 1 0 1
0 5 1 0 1 1 0 6 1 0 1 0 1

While you could certainly develop these designs manually within MARK, the power of the R code
rests with the internal R function model.matrix which can take the design data and create the
design matrix from a formula specification such as ~time or ~time+cohort alleviating the need to
create the design matrix manually. While many analyses may only need age, time or cohort, it is
quite possible to extend the kind of design data, to include different functions of these variables or
add additional variables such as effort. One could consider design data for p as follows:

Index time
cohort age effort juvenile 7 1 1 1 10 1 8 2 1 2 5 0 9 3 1 3 15 0 10 2 2 1 5
1 11 3 2 2 15 0 12 3 3 1 15 1

The added columns represent a time dependent covariate (effort) and an age variable of juve-
nile/adult. With these design data, it is easy to specify different models such as ~time, ~effort,
~effort+age or ~effort+juvenile.

With the simplest call:

ddl=make.design.data(proc.example.data)

the function creates default design data for each type of parameter in the model as defined by
proc.example.data$model. If proc.example.data was created with the call in the first example

82 make.design.data

of process.data, the model is "CJS" (the default model) so the return value is a list with 2 data
frames: one for Phi and one for p. They can be accessed as ddl$Phi (or ddl[["Phi"]]) and ddl$p
(or ddl[["p"]]) or as ddl[[1]] and ddl[[2]] respectively. Using the former notation is easier
and safer because it is independent of the ordering of the parameters in the list. For this example,
there are 16 groups and each group has 21 Phi parameters and 21 p parameters. Thus, there are 336
rows (parameters) in the design data frame for both Phi and p and thus a total of 772 parameters.

The default fields in each dataframe are group, cohort, age, time, Cohort, Age, and Time. The
first 4 fields are factor variables, whereas Cohort, Age and Time are numeric covariate versions
of cohort, age, and time shifted so the first value is always zero. In addition, for closed capture
heterogeneity models a factor variable mixture is included. If groups were created in the call to
process.data, then the factor variables used to create the groups are also included in the design
data for each type of parameter. If one of the grouping variables is an age variable it is named
initial.age.class to recognize explicitly that it represents a static initial age and to avoid naming
conflicts with age and Age variables which represent dynamic age variables of the age of the animal
through time. Non-age related grouping variables are added to the design data using their names
in data. For example if proc.example.data is defined using the first example in process.data,
then the fields sex, initial.age.class (in place of age in this case), and region are added to the
design data in addition to the group variable that has 16 levels. The levels of the group variable are
created by pasting (concatenating) the values of the grouping factor in order. For example, M11 is
sex=M, age class=1 and region=1.

By default, the factor variables age, time, and cohort are created such that there is a factor level for
each unique value. By specfying values for the argument parameters, the values of age, time, and
cohort can be binned (put into intervals) to reduce the number of levels of each factor variable. The
argument parameters is specified as a list of lists. The first level of the list specifies the parameter
type and the second level specifies the variables (age, time, or cohort) that will be binned and
the cutpoints (endpoints) for the intervals. For example, if you expected that survival may change
substantially to age 3 (i.e. first 3 years of life) but remain relatively constant beyond then, you could
bin the ages for survival as 0,1,2,3-8. Likewise, as well, you could decide to bin time into 2 intervals
for capture probability in which effort and expected capture probability might be constant within
each interval. This could be done with the following call using the argument parameters:

ddl=make.design.data(proc.example.data,
parameters=list(Phi=list(age.bins=c(0,0.5,1,2,8)),
p=list(time.bins=c(1980,1983,1986))))

In the above example, age is binned for Phi but not for p; likewise time is binned for p but not for
Phi. The bins for age were defined as 0,0.5,1,2,8 because the intervals are closed ("]" - inclusive)
on the right by default and open ("(" non-inclusive) on the left, except for the first interval which is
closed on the left. Had we used 0,1,2,8, 0 and 1 would have been in a single interval. Any value
less than 1 and greater than 0 could be used in place of 0.5. Alternatively, the same bins could be
specified as:

ddl=make.design.data(proc.example.data,
parameters=list(Phi=list(age.bins=c(0,1,2,3,8)),
p=list(time.bins=c(1980,1984,1986))),right=FALSE)

To create the design data and maintain flexibility, I recommend creating the default design data and
then adding other binned variables with the function add.design.data. The 2 binned variables
defined above can be added to the default design data as follows:

make.design.data 83

ddl=make.design.data(proc.example.data)
ddl=add.design.data(proc.example.data,ddl,parameter="Phi",type="age",
bins=c(0,.5,1,2,8),name="agebin")
ddl=add.design.data(proc.example.data,ddl,parameter="p",type="time",
bins=c(1980,1983,1986),name="timebin")

Adding the other binned variables to the default design data, allows models based on either time,
timebin, or Time for p and age, agebin or Age for Phi. Any number of additional binned variables
can be defined as long as they are given unique names. Note that R is case-specific so ~Time
specifies a model which is a linear trend over time ((e.g. Phi(T) or p(T) in MARK) whereas ~time
creates a model with a different factor level for each time in the data (e.g. Phi(t) or p(t) in MARK)
and ~timebin creates a model with 2 factor levels 1980-1983 and 1984-1986.

Some circumstances may require direct manipulation of the design data to create the needed variable
when simple binning is not sufficient or when the design data is a variable other than one related to
time, age, cohort or group (e.g., effort index). This can be done with any of the vast array of R
commands. For example, consider a situation in which 1983 and 1985 were drought years and you
wanted to develop a model in which survival was different in drought and non-drought years. This
could be done with the following commands:

ddlPhidrought=0

ddlPhidrought[ddlphitime==1983 | ddlPhitime==1985]= 1

The first command creates a variable named drought in the Phi design data and initializes it with
0. The second command changes the drought variable to 1 for the years 1983 and 1985. The
single brackets [] index a data frame, matrix or vector. In this case ddlPhidrought is a vector
and ddlPhitime==1983 | ddlPhitime==1985 selects the values in which time is equal (==)
to 1983 or ("|") 1985. A simpler example might occur if we want to create a function of one of
the continuous variables. If we wanted to define a model for p that was a function of age and age
squared, we could add the age squared variable as:

ddlpAgesq=ddlpAge^2

Any of the fields in the design data can be used in formulae for the parameters. However, it is
important to recognize that additional variables you define and add to the design data are specific to a
particular type of parameter (e.g., Phi, p, etc). Thus, in the above example, you could not use Agesq
in a model for Phi without also adding it to the Phi design data. As described in make.mark.model,
there is actually a simpler way to add simple functions of variables to a formula without defining
them in the design data.

The above manipulations are sufficient if there is only one or two variables that need to be added to
the design data. If there are many covariates that are time(occasion)-specific then it may be easier
to setup a dataframe with the covariate data and use merge_design.covariates.

The fields that are automatically created in the design data depends on the model. For example,
with models such as "POPAN" or any of the "Pradel" models, the PIM structure is called square
which really means that it is a single row and all the rows are the same length for each group. Thus,
rectangular or row may have been a better descriptor. Regardless, in this case there is no concept of
a cohort within the PIM which is equivalent to a row within a triangular PIM for "CJS" type models.
Thus, for parameters with "Square" PIMS the cohort (and Cohort) field is not generated. The cohort
field is also not created if pim.type="time" for "Triangular" PIMS, because that structure has the
same structure for each row (cohort) and adding cohort effects would be inappropriate.

84 make.design.data

For models with "Square" PIMS or pim.type="time" for "Triangular" PIMS, it is possible to create
a cohort variable by defining the cohort variable as a covariate in the capture history data and using
it as a variable for creating groups. As with all grouping variables, it is added to the design data.
Now the one caution with "Square" PIMS is that they are all the same length. Imagine representing
a triangular PIM with a set of square PIMS with each row being a cohort. The resulting set of
PIMS is now rectangular but the lower portion of the matrix is superfluous because the parameters
represent times prior to the entry of the cohort, assuming that the use of cohort is to represent a
birth cohort. This is only problematic for these kinds of models when the structure accomodates
age and the concept of a birth cohort. The solution to the problem is to delete the design data for
the superfluous parameters after is is created (see warning below). For example, let us presume that
you used cohort with 3 levels as a grouping variable for a model with "Square" PIMS which has 3
occasions. Then, the PIM structure would look as follows for Phi:

Phi 1 2 3 4 5 6 7 8 9

. If each row represented a cohort that entered at occasions 1,2,3 then parameters 4,7,8 are super-
fluous or could be thought of as representing cells that are structural zeros in the model because no
observations can be made of those cohorts at those times.

After creating the design data, the unneeded rows can be deleted with R commands or you can
use the argument remove.unused=TRUE. As an example, a code segment might look as follows if
chdata was defined properly:

mydata=process.data(chdata,model="POPAN",groups="cohort")
ddl=make.design.data(mydata) ddl$Phi=ddl$Phi[-c(4,7,8),]

If cohort and time were suitably defined an easier solution especially for a larger problem would be

ddl$Phi=ddl$Phi[as.numeric(ddlPhitime)>=as.numeric(ddlPhicohort),]

Which would only keep parameters in which the time is the same or greater than the cohort. Note
that time and cohort would be factor variables and < and > do not make sense which is the reason
for the as.numeric which translates the factor to a numeric ordering of factors (1,2,...) but not the
numeric value of the factor level (e.g., 1987,1998). Thus, the above assumes that both time and
cohort have the same factor levels. The design data is specific to each parameter, so the unneeded
parameters need to be deleted from design data of each parameter.

However, all of this is done automatically by setting the argument remove.unused=TRUE. It func-
tions differently depending on the type of PIM structure. For models with "Triangular" PIMS,
unused design data are determined based on the lack of a release cohort. For example, if there were
no capture history data that started with 0 and had a 1 in the second position ("01.....") that would
mean that there were no releases on occasion 2 and row 2 in the PIM would not be needed so it
would be removed from the design data. If remove.unused=TRUE the design data are removed for
any missig cohorts within each group. For models with "Square" PIMS, cohort structure is defined
by a grouping variable. If there is a field named "cohort" within the design data, then unused design
data are defined to occur when time < cohort. This is particularly useful for age structured models
which define birth cohorts. In that case there will be sampling times prior to the birth of the co-
hort which are not relevant and should be treated as "structural zeros" and not as a zero based on
stochastic events.

If the design data are removed, when the model is constructed with make.mark.model, the argument
default.fixed controls what happens with the real parameters defined by the missing design data.

make.design.data 85

If default.fixed=TRUE, then the real parameters are fixed at values that explain with certainty the
observed data (e.g., p=0). That is necessary for models with "Square" PIMS (eg, POPAN and Pradel
models) that include each capture-history position in the probability calculation. For "Triangular"
PIMS with "CJS" type models, the capture(encounter) history probability is only computed for
occasions past the first "1", the release. Thus, when a cohort is missing there are no entries and the
missing design data are truly superfluous and default.fixed=FALSE will assign the missing design
data to a row in the design matrix which has all 0s. That row will show as a real parameter of (0.5
for a logit link) but it is not included in any parameter count and does not affect any calculation. The
advantage in using this approach is that the R code recognizes these and displays blanks for these
missing parameters, so it makes for more readable output when say every other cohort is missing.
See make.mark.model for more information about deleted design data and what this means to
development of model formula.

For design data of "Multistrata" models, additional fields are added to represent strata. A separate
PIM is created for each stratum for each parameter and this is denoted in the design data with the
addition of the factor variable stratum which has a level for each stratum. In addition, for each
stratum a dummy variable is created with the name of the stratum (strata.label)and it has value
1 when the parameter is for that stratum and 0 otherwise. Using these variables with the interaction
operator ":" in formula allows more flexibility in creating model structure for some strata and not
others. All "Multistrata" models contain "Psi" parameters which represent the transitions from a
stratum to all other strata. Thus if there are 3 strata, there are 6 PIMS for the "Psi" parameters to
represent transition from A to B, A to C, B to A, B to C, C to A and C to B. The "Psi" parameters are
represented by multimonial logit links and the probability of remaining in the stratum is determined
by substraction. To represent these differences, a factor variable tostratum is created in addition
to stratum. Likewise, dummy variables are created for each stratum with names created by pasting
"to" and the strata label (e.g., toA, toB etc). Some examples of using these variables to create
models for "Psi" are given in make.mark.model.

######WARNING########
Deleting design data for mlogit parameters like Psi in the multistate
model can fail if you do things like delete certain transitions. It is better
to add the field fix. It should be assigned the value NA for parameters that
are estimated and a fixed real value for those that are fixed. Here is an example
with the mstrata data example:

data(mstrata)
deleting design data approach to fix Psi A to B to 0 (DON'T use this approach)
dp=process.data(mstrata,model="Multistrata")
ddl=make.design.data(dp)
ddl$Psi=ddl$Psi[!(ddlPsistratum=="A" & ddlPsitostratum=="B"),]
ddl$Psi
summary(mark(dp,ddl,output=FALSE),show.fixed=TRUE)
#new approach using fix to set Phi=1 for time 2 (USE this approach)
ddl=make.design.data(dp)
ddlPsifix=NA
ddlPsifix[ddlPsistratum=="A" & ddlPsitostratum=="B"]=0
ddl$Psi
summary(mark(dp,ddl,output=FALSE),show.fixed=TRUE)

86 make.mark.model

Value

The function value is a list of data frames. The list contains a data frame for each type of parameter
in the model (e.g., Phi and p for CJS). The names of the list elements are the parameter names
(e.g., Phi). The structure of the dataframe depends on the calling arguments and the model & data
structure as described in the details above.

Author(s)

Jeff Laake

See Also

process.data,merge_design.covariates, add.design.data, make.mark.model, run.mark.model

Examples

data(example.data)
proc.example.data=process.data(example.data)
ddl=make.design.data(proc.example.data)
ddl=add.design.data(proc.example.data,ddl,parameter="Phi",type="age",

bins=c(0,.5,1,2,8),name="agebin")
ddl=add.design.data(proc.example.data,ddl,parameter="p",type="time",

bins=c(1980,1983,1986),name="timebin")

make.mark.model Create a MARK model for analysis

Description

Creates a MARK model object that contains a MARK input file with PIMS and design matrix
specific to the data and model structure and formulae specified for the model parameters.

Usage

make.mark.model(data, ddl, parameters = list(), title = "",
model.name = NULL, initial = NULL, call = NULL,
default.fixed = TRUE, options = NULL, profile.int = FALSE,
chat = NULL, simplify = TRUE, input.links = NULL,
parm.specific = FALSE, mlogit0 = FALSE, hessian = FALSE,
accumulate = TRUE, icvalues = NULL, wrap = TRUE, nodes = 101,
useddl = FALSE, check.model = FALSE)

make.mark.model 87

Arguments

data Data list resulting from function process.data

ddl Design data list from function make.design.data

parameters List of parameter formula specifications

title Title for the analysis (optional)

model.name Model name to override default name (optional)

initial Vector of named or unnamed initial values for beta parameters or previously run
model (optional)

call Pass function call when this function is called from another function (e.g.mark)
(internal use)

default.fixed if TRUE, real parameters for which the design data have been deleted are fixed
to default values

options character string of options for Proc Estimate statement in MARK .inp file

profile.int if TRUE, requests MARK to compute profile intervals

chat pre-specified value for chat used by MARK in calculations of model output

simplify if FALSE, does not simplify PIM structure

input.links specifies set of link functions for parameters with non-simplified structure

parm.specific if TRUE, forces a link to be specified for each parameter

mlogit0 if TRUE, any real parameter that is fixed to 0 and has an mlogit link will have
its link changed to logit so it can be simplified

hessian if TRUE specifies to MARK to use hessian rather than second partial matrix

accumulate if TRUE accumulate like data values into frequencies

icvalues numeric vector of individual covariate values for computation of real values

wrap if TRUE, data lines are wrapped to be length 80; if length of a row is not a
problem set to FALSE and it will run faster

nodes number of integration nodes for individual random effects (min 15, max 505,
default 101)

useddl If TRUE and there are no missing rows or parameters (deleted) then it will use
ddl in place of full.ddl that is created internally.

check.model if TRUE, code does an internal consistency check between PIMs and design data
when making model.

Details

This function is called by mark to create the model but it can be called directly to create but not run
the model. All of the arguments have default values except for the first 2 that specify the processed
data list (data) and the design data list (ddl). If only these 2 arguments are specified default
models are used for the parameters. For example, following with the example from process.data
and make.design.data, the default model can be created with:

mymodel=make.mark.model(proc.example.data,ddl)

88 make.mark.model

The call to make.mark.model creates a model object but does not do the analysis. The function
returns a list that includes several fields including a design matrix and the MARK input file that will
be used with MARK.EXE to run the analysis from function run.mark.model. The following shows
the names of the list elements in mymodel:

names(mymodel) [1] "data" "model" "title" "model.name"
"links" [6] "mixtures" "call" "parameters" "input" "number.of.groups" [11]
"group.labels" "nocc" "begin.time" "covariates" "fixed" [16] "design.matrix"
"pims" "design.data" "strata.labels" "mlogit.list" [21] "simplify"

The list is defined to be a mark object which is done by assigning a class vector to the list. The
classes for an R object can be viewed with the class function as shown below:

class(mymodel) [1] "mark" "CJS"

Each MARK model has 2 class values. The first identifies it as a mark object and the second
identifies the type of mark analysis, which is the default "CJS" (recaptures only) in this case. The
use of the class feature has advantages in using generic functions and identifying types of objects.
An object of class mark is defined in more detail in function mark.

To fit non-trivial models it is necessary to understand the remaining calling arguments of make.mark.model
and R formula notation. The model formulae are specified with the calling argument parameters.
It uses a similar list structure as the parameters argument in make.design.data. It expects to
get a list with elements named to match the parameters in the particular analysis (e.g., Phi and p
in CJS) and each list element is a list, so it is a list of lists). For each parameter, the possible list
elements are formula,link,fixed,component,component.name,remove.intercept. In addi-
tion, for closed capture models and robust design model, the element share is included in the list
for p (capture probabilities) and GammaDoublePrime (respectively) to indicate whether the model
is shared (share=TRUE) or not-shared (the default) (share=FALSE) with c (recapture probabilities)
and GammaPrime respectively.

formula specifies the model for the parameter using R formula notation. An R formula is denoted
with a ~ followed by variables in an equation format possibly using the + , *, and : operators.
For example, ~sex+age is an additive model with the main effects of sex and age. Whereas,
~sex*age includes the main effects and the interaction and it is equivalent to the formula specified
as ~sex+age+sex:age where sex:age is the interaction term. The model ~age+sex:age is slightly
different in that the main effect for sex is dropped which means that intercept of the age effect is
common among the sexes but the age pattern could vary between the sexes. The model ~sex*Age
which is equivalent to ~sex + Age + sex:Age has only 4 parameters and specifies a linear trend with
age and both the intercept and slope vary by sex. One additional operator that can be useful is I()
which allows computation of variables on the fly. For example, the addition of the Agesq variable
in the design data (as described above) can be avoided by using the notation ~Age + I(Age^2)
which specifies use of a linear and quadratic effect for age. Note that specifying the model ~age
+ I(age^2) would be incorrect and would create an error because age is a factor variable whereas
Age is not.

As an example, consider developing a model in which Phi varies by age and p follows a linear trend
over time. This model could be specified and run as follows:

p.Time=list(formula=~Time) Phi.age=list(formula=~age)

make.mark.model 89

Model.p.Time.Phi.age=make.mark.model(proc.example.data,ddl,
parameters=list(Phi=Phi.age,p=p.Time))
Model.p.Time.Phi.age=run.mark.model(Model.p.Time.Phi.age)

The first 2 commands define the p and Phi models that are used in the parameter list in the call
to make.mark.model. This is a good approach for defining models because it clearly documents
the models, the definitions can then be used in many calls to make.mark.model and it will allow
a variety of models to be developed quickly by creating different combinations of the parameter
models. Using the notation above with the period separating the parameter name and the description
(eg., p.Time) gives the further advantage that all possible models can be developed quickly with the
functions create.model.list and mark.wrapper.

Model formula can use any field in the design data and any individual covariates defined in data.
The restrictions on individual covariates that was present in versions before 1.3 have now been
removed. You can now use interactions of individual covariates with all design data covariates and
products of individual covariates. You can specify interactions of individual covariates and factor
variables in the design data with the formula notation. For example, ~region*x1 describes a model
in which the slope of x1 varies by region. Also, ~time*x1 describes a model in which the slope
for x1 varied by time; however, there would be only one value of the covariate per animal so this
is not a time varying covariate model. Models with time varying covariates are now more easily
described with the improvements in version 1.3 but there are restrictions on how the time varying
individual covariates are named. An example would be a trap dependence model in which capture
probability on occasion i+1 depends on whether they were captured on occasion i. If there are n
occasions in a CJS model, the 0/1 (not caught/caught) for occasions 1 to n-1 would be n-1 individual
covariates to describe recapture probability for occasions 2 to n. For times 2 to n, a design data field
could be defined such that the variable timex is 1 if time==x and 0 otherwise. The time varying
covariates must be named with a time suffix on the base name of the covariate. In this example they
would be named as x2,. . .,xn and the model could be specified as ~time + x for time variation
and a constant trap effect or as ~time + time:x for a trap effect that varied by time. If in the
process.data call, the argument begin.time was set to the year 1990, then the variables would
have to be named x1991,x1992,... because the first recapture occasion would be 1991. Note that the
times are different for different parameters. For example, survival is labeled based on the beginning
of the time interval which would be 1990 so the variables should be named appropriately for the
parameter model in which they will be used.

In previous versions to handle time varying covariates with a constant effect, it was necessary to
use the component feature of the parameter specification to be able to append one or more arbitrary
columns to the design matrix. That is no longer required for individual covariates and the component
feature was removed in v2.0.8.

There are three other elements of the parameter list that can be useful on occasion. The first is
link which specifies the link function for transforming between the beta and real parameters. The
possible values are "logit", "log", "identity" and "mlogit(*)" where * is a numeric identifier. The
"sin" link is not allowed because all models are specified using a design matrix. The typical default
values are assigned to each parameter (eg "logit" for probabilities, "log" for N, and "mlogit" for
pent in POPAN), so in most cases it will not be necessary to specify a link function.

The second is fixed which allows real parameters to be set at fixed values. The values for fixed can
be either a single value or a list with 5 alternate forms for ease in specifying the fixed parameters.
Specifying fixed=value will set all parameters of that type to the specified value. For example,
Phi=list(fixed=1) will set all Phi to 1. This can be useful for situations like specifying F in the

90 make.mark.model

Burnham/Barker models to all have the same value of 1. Fixed values can also be specified as a list
in which values are specified for certain indices, times, ages, cohorts, and groups. The first 3 will be
the most useful. The first list format is the most general and flexible but it requires an understanding
of the PIM structure and index numbers for the real parameters. For example,

Phi=list(formula=~time,fixed=list(index=c(1,4,7),value=1))

specifies Phi varying by time, but the real parameters 1,4,7 are set to 1. The value field is either a
single constant or its length must match the number of indices. For example,

Phi=list(formula=~time,fixed=list(index=c(1,4,7),value=c(1,0,1)))

sets real parameters 1 and 7 to 1 and real parameter 4 to 0. Technically, the index/value format for
fixed is not wedded to the parameter type (i.e., values for p can be assigned within Phi list), but for
the sake of clarity they should be restricted to fixing real parameters associated with the particular
parameter type. The time and age formats for fixed will probably be the most useful. The format
fixed=list(time=x, value=y) will set all real parameters (of that type) for time x to value y. For
example,

p=list(formula=~time,fixed=list(time=1986,value=1))

sets up time varying capture probability but all values of p for 1986 are set to 1. This can be quite
useful to set all values to 0 in years with no sampling (e.g.,

fixed=list(time=c(1982,1984,1986), value=0)

). The age, cohort and group formats work in a similar fashion. It is important to recognize
that the value you specify for time, age, cohort and group must match the values in the design
data list. This is another reason to add binned fields for age, time etc with add.design.data after
creating the default design data with make.design.data. Also note that the values for time and
cohort are affected by the begin.time argument specified in process.data. Had I not specified
begin.time=1980, to set p in the last occasion (1986), the specification would be

p=list(formula=~time,fixed=list(time=7,value=1))

because begin.time defaults to 1. The advantage of the time-, age-, and cohort- formats over the
index-format is that it will work regardless of the group definition which can easily be changed
by changing the groups argument in process.data. The index-format will be dependent on the
group structure because the indexing of the PIMS will most likely change with changes in the group
structure.

Parameters can also be fixed at default values by deleting the specific rows of the design data. See
make.design.data and material below. The default value for fixing parameters for deleted design
data can be changed with the default=value in the parameter list.

Another useful element of the parameter list is the remove.intercept argument. It is set to TRUE
to forcefully remove the intercept. In R notation this can be done by specifiying the formula notation
~-1+... but in formula with nested interactions of factor variables and additive factor variables the -1
notation will not remove the intercept. It will simply adjust the column definitions but will keep the
same number of columns and the model will be overparameterized. The problem occurs with nested
factor variables like tostratum within stratum for multistrata designs (see mstrata). As shown in
that example, you can build a formula -1+stratum:tostratum to have transitions that are stratum-
specific. If however you also want to add a sex effect and you specify -1+sex+stratum:tostratum
it will add 2 columns for sex labelled M and F when in fact you only want to add one column
because the intercept is already contained within the stratum:tostratum term. The argument re-
move.intercept will forcefully remove the intercept but it needs to be able to find a column with

make.mark.model 91

all 1’s. For example, Psi=list(formula=~sex+stratum:tostratum,remove.intercept=TRUE) will work
but Psi=list(formula=~-1+sex+stratum:tostratum,remove.intercept=TRUE) will not work. Also, the
-1 notation should be used when there is not an added factor variable because

Psi=list(formula=~stratum:tostratum,remove.intercept=TRUE)

will not work because while the stratum:tostratum effectively includes an intercept it is equivalent
to using an identity matrix and is not specified as treatment contrast with one of the columns as all
1’s.

The final argument of the parameter list is contrast which can be used to change the contrast used
for model.matrix. It uses the default if none specified. The form is shown in ?model.matrix.

The argument simplify determines whether the pims are simplified such that only indices for unique
and fixed real parameters are used. For example, with an all different PIM structure with CJS with
K occasions there are K*(K-1) real parameters for Phi and p. However, if you use simplify=TRUE
with the default model of Phi(.)p(.), the pims are re-indexed to be 1 for all the Phi’s and 2 for all
the p’s because there are only 2 unique real parameters for that model. Using simplify can speed
analysis markedly and probably should always be used. This was left as an argument only to test that
the simplification was working and produced the same likelihood and real parameter estimates with
and without simplification. It only adjust the rows of the design matrix and not the columns. There
are some restrictions for simplification. Real parameters that are given a fixed value are maintained
in the design matrix although it does simplify amongst the fixed parameters. For example, if there
are 50 real parameters all fixed to a value of 1 and 30 all fixed to a value of 0, they are reduced to 2
real parameters fixed to 1 and 0. Also, real parameters such as Psi in Multistrata and pent in POPAN
that use multinomial logits are not simplified because they must maintain the structure created by
the multinomial logit link. All other parameters in those models are simplified. The only downside
of simplification is that the labels for real parameters in the MARK output are unreliable because
there is no longer a single label for the real parameter because it may represent many different real
parameters in the all-different PIM structure. This is not a problem with the labels in R because the
real parameter estimates are translated back to the all-different PIM structure with the proper labels.

The argument default.fixed is related to deletion of design data (see make.design.data). If
design data are deleted and default.fixed=T the missing real parameters are fixed at a reasonable
default to represent structural "zeros". For example, p is set to 0, Phi is set to 1, pent is set to 0, etc.
For some parameters there are no reasonable values (e.g., N in POPAN), so not all parameters will
have defaults. If a parameter does not have a default or if default.fixed=F then the row in the
design matrix for that parameter is all zeroes and its real value will depend on the link function. For
example, with "logit" link the real parameter value will be 0.5 and for the log link it will be 1. As
long as the inverse link is defined for 0 it will not matter in those cases in which the real parameter
is not used because it represents data that do not exist. For example, in a "CJS" model if initial
captures (releases) only occur every other occasion, but recaptures (resightings) occurred every
occasion, then every other cohort (row) in the PIM would have no data. Those rows (cohorts) could
be deleted from the design data and it would not matter if the real parameter was fixed. However,
for the case of a Jolly-Seber type model (eg POPAN or Pradel models) in which the likelihood
includes a probability for the leading zeroes and first 1 in a capture history (a likelihood component
for the first capture of unmaked animals), and groups represent cohorts that enter through time, you
must fix the real parameters for the unused portion of the PIM (ie for occasions prior to time of
birth for the cohort) such that the estimated probability of observing the structural 0 is 1. This is
easily done by setting the pent (probability of entry) to 0 or by setting the probability of capture
to 0 or both. In that case if default.fixed=F, the probabilities for all those parameters would be

92 make.mark.model

incorrectly set to 0.5 for p and something non-zero but not predetermined for pent because of the
multinomial logit. Now it may be possible that the model would correctly estimate these as 0 if the
real parameters were kept in the design, but we know what those values are in that case and they need
not be estimated. If it is acceptable to set default.fixed=F, the functions such as summary.mark
recognize the non-estimated real parameters and they are not shown in the summaries because in
essence they do not exist. If default.fixed=T the parameters are displayed with their fixed value
and for summary.mark(mymodel,se=TRUE), they are listed as "Fixed".

Missing design data does have implications for specifying formula but only when interactions are
specified. With missing design data various factors may not be fully crossed. For example, with 2
factors A and B, each with 2 levels, the data are fully crossed if there are data with values A1&B1,
A1&B2, A2&B1 and A2&B2. If data exist for each of the 4 combinations then you can described
the interaction model as ~A*B and it will estimate 4 values. However, if data are missing for one
of more of the 4 cells then the "interaction" formula should be specified as ~-1+A:B or ~-1+B:A or
~-1+A the combinations with data. An example of this could be a marking program with multiple
sites which resighted at all occasions but which only marked at sites on alternating occasions. In that
case time is nested within site and time-site interaction models would be specified as ~-1+time:site.

The argument title supplies a character string that is used to label the output. The argument
model.name is a descriptor for the model used in the analysis. The code constructs a model name
from the formula specified in the call (e.g., Phi(~1)p(~time)) but on occasion the name may be
too long or verbose, so it can be over-ridden with the model.name argument.

The final argument initial can be used to provide initial estimates for the beta parameters. It is
either 1) a single starting value for each parameter, 2) an unnamed vector of values (one for each
parameter), 3) named vector of values, or 4) the name of mark object that has already been run. For
cases 3 and 4, the code only uses appropriate initial beta estimates in which the column names of
the design matrix (for model) or vector names match the column names in the design matrix of the
model to be run. Any remaining beta parameters without an initial value specified are assigned a 0
initial value. If case 4 is used the models must have the same number of rows in the design matrix
and thus presumably the same structure. As long as the vector elements are named (#3), the length
of the initial vector no longer needs to match the number of parameters in the new model as long
as the elements are named. The names can be retrieved either from the column names of the design
matrix or from rownames(x$results$beta) where x is the name of the mark object.

options is a character string that is tacked onto the Proc Estimate statement for the MARK .inp
file. It can be used to request options such as NoStandDM (to not standardize the design matrix) or
SIMANNEAL (to request use of the simulated annealing optimization method) or any existing or
new options that can be set on the estimate proc.

Value

model: a MARK object except for the elements output and results. See mark for a detailed
description of the list contents.

Author(s)

Jeff Laake

See Also

process.data,make.design.data, run.mark.model mark

make.time.factor 93

Examples

This example is excluded from testing to reduce package check time
data(dipper)
#
Process data
#
dipper.processed=process.data(dipper,groups=("sex"))
#
Create default design data
#
dipper.ddl=make.design.data(dipper.processed)
#
Add Flood covariates for Phi and p that have different values
#
dipper.ddlPhiFlood=0
dipper.ddlPhiFlood[dipper.ddlPhitime==2 | dipper.ddlPhitime==3]=1
dipper.ddlpFlood=0
dipper.ddlpFlood[dipper.ddlptime==3]=1
#
Define range of models for Phi
#
Phidot=list(formula=~1)
Phitime=list(formula=~time)
PhiFlood=list(formula=~Flood)
#
Define range of models for p
#
pdot=list(formula=~1)
ptime=list(formula=~time)
#
Make assortment of models
#
dipper.phidot.pdot=make.mark.model(dipper.processed,dipper.ddl,

parameters=list(Phi=Phidot,p=pdot))
dipper.phidot.ptime=make.mark.model(dipper.processed,dipper.ddl,

parameters=list(Phi=Phidot,p=ptime))
dipper.phiFlood.pdot=make.mark.model(dipper.processed,dipper.ddl,

parameters=list(Phi=PhiFlood, p=pdot))

make.time.factor Make time-varying dummy variables from time-varying factor vari-
able

Description

Create a new dataframe with time-varying dummy variables from a time-varying factor variable.
The time-varying dummy variables are named appropriately to be used as a set of time dependent
individual covariates in a parameter specification

94 make.time.factor

Usage

make.time.factor(x, var.name, times, intercept = NULL, delete = TRUE)

Arguments

x dataframe containing set of factor variables with names composed of var.name
prefix and times suffix

var.name prefix for variable names

times numeric suffixes for variable names

intercept the value of the factor variable that will be used for the intercept

delete if TRUE, the origninal time-varying factor variables are removed from the re-
turned dataframe

Details

An example of the var.name and times is var.name="observer", times=1:5. The code expects to find
observer1,...,observer5 to be factor variables in x. If there are k unique levels (excluding ".") across
the time varying factor variables, then k-1 dummy variables are created for each of the named factor
variables. They are named with var.name, level[i], times[j] concatenated together where level[i] is
the name of the facto level i. If there a m times then the new data set will contain m*(k-1) dummy
variables. If the factor variable includes any "." values these are ignored because they are used to
indicate a missing value that is paired with a missing value in the encounter history. Note that it
will create each dummy variable for each factor even if a particular level is not contained within a
factor (eg observers 1 to 3 used but only 1 and 2 on occasion 1).

Value

x: a dataframe containing the original data (with time-varying factor variables removed if delete=TRUE)
and the time-varying dummy variables added.

Author(s)

Jeff Laake

Examples

see example in weta

mallard 95

mallard Mallard nest survival example

Description

A nest survival data set on mallards. The data set and analysis is described by Rotella et al.(2004).

Format

A data frame with 565 observations on the following 13 variables.

FirstFound the day the nest was first found

LastPresent the last day that chicks were present

LastChecked the last day the nest was checked

Fate the fate of the nest; 0=hatch and 1 depredated

Freq the frequency of nests with this data; always 1 in this example

Robel Robel reading of vegetation thickness

PpnGrass proportion grass in vicinity of nest

Native dummy 0/1 variable; 1 if native vegetation

Planted dummy 0/1 variable; 1 if planted vegetation

Wetland dummy 0/1 variable; 1 if wetland vegetation

Roadside dummy 0/1 variable; 1 if roadside vegetation

AgeFound age of nest in days the day the nest was found

AgeDay1 age of nest at beginning of study

Details

The first 5 fields must be named as they are shown for nest survival models. Freq and the remaining
fields are optional. See killdeer for more description of the nest survival data structure and the use
of the special field AgeDay1. The habitat variables Native,Planted,Wetland,Roadside were orig-
inally coded as 0/1 dummy variables to enable easier modelling with MARK. A better alternative
in RMark is to create a single variable habitat with values of "Native","Planted", "Wetland",
and "Roadside". Then the Hab model in the example below would become:

Hab=mark(mallard,nocc=90,model="Nest",
model.parameters=list(S=list(formula=~habitat)), groups="habitat")

For this example, that doesn’t make a big difference but if you have more than one factor and you
want to construct an interaction or you have a factor with many levels, then it is more efficient to
use factor variables rather than dummy variables.

Author(s)

Jay Rotella

96 mallard

Source

Rotella, J.J., S. J. Dinsmore, T.L. Shaffer. 2004. Modeling nest-survival data: a comparison of
recently developed methods that can be implemented in MARK and SAS. Animal Biodiversity and
Conservation 27:187-204.

Examples

Last updated September 28, 2019

The original mallard example shown below uses idividual calls to mark function.
This is not as efficient as using mark.wrapper and can cause difficulties if different
groups arguments are used and model averaging is attempted. Below this original example
the more efficient approach is shown.

Read in data, which are in a simple text file that
looks like a MARK input file but (1) with no comments or semicolons and
(2) with a 1st row that contains column labels
mallard=read.table("mallard.txt",header=TRUE)

The mallard data set is also incuded with RMark and can be retrieved with
data(mallard)

This example is excluded from testing to reduce package check time
ggplot commands have been commented out so RMark doesn't require ggplot

scripted analysis of mallard nest-survival data in RMark
#~~~#
Example of use of RMark for modeling nest survival data -
Mallard nests example
The example runs the 9 models that are used in the Nest
Survival chapter of the Gentle Introduction to MARK and that#
appear in Table 3 (page 198) of
Rotella, J.J., S. J. Dinsmore, T.L. Shaffer. 2004.
Modeling nest-survival data: a comparison of recently
developed methods that can be implemented in MARK and SAS.
Animal Biodiversity and Conservation 27:187-204.
#~~~#

The mallard data set is also incuded with RMark and can be retrieved with
data(mallard)

use the indicator variables for the 4 habitat types to yield
1 variable with habitat as a factor with 4 levels that
can be used for a group variable in RMark
mallard$habitat <- ifelse(mallard$Native == 1, "Native",

ifelse(mallard$Planted == 1, "Planted",
ifelse(mallard$Roadside == 1, "Roadside",

"Wetland")))
make the new variable a factor
mallard$habitat <- as.factor(mallard$habitat)

mallard 97

mallard.pr <- process.data(mallard,
nocc=90,
model="Nest",
groups=("habitat"))

Write a function for evaluating a set of competing models
run.mallard <- function()
{
1. A model of constant daily survival rate (DSR)
S.Dot = list(formula = ~1)

2. DSR varies by habitat type - treats habitats as factors
and the output provides S-hats for each habitat type
S.Hab = list(formula = ~habitat)

3. DSR varies with vegetation thickness (Robel reading)
S.Robel = list(formula = ~Robel)

4. DSR varies with the amount of native vegetation in the surrounding area
S.PpnGr = list(formula = ~PpnGrass)

5. DSR follows a trend through time
S.TimeTrend = list(formula = ~Time)

6. DSR varies with nest age
S.Age = list(formula = ~NestAge)

7. DSR varies with nest age & habitat type
S.AgeHab = list(formula = ~NestAge + habitat)

8. DSR varies with nest age & vegetation thickness
S.AgeRobel = list(formula = ~NestAge + Robel)

9. DSR varies with nest age & amount of native vegetation in
surrounding area
S.AgePpnGrass = list(formula = ~NestAge + PpnGrass)

Return model table and list of models

mallard.model.list = create.model.list("Nest")

mallard.results = mark.wrapper(mallard.model.list,
data = mallard.pr,
adjust = FALSE)

}

The next line runs the 9 models above and takes a minute or 2
mallard.results <- run.mallard()

mallard.results

#~~#
Examine table of model-selection results

98 mallard

#~~#
next line exports files
export.MARK(mallard.results$S.Age$data,

"MallDSR",
mallard.results,
replace = TRUE,
ind.covariates = "all")

mallard.results # print model-selection table to screen
options(width = 100) # set page width to 100 characters
sink("results.table.txt") # capture screen output to file
print(mallard.results) # send output to file
sink() # return output to screen

remove "#" on next line to see output in notepad in Windows

system("notepad results.table.txt",invisible=FALSE,wait=FALSE)
remove "#" on next line to see output in texteditor editor on Mac
system("open -t results.table.txt", wait = FALSE)

names(mallard.results)

mallard.results$S.Dot$results$beta
mallard.results$S.Dot$results$real

#~~~#
Examine output for 'DSR by habitat' model
#~~~#
Remove "#" on next line to see output
mallard.results$S.Hab # print MARK output to designated text editor
mallard.results$S.Hab$design.matrix # view the design matrix that was used
mallard.results$S.Hab$results$beta # view estimated beta for model in R
mallard.results$S.Hab$results$beta.vcv # view variance-covariance matrix for beta's
mallard.results$S.Hab$results$real # view the estimates of Daily Survival Rate

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
Examine output for best model
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
Remove "#" on next line to see output
mallard.results$AgePpnGrass # print MARK output to designated text editor
mallard.results$S.AgePpnGrass$results$beta # view estimated beta's in R
mallard.results$S.AgePpnGrass$results$beta.vcv # view estimated var-cov matrix in R

To obtain estimates of DSR for various values of 'NestAge' and 'PpnGrass'
some work additional work is needed.

Store model results in object with simpler name
AgePpnGrass <- mallard.results$S.AgePpnGrass
Build design matrix with ages and ppn grass values of interest
Relevant ages are age 1 to 35 for mallards
For ppngrass, use a value of 0.5
fc <- find.covariates(AgePpnGrass,mallard)
fc$value[1:35] <- 1:35 # assign 1:35 to 1st 35 nest ages

mallard 99

fc$value[fc$var == "PpnGrass"] <- 0.1 # assign new value to PpnGrass
design <- fill.covariates(AgePpnGrass, fc) # fill design matrix with values
extract 1st 35 rows of output
AgePpn.survival <- compute.real(AgePpnGrass, design = design)[1:35,]
insert covariate columns
AgePpn.survival <- cbind(design[1:35, c(2:3)], AgePpn.survival)
colnames(AgePpn.survival) <- c("Age", "PpnGrass","DSR", "seDSR", "lclDSR",

"uclDSR")
view estimates of DSR for each age and PpnGrass combo
AgePpn.survival

#library(ggplot2)
#ggplot(AgePpn.survival, aes(x = Age, y = DSR)) +
geom_line() +
geom_ribbon(aes(ymin = lclDSR, ymax = uclDSR), alpha = 0.3) +
xlab("Nest Age (days)") +
ylab("Estimated DSR") +
theme_bw()

assign 17 to 1st 50 nest ages
fc$value[1:89] <- 17
assign range of values to PpnGrass
fc$value[fc$var == "PpnGrass"] <- seq(0.01, 0.99, length = 89)
fill design matrix with values
design <- fill.covariates(AgePpnGrass,fc)
AgePpn.survival <- compute.real(AgePpnGrass, design = design)
insert covariate columns
AgePpn.survival <- cbind(design[, c(2:3)], AgePpn.survival)
colnames(AgePpn.survival) <-
c("Age", "PpnGrass", "DSR", "seDSR", "lclDSR", "uclDSR")

view estimates of DSR for each age and PpnGrass combo
AgePpn.survival

Plot results
#ggplot(AgePpn.survival, aes(x = PpnGrass, y = DSR)) +
geom_line() +
geom_ribbon(aes(ymin = lclDSR, ymax = uclDSR), alpha = 0.3) +
xlab("Proportion Grass on Site") +
ylab("Estimated DSR") +
theme_bw()

If you want to clean up the mark*.inp, .vcv, .res and .out
and .tmp files created by RMark in the working directory,
execute 'rm(list = ls(all = TRUE))' - see 2 lines below.
NOTE: this will delete all objects in the R session.
rm(list = ls(all=TRUE))
Then, execute 'cleanup(ask = FALSE)' to delete orphaned output
files from MARK. Execute '?cleanup' to learn more
cleanup(ask = FALSE)

100 mark

mark Interface to MARK for fitting capture-recapture models

Description

Fits user specified models to various types of capture-recapture data by creating input file and run-
ning MARK software and retrieving output

Usage

mark(data, ddl = NULL, begin.time = 1, model.name = NULL,
model = "CJS", title = "", model.parameters = list(),
initial = NULL, design.parameters = list(), right = TRUE,
groups = NULL, age.var = NULL, initial.ages = 0, age.unit = 1,
time.intervals = NULL, nocc = NULL, output = TRUE,
invisible = TRUE, adjust = TRUE, mixtures = 1, se = FALSE,
filename = NULL, prefix = "mark", default.fixed = TRUE,
silent = FALSE, retry = 0, options = NULL, brief = FALSE,
realvcv = FALSE, delete = FALSE, external = FALSE,
profile.int = FALSE, chat = NULL, reverse = FALSE, run = TRUE,
input.links = NULL, parm.specific = FALSE, mlogit0 = FALSE,
threads = -1, hessian = FALSE, accumulate = TRUE,
allgroups = FALSE, strata.labels = NULL, counts = NULL,
icvalues = NULL, wrap = TRUE, events = NULL, nodes = 101,
useddl = FALSE, check.model = FALSE)

Arguments

data Either the raw data which is a dataframe with at least one column named ch (a
character field containing the capture history) or a processed dataframe

ddl Design data list which contains a list element for each parameter type; if NULL
it is created

begin.time Time of first capture(release) occasion

model.name Optional name for the model

model Type of c-r model (eg CJS, Burnham, Barker)

title Optional title for the MARK analysis output
model.parameters

List of model parameter specifications

initial Optional vector of named or unnamed initial values for beta parameters or pre-
viously run model object

design.parameters

Specification of any grouping variables for design data for each parameter

right if TRUE, any intervals created in design.parameters are closed on the right and
open on left and vice-versa if FALSE

mark 101

groups Vector of names factor variables for creating groups

age.var Optional index in groups vector of a variable that represents age

initial.ages Optional vector of initial ages for each age level

age.unit Increment of age for each increment of time

time.intervals Intervals of time between the capture occasions

nocc number of occasions for Nest model; either time.intervals or nocc must be spec-
ified for this model

output If TRUE produces summary of model input and model output

invisible If TRUE, window for running MARK is hidden

adjust If TRUE, adjusts npar to number of cols in design matrix, modifies AIC and
records both

mixtures number of mixtures for heterogeneity model or number of secondary samples
for MultScaleOcc model

se if TRUE, se and confidence intervals are shown in summary sent to screen

filename base filename for files created by MARK.EXE. Files are named filename.*.

prefix base filename prefix for files created by MARK.EXE; for example if prefix="SpeciesZ"
files are named "SpeciesZnnn.*"

default.fixed if TRUE, real parameters for which the design data have been deleted are fixed
to default values

silent if TRUE, errors that are encountered are suppressed

retry number of reanalyses to perform with new starting values when one or more
parameters are singular

options character string of options for Proc Estimate statement in MARK .inp file

brief if TRUE and output=TRUE then a brief summary line is given instead of a full
summary for the model

realvcv if TRUE the vcv matrix of the real parameters is extracted and stored in the
model results

delete if TRUE the output files are deleted after the results are extracted

external if TRUE the mark object is saved externally rather than in the workspace; the
filename is kept in its place

profile.int if TRUE will compute profile intervals for each real parameter; or you can spec-
ify a vector of real parameter indices

chat value of chat used for profile intervals

reverse if set to TRUE, will reverse timing of transition (Psi) and survival (S) in Multi-
stratum models

run if FALSE does not run model after creation

input.links specifies set of link functions for parameters with non-simplified structure

parm.specific if TRUE, forces a link to be specified for each parameter

mlogit0 if TRUE, any real parameter that is fixed to 0 and has an mlogit link will have
its link changed to logit so it can be simplified

102 mark

threads number of cpus to use with mark.exe if positive or number of cpus to remain
idle if negative

hessian if TRUE specifies to MARK to use hessian rather than second partial matrix

accumulate if TRUE accumulate like data values into frequencies

allgroups Logical variable; if TRUE, all groups are created from factors defined in groups
even if there are no observations in the group

strata.labels vector of single character values used in capture history(ch) for ORDMS, CRDMS,
RDMSOccRepro models; it can contain one more value beyond what is in ch for
an unobservable state except for RDMSOccRepro which is used to specify strata
ordering (eg 0 not-occupied, 1 occupied no repro, 2 occupied with repro.

counts named list of numeric vectors (one group) or matrices (>1 group) containing
counts for mark-resight models

icvalues numeric vector of individual covariate values for computation of real values

wrap if TRUE, data lines are wrapped to be length 80; if length of a row is not a
problem set to FALSE and it will run faster

events vector of character events for Hidden Markov models

nodes number of integration nodes for individual random effects (min 15, max 505,
default 101)

useddl if TRUE and no rows of ddl are missing (deleted) then it will use ddl in place of
full.ddl that is created internally.

check.model if TRUE, code does an internal consistency check between PIMs and design data
when making model.

Details

This function acts as an interface to the FORTRAN program MARK written by Gary White (http://www.phidot.org/software/mark/).
It creates the input file for MARK based on user-specified sub-models (model.parameters) for
each of the parameters in the capture-recapture model being fitted to the data. It runs MARK.EXE
(see note below) and then imports the text output file and binary variance-covariance file that were
created. It extracts output values from the text file and creates a list of results that is returned as part
of the list (of class mark) which is the return value for this function.

The models that are currently supported are listed in MarkModels.pdf which you can find in the
RMark sub-directory of your R Library. Also, they are listed under Help/Data Types in the MARK
interface.

The function mark is a shell that calls 5 other functions in the following order as needed: 1)
process.data, 2) make.design.data, 3) make.mark.model, 4) run.mark.model, and 5) summary.mark.
A MARK model can be fitted with this function (mark) or by calling the individual functions that
it uses. The calling arguments for mark are a compilation of the calling arguments for each of the
functions it calls (with some arguments renamed to avoid conflicts). If data is a processed dataframe
(see process.data) then it expects to find a value for ddl. Likewise, if the data have not been pro-
cessed, then ddl should be NULL. This dual calling structure allows either a single call approach
for each model or alternatively for the data to be processed and the design data (ddl) to be created
once and then a whole series of models can be analyzed without repeating those steps.

For descriptions of the arguments data, begin.time, groups, age.var, initial.ages, age.unit,
time.intervals and mixtures see process.data.

mark 103

For descriptions of ddl, design.parameters=parameters, and right, see make.design.data.

For descriptions of model.name , model, title,model.parameters=parameters , default.fixed
, initial, options, see make.mark.model.

And finally, for descriptions of arguments invisible, filename and adjust,see run.mark.model.

output,silent, and retry are the only arguments specific to mark. output controls whether a
summary of the model input and output are given(if output=TRUE). silent controls whether errors
are shown when fitting a model. retry controls the number of times a model will be refitted with
new starting values (uses 0) when some parameters are determined to be non-estimable or at a
boundary. The latter is the only time it makes sense to retry with new starting values but MARK
cannot discern between these two instances. The indices of the beta parameters that are "singular"
are stored in results$singular.

Value

model: a MARK object containing output and extracted results. It is a list with the following
elements

data name of the processed data frame

model type of analysis model (see list above)

title title used for analysis

model.name descriptive name of model

links vector of link function(s) used for parameters, one for each row in design matrix
or only one if all parameters use the same function

mixtures number of mixtures in Pledger-style closed capture-recapture models

call call to make.mark.model used to construct the model

parameters a list of parameter descriptions including the formula, pim.type, link etc.
model.parameters

the list of parameter descriptions used in the call to mark; this is used only by
rerun.mark

time.intervals Intervals of time between the capture occasions
number.of.groups

number of groups defined in the data

group.labels vector of labels for the groups

nocc number of capture occasions

begin.time single time of vector of times (if different for groups) for the first capture occa-
sion

covariates vector of covariate names (as strings) used in the model

fixed dataframe of parameters set at fixed values; index is the parameter index in the
full parameter structure and value is the fixed value for the real parameter

design.matrix design matrix used in the input to MARK.EXE

pims list of pims used for each parameter including any group or strata designations;
each parameter in list is denoted by name and within each parameter one or
more sub-lists represent groups and strata if any

104 mark

design.data design data used to construct the design matrix

strata.labels labels for strata if any

mlogit.list structure used to simplify parameters that use mlogit links

simplify list containing pim.translation which translate between all different and sim-
plified pims, real.labels which are labels for real parameters for full (non-
simplified) pim structure and links the link function names for the full param-
eter structure

output base portion of filenames for input,output, vc and residual files output from
MARK.EXE

results List of values extracted from MARK ouput

lnl -2xLog Likelihood value
npar Number of parameters (always the number of columns in design matrix)
npar.unadjusted number of estimated parameters from MARK if different than npar
n effective sample size
AICc Small sample corrected AIC using npar
AICc.unadjusted Small sample corrected AIC using npar.unadjusted
beta data frame of beta parameters with estimate, se, lcl, ucl
real data frame of real parameters with estimate, se, lcl, ucl and fixed
beta.vcv variance-covariance matrix for beta
derived dataframe of derived parameters if any
derived.vcv variance-covariance matrix for derived parameters if any
covariate.values dataframe with fields Variable and Value

which are the covariate names and value used for real parameter
estimates in the MARK output

singular indices of beta parameters that are non-estimable or at a boundary
real.vcv variance-covariance matrix for real parameters (simplified) if realvcv=TRUE

chat over-dispersion constant; if not present assumed to be 1

Note

It is assumed that MARK.EXE is located in directory "C:/Program Files/Mark". If it is in a dif-
ferent location set the variable MarkPath to the directory location. For example, seting Mark-
Path="C:/Mark/" at the R prompt will assign run "c:/mark/mark.exe" to do the analysis. If you have
chosen a non-default path for Mark.exe, MarkPath needs to be defined for each R session. It is easi-
est to do this assignment automatically by putting the MarkPath assignment into your .First function
which is run each time an R session is initiated. In addition to MarkPath, the variable MarkViewer
can be assigned to a program other than notepad.exe (see print.mark).

Author(s)

Jeff Laake

See Also

make.mark.model, run.mark.model, make.design.data, process.data, summary.mark

mark.wrapper 105

Examples

data(dipper)
dipper.Phidot.pdot=mark(dipper,threads=1)

mark.wrapper Constructs and runs a set of MARK models from a dataframe of pa-
rameter specifications

Description

This is a convenience function that uses a dataframe of parameter specifications created by create.model.list
and it constructs and runs each model and names the models by concatenating each of the parameter
specification names separated by a period. The results are returned as a marklist with a model.table
constructed by collect.models.

Usage

mark.wrapper(model.list, silent = FALSE, run = TRUE,
use.initial = FALSE, initial = NULL, ...)

Arguments

model.list a dataframe of parameter specification names in the calling frame

silent if TRUE, errors that are encountered are suppressed

run if FALSE, only calls make.mark.model to test for model errors but does not run
the models

use.initial if TRUE, initial values are constructed for new models using completed models
that have already been run in the set

initial vector, mark model or marklist for defining initial values

... arguments to be passed to mark. These must be specified as argument=value
pairs.

Details

The model names in model.list must be in the frame of the function that calls run.models. If
model.list=NULL or the MARK models are collected from the frame of the calling function (the
parent). If type is specified only the models of that type (e.g., "CJS") are run. In each case the
models are run and saved in the parent frame. To fully understand, how this function works and its
limitations, see create.model.list.

If use.initial=TRUE, prior to running a model it looks for the first model that has already been
run (if any) for each parameter formula and constructs an initial vector from that previous run.
For example, if you provided 5 models for p and 3 for Phi in a CJS model, as soon as the first
model for p is run, in the subsequent 2 models with different Phi models, the initial values for p are

106 mark.wrapper.parallel

assigned based on the run with the first Phi model. At the outset this seemed like a good idea to
speed up execution times, but from the one set of examples I ran where several parameters were at
boundaries, the results were discouraging because the models converged to a sub-optimal likelihood
value than the runs using the default initial values. I’ve left sthis option in but set its default value
to FALSE.
A possibly more useful argument is the argument initial. Previously, you could use initial=model
as part of the ... arguments and it would use the estimates from that model to assign initial values
for any model in the set. Now I’ve defined initial as a specific argument and it can be used as
above or you can also use it to specify a marklist of previously run models. When you do that,
the code will lookup each new model to be run in the set of models specified by initial and if
it finds one with the matching name then it will use the estimates for any matching parameters as
initial values in the same way as initial=model does. The model name is based on concatenating
the names of each of the parameter specification objects. To make this useful, you’ll want to adapt
to an approach that I’ve started to use of naming the objects something like p.1,p.2 etc rather than
naming them something like p.dot, p.time as done in many of the examples. I’ve found that using
numeric approach is much less typing and cumbersome rather than trying to reflect the formula in
the name. By default, the formula is shown in the model selection results table, so it was a bit redun-
dant. Now where I see this being the most benefit. Individual covariate models tend to run rather
slowly. So one approach is to run the sequence of models (eg results stored in initial_marklist),
including the set of formulas with all of the variables other than individual covariates. Then run an-
other set with the same numbering scheme, but adding the individual covariates to the formula
and using initial=initial_marklist That will work if each parameter specification has the
same name (eg., p.1=list(formula=~time) and then p.1=list(formula=~time+an_indiv_covariate)).
All of the initial values will be assigned for the previous run except for any added parameters (eg.
an_indiv_covariate) which will start with a 0 initial value.

Value

if(run) marklist - list of mark models that were run and a model.table of results; if(!run) a list of
models that were constructed but not run.

Author(s)

Jeff Laake

See Also

collect.models, mark, create.model.list

mark.wrapper.parallel Constructs and runs in parallel a set of MARK models from a
dataframe of parameter specifications

Description

This is a convenience function that uses a dataframe of parameter specifications created by create.model.list
and it constructs and runs each model and names the models by concatenating each of the parameter
specification names separated by a period. The results are returned as a marklist with a model.table
constructed by collect.models.

mark.wrapper.parallel 107

Usage

mark.wrapper.parallel(model.list, silent = FALSE, use.initial = FALSE,
initial = NULL, parallel = TRUE, cpus = 2, threads = 1, ...)

Arguments

model.list a dataframe of parameter specification names in the calling frame

silent if TRUE, errors that are encountered are suppressed

use.initial if TRUE, initial values are constructed for new models using completed models
that have already been run in the set

initial vector, mark model or marklist for defining initial values

parallel if TRUE, runs models in parallel on multiple cpus

cpus number of cpus to use in parallel

threads number of cpus to use with mark.exe if positive or number of cpus to remain
idle if negative

... arguments to be passed to mark. These must be specified as argument=value
pairs.

Details

The model names in model.list must be in the frame of the function that calls run.models. If
model.list=NULL or the MARK models are collected from the frame of the calling function (the
parent). If type is specified only the models of that type (e.g., "CJS") are run. In each case the
models are run and saved in the parent frame. To fully understand, how this function works and its
limitations, see create.model.list.

If use.initial=TRUE, prior to running a model it looks for the first model that has already been
run (if any) for each parameter formula and constructs an initial vector from that previous run.
For example, if you provided 5 models for p and 3 for Phi in a CJS model, as soon as the first
model for p is run, in the subsequent 2 models with different Phi models, the initial values for p are
assigned based on the run with the first Phi model. At the outset this seemed like a good idea to
speed up execution times, but from the one set of examples I ran where several parameters were at
boundaries, the results were discouraging because the models converged to a sub-optimal likelihood
value than the runs using the default initial values. I’ve left sthis option in but set its default value
to FALSE.

A possibly more useful argument is the argument initial. Previously, you could use initial=model
as part of the ... arguments and it would use the estimates from that model to assign initial values
for any model in the set. Now I’ve defined initial as a specific argument and it can be used as
above or you can also use it to specify a marklist of previously run models. When you do that,
the code will lookup each new model to be run in the set of models specified by initial and if
it finds one with the matching name then it will use the estimates for any matching parameters as
initial values in the same way as initial=model does. The model name is based on concatenating
the names of each of the parameter specification objects. To make this useful, you’ll want to adapt
to an approach that I’ve started to use of naming the objects something like p.1,p.2 etc rather than
naming them something like p.dot, p.time as done in many of the examples. I’ve found that using
numeric approach is much less typing and cumbersome rather than trying to reflect the formula in

108 mark.wrapper.parallel

the name. By default, the formula is shown in the model selection results table, so it was a bit redun-
dant. Now where I see this being the most benefit. Individual covariate models tend to run rather
slowly. So one approach is to run the sequence of models (eg results stored in initial_marklist),
including the set of formulas with all of the variables other than individual covariates. Then run an-
other set with the same numbering scheme, but adding the individual covariates to the formula
and using initial=initial_marklist That will work if each parameter specification has the
same name (eg., p.1=list(formula=~time) and then p.1=list(formula=~time+an_indiv_covariate)).
All of the initial values will be assigned for the previous run except for any added parameters (eg.
an_indiv_covariate) which will start with a 0 initial value.

Value

marklist - list of mark models that were run and a model.table of results

Author(s)

Eldar Rakhimberdiev

See Also

collect.models, mark, create.model.list

Examples

example not run to reduce time required for checking
do.MSOccupancy=function()
{
Get the data
data(NicholsMSOccupancy)
Define the models; default of Psi1=~1 and Psi2=~1 is assumed
p varies by time but p1t=p2t
p1.p2equal.by.time=list(formula=~time,share=TRUE)
time-varying p1t and p2t
p1.p2.different.time=list(p1=list(formula=~time,share=FALSE),p2=list(formula=~time))
delta2 model with one rate for times 1-2 and another for times 3-5;
delta2 defined below
Delta.delta2=list(formula=~delta2)
Delta.dot=list(formula=~1) # constant delta
Delta.time=list(formula=~time) # time-varying delta
Process the data for the MSOccupancy model
NicholsMS.proc=process.data(NicholsMSOccupancy,model="MSOccupancy")
Create the default design data
NicholsMS.ddl=make.design.data(NicholsMS.proc)
Add a field for the Delta design data called delta2. It is a factor variable
with 2 levels: times 1-2, and times 3-5.
NicholsMS.ddl=add.design.data(NicholsMS.proc,NicholsMS.ddl,"Delta",
type="time",bins=c(0,2,5),name="delta2")
Create a list using the 4 p modls and 3 delta models (12 models total)
cml=create.model.list("MSOccupancy")
Fit each model in the list and return the results
return(mark.wrapper.parallel(cml,data=NicholsMS.proc,ddl=NicholsMS.ddl,

mata.wald 109

cpus=2,parallel=TRUE))
}
xx=do.MSOccupancy()

mata.wald Model-Averaged Tail Area Wald (MATA-Wald) confidence intervals

Description

A generic function to compute model averaged estimates and their standard errors or variance-
covariance matrix model-averaged tail area (MATA) construction.

Usage

mata.wald(theta.hats, se.theta.hats, model.weights, normal.lm=FALSE,
residual.dfs=0, alpha=0.025)

tailarea.z(theta, theta.hats, se.theta.hats, model.weights, alpha)

tailarea.t(theta, theta.hats, se.theta.hats, model.weights, alpha, residual.dfs)

Arguments

theta.hats A vector containing the estimates of theta under each candidate model.

se.theta.hats A vector containing the estimated standard error of each estimate in ’theta.hats’.

model.weights A vector containing the model weights for each candidate model. Calculated
from an information criterion, such as AIC. See Turek and Fletcher (2012) for
details of calculation. All model weights must be non-negative, and sum to one.

normal.lm Specify normal.lm=TRUE for the normal linear model case, and normal.lm=FALSE
otherwise. When normal.lm=TRUE, the argument ’residual.dfs’ must also be
supplied. See USAGE section, and Turek and Fletcher (2012) for additional
details.

residual.dfs A vector containing the residual (error) degrees of freedom under each candidate
model. This argument must be provided when the argument normal.lm=TRUE.

alpha The desired lower and upper error rate. Specifying alpha=0.025 corresponds to
a 95 alpha=0.05 to a 90 Default value is alpha=0.025.

theta value for root finding in tailarea.z and tailarea.t

Details

The main function, mata.wald(...), may be used to construct model-averaged confidence intervals,
using the model-averaged tail area (MATA) construction. The idea underlying this construction is
similar to that of a model-averaged Bayesian credible interval. This function returns the lower and
upper confidence limits of a MATA-Wald interval.

110 mata.wald

Two usages are supported. For the normal linear model case, and quantity of interest theta, >
mata.wald(theta.hats, se.theta.hats, model.weights, alpha, normal.lm=TRUE, residual.dfs) returns a
(1-2*alpha)100 Corresponds to the solutions of equations (2) and (3) of Turek and Fletcher (2012).
The argument ’residual.dfs’ is required for this usage.

When the sampling distribution for the estimate of theta is asymptotically normal (e.g. MLEs),
possibly after a transformation, > mata.wald(theta.hats, se.theta.hats, model.weights, alpha, nor-
mal.lm=FALSE) returns a (1-2*alpha)100 on a transformed scale. Back-transformation of both
confidence limits may be necessary. Corresponds to solutions to the equations in Section 3.2 of
Turek and Fletcher (2012).

Author(s)

Daniel Turek<danielturek@gmail.com>

References

Turek, D. and Fletcher, D. (2012). Model-Averaged Wald Confidence Intervals. Computational
Statistics and Data Analysis, 56(9), p.2809-2815.

Examples

The example code below, uncommented, generates single-model Wald
and model-averaged MATA-Wald 95% confidence intervals for theta.
#
EXAMPLE: Normal linear prediction
=================================
#
Data 'y', covariates 'x1' and 'x2', all vectors of length 'n'.
'y' taken to have a normal distribution.
'x1' specifies treatment/group (factor).
'x2' a continuous covariate.
#
Take the quantity of interest (theta) as the predicted response
(expectation of y) when x1=1 (second group/treatment), and x2=15.

n = 20 # 'n' is assumed to be even
x1 = c(rep(0,n/2), rep(1,n/2)) # two groups: x1=0, and x1=1
x2 = rnorm(n, mean=10, sd=3)
y = rnorm(n, mean = 3*x1 + 0.1*x2) # data generation

x1 = factor(x1)
m1 = glm(y ~ x1) # using 'glm' provides AIC values.
m2 = glm(y ~ x1 + x2) # using 'lm' doesn't.
aic = c(m1$aic, m2$aic)
delta.aic = aic - min(aic)
model.weights = exp(-0.5*delta.aic) / sum(exp(-0.5*delta.aic))
residual.dfs = c(m1$df.residual, m2$df.residual)

p1 = predict(m1, se=TRUE, newdata=list(x1=factor(1), x2=15))
p2 = predict(m2, se=TRUE, newdata=list(x1=factor(1), x2=15))
theta.hats = c(p1$fit, p2$fit)

merge.mark 111

se.theta.hats = c(p1$se.fit, p2$se.fit)

AIC model weights
model.weights

95% Wald confidence interval for theta (under Model 1)
theta.hats[1] + c(-1,1)*qt(0.975, residual.dfs[1])*se.theta.hats[1]

95% Wald confidence interval for theta (under Model 2)
theta.hats[2] + c(-1,1)*qt(0.975, residual.dfs[2])*se.theta.hats[2]

95% MATA-Wald confidence interval for theta (model-averaging)
mata.wald(theta.hats=theta.hats, se.theta.hats=se.theta.hats,

model.weights=model.weights, normal.lm=TRUE, residual.dfs=residual.dfs)

merge.mark Merge mark model objects and lists of mark model objects

Description

Merge an unspecified number of marklist and mark model objects into a single marklist with an
optional table of model results if table=TRUE.

Usage

S3 method for class 'mark'
merge(...,table=TRUE)

Arguments

... an unspecified number of marklist and/or mark model objects
table if TRUE, a table of model results is also included in the returned list

Value

model.list: a list of mark models and optionally a table of model results.

Author(s)

Jeff Laake

See Also

collect.models,remove.mark,run.models,model.table,dipper

Examples

see example in dipper

112 merge_design.covariates

merge_design.covariates

Merge time (occasion) and/or group specific covariates into design
data

Description

Adds new design data fields from a dataframe into a design data list (ddl) by matching via time
and/or group field in the design data.

Usage

merge_design.covariates(ddl, df, bygroup = FALSE, bytime = TRUE)

Arguments

ddl current design dataframe for a specific parameter and not the entire design data
list (ddl); see example below

df dataframe with time(occasion) and/or group-specific data

bygroup logical; if TRUE, then a field named group should be in df and the values can
then be group specific.

bytime logical; if TRUE, then a field named time should be in df and the values can
then be time specific.

Details

Design data can be added to the parameter specific design dataframes with R commands. This
function simplifies the process by enabling the merging of a dataframe with a time and/or group
field and one or more time and/or group specific covariates into the design data list for a specific
model parameter. This is a replacement for the older function merge.occasion.data. Unlike the
older function, it uses the R function merge but before merging it makes sure all of the fields exist
and that you are not merging data that already exists in the design data. It also maintains the row
names in the case where design data have been deleted prior to merging the design covariate data.

If bytime=TRUE,the dataframe df must have a field named time that matches 1-1 for each value of
time in the design data list (ddl). All fields in df (other than time/group) are added to the design
data. If you set bygroup=TRUE and have a field named group in df and its values match the group
fields in the design data then group-specific values can be assigned for each time if bytime=TRUE.
If bygroup=TRUE and bytime=FALSE then it matches by group and not by time.

Value

Design dataframe (for a particular parameter) with new fields added. See make.design.data for a
description of the design data list structure. The return value is only one element in the list rather
than the entire list as with the older function merge.occasion.data.

model.average 113

Author(s)

Jeff Laake

See Also

make.design.data, process.data, add.design.data

Examples

data(dipper)
dipper.proc=process.data(dipper)
ddl=make.design.data(dipper.proc)
df=data.frame(time=c(1:7),effort=c(10,5,2,8,1,2,3))
note that the value for time 1 is superfluous for CJS but not for POPAN
the value 10 will not appear in the summary because there is no p for time 1
summary(ddl$p)
ddl$p=merge_design.covariates(ddl$p,df)
summary(ddl$p)

This example is excluded from testing to reduce package check time
#
Assign group-specific values
#
dipper.proc=process.data(dipper,groups="sex")
dipper.ddl=make.design.data(dipper.proc)
df=data.frame(group=c(rep("Female",6),rep("Male",6)),time=rep(c(2:7),2),

effort=c(10,5,2,8,1,2,3,20,10,4,16,2))
merge_design.covariates(dipper.ddl$p,df,bygroup=TRUE)

model.average Compute model averaged estimates

Description

A generic function to compute model averaged estimates and their standard errors or variance-
covariance matrix.

Usage

model.average(x, ...)

Arguments

x is either a list with a prescribed structure as defined in model.average.list or
a marklist as described in model.average.marklist

... additional arguments passed to specific functions

114 model.average.list

Value

The structure of the returned value depends on which function is called.

Author(s)

Jeff Laake

See Also

model.average.marklist,model.average.list

model.average.list Compute model averaged estimates of real parameters from a list
structure for estimates

Description

A generic function to compute model averaged estimates and their standard errors or variance-
covariance matrix

Usage

S3 method for class 'list'
model.average(x, revised=TRUE, mata=FALSE, normal.lm=FALSE,

residual.dfs=0, alpha=0.025,...)

Arguments

x a list containing the following elements: 1) estimate - a vector or matrix of esti-
mates, 2)a vector of model selection criterion value named AIC,AICc,QAIC,QAICc
or a weight variable that sums to 1 across models, and 3) a vector or matrix
named se which give the model-specific standard errors for each estimate or a
list of matrices named vcv which give the model-specific variance-covariance
matrices.

revised if TRUE it uses eq 6.12 from Burnham and Anderson (2002) for model averaged
se; otherwise it uses eq 4.9

mata if TRUE, create model averaged tail area confidence intervals as described by
Turek and Fletcher

normal.lm Specify normal.lm=TRUE for the normal linear model case, and normal.lm=FALSE
otherwise. When normal.lm=TRUE, the argument ’residual.dfs’ must also be
supplied. See USAGE section, and Turek and Fletcher (2012) for additional
details.

residual.dfs A vector containing the residual (error) degrees of freedom under each candidate
model. This argument must be provided when the argument normal.lm=TRUE.

alpha The desired lower and upper error rate. Specifying alpha=0.025 corresponds to
a 95 alpha=0.05 to a 90 Default value is alpha=0.025.

... additional arguments passed to specific functions

model.average.list 115

Details

If a single estimate is being model-averaged then estimate and se are vectors with an entry for
each model. However, if there are several estimatee being averaged then both estimate and se
should be matrices in which the estimates for each model are a row in the matrix. Regardless, if
vcv is specified it should be a list of matrices and in the case of a single estimate, each matrix is 1x1
containing the estimated sample-variance but that would be rather useless and se should be used
instead.

If the list contains an element named AIC,AICc,QAIC, or QAICc, then the minimum value is computed
and subtracted to compute delta values relative to the minimum. These are then converted to Akaike
weights which are exp(-.5*delta) and these are normalized to sum to 1. If the list does not contain
one of the above values then it should have a variable named weight. It is normalized to 1. The
model-averaged estimates are computed using equation 4.1 of Burnham and Anderson (2002).

If the contains a matrix named vcv, then a model-averaged variance-covariance matrix is computed
using formulae given on page 163 of Burnham and Anderson (2002). If there is no element named
vcv then there must be an element se which contains the model-specific estimates of the standard
errors. The unconditional standard error for the model-averaged estimates is computed using equa-
tion 4.9 of Burnham and Anderson (2002) if if revised=FALSE; otherwise it uses eq 6.12.

Value

A list containing elements:

estimate vector of model-averaged estimates

se vector of unconditional standard errors (square root of unconditional variance
estimator)

vcv model-averaged variance-covariance matrix if vcv was specified input list

lcl lower confidence interval if mata=TRUE

ucl upper confidence interval if mata=TRUE

Author(s)

Jeff Laake

References

BURNHAM, K. P., AND D. R. ANDERSON. 2002. Model selection and multimodel inference. A
practical information-theoretic approach. Springer, New York. Turek, D. and Fletcher, D. (2012).
Model-Averaged Wald Confidence Intervals. Computational Statistics and Data Analysis, 56(9),
p.2809-2815.

See Also

model.average.marklist

116 model.average.list

Examples

This example is excluded from testing to reduce package check time
Create a set of models from dipper data
data(dipper)
run.dipper=function()
{
dipper$nsex=as.numeric(dipper$sex)-1
mod1=mark(dipper,groups="sex",

model.parameters=list(Phi=list(formula=~sex)))
mod2=mark(dipper,groups="sex",

model.parameters=list(Phi=list(formula=~1)))
mod3=mark(dipper,groups="sex",

model.parameters=list(p=list(formula=~time),
Phi=list(formula=~1)))

dipper.list=collect.models()
return(dipper.list)
}
dipper.results=run.dipper()
Extract indices for first year survival from
Females (group 1) and Males (group 2)
Phi.indices=extract.indices(dipper.results[[1]],

"Phi",df=data.frame(group=c(1,2),row=c(1,1),col=c(1,1)))
Create a matrix for estimates
estimate=matrix(0,ncol=length(Phi.indices),

nrow=nrow(dipper.results$model.table))
Extract weights for models
weight=dipper.results$model.table$weight
Create an empty list for vcv matrices
vcv=vector("list",length=nrow(dipper.results$model.table))
Loop over each model in model.table for dipper.results
for (i in 1:nrow(dipper.results$model.table))
{
The actual model number is the row number for the model.table

model.numbers= as.numeric(row.names(dipper.results$model.table))
For each model extract those real parameter values and their
vcv matrix and store them

x=covariate.predictions(dipper.results[[model.numbers[i]]],
data=data.frame(index=Phi.indices))

estimate[i,]=x$estimates$estimate
vcv[[i]]=x$vcv

}
Call model.average using the list structure which includes
estimate, weight and vcv list in this case
model.average(list(estimate=estimate,weight=weight,vcv=vcv))
#
Now get same model averaged estimates using model.average.marklist
Obviously this is a much easier approach and what would be used
if all you are doing is model averaging real parameters in the model.
The other form is more useful for model averaging
functions of estimates of the real parameters (eg population estimate)
#

model.average.marklist 117

mavg=model.average(dipper.results,"Phi",vcv=TRUE)
print(mavg$estimates[Phi.indices,])
print(mavg$vcv.real[Phi.indices,Phi.indices])

model.average.marklist

Compute model averaged estimates of real parameters

Description

Computes model averaged estimates and standard errors of real parameters for a list of models
with a model.table constructed from collect.models. It can also optionally compute the var-
cov matrix of the averaged parameters and their confidence intervals by transforming with the link
functions, setting normal confidence intervals on the transformed values and then back-transforming
for the real estimates.

Usage

S3 method for class 'marklist'
model.average(x, parameter, data, vcv, drop=TRUE, indices=NULL, revised=TRUE, mata=FALSE,

normal.lm=FALSE, residual.dfs=0, alpha=0.025,...)

Arguments

x a list of mark model results and a model.table constructed by collect.models

parameter name of model parameter (e.g., "Phi" for CJS models); if left NULL all real
parameters are averaged

data dataframe with covariate values that are averaged for estimates

vcv logical; if TRUE then the var-cov matrix and confidence intervals are computed

drop if TRUE, models with any non-positive variance for betas are dropped

indices a vector of parameter indices from the all-different PIM formulation of the pa-
rameter estimates that should be presented. This argument only works if the
parameter argument = NULL. The primary purpose of the argument is to trim
the list of parameters in computing a vcv matrix of the real parameters which
can get too big to be computed with the available memory

revised if TRUE, uses revised variance formula (eq 6.12 from Burnham and Anderson)
for model averaged estimates and eq 6.11 when FALSE

mata if TRUE, create model averaged tail area confidence intervals as described by
Turek and Fletcher

normal.lm Specify normal.lm=TRUE for the normal linear model case, and normal.lm=FALSE
otherwise. When normal.lm=TRUE, the argument ’residual.dfs’ must also be
supplied. See USAGE section, and Turek and Fletcher (2012) for additional
details.

118 model.average.marklist

residual.dfs A vector containing the residual (error) degrees of freedom under each candidate
model. This argument must be provided when the argument normal.lm=TRUE.

alpha The desired lower and upper error rate. Specifying alpha=0.025 corresponds to
a 95 alpha=0.05 to a 90 Default value is alpha=0.025.

... additional arguments passed to specific functions

Details

If there are any models in the model.list which do not have any output or results they are dropped.
If any have non-positive variances for the betas and drop=TRUE, then the model is reported and
dropped from the model averaging. The weights are renormalized for the remaining models that are
not dropped before they are averaged.

If parameter=NULL, all real parameters are model averaged but the design data is not copied over
because it can vary by the type of parameter. It is only necessary to model average all parameters
at once to get covariances of model averaged parameters of differing types.

If data=NULL, the average covariate values are used for any models using covariates. Note that this
will only work with models created after v1.5.0 such that average covariate values are stored in each
model object.

Value

If vcv=FALSE, the return value is a dataframe of model averaged estimates and standard errors for
a particular type of real parameter (e.g., Phi). The design data are appended to the dataframe to
enable subsettting of the estimates based on features of the design data such as age, time, cohort
and grouping variables.

If vcv=TRUE, confidence interval (lcl,ucl) limits are added to the dataframe which is contained in
a list with the var-cov matrix.

Author(s)

Jeff Laake

References

Burnham, K. P. and D. R. Anderson. 2002. Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach, Second edition. Springer, New York.

See Also

collect.models, covariate.predictions, model.table, compute.links.from.reals, model.average.list

Examples

This example is excluded from testing to reduce package check time
data(dipper)
run.dipper=function()
{
#

model.average.marklist 119

Process data
#
dipper.processed=process.data(dipper,groups=("sex"))
#
Create default design data
#
dipper.ddl=make.design.data(dipper.processed)
#
Add Flood covariates for Phi and p that have different values
#
dipper.ddlPhiFlood=0
dipper.ddlPhiFlood[dipper.ddlPhitime==2 | dipper.ddlPhitime==3]=1
dipper.ddlpFlood=0
dipper.ddlpFlood[dipper.ddlptime==3]=1
#
Define range of models for Phi
#
Phi.dot=list(formula=~1)
Phi.time=list(formula=~time)
Phi.sex=list(formula=~sex)
Phi.sextime=list(formula=~sex+time)
Phi.sex.time=list(formula=~sex*time)
Phi.Flood=list(formula=~Flood)
#
Define range of models for p
#
p.dot=list(formula=~1)
p.time=list(formula=~time)
p.sex=list(formula=~sex)
p.sextime=list(formula=~sex+time)
p.sex.time=list(formula=~sex*time)
p.Flood=list(formula=~Flood)
#
Collect pairings of models
#
cml=create.model.list("CJS")
#
Run and return the list of models
#
return(mark.wrapper(cml,data=dipper.processed,ddl=dipper.ddl))
}
dipper.results=run.dipper()
Phi.estimates=model.average(dipper.results,"Phi",vcv=TRUE)
p.estimates=model.average(dipper.results,"p",vcv=TRUE)
run.dipper=function()
{
data(dipper)
dipper$nsex=as.numeric(dipper$sex)-1
#NOTE: This generates random valules for the weights so the answers using
~weight will vary
dipper$weight=rnorm(294)
mod1=mark(dipper,groups="sex",

model.parameters=list(Phi=list(formula=~sex+weight)))

120 model.table

mod2=mark(dipper,groups="sex",
model.parameters=list(Phi=list(formula=~sex)))

mod3=mark(dipper,groups="sex",
model.parameters=list(Phi=list(formula=~weight)))

mod4=mark(dipper,groups="sex",
model.parameters=list(Phi=list(formula=~1)))

dipper.list=collect.models()
return(dipper.list)
}
dipper.results=run.dipper()
real.averages=model.average(dipper.results,vcv=TRUE)
get model averaged estimates for all parameters and use average
covariate values in models with covariates
real.averages$estimates
get model averaged estimates for Phi using a value of 2 for weight
model.average(dipper.results,"Phi",

data=data.frame(weight=2),vcv=FALSE)
what you can't do yet is use different covariate values for
different groups to get covariances of estimates based on different
covariate values; for example, you can get average survival of females
at average female weight and average survival of males at average
male weight in separate calls to model.average but not in the same call
to get covariances; however, if you standardized weight by group
(ie stdwt = weight - groupmean) then using 0 for the covariate value would give
the model averaged Phi by group at the average group weights and its
covariance. You can do the above for
a single model with find.covariates/fill.covariates.
get model averaged estimates of first Phi(1) and first p(43) and v-c matrix
model.average(dipper.results,vcv=TRUE,indices=c(1,43))

model.table Create table of MARK model selection results

Description

Constructs a table of model selection results for MARK analyses. The table includes the formu-
las, model name, number of parameters, deviance, AICc, DeltaAICc, model weight and residual
deviance. If chat>1 QAICc, QDeltaAICc and QDeviance are used instead.

Usage

model.table(model.list = NULL, type = NULL, sort = TRUE,
adjust = TRUE, ignore = TRUE, pf = 1, use.lnl = FALSE,
use.AIC = FALSE, model.name = TRUE)

model.table 121

Arguments

model.list a vector of model names or a list created by the function collect.models which
has each model object and at the end a model.table ; If nothing is specified then
any mark object in the workspace is collected for the table. If type is specified
all analyses in parent frame(pf) of that type of model are used. If specified set
of models are of conflicting types or of different data sets then an error is issued
unless ignore=TRUE

type type of model (eg "CJS")

sort if true sorts models by criterion

adjust if TRUE adjusts # of parameters to # of cols in design matrix

ignore if TRUE collects all models and ignores that they are from different models

pf parent frame value; default=1 so it looks in calling frame of model.table; used
in other functions with pf=2 when functions are nested two-deep

use.lnl display -2lnl instead of deviance

use.AIC use AIC instead of AICc

model.name if TRUE uses the model.name in each mark object which uses formula notation.
If FALSE it uses the R names for the model obtained from collect.model.names
or names assigned to marklist elements

Details

This function is used by collect.models to construct a table of model selection results with the
models that it collects; however it can be called directly to construct the table.

Value

result.table - dataframe containing summary of models

model.name name of fitted model
parameter.name - an entry for each parameter

formula for parameter

npar number of estimated parameters

AICc or QAICc AICc value or QAICc if chat>1
DeltaAICc or DeltaQAICc

difference between AICc or QAICc value from model with smallest value

weight model weight based on exp(-.5*DeltaAICc) or exp(-.5*QDeltaAICc)
Deviance or QDeviance

residual deviance from saturated model

chat overdispersion constant if not 1

Author(s)

Jeff Laake

122 model.table

See Also

collect.model.names, collect.models

Examples

This example is excluded from testing to reduce package check time
data(dipper)
run.dipper=function()
{
#
Process data
#
dipper.processed=process.data(dipper,groups=("sex"))
#
Create default design data
#
dipper.ddl=make.design.data(dipper.processed)
#
Add Flood covariates for Phi and p that have different values
#
dipper.ddlPhiFlood=0
dipper.ddlPhiFlood[dipper.ddlPhitime==2 | dipper.ddlPhitime==3]=1
dipper.ddlpFlood=0
dipper.ddlpFlood[dipper.ddlptime==3]=1
#
Define range of models for Phi
#
Phi.dot=list(formula=~1)
Phi.time=list(formula=~time)
Phi.sex=list(formula=~sex)
Phi.sextime=list(formula=~sex+time)
Phi.sex.time=list(formula=~sex*time)
Phi.Flood=list(formula=~Flood)
#
Define range of models for p
#
p.dot=list(formula=~1)
p.time=list(formula=~time)
p.sex=list(formula=~sex)
p.sextime=list(formula=~sex+time)
p.sex.time=list(formula=~sex*time)
p.Flood=list(formula=~Flood)
#
Return model table and list of models
#
cml=create.model.list("CJS")
return(mark.wrapper(cml,data=dipper.processed,ddl=dipper.ddl))
}

dipper.results=run.dipper()
dipper.results

mstrata 123

dipper.results$model.table=model.table(dipper.results,model.name=FALSE)
dipper.results
#
Compute matrices of model weights, number of parameters and Delta AICc values
#
model.weight.matrix=tapply(dipper.results$model.table$weight,
list(dipper.results$model.table$Phi,dipper.results$model.table$p),mean)

model.npar.matrix=tapply(dipper.results$model.table$npar,
list(dipper.results$model.table$Phi,dipper.results$model.table$p),mean)

model.DeltaAICc.matrix=tapply(dipper.results$model.table$DeltaAICc,
list(dipper.results$model.table$p,dipper.results$model.table$Phi),mean)

#
Output DeltaAICc as a tab-delimited text file that can be read into Excel
(to do that directly use RODBC or xlsreadwrite package for R)
#
write.table(model.DeltaAICc.matrix,"DipperDeltaAICc.txt",sep="\t")

mstrata Multistrata example data

Description

An example data set which appears to be simulated data that accompanies MARK as an example
analysis using the Multistrata model.

Format

A data frame with 255 observations on the following 2 variables.

ch a character vector containing the encounter history of each bird with strata

freq the number of birds with that capture history

Details

This is a data set that accompanies program MARK as an example for the Multistrata model. The
models created by RMark are all "Parm-specific" models by default. The sin link is not allowed
because all models are specified via the design matrix. Although you can set links for the param-
eters, usually the default values are preferable. See make.mark.model for additional help building
formula for Psi using the remove.intercept argument.

Examples

This example is excluded from testing to reduce package check time
data(mstrata)
run.mstrata=function()
{
#

124 mstrata

Process data
#
mstrata.processed=process.data(mstrata,model="Multistrata")
#
Create default design data
#
mstrata.ddl=make.design.data(mstrata.processed)
#
Define range of models for S; note that the betas will differ from the output
in MARK for the ~stratum = S(s) because the design matrix is defined using
treatment contrasts for factors so the intercept is stratum A and the other
two estimates represent the amount that survival for B abd C differ from A.
You can use force the approach used in MARK with the formula ~-1+stratum which
creates 3 separate Betas - one for A,B and C.
#
S.stratum=list(formula=~stratum)
S.stratumxtime=list(formula=~stratum*time)
#
Define range of models for p
#
p.stratum=list(formula=~stratum)
#
Define range of models for Psi; what is denoted as s for Psi
in the Mark example for Psi is accomplished by -1+stratum:tostratum which
nests tostratum within stratum. Likewise, to get s*t as noted in MARK you
want ~-1+stratum:tostratum:time with time nested in tostratum nested in
stratum.
#
Psi.s=list(formula=~-1+stratum:tostratum)
#
Create model list and run assortment of models
#
model.list=create.model.list("Multistrata")
#
Add on specific model that is paired with fixed p's to remove confounding
#
p.stratumxtime=list(formula=~stratum*time)
p.stratumxtime.fixed=list(formula=~stratum*time,fixed=list(time=4,value=1))
model.list=rbind(model.list,c(S="S.stratumxtime",p="p.stratumxtime.fixed",

Psi="Psi.s"))
#
Run the list of models
#
mstrata.results=mark.wrapper(model.list,data=mstrata.processed,ddl=mstrata.ddl,threads=2)
#
Return model table and list of models
#
return(mstrata.results)
}
mstrata.results=run.mstrata()
mstrata.results

Example of reverse Multistratum model

MStruncate 125

data(mstrata)
mod=mark(mstrata,model="Multistrata")
mod.rev=mark(mstrata,model="Multistrata",reverse=TRUE)
Psilist=get.real(mod,"Psi",vcv=TRUE)
Psilist.rev=get.real(mod.rev,"Psi",vcv=TRUE)
Psivalues=Psilist$estimates
Psivalues.rev=Psilist.rev$estimates
TransitionMatrix(Psivalues[Psivalues$time==1,])
TransitionMatrix(Psivalues.rev[Psivalues.rev$occ==1,])

MStruncate Truncate capture histories for multi-state models

Description

Decompose full capture history to releases followed by k recapture occasions. If a recapture occa-
sion occurs before k occasions, the capture history is finished at the first recapture and right padded
with "." which effectively acts like a loss on capture. The recapture is then a new release and new
capture history. If there are no recaptures within k occasions, it has a release followed by k 0’s. If
the release is such that adding k occasions is greater than the length of the original capture history,
then the new history is left padded with 0’s. Capture histories that end with a capture on the last
occasion do not generate a new capture history because there are no possible recaptures and thus
contain no information in a CJS format MS model. All freq and covariates are copied with newly
generated truncated capture histories.

Usage

MStruncate(data, k = 5)

Arguments

data dataframe containing at least one character field named ch; can also contain
frequency in numeric field freq and any other covariates.

k number of recapture occasions after release; new capture histories are of length
k+1

Value

dataframe with field ch and freq (default to 1) and any covariates included in argument data; it
also contains a factor variable release which is the first occasion which should be used as a group
variable so the begin.time can be set for each release cohort to maintain the original times, as shown
in the example.

126 MS_popan

Examples

data(mstrata)
df=MStruncate(mstrata,k=2)
dp=process.data(df,model="Multistrata",groups=c("release"),begin.time=1:max(as.numeric(df$release)))
ddl=make.design.data(dp)
table(ddlSrelease,ddlStime)
table(ddlprelease,ddlptime)

MS_popan Convert Multistate data for POPAN-style abundance estimation

Description

Converts data and optionally creates and structures design data list such that population size can be
derived with multistate data. Variance estimate is questionable.

Usage

MS_popan(x, augment_num = 100, augment_stratum = "A",
enter_stratum = "B", strata = NULL, begin.time = 1,
groups = NULL, ddl = FALSE, time.intervals = NULL)

Arguments

x an RMark dataframe

augment_num the number to add with a capture history of all 0s; this is the expected number
that were in the population and not ever seen

augment_stratum

the single character to represent outside of the population; use a value not used
in the data capture history

enter_stratum the single character to represent inside of the population but not yet entered; use
a value not used in the data capture history

strata vector of single characters for observed and unobserved states

begin.time beginning time of observed occasions; two occasions are added to the fron of
the capture history at times begin.time-1 and begin.time-2

groups vector of character variable names of factor variables to use for grouping

ddl if TRUE, will return processed data and a design data list with the appropriate
fixed parameters.

time.intervals intervals of time between observed occasions

Author(s)

Jeff Laake

NicholsMSOccupancy 127

Examples

data(dipper)
popan_N=summary(mark(dipper,model="POPAN",

model.parameters=list(pent=list(formula=~time))),se=TRUE)$reals$N
data.list=MS_popan(dipper,ddl=TRUE,augment_num=30)
modMS=mark(data.list$data,data.list$ddl,

model.parameters=list(Psi=list(formula=~B:toB:time)),brief=TRUE)
Psi_estimates=summary(modMS,se=TRUE)$reals$Psi
Nhat_MS=Psi_estimates$estimate[1]*sum(abs(data.list$data$data$freq))
se_Nhat_MS=Psi_estimates$se[1]*Nhat_MS
cat("Popan N = ",popan_N$estimate," (se = ",popan_N$se,")\n")
cat("MS N = ",Nhat_MS," (se = ",se_Nhat_MS,")\n")

NicholsMSOccupancy Multi-state occupancy example data

Description

An occupancy data set for modelling multi-state data (0,1,2).

Format

A data frame with 40 records for 54 observations (sites) on the following 2 variables.

ch a character vector containing the presence (state 1), presence (state 2), and absence (0) for each
visit to the site, and a "." if the site was not visited

freq frequency of sites with that history

Details

This is a data set from Nichols et al (2007).

References

Nichols, J. D., J. E. Hines, D. I. MacKenzie, M. E. Seamans, and R. J. Gutierrez. 2007. Occupancy
estimation and modeling with multiple states and state uncertainty. Ecology 88:1395-1400.

Examples

This example is excluded from testing to reduce package check time
To create the data file use:
NicholsMSOccupancy=convert.inp("NicholsMSOccupancy.inp")
#
Create a function to fit the 12 models in Nichols et al (2007).
do.MSOccupancy=function()

128 NSpeciesOcc

{
Get the data

data(NicholsMSOccupancy)
Define the models; default of Psi1=~1 and Psi2=~1 is assumed

p varies by time but p1t=p2t
p1.p2equal.by.time=list(formula=~time,share=TRUE)
time-invariant p p1t=p2t=p1=p2
p1.p2equal.dot=list(formula=~1,share=TRUE)
#time-invariant p1 not = p2
p1.p2.different.dot=list(p1=list(formula=~1,share=FALSE),p2=list(formula=~1))
time-varying p1t and p2t
p1.p2.different.time=list(p1=list(formula=~time,share=FALSE),p2=list(formula=~time))
delta2 model with one rate for times 1-2 and another for times 3-5;
#delta2 defined below
Delta.delta2=list(formula=~delta2)
Delta.dot=list(formula=~1) # constant delta
Delta.time=list(formula=~time) # time-varying delta

Process the data for the MSOccupancy model
NicholsMS.proc=process.data(NicholsMSOccupancy,model="MSOccupancy")

Create the default design data
NicholsMS.ddl=make.design.data(NicholsMS.proc)

Add a field for the Delta design data called delta2. It is a factor variable
with 2 levels: times 1-2, and times 3-5.

NicholsMS.ddl=add.design.data(NicholsMS.proc,NicholsMS.ddl,"Delta",
type="time",bins=c(0,2,5),name="delta2")

Create a list using the 4 p modls and 3 delta models (12 models total)
cml=create.model.list("MSOccupancy")

Fit each model in the list and return the results
return(mark.wrapper(cml,data=NicholsMS.proc,ddl=NicholsMS.ddl))

}
Call the function to fit the models and store it in MSOccupancy.results
MSOccupancy.results=do.MSOccupancy()
Print the model table for the results
print(MSOccupancy.results)
Adjust model selection by setting chat=1.74
MSOccupancy.results=adjust.chat(chat=1.74,MSOccupancy.results)
Print the adjusted model selection results table
print(MSOccupancy.results)
#
To fit an additive model whereby p1 and p2 differ by time and p2 differs from
p1 a constant amount on the logit scale, use
#
p varies by time logit(p1t)=logit(p2t)+constant
p1.plust.p2.by.time=list(formula=~time+p2,share=TRUE)

NSpeciesOcc Multiple Species Occupancy

Description

Example expected value data generated by Gary White for testing.

Paradise_shelduck 129

Format

A data frame with 32 observations of 2 variables

ch a character vector containing the capture history (each is 2 character positions) for 4 occasions
with 5 species

freq capture history frequency

Author(s)

Jeff Laake

Examples

read in expected value data from Gary White
data("NSpeciesOcc")
process data and specify number of species=5 in the mixtures argument
dp=process.data(NSpeciesOcc,model="NSpeciesOcc",mixtures=5)
make design data and fit model used to generate the data
ddl=make.design.data(dp)
model=mark(dp,ddl,model.parameters=list(f=list(formula=~-1+mixture,link="sin"),
p=list(formula=~1,link="sin")))

Paradise_shelduck Mulstistate Live-Dead Paradise Shelduck Data

Description

Paradise shelduck recapture and recovery data in multistrata provided by Richard Barker and Gary
White.

Format

A data frame with 1704 observations of 3 variables

ch a character vector containing the capture history (each is 2 character positions LD) for 6 occa-
sions

freq capture history frequency

sex Male or Female

Author(s)

Jeff Laake

130 Paradise_shelduck

References

Barker, R.J, White,G.C, and M. McDougall. 2005. MOVEMENT OF PARADISE SHELDUCK
BETWEEN MOLT SITES: A JOINT MULTISTATE-DEAD RECOVERY MARK–RECAPTURE
MODEL. JOURNAL OF WILDLIFE MANAGEMENT 69(3):1194–1201.

Examples

In the referenced article, there are 3 observable strata (A,B,C) and
3 unobservable strata (D,E,F). This example is setup by default to use only
the 3 observable strata to avoid problems with multiple modes in the likelihood.
Code that uses all 6 strata are provided but commented out. With unobservable strata,
simulated annealing should be used (options="SIMANNEAL")
data("Paradise_shelduck")
change sex reference level to Male to match design matrix used in MARK
ps$sex=relevel(ps$sex,"Male")
Process data with MSLiveDead model using sex groups and specify only observable strata
ps_dp=process.data(ps,model="MSLiveDead",groups="sex",strata.labels=c("A","B","C"))
Process data with MSLiveDead model using sex groups and
specify observable and unboservable strata
ps_dp=process.data(ps,model="MSLiveDead",groups="sex",
strata.labels=c("A","B","C","D","E","F"))
Make design data and specify constant PIM for Psi to reduce parameter space. No time variation
allowed in Psi in the article.
ddl=make.design.data(ps_dp,parameters=list(Psi=list(pim.type="constant")))
Fix p to 0 for unobservable strata (only needed if they are included)
ddlpfix=NA
ddlpfix[ddlpstratum%in%c("D","E","F")]=0
Fix p to 0 for last occasion
ddlpfix[ddlptime==6]=0.0
Fix survival to 0.5 for last interval to match MARK file (to avoid confounding)
ddlSfix=NA
ddlSfix[ddlStime==6]=0.5
create site variable for survival which matches A with D, B with E and C with F
ddlSsite="A"
ddlSsite[ddlSstratum%in%c("B","C")]=as.character(ddlSstratum[ddlSstratum%in%c("B","C")])
ddlSsite[ddlSstratum%in%c("E")]="B"
ddlSsite[ddlSstratum%in%c("F")]="C"
ddlSsite=as.factor(ddlSsite)
create same site variable for recovery probability (r)
ddlrsite="A"
ddlrsite[ddlrstratum%in%c("B","C")]=as.character(ddlrstratum[ddlrstratum%in%c("B","C")])
ddlrsite[ddlrstratum%in%c("E")]="B"
ddlrsite[ddlrstratum%in%c("F")]="C"
ddlrsite=as.factor(ddlrsite)
Specify formula used in MARK model
S.1=list(formula=~-1+sex+time+site)
p.1=list(formula=~-1+stratum:time)
r.1=list(formula=~-1+time+sex+site)
Psi.1=list(formula=~-1+stratum:tostratum)
Run top model from paper but only for observable strata
top_model=mark(ps_dp,ddl,model.parameters=list(S=S.1,p=p.1,r=r.1,Psi=Psi.1))

PIMS 131

Run top model from paper for all strata using simulated annealing (commented out)
#top_model=mark(ps_dp,ddl,model.parameters=list(S=S.1,p=p.1,r=r.1,Psi=Psi.1),
options="SIMANNEAL")

PIMS Display PIM for a parameter

Description

Extract PIMS for a particular parameter and display either the full PIM structure or the simplified
PIM structure.

Usage

PIMS(model, parameter, simplified = TRUE, use.labels = TRUE)

Arguments

model mark model object

parameter character string of a particular type of parameter in the model (eg "p","Phi","pent","S")

simplified if TRUE show simplified PIM structure; otherwise show full structure

use.labels if TRUE, uses time and cohort labels for columns and rows respectively

Value

None

Author(s)

Jeff Laake

See Also

make.design.data

Examples

This example is excluded from testing to reduce package check time
data(dipper)
results=mark(dipper)
PIMS(results,"Phi")
PIMS(results,"Phi",simplified=FALSE)

132 Poisson_twoMR

PoissonMR Example of Poisson Mark-Resight model

Description

Data and example illustrating Poisson Mark-Resight model.

Format

A data frame with 68 observations on the following 1 variables.

ch a character vector

Examples

This example is excluded from testing to reduce package check time
data(PoissonMR)
pois.proc=process.data(PoissonMR,model="PoissonMR",
counts=list("Unmarked Seen"=c(1380, 1120, 1041, 948),

"Marked Unidentified"=c(8,10,9,11),
"Known Marks"=c(45,67,0,0)))
pois.ddl=make.design.data(pois.proc)
mod=mark(pois.proc,pois.ddl,
model.parameters=list(Phi=list(formula=~1,link="sin"),

GammaDoublePrime=list(formula=~1,share=TRUE,link="sin"),
alpha=list(formula=~-1+time,link="log"),

U=list(formula=~-1+time,link="log"),
sigma=list(formula=~-1+time,link="log")),

initial=c(1,1,1,1,-1.4,-.8,-.9,-.6,6,6,6,6,2,-1),threads=2)
summary(mod)

Poisson_twoMR Example of Poisson Mark-Resight model

Description

Data and example illustrating Poisson Mark-Resight model with 2 groups and one occasion.

Format

A data frame with 93 observations on the following 2 variables.

ch a character vector

pg a factor with levels group1 group2

popan.derived 133

Examples

This example is excluded from testing to reduce package check time
data(Poisson_twoMR)
pois.proc=process.data(Poisson_twoMR,model="PoissonMR",groups="pg",
counts=list("Unmarked Seen"=matrix(c(1237,588),nrow=2,ncol=1),

"Marked Unidentified"=matrix(c(10,5),nrow=2,ncol=1),
"Known Marks"=matrix(c(60,0),nrow=2,ncol=1)))
pois.ddl=make.design.data(pois.proc)
mod=mark(pois.proc,pois.ddl,
model.parameters=list(alpha=list(formula=~1),

U=list(formula=~-1+group),
sigma=list(formula=~1,fixed=0)),

initial=c(0.9741405 ,0.0000000 ,6., 5.),threads=2)
summary(mod)

popan.derived Computes some derived abundance estimates for POPAN models

Description

Computes estimates, standard errors, confidence intervals and var-cov matrix for population size
of each group at each occasion and the sum across groups by occasion for POPAN models. If a
marklist is provided the estimates are model averaged.

Usage

popan.derived(x,model,revised=TRUE,normal=TRUE,N=TRUE,NGross=TRUE,drop=FALSE)

popan.Nt(Phi,pent,Ns,vc,time.intervals)

popan.NGross(Phi,pent,Ns,vc,time.intervals)

Arguments

x processed data list resulting from process.data

model a single mark POPAN model or a marklist of POPAN models

revised if TRUE, uses revised version of model averaged standard error eq 6.12; other-
wise uses eq 4.9 of Burnham and Anderson (2002)

normal if TRUE, uses confidence interval based on normal distribution; otherwise, uses
log-normal

N if TRUE, will return abundance estimates by group and occasion and total by
occasion

NGross if TRUE, will return gross abundance estimate per group

drop if TRUE, models with any non-positive variance for betas are dropped

134 popan.derived

Phi interval-specific survival estimates for each group

pent occasion-specific prob of entry estimates (first computed by subtraction) for
each group

Ns group specific super-population estimate

vc variance-covariance matrix of the real parameters

time.intervals vector of time interval values

Details

popan.derived computes all of the real parameters using covariate.predictions and handles
all of the computation using popan.Nt. Description for functions popan.Nt and popan.NGross are
given here for completeness but it is not intended that they be called directly.

If a model is a marklist of models, the values returned by popan.derived are model averaged
using model weights in the model.table; otherwise, it returns the values for the specified model.

Value

popan.derived returns a list with the following elements depending on the values of N and NGross:

N -
dataframe of estimates by group and occasion and se, lcl,ucl and
group/occasion data N.vcv - variance-covariance matrix of abundance
estimates in N Nbyocc - dataframe of estimates by occasion (summed across
groups) and se, lcl,ucl and occasion data Nbyocc.vcv - variance-covariance
matrix of abundance estimates in Nbyocc NGross - dataframe of gross
abundance estimates by group and se, lcl,and ucl NGross.vcv -
variance-covariance matrix of NGross abundance estimates

popan.Nt returns a list with the following elements:

N
- dataframe of estimates by group and occasion and se, lcl,ucl and
group/occasion data N.vcv - variance-covariance matrix of abundance
estimates in N

popan.NGross returns a list with the following elements:

NGross - vector of gross abundance estimates by group vcv -
variance-covariance matrix of abundance estimates in NGross

Author(s)

Jeff Laake

References

BURNHAM, K. P., AND D. R. ANDERSON. 2002. Model selection and multimodel inference. A
practical information-theoretic approach. Springer, New York.

predict_real 135

Examples

This example is excluded from testing to reduce package check time
Example
data(dipper)
dipper.processed=process.data(dipper,model="POPAN",groups="sex")
run.dipper.popan=function()
{
dipper.ddl=make.design.data(dipper.processed)
Phidot=list(formula=~1)
Phitime=list(formula=~time)
pdot=list(formula=~1)
ptime=list(formula=~time)
pentsex.time=list(formula=~time)
Nsex=list(formula=~sex)
#
Run assortment of models
#
dipper.phisex.time.psex.time.pentsex.time=mark(dipper.processed,

dipper.ddl,model.parameters=list(Phi=Phidot,p=ptime,
pent=pentsex.time,N=Nsex),invisible=FALSE,adjust=FALSE)

dipper.psex.time.pentsex.time=mark(dipper.processed,dipper.ddl,
model.parameters=list(Phi=Phitime,p=pdot,
pent=pentsex.time,N=Nsex),invisible=FALSE,adjust=FALSE)

#
Return model table and list of models
#
return(collect.models())
}
dipper.popan.results=run.dipper.popan()
popan.derived(dipper.processed,dipper.popan.results)

predict_real Compute estimates of real parameters with individual and design co-
variates

Description

Unlike covariate.predictions this function allows modification of design data covariates as well as
individual covariates for the computation of the real parameters. It does this by modifying values in
the design data, adding individual covariate values to the design data and then applying the model
formula to the modified design data to construct a design matrix that is used with the beta estimates
to construct the real parameter estimates.

Usage

predict_real(model, df, parameter, replicate = FALSE, beta = NULL,
data = NULL, se = TRUE, vcv = FALSE)

136 predict_real

Arguments

model MARK model object
df design dataframe subset
parameter names of the parameter
replicate if FALSE then number of rows in data must match the number of rows in df
beta estimates of beta parameters for real parameter computation
data dataframe with covariate values
se if TRUE returns std errors and confidence interval of real estimates
vcv logical; if TRUE, sets se=TRUE and returns v-c matrix of real estimates

Details

There are two restrictions. First,it only works with a single parameter type (eg Phi or p) whereas
covariate.predictions allows simultaneous estimation of multiple parameter types. Second, if the
row from df is a fixed parameter that will only be identified if it uses the fix parameter in the design
data. It will not work with the original approach of using index and fixed as arguments. This should
be a minor restrictioin because it doesn’t make sense to compute a range of real parameter values
for a fixed parameter.

The primary arguments are model which is a fitted mark model object and df which is one of the
design dataframes from the design data list (ddl) used to fit the model. The value of df can be
a subset of the original design dataframe but do NOT create an arbitrary dataframe for use as df
because if you don’t get the indices correct or you don’t construct the factor variables correctly, it
will likely fail or the results could be bogus.

The argument parameter is just the character name for the parameter ("Phi"). It is only used to
extract the correct formula from the fitted model.

The argument beta can provide values for the beta coefficients other than the fitted ones but if you
do so, don’t expect the variances to make sense as the beta.vcv is computed at the fitted values. The
default for beta is to use the fitted values so it need not be specified.

The argument data is a dataframe containing values for individual covariates or replacement values
for design data covariates. Do not replace values of factor variables which probably would not make
sense anyhow. If replicate=FALSE then the number of rows in df must match the number of rows
in data and the values in df are replaced (if design covariate) or added if an individual covariate. If
replicate=TRUE, then design data (df) is replicated for each row in data and the values in data are
computed for each one of the rows in df. Using replicate=TRUE would make sense in a case where
the value can differ for the index. For example, if one of the design covariates was temperature
then you might want to compute the values at a range of temperatures for a row in the design data
representing each age class in the data.

The arguments se and vcv control computation of the std errors and v-c matrix.

Value

A data frame (real) is returned if vcv=FALSE; otherwise, a list is returned also containing vcv.real:

real data frame containing estimates, and if se=TRUE or vcv=TRUE it also contains
standard errors and confidence intervals and notation of whether parameters are
fixed or at a boundary

print.mark 137

vcv.real variance-covariance matrix of real estimates

Author(s)

Jeff Laake

See Also

inverse.link,deriv_inverse.link

Examples

data(dipper)
dp=process.data(dipper)
ddl=make.design.data(dp)
model=mark(dp,ddl,model.parameters=list(Phi=list(formula=~Time)))
predict_real(model,ddl$Phi[1,,drop=FALSE],"Phi",replicate=TRUE,data=data.frame(Time=-12:12))

print.mark Print MARK objects

Description

Displays MARK output file or input file with MarkViewer (notepad.exe by default) so it can be
viewed.

Usage

S3 method for class 'mark'
print(x,...,input=FALSE)

Arguments

x mark model object; or list of mark model objects created with collect.models

... additional non-specified argument for S3 generic function
input if TRUE, prints mark input file; otherwise the output file

Details

If the model has been run (model$output exists) the output file stored in the directory as identified
by the basefile name (model$output) and the suffix ".out" is displayed with a call to MarkViewer.
If input is set to TRUE then the MARK input file is displayed instead. By default the MarkViewer
is notepad but any program can be used in its place that accepts the filename as the first argument.
For example setting MarkViewer="wp" will use wordperfect (wp.exe) as long as wp.exe is in the
search path. MarkViewer must be set during each R session, so it is best to include it in your .First
function to change it permanently. Since print.mark is the generic function to print mark objects
you can use it by just typing the name of a mark object at the R prompt and it will call print.mark.
For example, if mod is a mark object then typing mod is the same as print.mark(mod)

138 print.marklist

Value

None

Author(s)

Jeff Laake

See Also

summary.mark

print.marklist Print MARK list objects

Description

Displays the model.table if it exists. To display the output for a mark model contained in a list,
simply type the list value (e.g., typing mymarklist[[2]] will display output for the second model).
The function print.marklist was created to avoid accidental typing of the model list which would
call print.mark for each of the models.

Usage

S3 method for class 'marklist'
print(x,...)

Arguments

x mark model object; or list of mark model objects created with collect.models

... additional non-specified argument for S3 generic function

Details

If the model has been run (model$output exists) the output file stored in the directory as identified
by the basefile name (model$output) and the suffix ".out" is displayed with a call to MarkViewer.
If input is set to TRUE then the MARK input file is displayed instead. By default the MarkViewer
is notepad but any program can be used in its place that accepts the filename as the first argument.
For example setting MarkViewer="wp" will use wordperfect (wp.exe) as long as wp.exe is in the
search path. MarkViewer must be set during each R session, so it is best to include it in your .First
function to change it permanently. Since print.mark is the generic function to print mark objects
you can use it by just typing the name of a mark object at the R prompt and it will call print.mark.
For example, if mod is a mark object then typing mod is the same as print.mark(mod)

Value

None

print.summary.mark 139

Author(s)

Jeff Laake

See Also

summary.mark

print.summary.mark Prints summary of MARK model parameters and results

Description

Prints summary of MARK model parameters and results

Usage

S3 method for class 'summary.mark'
print(x,...)

Arguments

x list resulting from call to summary

... additional non-specified argument for S3 generic function

Value

None

Author(s)

Jeff Laake

See Also

summary.mark

140 process.ch

process.ch Process release-recapture history data

Description

Creates needed constructs from the release-recapture history.

Usage

process.ch(ch, freq = NULL, all = FALSE)

Arguments

ch Vector of character strings; each character string is composed of either a con-
stant length sequence of single characters (01001) or the character string can
be comma separated if more than a single character is used (1S,1W,0,2W). If
comma separated, each string must contain a constant number of elements.

freq Optional vector of frequencies for ch; if missing assumed to be a; if <0 indicates
a loss on capture

all FALSE is okay for cjs unless R code used to compute lnl instead of FORTRAN;
must be true for js because it returns additional quantities needed for entry prob.

Value

nocc number of capture occasions

freq absolute value of frequency for each ch

first vector of occasion numbers for first 1

last vector of occasion numbers for last 1

loc vector of indicators of a loss on capture if set to 1

chmat capture history matrix

FtoL 1’s from first (1) to last (1) and 0’s elsewhere; only if all==TRUE

Fplus 1’s from occasion after first (1) to nocc(last occasion); only if all==TRUE

Lplus 1’s from occasion after last (1) to nocc; only if all==TRUE

L 1’s from last (1) to nocc; only if all==TRUE

Author(s)

Jeff Laake

process.data 141

process.data Process encounter history dataframe for MARK analysis

Description

Prior to analyzing the data, this function initializes several variables (e.g., number of capture occa-
sions, time intervals) that are often specific to the capture-recapture model being fitted to the data.
It also is used to 1) define groups in the data that represent different levels of one or more factor
covariates (e.g., sex), 2) define time intervals between capture occasions (if not 1), and 3) create an
age structure for the data, if any.

Usage

process.data(data, begin.time = 1, model = "CJS", mixtures = 1,
groups = NULL, allgroups = FALSE, age.var = NULL,
initial.ages = c(0), age.unit = 1, time.intervals = NULL,
nocc = NULL, strata.labels = NULL, counts = NULL,
reverse = FALSE, areas = NULL, events = NULL)

Arguments

data A data frame with at least one field named ch which is the capture (encounter)
history stored as a character string. data can also have a field freq which is
the number of animals with that capture history. The default structure is freq=1
and it need not be included in the dataframe. data can also contain an arbitrary
number of covariates specific to animals with that capture history.

begin.time Time of first capture occasion or vector of times if different for each group

model Type of analysis model. See mark for a list of possible values for model

mixtures Number of mixtures in closed capture models with heterogeneity or number of
secondary samples for MultScalOcc/RDMultScalOcc model

groups Vector of factor variable names (in double quotes) in data that will be used to
create groups in the data. A group is created for each unique combination of the
levels of the factor variables in the list.

allgroups Logical variable; if TRUE, all groups are created from factors defined in groups
even if there are no observations in the group

age.var An index in vector groups for a variable (if any) for age

initial.ages A vector of initial ages that contains a value for each level of the age variable
groups[age.var]

age.unit Increment of age for each increment of time as defined by time.intervals

time.intervals Vector of lengths of time between capture occasions

nocc number of occasions for Nest type; either nocc or time.intervals must be speci-
fied

142 process.data

strata.labels vector of single character values used in capture history(ch) for ORDMS, CRDMS,
RDMSOccRepro, HidMarkov models; it can contain more values beyond what
is in ch for unobservable states except for RDMSOccRepro which is used to
specify strata ordering (eg 0 not-occupied, 1 occupied no repro, 2 occupied with
repro.

counts named list of numeric vectors (one group) or matrices (>1 group) containing
counts for mark-resight models

reverse if set to TRUE, will reverse timing of transition (Psi) and survival (S) in Multi-
stratum models

areas values of areas (1 per group) for Densitypc set of models

events vector of character events for Hidden Markov models

Details

For examples of data, see dipper,edwards.eberhardt,example.data. The structure of the en-
counter history and the analysis depends on the analysis model to some extent. Thus, it is nec-
essary to process a dataframe with the encounter history (ch) and a chosen model to define the
relevant values. For example, number of capture occasions (nocc) is automatically computed
based on the length of the encounter history (ch) in data; however, this is dependent on the
type of analysis model. For models such as "CJS", "Pradel" and others, it is simply the length
of ch. Whereas, for "Burnham" and "Barker" models,the encounter history contains both cap-
ture and resight/recovery values so nocc is one-half the length of ch. Likewise, the number of
time.intervals depends on the model. For models, such as "CJS", "Pradel" and others, the num-
ber of time.intervals is nocc-1; whereas, for capture&recovery(resight) models the number
of time.intervals is nocc. The default time interval is unit time (1) and if this is adequate,
the function will assign the appropriate length. A processed data frame can only be analyzed us-
ing the model that was specified. The model value is used by the functions make.design.data,
add.design.data, and make.mark.model to define the model structure as it relates to the data.
Thus, if the data are going to be analysed with different underlying models, create different pro-
cessed data sets with the model name as an extension. For example, dipper.cjs=process.data(dipper)
and dipper.popan=process.data(dipper,model="POPAN").

This function will report inconsistencies in the lengths of the capture history values and when invalid
entries are given in the capture history. For example, with the "CJS" model, the capture history
should only contain 0 and 1 whereas for "Barker" it can contain 0,1,2. For "Multistrata" models, the
code will automatically identify the number of strata and strata labels based on the unique alphabetic
codes used in the capture histories.

The argument begin.time specifies the time for the first capture occasion. This is used in cre-
ating the levels of the time factor variable in the design data and for labelling parameters. If the
begin.time varies by group, enter a vector of times with one for each group. Note that the time
values for survivals are based on the beginning of the survival interval and capture probabilities
are labeled based on the time of the capture occasion. Likewise, age labels for survival are the
ages at the beginning times of the intervals and for capture probabilities it is the age at the time of
capture/recapture.

groups is a vector of variable names that are contained in data. Each must be a factor variable.
A group is created for each unique combination of the levels of the factor variables. In the first
example given below groups=c("sex","age","region"). which creates groups defined by the
levels of sex, age and region. There should be 2(sexes)*3(ages)*4(regions)=24 groups but in

process.data 143

actuality there are only 16 in the data because there are only 2 age groups for each sex. Age group
1 and 2 for M and age groups 2 and 3 for F. This was done to demonstrate that the code will only
use groups that have 1 or more capture histories unless allgroups=TRUE.

The argument age.var=2 specifies that the second grouping variable in groups represents an age
variable. It could have been named something different than age. If a variable in groups is named
age then it is not necessary to specify age.var. initial.age specifies that the age at first capture
of the age levels is 0,1 and 2 while the age classes were designated as 1,2,3. The actual ages for the
age classes do not have to be sequential or ordered, but ordering will cause less confusion. Thus
levels 1,2,3 could represent initial ages of 0,4,6 or 6,0,4. The argument age.unit is the amount an
animal ages for each unit of time and the default is 1. The default for initial.age is 0 for each
group, in which case, age represents time since marking (first capture) rather than the actual age of
the animal.

Value

processed.data (a list with the following elements)

data original raw dataframe with group factor variable added if groups were defined

model type of analysis model (eg, "CJS", "Burnham", "Barker")

freq a dataframe of frequencies (same number of rows as data, number of columns
is the number of groups in the data. The column names are the group labels
representing the unique groups that have one or more capture histories.

nocc number of capture occasions

time.intervals length of time intervals between capture occasions

begin.time time of first capture occasion

age.unit increment of age for each increment of time

initial.ages an initial age for each group in the data; Note that this is not the original argu-
ment but is a vector with the initial age for each group. In the first example below
proc.example.data$initial.ages is a vector with 16 elements as follows 0
1 1 2 0 1 1 2 0 1 1 2 0 1 1 2

nstrata number of strata in Multistrata models

strata.labels vector of alphabetic characters used to identify strata in Multistrata models

group.covariates

factor covariates used to define groups

Author(s)

Jeff Laake

See Also

import.chdata, dipper, edwards.eberhardt, example.data

144 RDMultScalOcc

Examples

data(example.data)
proc.example.data=process.data(data=example.data,begin.time=1980,
groups=c("sex","age","region"),
age.var=2,initial.age=c(0,1,2))

data(dipper)
dipper.process=process.data(dipper)

RDMultScalOcc Multi-scale dynamic occupancy models in RMark

Description

Multi-scale dynamic occupancy models in RMark

Author(s)

Connor M. Wood, University of Wisconsin-Madison <cwood9 at wisc.edu>

Examples

Study design and data structure:
two sessions (i.e., seasons) and 346 sampling sites
up to three secondary sampling periods per season
up to three survey devices per sampling site

import the sample data, RDMultScalOcc.sampledata.csv
pathtodata=paste(path.package("RMark"),"extdata",sep="/")
dt=read.csv(paste(pathtodata,"RDMultScalOcc.sampledata.csv",sep="/"))
dt[is.na(dt)]=0 # replace NAs with 0
dt$ch=as.character(dt$ch) # encounter histories (dt$ch) must be characters

note: habitat variables (amount of open forest and average slope) were collected at
two spatial scales
'sOpen' and 'sSlope' represent the entire sampling site
'pOpen##' and 'pSlope##' represent conditions relevant to individual devices
at each sampling period
the p-scale variables are coded [name][session][primary];
dt.ddlpprimary indicates how this should be entered
in this case the values for p$primary varied among devices and between sessions,
but were constant between secondary sampling periods

create the Process Data MARK object
dt.pr=process.data(dt,model="RDMultScalOcc",

time.intervals=c(0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0),mixtures=3)

RDOccupancy 145

note: time.intervals refers to seasons, not secondary sampling periods (K)
note: mixtures refers to the number of devices (L)

create the design data object
dt.ddl=make.design.data(dt.pr)

fit.models=function()
{
Models for p
p.open=list(formula=~sOpen)
p.popen=list(formula=~pOpen)
p.slope=list(formula=~sSlope)
p.pslope=list(formula=~pSlope)
Models for Psi
Psi.open=list(formula=~sOpen)
Psi.Slope=list(formula=~sSlope)
#Model for Gamma
Gamma.open=list(formula=~sOpen)
Model for Epsilon
Epsilon.slope=list(formula=~sSlope)
Model for Theta
note: 'time' is defined in dt.ddl$Theta (use str(dt) to see all predefined variables)
Theta.time=list(formula=~time)
create all combinations of these sub-models
cml=create.model.list("RDMultScalOcc")
results=mark.wrapper(cml,data=dt.pr,ddl=dt.ddl,output=FALSE)
return(results)
}
fit model collections and view models sorted by AICc
fit.models()

RDOccupancy Robust Design occupancy example data

Description

A simulated data set on a breeding bird as an example of robust design occupancy modeling.

Format

A data frame with 35 observations on the following 12 variables

ch A character vector containing the presence (1) and absence (0) or (.) not visited for each of 3
visits (secondary occasions) over 3 years (primary occasions)

cover percentage canopy cover at each sampled habitat

occ11 one of 9 session-dependent variables occ11 to occ33 containing the week the survey was
conducted; p is the primary session number and s is the secondary session number

146 RDOccupancy

occ12 one of 9 session-dependent variables occ11 to occ33 containing the week the survey was
conducted; p is the primary session number and s is the secondary session number

occ13 one of 9 session-dependent variables occ11 to occ33 containing the week the survey was
conducted; p is the primary session number and s is the secondary session number

occ21 one of 9 session-dependent variables occ11 to occ33 containing the week the survey was
conducted; p is the primary session number and s is the secondary session number

occ22 one of 9 session-dependent variables occ11 to occ33 containing the week the survey was
conducted; p is the primary session number and s is the secondary session number

occ23 one of 9 session-dependent variables occ11 to occ33 containing the week the survey was
conducted; p is the primary session number and s is the secondary session number

occ31 one of 9 session-dependent variables occ11 to occ33 containing the week the survey was
conducted; p is the primary session number and s is the secondary session number

occ32 one of 9 session-dependent variables occ11 to occ33 containing the week the survey was
conducted; p is the primary session number and s is the secondary session number

occ33 one of 9 session-dependent variables occ11 to occ33 containing the week the survey was
conducted; p is the primary session number and s is the secondary session number

samplearea continuous variable indicating area size (ha) of the sampled habitat

Details

These are simulated data for an imaginary situation with 35 independent ’sites’ on which pres-
ence/absence of a breeding bird is recorded 3 times annually for 3 years. Potential variables influ-
encing site occupancy are the size of the site in hectares (samplearea) and canopy cover percentage
(cover). The timing of the surveys within the year is thought to influence the detection of occu-
pancy, so the week the survey was conducted is included in 9 variables that are named as occps
where p is the primary session (year) number and s is the secondary session (visit) number. Using
data(RDOccupancy) will retrieve the completed dataframe and using example(RDOccpancy) will
run the example code. However, in this example we also show how to import the raw data and how
they were modified to construct the RDOccupancy dataframe.

For this example, the raw data are shown below and the code below assumes the file is named
RD_example.txt.

ch samplearea cover occ11 occ12 occ13 occ21 occ22 occ23 occ31
occ32 occ33 11011.100 12 0.99 1 5 6 2 4 . 1 5 8 000110100 9 0.64 4 5 8 1 2 7
2 5 9 10.100110 9 0.21 1 2 . 1 5 8 2 3 6 110000100 8 0.54 2 5 9 5 8 11 2 5 8
111101100 15 0.37 1 3 5 6 8 9 5 7 12 11..11100 10 0.04 1 2 . . 2 3 5 8 14
100000100 17 0.58 2 3 8 5 6 7 2 . 9 100110000 9 0.38 5 8 14 1 2 8 5 8 16
1001.0100 6 0.25 4 6 8 1 . 3 1 5 6 1.110000. 17 0.34 1 . 4 3 5 9 4 5 .
111100000 3 0.23 1 2 3 4 5 6 7 8 9 000000000 15 0.87 1 2 8 2 5 6 3 7 11
1111.0010 8 0.18 1 2 4 1 . 3 2 3 . 10011011 . 7 0.72 2 4 5 2 6 7 1 2 .
110001010 14 0.49 2 5 6 4 8 9 11 12 13 101.10100 13 0.31 1 2 3 . 2 5 1 4 6
100000010 10 0.6 1 5 7 8 9 10 5 8 9 010100010 12 0.67 1 4 5 2 6 8 3 4 7
110.01110 11 0.71 1 2 3 . 4 6 1 2 7 10.11.100 10 0.26 1 2 . 1 2 . 1 5 6
110100.10 9 0.56 1 4 7 2 3 4 . 2 7 010000000 10 0.16 1 5 7 8 9 11 6 7 8
000000.00 10 0.46 1 2 5 2 5 8 . 3 4 1.0000100 12 0.69 2 . 4 5 7 9 1 2 4
100010000 11 0.42 1 2 3 4 5 6 7 8 9 000000000 12 0.42 2 5 6 5 8 9 1 3 4

RDOccupancy 147

0.1100110 8 0.72 1 . 5 2 5 8 1 5 7 11.100100 11 0.51 1 5 . 1 2 4 4 5 6
000000000 11 0.37 1 2 3 4 5 6 7 8 9 001100111 12 0.54 1 2 3 1 2 3 1 2 3
10.1.1100 9 0.37 1 2 . 3 . 5 1 6 8 000000000 7 0.38 1 5 7 6 8 11 1 9 14
1011.0100 8 0.35 1 5 7 2 . 5 1 3 4 100110000 9 0.86 1 2 4 2 3 6 1 2 4
11.100111 8 0.57 1 5 . 2 6 7 1 3 5

The data could be read into a dataframe with code as follows:

RDOccupancy<-read.table("RD_example.txt",
colClasses=c("character", rep("numeric",2), rep("character", 9)),
header=TRUE)

Note that if the file was not in the same working directory as your workspace (.RData) then you
can set the working directory to the directory containing the file by using the following command
before the read.table.

setwd(your working directory location here)

In the data file "." represents a site that was not visited on an occasion. Those "." values are read in
fine because ch is read in as a character string. However, "." has also been used in the file in place
of numeric values of the occ variable. Because "." is not numeric, R will coerce the input value to
an NA value for each "." and will treat the column they are in as a factor. Thus, the "NA" will not be
a valid numeric value for MARK, so we need to change it to a number. To avoid the coercion, the
occ values were read in as characters and the following code changes all "." to "0" and then coverts
the fields to numeric values:

for (i in 4:12) { RDOccupancy[RDOccupancy[,i]==".",i]="0"
RDOccupancy[,i]=as.numeric(RDOccupancy[,i]) }

It is fine to use zero (or any numeric value) in place of missing values for session-dependent co-
variates as the "0’s" provide no information for modeling as they are tied to un-sampled occasions.
However, all values of a site-specific covariate (e.g., cover) are used, so there cannot be any missing
values. Note, however that use of "0’s" in the time-dependent covariates will influence predictions
output by MARK for that parameter, as they will be biased low due to the zero’s being included in
estimating the mean for that parameter.

The code below and associated comments provide a self contained example for importing, setting
up, and evaluating the any of the general robust design type models (RDOccupEG, RDOccupPE,
RDOccupPG) using RMARK. Unlike standard occupancy designs, robust designs require the user
to designate primary and secondary occasions using the argument time.intervals. For this exam-
ple, we have 3 primary occasions (year) with 3 secondary sampling occasions within each year, thus,
we would set our time.intervals as follows to represent 0 interval between secondary occasions
and interval of 1 (years in this case) between primary occasions:

time.intervals=c(0,0,1,0,0,1,0,0)

The first 0 designates the interval between the first and second sampling occasion in year 1, the
second 0 designates the interval between the second and third sampling occasion in year 1, and the
1 indicated the change from primary period 1 to primary period 2. See process.data for more
information on the use of time.intervals.

148 RDOccupancy

Author(s)

Bret Collier

Examples

This example is excluded from testing to reduce package check time
data(RDOccupancy)
#
Example of epsilon=1-gamma
test_proc=process.data(RDOccupancy,model="RDOccupEG",time.intervals=c(0,0,1,0,0,1,0,0))
test_ddl=make.design.data(test_proc)
test_ddl$Epsilon$eps=-1
test_ddl$Gamma$eps=1
p.dot=list(formula=~1)
Epsilon.random.shared=list(formula=~-1+eps, share=TRUE)
model=mark(test_proc,test_ddl,model.parameters=list(Epsilon=Epsilon.random.shared, p=p.dot))
#
A self-contained function for evaluating a set of user-defined candidate models
run.RDExample=function()
{
Creating list of potential predictor variables for Psi

Psi.area=list(formula=~samplearea)
Psi.cover=list(formula=~cover)
Psi.areabycover=list(formula=~samplearea*cover)
Psi.dot=list(formula=~1)
Psi.time=list(formula=~time)

Creating list of potential predictor variables for p
When coding formula with session-dependent (primary or secondary)
covariates, you do NOT have to include the session identifiers (
the ps of occps) in the model formula. You only need to specify ~occ.
The variable suffix can be primary occasion numbers or
primary and secondary occasion numbers.

p.dot=list(formula=~1)
p.occ=list(formula=~occ)
p.area=list(formula=~sample.area)
p.coverbyocc=list(formula=~occ*cover)

Creating list of potential predictor variables for Gamma
and/or Epsilon (depending on which RDOccupXX Parameterization is used)

gam.area=list(formula=~samplearea)
epsilon.area=list(formula=~samplearea)
gam.dot=list(formula=~1)
epsilon.dot=list(formula=~1)

setting time intervals for 3 primary sessions with
secondary session length of 3,3,3

RDOccupancy 149

time_intervals=c(0,0,1,0,0,1,0,0)

Initial data processing for RMARK RDOccupPG
(see RMARK appendix C-3 for list of RDOccupXX model paramterizations)

RD_process=process.data(RDOccupancy, model="RDOccupPG",
time.intervals=time_intervals)
RD_ddl=make.design.data(RD_process)
Candidate model list
1. Occupancy, detection, and colonization are constant

model.p.dot.Psi.dot.gam.dot<-mark(RD_process, RD_ddl,
model.parameters=list(p=p.dot, Psi=Psi.dot, Gamma=gam.dot),
invisible=TRUE)

2. Occupancy varies by time, detection is constant,
colonization is constant

model.p.dot.Psi.time.gam.dot<-mark(RD_process, RD_ddl,
model.parameters=list(p=p.dot, Psi=Psi.time, Gamma=gam.dot),
invisible=TRUE)

3. Occupancy varies by area, detection is constant,
colonization varies by area

model.p.dot.Psi.area.gam.area<-mark(RD_process,
RD_ddl, model.parameters=list(p=p.dot, Psi=Psi.area,
Gamma=gam.area), invisible=TRUE)

4. Occupancy varies by cover, detection is constant,
colonization varies by area

model.p.dot.Psi.cover.gam.area<-mark(RD_process, RD_ddl,
model.parameters=list(p=p.dot, Psi=Psi.cover, Gamma=gam.area),
invisible=TRUE)

5. Occupancy is constant, detection is session dependent,
colonization is constant

model.p.occ.Psi.dot.gam.dot<-mark(RD_process, RD_ddl,
model.parameters=list(p=p.occ, Psi=Psi.dot, Gamma=gam.dot),
invisible=TRUE)

6. Occupancy varied by area, detection is session
dependent, colonization is constant
model.p.occ.Psi.area.gam.dot<-mark(RD_process, RD_ddl,
model.parameters=list(p=p.occ, Psi=Psi.area, Gamma=gam.dot),
invisible=TRUE)
#
Return model table and list of models
#
return(collect.models())

150 RDOccupancy

}
This runs the 6 models above-Note that if you use
invisible=FALSE in the above model calls
then the mark.exe prompt screen will show as each model is run.

robustexample<-run.RDExample() #This runs the 6 models above

Outputting model selection results
robustexample # This will print selection results
options(width=150) # Sets page width to 100 characters
sink("results.table.txt") # Captures screen output to file

Remove comment to see output
#print(robustexample) # Sends output to file
sink() # Returns output to screen
#
Allows you to view results in notepad;remove # to see output
system("notepad results.table.txt", invisible=FALSE, wait=FALSE)

Examine the output for Model 1: Psi(.), p(.), Gamma(.)
Opens MARK results file in text editor
#robustexample$model.p.dot.Psi.dot.gam.dot

View beta estimates for specified model in R
robustexample$model.p.dot.Psi.dot.gam.dot$results$beta

View real estimates for specified model in R
robustexample$model.p.dot.Psi.dot.gam.dot$results$real

Examine the best fitting model which has a time-dependent
effect on detection
(Model 5: Psi(.), p(occ), Gamma(.))

View beta estimates for specified model in R
robustexample$model.p.occ.Psi.dot.gam.dot$results$beta

View real estimates for specified model in R
robustexample$model.p.occ.Psi.dot.gam.dot$results$real

View estimated variance/covariance matrix in R
robustexample$model.p.occ.Psi.dot.gam.dot$results$beta.vcv

View model averages estimates for session-dependent
detection probabilities
model.average(robustexample, "p", vcv=TRUE)

View model averaged estimate for Psi (Occupancy)
model.average(robustexample, "Psi", vcv=TRUE)

View model averaged estimate for Gamma (Colonization)
model.average(robustexample, "Gamma", vcv=TRUE)

RDSalamander 151

#
Compute real estimates across the range of covariates
for a specific model parameter using Model 6
#
Identify indices we are interested in predicting
see covariate.predictions for information on
index relationship to real parameters

summary.mark(robustexample$model.p.occ.Psi.area.gam.dot, se=TRUE)
Define data frame of covariates to be used for analysis

ha<-sort(RDOccupancy$samplearea)

Predict parameter of interest (Psi) across the
range of covariate data of interest

Psi.by.Area<-covariate.predictions(robustexample,
data=data.frame(samplearea=ha), indices=c(1))

View dataframe of real parameter estimates without var-cov
matrix printing (use str(Psi.by.Area) to evaluate structure))

Psi.by.Area[1]

#Create a simple plot using plot() and lines()

plot(Psi.by.Area$estimates$covdata, Psi.by.Area$estimates$estimate,
type="l", xlab="Patch Area", ylab="Occupancy", ylim=c(0,1))
lines(Psi.by.Area$estimates$covdata, Psi.by.Area$estimates$lcl, lty=2)
lines(Psi.by.Area$estimates$covdata, Psi.by.Area$estimates$ucl, lty=2)

For porting graphics directly to file, see pdf() or png(),

RDSalamander Robust design salamander occupancy data

Description

A robust design occupancy data set for modelling presence/absence data for salamanders.

Format

A data frame with 40 observations (sites) on the following 2 variables.

ch a character vector containing the presence (1) and absence (0) with 2 primary occasions with 48
and 31 visits to the site

freq frequency of sites (always 1)

152 read.mark.binary

Details

This is a data set that I got from Gary White which is suppose to be salamander data collected with
a robust design.

Examples

This example is excluded from testing to reduce package check time
fit.RDOccupancy=function()
{

data(RDSalamander)
occ.p.time.eg=mark(RDSalamander,model="RDOccupEG",

time.intervals=c(rep(0,47),1,rep(0,30)),
model.parameters=list(p=list(formula=~session)),threads=2)

occ.p.time.pg=mark(RDSalamander,model="RDOccupPG",
time.intervals=c(rep(0,47),1,rep(0,30)),
model.parameters=list(Psi=list(formula=~time),
p=list(formula=~session)),threads=2)

occ.p.time.pe=mark(RDSalamander,model="RDOccupPE",
time.intervals=c(rep(0,47),1,rep(0,30)),
model.parameters=list(Psi=list(formula=~time),
p=list(formula=~session)),threads=2)

return(collect.models())
}
RDOcc=fit.RDOccupancy()
print(RDOcc)

read.mark.binary Reads binary file output from MARK and returns a list of the results

Description

Window and linux versions to read binary files created by MARK

Usage

read.mark.binary(filespec, derived_labels)

Arguments

filespec Filename specification for binary output file from MARK;named here as markxxx.vcv

derived_labels vector of labels for derived parameters; NULL if no derived parameters for
model

release.gof 153

Value

List of estimates, se, lcl, ucl and var-cov matrices for beta, real and derived estimates

beta Dataframe for beta parameters containing estimates, se, lcl, ucl

beta.vcv variance-covariance matrix for beta estimates

real Dataframe for real parameters containing estimates, se, lcl, ucl

real.vcv variance-covariance matrix for real estimates

derived Dataframe for derived parameters (if any) containing estimates, se, lcl, ucl

derived.vcv variance-covariance matrix for derived estimates (if any)

Author(s)

Jeff Laake

See Also

extract.mark.output

release.gof Runs RELEASE for goodness of fit test

Description

Creates input file for RELEASE with the specified data, runs RELEASE and extracts the summary
results for TEST2 and TEST3. Output file is named Releasennn.tmp where nnn is an increasing
numeric value to create a unique filename.

Usage

release.gof(data, invisible = TRUE, title = "Release-gof",
view = FALSE)

Arguments

data processed RMark data

invisible if TRUE, RELEASE run window is hidden from view

title title for output

view if TRUE, shows release output in a viewer window

Value

results: a dataframe giving chi-square, degrees of freedom and P value for TEST2, TEST3 and total
of tests

154 remove.mark

Author(s)

Jeff Laake

Examples

This example is excluded from testing to reduce package check time
data(dipper)
dipper.processed=process.data(dipper,groups=("sex"))
release.gof(dipper.processed)

remove.mark Remove mark models from list

Description

Remove one or more mark models from a marklist

Usage

remove.mark(marklist, model.numbers)

Arguments

marklist an object of class "marklist" created by collect.models or merge.mark

model.numbers vector of one more model numbers to remove from the marklist

Value

model.list: a list of mark models and a table of model results.

Author(s)

Jeff Laake

See Also

collect.models,merge.mark,run.models,model.table,dipper

Examples

see example in dipper

rerun.mark 155

rerun.mark Runs a previous MARK model with new starting values

Description

Runs a previous MARK model with new starting values but without specifying the model parameter
formulas. This function is most useful with mark.wrapper in which a list of models is analyzed
and the set of formulas are not specified for each model.

Usage

rerun.mark(model, data, ddl, initial, output = TRUE, title = "",
invisible = TRUE, adjust = TRUE, se = FALSE, filename = NULL,
prefix = "mark", default.fixed = TRUE, silent = FALSE, retry = 0,
realvcv = FALSE, external = FALSE, threads = -1, ...)

Arguments

model previously run MARK model
data processed dataframe used with model
ddl design data list used with model
initial vector of initial values for beta parameters or previously run model object of

similar structure
output If TRUE produces summary of model input and model output
title Optional title for the MARK analysis output
invisible if TRUE, exectution of MARK.EXE is hidden from view
adjust if TRUE, adjusts number of parameters (npar) to number of columns in design

matrix, modifies AIC and records both
se if TRUE, se and confidence intervals are shown in summary sent to screen
filename base filename for files created by MARK.EXE. Files are named filename.*.
prefix base filename prefix for files created by MARK.EXE; the files are named pre-

fixnnn.*
default.fixed if TRUE, real parameters for which the design data have been deleted are fixed

to default values
silent if TRUE, errors that are encountered are suppressed
retry number of reanalyses to perform with new starting values when one or more

parameters are singular
realvcv if TRUE the vcv matrix of the real parameters is extracted and stored in the

model results
external if TRUE the mark object is saved externally rather than in the workspace; the

filename is kept in its place
threads number of cpus to use with mark.exe if positive or number of cpus to remain

idle if negative
... argument values like nodes etc for call to make.mark.model

156 rerun.mark

Details

This is a simple function that restarts an analysis with MARK typically using another model for
initial values of the beta parameters. The processed dataframe (data) and design data list (ddl) must
be specified but the model.parameters are extracted from model. initial values are not optional
otherwise this would be no different than the original call to mark. More complete definitions of the
arguments can be found in mark or run.mark.model or make.mark.model.

Value

model: MARK model object with the base filename stored in output and the extracted results
from the output file appended onto list; see mark for a detailed description of a mark object.

Author(s)

Jeff Laake

See Also

make.mark.model, run.models, extract.mark.output, adjust.parameter.count, mark, cleanup

Examples

Not run:
The following example will not run because the data are not included in the
examples. It illustrates the use of rerun.mark with mark.wrapper. With this
particular data set the POPAN models were having difficulty converging. After
running the set of models using mark.wrapper and looking at the results it
was clear that in several instances the model did not converge. This is easiest
to discern by comparing nested models in the model.table. If one model
is nested within another,then the deviance of the model with more
parameters should be as good or better than the smaller model. If that
is not the case then the model that converged can be used for initial
values in a call to rerun.mark for the model that did not converge.
#

do.nat=function()
{
Phi.ageclass=list(formula=~ageclass)
Phi.dot=list(formula=~1)
p.area=list(formula=~area)
p.timebin.plus.area=list(formula=~timebin+area)
p.timebin.x.area=list(formula=~-1+timebin:area)
pent.ageclass=list(formula=~ageclass)
pent.ageclass.plus.EN=list(formula=~ageclass+EN)
pent.ageclass.plus.diffEN=list(formula=~ageclass+EN92+EN97+EN02)
cml=create.model.list("POPAN")
nat=mark.wrapper(cml,data=zc.proc,ddl=zc.ddl,

invisible=FALSE,initial=1,retry=2)
return(nat)
}
nat=do.nat()

robust 157

model list
Phi p pent
#1 Phi.ageclass p.area pent.ageclass
#2 Phi.ageclass p.area pent.ageclass.plus.diffEN
#3 Phi.ageclass p.area pent.ageclass.plus.EN
#4 Phi.ageclass p.timebin.plus.area pent.ageclass
#5 Phi.ageclass p.timebin.plus.area pent.ageclass.plus.diffEN
#6 Phi.ageclass p.timebin.plus.area pent.ageclass.plus.EN
#7 Phi.ageclass p.timebin.x.area pent.ageclass
#8 Phi.ageclass p.timebin.x.area pent.ageclass.plus.diffEN
#9 Phi.ageclass p.timebin.x.area pent.ageclass.plus.EN
#10 Phi.dot p.area pent.ageclass
#11 Phi.dot p.area pent.ageclass.plus.diffEN
#12 Phi.dot p.area pent.ageclass.plus.EN
#13 Phi.dot p.timebin.plus.area pent.ageclass
#14 Phi.dot p.timebin.plus.area pent.ageclass.plus.diffEN
#15 Phi.dot p.timebin.plus.area pent.ageclass.plus.EN
#16 Phi.dot p.timebin.x.area pent.ageclass
#17 Phi.dot p.timebin.x.area pent.ageclass.plus.diffEN
#18 Phi.dot p.timebin.x.area pent.ageclass.plus.EN
#
use model 9 as starting values for model 7
nat[[7]]= rerun.mark(nat[[7]],data=zc.proc,ddl=zc.ddl,initial=nat[[9]])
use model 3 as starting values for model 1
nat[[1]]= rerun.mark(nat[[1]],data=zc.proc,ddl=zc.ddl,initial=nat[[3]])
use model 14 as starting values for model 15
nat[[15]]= rerun.mark(nat[[15]],data=zc.proc,ddl=zc.ddl,initial=nat[[14]])
use model 5 as starting values for model 6
nat[[6]]= rerun.mark(nat[[6]],data=zc.proc,ddl=zc.ddl,initial=nat[[5]])
use model 10 as starting values for model 11
nat[[11]]= rerun.mark(nat[[11]],data=zc.proc,ddl=zc.ddl,initial=nat[[10]])
use model 10 as starting values for model 12
nat[[12]]= rerun.mark(nat[[12]],data=zc.proc,ddl=zc.ddl,initial=nat[[10]])
reconstruct model table with new results
nat$model.table=model.table(nat[1:18])
show new model table
nat

End(Not run)

robust Robust design example data

Description

A robust design example data set that accompanies MARK as an example analysis using the various
models for the robust design.

158 robust

Format

A data frame with 668 observations on the following 2 variables.

ch a character vector containing the encounter history

freq the number of critters with that capture history

Details

This is a data set that accompanies program MARK as an example for robust models. The data
are entered with the summary format using the variable freq which represents the number of crit-
ters with that capture (encounter) history. The data set represents a robust design with 5 primary
occasions and within each primary occasion the number of secondary occasions is 2,2,4,5,2 re-
spectively. This is represented with the time.intervals argument of process.data which are
0,1,0,1,0,0,0,1,0,0,0,0,1,0. The 0 time intervals represent the secondary sessions in which the pop-
ulation is assumed to be closed. The non-zero values are the time intervals between the primary
occasions. They are all 1 in this example but they can have different non-zero values. The code
determines the structure of the robust design based on the time intervals. The intervals must begin
and end with at least one 0 and there must be at least one 0 between any 2 non-zero elements. The
number of occasions in a secondary session is one plus the number of contiguous zeros.

Examples

This example is excluded from testing to reduce package check time
data(robust)
run.robust=function()
{
#
data from Robust.dbf with MARK
5 primary sessions with secondary sessions of length 2,2,4,5,2
#
time.intervals=c(0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0)
#
Random emigration, p=c varies by time and session, S by time
#
S.time=list(formula=~time)
p.time.session=list(formula=~-1+session:time,share=TRUE)
GammaDoublePrime.random=list(formula=~time,share=TRUE)
model.1=mark(data = robust, model = "Robust",

time.intervals=time.intervals,
model.parameters=list(S=S.time,
GammaDoublePrime=GammaDoublePrime.random,p=p.time.session),threads=2)

#
Random emigration, p varies by session, uses Mh but pi fixed to 1,
S by time.This model is in the example Robust with MARK but it is
a silly example because it uses the heterogeneity model but then fixes
pi=1 which means there is no heterogeneity.Probably the data were
not generated under Mh. See results of model.2.b
#
pi.fixed=list(formula=~1,fixed=1)
p.session=list(formula=~-1+session,share=TRUE)

robust 159

model.2.a=mark(data = robust, model = "RDHet",
time.intervals=time.intervals,
model.parameters=list(S=S.time,
GammaDoublePrime=GammaDoublePrime.random,
p=p.session,pi=pi.fixed),threads=2)

#
Random emigration, p varies by session, uses Mh and in this
case pi varies and so does p across
mixtures with an additive session effect.
#
pi.dot=list(formula=~1)
p.session.mixture=list(formula=~session+mixture,share=TRUE)
model.2.b=mark(data = robust, model = "RDHet",

time.intervals=time.intervals,
model.parameters=list(S=S.time,
GammaDoublePrime=GammaDoublePrime.random,
p=p.session.mixture,pi=pi.dot),threads=2)

#
Markov constant emigration rates, pi varies by session,
p=c varies by session, S constant
This model is in the example Robust with MARK
but it is a silly example because it
uses the heterogeneity model but then fixes pi=1
which means there is no heterogeneity.
Probably the data were not generated under Mh.
See results of model.3.b
#
S.dot=list(formula=~1)
pi.session=list(formula=~session)
p.session=list(formula=~-1+session,share=TRUE)
GammaDoublePrime.dot=list(formula=~1)
GammaPrime.dot=list(formula=~1)
model.3.a=mark(data = robust, model = "RDHet",

time.intervals=time.intervals,
model.parameters=list(S=S.dot,
GammaPrime=GammaPrime.dot,
GammaDoublePrime=GammaDoublePrime.dot,
p=p.session,pi=pi.session),threads=2)

#
Markov constant emigration rates, pi varies by session,
p=c varies by session+mixture, S constant. This is model.3.a
but allows pi into the model by varying p/c by mixture.
#
S.dot=list(formula=~1)
pi.session=list(formula=~session)
GammaDoublePrime.dot=list(formula=~1)
GammaPrime.dot=list(formula=~1)
model.3.b=mark(data = robust, model = "RDHet",

time.intervals=time.intervals,
model.parameters=list(S=S.dot,
GammaPrime=GammaPrime.dot,
GammaDoublePrime=GammaDoublePrime.dot,
p=p.session.mixture,pi=pi.session),threads=2)

160 run.mark.model

#
Huggins Random emigration, p=c varies by time and session,
S by time
Beware that this model is not quite the same
as the others above that say random emigration because
the rates have been fixed for the last 2 occasions.
That was done with PIMS in the MARK example and
here it is done by binning the times so that times 3 and 4
are in the same bin, so the time model
has 3 levels (1,2, and 3-4). By doing so the parameters
become identifiable but this may not be
reasonable depending on the particulars of the data.
Note that the same time binning must be done both for
GammaPrime and GammaDoublePrime because the parameters are
the same in the random emigration model. If you
forget to bin one of the parameters across time it will fit
a model but it won't be what you expect as it will
not share parameters. Note the use of the argument "right".
This controls whether binning is inclusive on the right (right=TRUE)
or on the left (right=FALSE). Using "right" nested in the list
of design parameters is equivalent to using it as a calling
argument to make.design.data or add.design.data.
#
S.time=list(formula=~time)
p.time.session=list(formula=~-1+session:time,share=TRUE)
GammaDoublePrime.random=list(formula=~time,share=TRUE)
model.4=mark(data = robust, model = "RDHuggins",

time.intervals=time.intervals,design.parameters=
list(GammaDoublePrime=list(time.bins=c(1,2,5))),
right=FALSE, model.parameters=
list(S=S.time,GammaDoublePrime=GammaDoublePrime.random,
p=p.time.session),threads=2)

return(collect.models())
}
robust.results=run.robust()
#
You will receive a warning message that the model list
includes models of different types which are not compatible
for comparisons of AIC. That is because
the runs include closed models which include N
in the likelihood and Huggins models which don't include
N in the likelihood. That can be avoided by running
the two types of models in different sets.
#
robust.results

run.mark.model Runs analysis with MARK model using MARK.EXE

run.mark.model 161

Description

Passes input file from model (model$input) to MARK, runs MARK, gets output and extracts
relevant values into results which is appended to the mark model object.

Usage

run.mark.model(model, invisible = FALSE, adjust = TRUE,
filename = NULL, prefix = "mark", realvcv = FALSE,
delete = FALSE, external = FALSE, threads = -1,
ignore.stderr = FALSE)

Arguments

model MARK model created by make.mark.model

invisible if TRUE, exectution of MARK.EXE is hidden from view

adjust if TRUE, adjusts number of parameters (npar) to number of columns in design
matrix, modifies AIC and records both

filename base filename for files created by MARK.EXE. Files are named filename.*.

prefix base filename prefix for files created by MARK.EXE; the files are named pre-
fixnnn.*

realvcv if TRUE the vcv matrix of the real parameters is extracted and stored in the
model results

delete if TRUE the output files are deleted after the results are extracted

external if TRUE the mark object is saved externally rather than in the workspace; the
filename is kept in its place

threads number of cpus to use with mark.exe if positive or number of cpus to remain
idle if negative

ignore.stderr If set TRUE, messages from mark.exe are suppressed; they are automatically
suppressed with Rterm

Details

This is a rather simple function that initiates the analysis with MARK and extracts the output. An
analysis was split into two functions make.mark.model and run.mark.model to allow a set of
models to be created and then run individually or collectively with run.models. By default, the
execution of MARK.EXE will appear in a separate window in which the progress can be mon-
itored. The window can be suppressed by setting the argument invisible=TRUE. The function
returns a mark object and it should be assigned to the same object to replace the original model
(e.g., mymodel=run.mark.model(mymodel)). The element output is the base filename that links
the objects to the output files stored in the same directory as the R workspace. To removed un-
needed output files after deleting mark objects in the workspace, see cleanup. results is a list of
specific output values that are extracted from the output. In extracting the results, the number of
parameters can be adjusted (adjust=TRUE) to match the number of columns in the design matrix,
which assumes that it is full rank and that all of the parameters are estimable and not confounded.
This can be useful if that assumption is true, because on occasion MARK.EXE will report an incor-
rect number of parameters in some cases in which the parameters are at boundaries (e.g., 0 or 1 for

162 run.mark.model

probabilities). If the true parameter count is neither that reported by MARK.EXE nor the number
of columns in the design matrix, then it can be adjusted using adjust.parameter.count.

If filename is assigned a value it is used to specify files with those names. This is most useful to
capture output from a model that has already been run. If it finds the files with those names already
exists, it will ask if the results should be extracted from the files rather than re-running the models.

Value

model: MARK model object with the base filename stored in output and the extracted results
from the output file appended onto list; see mark for a detailed description of a mark object.

Author(s)

Jeff Laake

See Also

make.mark.model, run.models, extract.mark.output, adjust.parameter.count, mark, cleanup

Examples

This example is excluded from testing to reduce package check time
test=function()
{

data(dipper)
for(sex in unique(dipper$sex))
{
x=dipper[dipper$sex==sex,]
x.proc=process.data(x,model="CJS")
x.ddl=make.design.data(x.proc)
Phi.dot=list(formula=~1)
Phi.time=list(formula=~time)
p.dot=list(formula=~1)
p.time=list(formula=~time)
cml=create.model.list("CJS")
x.results=mark.wrapper(cml,data=x.proc,ddl=x.ddl,prefix=sex)
assign(paste(sex,"results",sep="."),x.results)
}
rm(Male.results,Female.results,x.results)

}
test()
cleanup(ask=FALSE,prefix="Male")
cleanup(ask=FALSE,prefix="Female")

run.models 163

run.models Runs a set of MARK models

Description

Runs either a collection of models as defined in model.list or runs all defined MARK object
models in the frame of the calling function with no output (model.list=NULL) or just those of a
particular type (e.g., type="CJS")

Usage

run.models(model.list = NULL, type = NULL, save = TRUE, ...)

Arguments

model.list either a vector of model names or NULL to run all MARK models possibly of a
particular type

type either a model type (eg "CJS", "Burnham" or "Barker") or NULL for all types

save if TRUE, the R data directory is saved (i.e., save.image()) between analyses
to enable interruption without losing analyses that have already been run

... any additional parameters to be passed to run.mark.model

Details

The model names in model.list must be in the frame of the function that calls run.models. If
model.list=NULL or the MARK models are collected from the frame of the calling function (the
parent). If type is specified only the models of that type (e.g., "CJS") are run. In each case the
models are run and saved in the parent frame.

Value

None; models are stored in parent frame.

Author(s)

Jeff Laake

See Also

collect.model.names, run.mark.model

164 salamander

salamander Salamander occupancy data

Description

An occupancy data set for modelling presence/absence data for salamanders.

Format

A data frame with 39 observations (sites) on the following 2 variables.

ch a character vector containing the presence (1) and absence (0) for each visit to the site

freq frequency of sites (always 1)

Details

This is a data set that accompanies program PRESENCE and is explained on page 99 of MacKenzie
et al. (2006).

References

MacKenzie, D.I., Nichols, J. D., Royle, J.A., Pollock, K.H., Bailey, L.L., and Hines, J.E. 2006.
Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurence. El-
sevier, Inc. 324p.

Examples

This example is excluded from testing to reduce package check time
do.salamander=function()
{

data(salamander)
occ.p.dot=mark(salamander,model="Occupancy")
occ.p.time=mark(salamander,model="Occupancy",

model.parameters=list(p=list(formula=~time)))
occ.p.mixture=mark(salamander,model="OccupHet",

model.parameters=list(p=list(formula=~mixture)))
return(collect.models())

}
salamander.results=do.salamander()
print(salamander.results)

setup.model 165

setup.model Defines model specific parameters (internal use)

Description

Compares model, the name of the type of model (eg "CJS") to the list of acceptable models to
determine if it is supported and then creates some global fields specific to that type of model that
are used to modify the operation of the code.

Usage

setup.model(model, nocc, mixtures = 1)

Arguments

model name of model type (must be in vector valid.models)
nocc length of capture history string
mixtures number of mixtures

Details

In general, the structure of the different types of models (e.g., "CJS","Recovery",...etc) are very
similar with some minor exceptions. This function is not intended to be called directly by the user
but it is documented to enable other models to be added. This function is called by other functions
to validate and setup model specific parameters. For example, for live/dead models, the length of the
capture history is twice the number of capture occasions and the number of time intervals equals the
number of capture occasions because the final interval is included with dead recoveries. Whereas,
for recapture models, the length of the capture history is the number of capture occasions and the
number of time intervals is 1 less than the number of occasions. This function validates that the
model is valid and sets up some parameters specific to the model that are used in the code.

Value

model.list - a list with following elements

etype encounter type string for MARK input; typically same as model
nocc number of capture occasions
num number of time intervals relative to number of occasions (0 or -1)
mixtures number of mixtures if any
derived logical; TRUE if model produces derived estimates

Author(s)

Jeff Laake

See Also

setup.parameters, valid.parameters

166 setup.parameters

setup.parameters Setup parameter structure specific to model (internal use)

Description

Defines list of parameters used in the specified type of model (model) and adds default values
for each parameter to the list of user specified values (eg formula, link etc) defined in the call to
make.mark.model

Usage

setup.parameters(model, parameters = list(), nocc = NULL,
check = FALSE, number.of.groups = 1)

Arguments

model type of model ("CJS", "Burnham" etc)

parameters list of model parameter specifications

nocc number of occasions (value only specified if needed)

check if TRUE only the vector of parameter names is returned par.list

number.of.groups

number of groups defined for data

Details

The primary difference in setting up models for MARK is the number and types of parameters that
are included in the model. This function sets up the list of parameters used in the model and defines
values for each parameter that affect how the PIM and design data are structured in the input file
for program MARK. Some of the values of the parameter list are user specified such as formula,
link,fixed so this function only adds to the list of values that are not specified by the user. That
is, it takes the input argument parameters and adds list elements for parameters not specified by
the user and adds default values for each type of parameter and then returns the modified list. The
structure of the argument parameters and the return value of this function are the same as the
structure of the argument parameters in make.mark.model and argument model.parameters in
mark. They are lists with an element for each type of parameter in the model and the name of each
list element is the parameter name (e.g., "p", "Phi","S", etc). For each parameter there are a list of
values (e.g., formula, link, num etc as defined below). Thus parameters is a list of lists.

Value

The return value depends on the argument check. If it is TRUE then the return value is a vector
of the names of the parameters used in the specified type of model. For example, if model="CJS"
then the return value is c("Phi","p"). This is used by the function valid.parameters to make
sure that parameter specifications are valid for the model (i.e., specifying recovery rate r for "CJS"
would give an error). If the function is called with the default of check=FALSE, the function returns
a list of parameter specifications which is a modification of the argument parameters which adds

setup.parameters 167

parameters not specified and default values for all types of parameters that were not specified. The
list length and names of the list elements depends on the type of model. Each element of the list
is itself a list with varying numbers of elements which depend on the type of parameter although
some elements are the same for all parameters. Below the return value list is shown generically with
parameters named p1,...,pk.

p1 List of specifications for parameter 1
p2 List of specifications for parameter 2
.
.
.
pk List of specifications for parameter k

The elements for each parameter list all include:

begin 0 or 1; beginning time for the first
parameter relative to first occasion

num 0 or -1; number of parameters relative to
number of occassions

type type of PIM structure; either "Triang" or "Square"
formula formula for parameter model (e.g., ~time)
link link function for parameter (e.g., "logit")

and may include:

share only valid for p in closed capture models;
if TRUE p and c models shared

mix only valid for closed capture heterogeneity
models; if TRUE mixtures are used

rows only valid for closed capture heterogeneity models
fixed fixed values specified by user and

not used modified in this function

Author(s)

Jeff Laake

See Also

setup.model,valid.parameters

168 skagit

skagit An example of the Mulstistrata (multi-state) model in which states are
routes taken by migrating fish.

Description

An example of the Mulstistrata (multi-state) model in which states are routes taken by migrating
fish.

Author(s)

Megan Moore <megan.moore at noaa.gov>

Examples

There are just two states which correspond to route A and route B. There are 6 occasions
which are the locations rather than times. After release at 1=A there is no movement
between states for the first segment, fish are migrating downriver together and all pass 2A.
Then after occasion 2, migrants go down the North Fork (3A) or the South Fork (3B),
which both empty into Skagit Bay. Once in saltwater, they can go north to Deception Pass (4A)
or South to a receiver array exiting South Skagit Bay (4B). Fish in route A can then only go
to the Strait of Juan de Fuca, while fish in route B must pass by Admiralty Inlet (5B).
Then both routes end with the array at the Strait of Juan de Fuca.
#
1A
|
2A
/ \
3A 3B
/ \ / \
4A 4B 4A 4B
| \ / |
5A 5B 5A 5B
\ \ / /
6
#
from 3A and 3B they can branch to either 4A or 4B; branches merge at 6
5A does not exist so p=0; only survival from 4A to 6 can be
estimated which is done by setting survival from 4A to 5A to 1 and
estimating survival from 5A to 6 which is then total survival from 4A to 6.

pathtodata=paste(path.package("RMark"),"extdata",sep="/")
skagit=import.chdata(paste(pathtodata,"skagit.txt",sep="/"),field.types=c("f"),header=TRUE)
skagit.processed=process.data(skagit,model="Multistrata",groups=c("tag"))
skagit.ddl=make.design.data(skagit.processed)
#
p
#
Can't be seen at 5A or 2B,6B (the latter 2 don't exist)
skagit.ddlpfix=ifelse((skagit.ddlpstratum=="A"&skagit.ddlptime==5) |

splitCH 169

(skagit.ddlpstratum=="B"&skagit.ddlptime%in%c(2,6)),0,NA)
Estimated externally from current data to allow estimation of survival at last interval
skagit.ddlpfix[skagit.ddlptag=="v7"&skagit.ddlptime==6&skagit.ddlpstratum=="A"]=0.687
skagit.ddlpfix[skagit.ddlptag=="v9"&skagit.ddlptime==6&skagit.ddlpstratum=="A"]=0.975
#
Psi
#
only 3 possible transitions are A to B at time interval 2 to 3 and
for time interval 3 to 4 from A to B and from B to A
rest are fixed values
skagit.ddlPsifix=NA
stay in A for intervals 1-2, 4-5 and 5-6
skagit.ddlPsifix[skagit.ddlPsistratum=="A"&

skagit.ddlPsitostratum=="B"&skagit.ddlPsitime%in%c(1,4,5)]=0
stay in B for interval 4-5
skagit.ddlPsifix[skagit.ddlPsistratum=="B"&skagit.ddlPsitostratum=="A"

&skagit.ddlPsitime==4]=0
leave B to go to A for interval 5-6
skagit.ddlPsifix[skagit.ddlPsistratum=="B"&skagit.ddlPsitostratum=="A"&
skagit.ddlPsitime==5]=1

"stay" in B for interval 1-2 and 2-3 because none will be in B
skagit.ddlPsifix[skagit.ddlPsistratum=="B"&skagit.ddlPsitostratum=="A"&
skagit.ddlPsitime%in%1:2]=0

#
S
#
None in B, so fixing S to 1
skagit.ddlSfix=ifelse(skagit.ddlSstratum=="B"&skagit.ddlStime%in%c(1,2),1,NA)
skagit.ddlSfix[skagit.ddlSstratum=="A"&skagit.ddlStime==4]=1
fit model
p.timexstratum.tag=list(formula=~time:stratum+tag,remove.intercept=TRUE)
Psi.sxtime=list(formula=~-1+stratum:time)
S.stratumxtime=list(formula=~-1+stratum:time)
#
S.timexstratum.p.timexstratum.Psi.sxtime=mark(skagit.processed,skagit.ddl,
model.parameters=list(S=S.stratumxtime,p= p.timexstratum.tag,Psi=Psi.sxtime))

calculation of cummulative survival for entire route
Sest=plogis(coef(S.timexstratum.p.timexstratum.Psi.sxtime)$estimate)
A
prod(Sest[c(1:3,6)])
#[1] 0.1644
B
prod(Sest[c(1,2,4,5,7)])
#[1] 0.1154

splitCH Split/collapse capture histories

170 splitCH

Description

splitCH will split a character string vector of capture histories into a matrix. The matrix is appended
to the original data set (data) if one is specified. Will handle character and numeric values in ch.
Results will differ depending on content of ch. collapseCH will collapse a capture history matrix
back into a character vector. Argument can either be a capture history matrix (chmat) or a dataframe
(data) that contains fields with a specified prefix.

Usage

splitCH(x="ch", data=NULL, prefix="Time")

collapseCH(chmat=NULL, data=NULL, prefix="Time")

Arguments

x A vector containing the character strings of capture histories or the column num-
ber or name in the data set data

data A data frame containing columnwith value in x if x indicates a column in a data
frame

prefix first portion of field names for split ch

chmat capture history matrix

Value

A data frame if data specified and a matrix if vector ch is specified

Author(s)

Devin Johnson; Jeff Laake

Examples

This example is excluded from testing to reduce package check time
data(dipper)
following returns a matrix
chmat=splitCH(dipper$ch)
following returns the original dataframe with the ch split into columns
newdipper=splitCH(data=dipper)
following collapses chmat
ch=collapseCH(chmat)
following finds fields in newdipper and creates ch
newdipper$ch=NULL
newdipper=collapseCH(data=newdipper)

store 171

store Store models externally or restore to workspace from external storage

Description

Stores/restores all mark model objects in a marklist either to or from external storage.

Usage

store(x)

Arguments

x marklist of models

Details

For store, each mark model is stored externally and the object in the list is replaced with the
filename of the object. restore does the opposite of storing the saved external object into the
marklist and then deleting the saved file.

Value

A modified marklist to replace the previous marklist specified as the argument.

Author(s)

Jeff Laake

strip.comments Strip comments

Description

Read in file and strip out comments and blank lines.

Usage

strip.comments(inp.filename, use.comments = TRUE, header = TRUE)

Arguments

inp.filename name of input file; inp extension is assumed and does not need to be specified

use.comments if TRUE values within /* and */ on data lines are used as row.names for the
RMark dataframe. Only use this option if they are unique values.

header if TRUE, input file has header line with field names

172 summary.mark

Value

rn row names

out.filename output filename

Author(s)

Jeff Laake

summary.mark Summary of MARK model parameters and results

Description

Creates a summary object of either a MARK model input or model output which includes number
of parameters, deviance, AICc, the beta and real parameter estimates and optionally standard errors,
confidence intervals and variance-covariance matrices. If there are several groups in the data, the
output is structured by group.

Usage

S3 method for class 'mark'
summary(object,...,se=FALSE,vc=FALSE,showall=TRUE,show.fixed=FALSE,brief=FALSE)

Arguments

object a MARK model object

... additional non-specified argument for S3 generic function

se if FALSE the real parameter estimates are output in PIM format (eg. triangular
format); if TRUE, they are displayed as a list with se and confidence interval

vc if TRUE the v-c matrix of the betas is included

showall if FALSE it only returns the values of each unique parameter value

show.fixed if FALSE, each fixed value given NA; otherwise the fixed real value is used. If
se=TRUE, default for show.fixed=TRUE

brief if TRUE, does not show real parameter estimates

Details

The structure of the summary of the real parameters depends on the type of model and the value of
the argument se and showall. If se=F then only the estimates of the real parameters are shown and
they are summarized the result element reals in PIM format. The structure of reals depends on
whether the PIMS are upper triangular ("Triang") or a row ("Square" although not really square).
For the upper triangular format, the values are passed back as a list of matrices where the list is a list
of parameter types (eg Phi and p) and within each type is a list for each group containing the pim
as an upper triangular matrix containing the real parameter estimate. For square matrices, reals is
a list of matrices with a list element for each parameter type, but there is not a second list layer for

summary.mark 173

groups because in the returned matrix each group is a row in the matrix of real estimates. If se=TRUE
then estimates, standard error (se), lower and upper confidence limits (lcl, ucl) and a "Fixed" indi-
cator is passed for each real parameter. If the pims for the model were simplified to represent the
unique real parameters (unique rows in the design matrix), then it is possible to restict the summary
to only the unique parameters with showall=FALSE. This argument only has an affect if se=TRUE.
If showall=FALSE, reals is returned as a dataframe of the unique real parameters specified in the
model. This does not mean they will all have unique values and it includes all "Fixed" real pa-
rameters and any real parameters that cannot be simplified in the case of parameters such as "pent"
in POPAN or "Psi" in "Multistrata" that use the multinomial logit link. Use of showall=FALSE is
of limited use but provided for completeness. In most cases the default of showall=TRUE will be
satisfactory. In this case, reals is a list of dataframes with a list element for each parameter type.
The dataframe contains the estimate, se,lcl, ucl,fixed and the associated default design data for that
parameter (eg time,age, cohort etc). The advantage of retrieving the reals in this format is that it is
the same regardless of the model, so it enables model averaging the real parameters over different
models with differing numbers of unique real parameters.

Value

A list with each of the summarized objects that depends on the argument values. Only the first 4
are given if it is a summary of a model that has not been run.

model type of model (e.g., CJS)

title user define title if any

model.name descriptive name of fitted model

call call to make.mark.model used to construct the model

npar number of fitted parameters

lnl -2xLog Likelihood value

npar Number of parameters (always the number of columns in design matrix)

chat Value of over-dispersion constant if not equal to 1
npar.unadjusted

number of estimated parameters from MARK if different than npar

AICc Small sample corrected AIC using npar; named qAICc if chat not equal to 1
AICc.unadjusted

Small sample corrected AIC using npar.unadjusted; prefix of q if chat not equal
to 1

beta dataframe of beta parameters with estimate, se, lcl, ucl

vcv variance-covariance matrix for beta

reals list of lists, dataframes or matrices depending on value of se and the type of
model (triangular versus square PIMS) (see details above)

Author(s)

Jeff Laake

174 summary_ch

summary_ch Provides a summary for the capture histories

Description

For each release (initial capture) cohort, the number of recaptured (resighted) individuals from
that cohort is tallied for each of the following occasions. A summary table with number released
(initially caught) and the number recaptured is given for each group if bygroup=TRUE.

Usage

summary_ch(x, bygroup = TRUE, marray = FALSE)

Arguments

x Processed data list; resulting value from process.data

bygroup if TRUE, summary tables are created for each group defined in the data

marray if TRUE, summary tables are m-arrays as in MARK

Value

list of dataframes (one for each group in the data); each dataframe has rows for each release cohort
and columns for each recapture occasion. The rows and columns are labelled with the occasion
time labels. If marray==FALSE the first column is the number initially released and the remaining
columns (one for each recapture/resighting occasion) are the number recaught in each of the fol-
lowing occasions and the number caught in at least one of the occasions. If marray==TRUE the first
column is the number released which includes those initially released and ones released after recap-
ture from a previous cohort. The remaining columns are the number first recaught in each of the
following occasions. Once re-caught they become one of the following rows (ie release-recap pairs)
unless it is the last time they were captured and they were not released (eg negative frequency).

Author(s)

Jeff Laake

Examples

data(dipper)
dipper.processed=process.data(dipper,groups=("sex"))
summary_ch(dipper.processed)
#$sexFemale
Released 2 3 4 5 6 7 Total
#1 10 5 3 3 2 1 0 6
#2 29 0 11 6 6 4 2 11
#3 27 0 0 9 5 3 2 9
#4 23 0 0 0 11 7 4 13
#5 19 0 0 0 0 12 6 12

TransitionMatrix 175

#6 23 0 0 0 0 0 11 11
#
#$sexMale
Released 2 3 4 5 6 7 Total
#1 12 6 3 2 1 1 0 7
#2 20 0 9 2 1 0 0 9
#3 25 0 0 13 6 2 0 14
#4 22 0 0 0 15 9 7 16
#5 22 0 0 0 0 13 10 13
#6 23 0 0 0 0 0 12 12
summary_ch(dipper.processed,marray=TRUE)
#$sexFemale
Released 2 3 4 5 6 7 Total
#1 10 5 1 0 0 0 0 6
#2 34 0 13 1 0 0 0 14
#3 41 0 0 17 1 0 0 18
#4 41 0 0 0 23 1 1 25
#5 43 0 0 0 0 26 0 26
#6 50 0 0 0 0 0 24 24
#
#$sexMale
Released 2 3 4 5 6 7 Total
#1 12 6 1 0 0 0 0 7
#2 26 0 11 0 0 0 0 11
#3 37 0 0 17 1 0 0 18
#4 39 0 0 0 22 0 1 23
#5 45 0 0 0 0 25 0 25
#6 48 0 0 0 0 0 28 28

TransitionMatrix Multi-state Transition Functions

Description

TransitionMatrix: Creates a transition matrix of movement parameters for a multi-state(strata)
model. It computes all Psi values for a multi-strata mark model and constructs a transition ma-
trix. Standard errors and confidence intervals can also be obtained.

Usage

TransitionMatrix(x,vcv.real=NULL)

find.possible.transitions(ch)

transition.pairs(ch)

176 TransitionMatrix

Arguments

x Estimate table from get.real with a single record for each possible transition

vcv.real optional variance-covariance matrix from the call to get.real

ch vector of capture history strings for a multi-state analysis

Details

find.possible.transitions: Finds possible transitions; essentially it identifies where stratum label A
and B are in the same ch for all labels but the the transition could be from A to B or B to A or even
ACB which is really an A to C and C to B transition.

transition.pairs: Computes counts of transition pairs. The rows are the "from stratum" and the
columns are the "to stratum". So AB would be in the first row second column and BA would be in
the second row first column. All intervening 0s are ignored. These are transition pairs so AB0C is
A to B and B to C but not A to C.

Value

TransitionMatrix: returns either a transition matrix (vcv.real=NULL) or a list of matrices (vcv.real
specified) named TransitionMat (transition matrix), se.TransitionMat (se of each transition), lcl.TransitionMat
(lower confidence interval limit for each transition), and ucl.TransitionMat (upper confidence inter-
val limit for each transition). find.possible.transitions returns a 0/1 table where 1 means that t both
values are in one or more ch strings and transition.pairs returns a table of counts of transition pairs.

Author(s)

Jeff Laake

See Also

get.real

Examples

This example is excluded from testing to reduce package check time
data(mstrata)
Show possible transitions in first 15 ch values
find.possible.transitions(mstrata$ch[1:15])
Show transtion pairs for same data
transition.pairs(mstrata$ch[1:15])
#limit transtions to 2 and 3 character values for first 30 ch
transition.pairs(substr(mstrata$ch[1:30],2,3))

fit the sequence of multistrata models as shown for ?mstrata
run.mstrata=function()
{
#
Process data
#

TransitionMatrix 177

mstrata.processed=process.data(mstrata,model="Multistrata")
#
Create default design data
#
mstrata.ddl=make.design.data(mstrata.processed)
#
Define range of models for S; note that the betas will differ from the output
in MARK for the ~stratum = S(s) because the design matrix is defined using
treatment contrasts for factors so the intercept is stratum A and the other
two estimates represent the amount that survival for B abd C differ from A.
You can use force the approach used in MARK with the formula ~-1+stratum which
creates 3 separate Betas - one for A,B and C.
#
S.stratum=list(formula=~stratum)
S.stratumxtime=list(formula=~stratum*time)
#
Define range of models for p
#
p.stratum=list(formula=~stratum)
#
Define range of models for Psi; what is denoted as s for Psi
in the Mark example for Psi is accomplished by -1+stratum:tostratum which
nests tostratum within stratum. Likewise, to get s*t as noted in MARK you
want ~-1+stratum:tostratum:time with time nested in tostratum nested in
stratum.
#
Psi.s=list(formula=~-1+stratum:tostratum)
#
Create model list and run assortment of models
#
model.list=create.model.list("Multistrata")
#
Add on a specific model that is paired with fixed p's to remove confounding
#
p.stratumxtime=list(formula=~stratum*time)
p.stratumxtime.fixed=list(formula=~stratum*time,fixed=list(time=4,value=1))
model.list=rbind(model.list,c(S="S.stratumxtime",p="p.stratumxtime.fixed",

Psi="Psi.s"))
#
Run the list of models
#
mstrata.results=mark.wrapper(model.list,data=mstrata.processed,ddl=mstrata.ddl)
#
Return model table and list of models
#
return(mstrata.results)
}
mstrata.results=run.mstrata()
mstrata.results
for the best model, get.real to get a list containing all Psi estimates
and the v-c matrix
Psilist=get.real(mstrata.results[[1]],"Psi",vcv=TRUE)
Psivalues=Psilist$estimates

178 valid.parameters

call Transition matrix using values from time==1; the call to the function
must only contain one record for each possible transition. An error message is
given if not the case
TransitionMatrix(Psivalues[Psivalues$time==1,])
call it again but specify the vc matrix to get se and conf interval
TransitionMatrix(Psivalues[Psivalues$time==1,],vcv.real=Psilist$vcv.real)

valid.parameters Determine validity of parameters for a model (internal use)

Description

Checks to make sure specified parameters are valid for a particular type of model.

Usage

valid.parameters(model, parameters)

Arguments

model type of c-r model ("CJS", "Burnham" etc)

parameters vector of parameter names (for example "Phi" or "p" or "S")

Value

Logical; TRUE if all parameters are acceptable and FALSE otherwise

Author(s)

Jeff Laake

See Also

setup.parameters, setup.model

var.components 179

var.components Variance components estimation

Description

Computes estimated effects, standard errors and process variance for a set of estimates

Usage

var.components(theta, design, vcv, alpha = 0.05, upper = 10 * max(vcv),
LAPACK = TRUE)

Arguments

theta vector of parameter estimates

design design matrix for combining parameter estimates

vcv estimated variance-covariance matrix for parameters

alpha sets 1-alpha confidence limit on sigma

upper upper limit for process variance

LAPACK argument passed to call to qr for qr decomposition and inversion

Details

Computes estimated effects, standard errors and process variance for a set of estimates using the
method of moments estimator described by Burnham and White (2002). The design matrix spec-
ifies the manner in which the estimates (theta) are combined. The number of rows of the design
matrix must match the length of theta.

If you select specific values of theta, you must select the equivalent sub-matrix of the variance-
covariance matrix. For instance, if the parameter indices are $estimates[c(1:5,8)] then the
appropriate definition of the vcv matrix would be vcv=vcv[c(1:5,8), c(1:5,8)], if vcv is nxn for n
estimates. Note that get.real will only return the vcv matrix of the unique reals so the dimensions of
estimates and vcv will not always match as in the example below where estimates has 21 rows but
with the time model there are only 6 unique Phis so vcv is 6x6.

To get a mean estimate use a column matrix of 1’s (e.g., design=matrix(1,ncol=1,nrow=length(theta)).
The function returns a list with the estimates of the coefficients for the design matrix (beta) with
one value per column in the design matrix and the variance-covariance matrix (vcv.beta) for the
beta estimates. The process variance is returned as sigma.

Value

A list with the following elements

sigmasq process variance estimate and confidence interval; estimate may be <0

sigma sqrt of process variance; set to o if sigmasq<0

beta dataframe with estimates and standard errors of betas for design

180 var.components.reml

betarand dataframe of shrinkage estimates

vcv.beta variance-covariance matrix for beta

GTrace trace of matrix G

Author(s)

Jeff Laake; Ben Augustine

References

BURNHAM, K. P. and G. C. WHITE. 2002. Evaluation of some random effects methodology
applicable to bird ringing data. Journal of Applied Statistics 29: 245-264.

Examples

This example is excluded from testing to reduce package check time
data(dipper)
md=mark(dipper,model.parameters=list(Phi=list(formula=~time)))
md$results$AICc
zz=get.real(md,"Phi",vcv=TRUE)
z=zz$estimates$estimate[1:6]
vcv=zz$vcv.real
varc=var.components(z,design=matrix(rep(1,length(z)),ncol=1),vcv)
df=md$design.data$Phi
shrinkest=data.frame(time=1:6,value=varc$betarand$estimate)
df=merge(df,shrinkest,by="time")
md=mark(dipper,model.parameters=list(Phi=list(formula=~time,

fixed=list(index=df$par.index,value=df$value))),adjust=FALSE)
npar=md$results$npar+varc$GTrace
md$results$lnl+2*(npar + (npar*(npar+1))/(md$results$n-npar-1))

var.components.reml Variance components estimation using REML or maximum likelihood

Description

Computes estimated effects, standard errors and variance components for a set of estimates

Usage

var.components.reml(theta, design, vcv = NULL, rdesign = NULL,
initial = NULL, interval = c(-25, 10), REML = TRUE)

var.components.reml 181

Arguments

theta vector of parameter estimates

design design matrix for fixed effects combining parameter estimates

vcv estimated variance-covariance matrix for parameters

rdesign design matrix for random effect (do not use intercept form; eg use ~-1+year
instead of ~year); if NULL fits only iid error

initial initial values for variance components

interval interval bounds for log(sigma) to help optimization from going awry

REML if TRUE uses reml else maximum likelihood

Details

The function var.components uses method of moments to estimate a single process variance but
cannot fit a more complex example. It can only estimate an iid process variance. However, if you
have a more complicated structure in which you have random year effects and want to estimate
a fixed age effect then var.components will not work because it will assume an iid error rather
than allowing a common error for each year as well as an iid error. This function uses restricted
maximum likelihood (reml) or maximum likelihood to fit a fixed effects model with an optional
random effects structure. The example below provides an illustration as to how this can be useful.

Value

A list with the following elements

neglnl negative log-likelihood for fitted model

AICc small sample corrected AIC for model selection

sigma variance component estimates; if rdesign=NULL, only an iid error; otherwise,
iid error and random effect error

beta dataframe with estimates and standard errors of betas for design

vcv.beta variance-covariance matrix for beta

Author(s)

Jeff Laake

Examples

This example is excluded from testing to reduce package check time
Use dipper data with an age (0,1+)/time model for Phi
data(dipper)
dipper.proc=process.data(dipper,model="CJS")
dipper.ddl=make.design.data(dipper.proc,

parameters=list(Phi=list(age.bins=c(0,.5,6))))
levels(dipper.ddlPhiage)=c("age0","age1+")
md=mark(dipper,model.parameters=list(Phi=list(formula=~time+age)))
extract the estimates of Phi

182 weta

zz=get.real(md,"Phi",vcv=TRUE)
assign age to use same intervals as these are not copied
across into the dataframe from get.real
zz$estimates$age=cut(zz$estimates$Age,c(0,.5,6),include=TRUE)
levels(zz$estimates$age)=c("age0","age1+")
z=zz$estimates
Fit age fixed effects with random year component and an iid error
var.components.reml(z$estimate,design=model.matrix(~-1+age,z),

zz$vcv,rdesign=model.matrix(~-1+time,z))
Fitted model assuming no covariance structure to compare to
results with lme
xx=var.components.reml(z$estimate,design=model.matrix(~-1+age,z),
matrix(0,nrow=nrow(zz$vcv),ncol=ncol(zz$vcv)),
rdesign=model.matrix(~-1+time,z))

xx
sqrt(xx$sigmasq)
library(nlme)
nlme::lme(estimate~-1+age,data=z,random=~1|time)

weta Occupancy data for Mahoenui Giant Weta

Description

An occupancy data set for modelling presence/absence data for salamanders.

Format

A data frame with 72 observations (sites) on the following 7 variables.

ch a character vector containing the presence (1) and absence (0), or (.) not visited for each of 5
visits to the site

Browse 0/1 dummy variable to indicate browsing

Obs1 observer number for visit 1; . used when site not visited

Obs2 observer number for visit 2; . used when site not visited

Obs3 observer number for visit 3; . used when site not visited

Obs4 observer number for visit 4; . used when site not visited

Obs5 observer number for visit 5; . used when site not visited

Details

This is a data set that accompanies program PRESENCE and is explained on pages 116-122 of
MacKenzie et al. (2006).

weta 183

References

MacKenzie, D.I., Nichols, J. D., Royle, J.A., Pollock, K.H., Bailey, L.L., and Hines, J.E. 2006.
Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurence. El-
sevier, Inc. 324p.

Examples

The data can be imported with the following command using the
tab-delimited weta.txt file in the data subdirectory.
weta=import.chdata("weta.txt",field.types=c(rep("f",6)))
Below is the first few lines of the data file that was constructed
from the .xls file that accompanies PRESENCE.
#ch Browse Obs1 Obs2 Obs3 Obs4 Obs5
#0000. 1 1 3 2 3 .
#0000. 1 1 3 2 3 .
#0001. 1 1 3 2 3 .
#0000. 0 1 3 2 3 .
#0000. 1 1 3 2 3 .
#0000. 0 1 3 2 3 .
#

This example is excluded from testing to reduce package check time
retrieve weta data
data(weta)
Create function to fit the 18 models in the book
fit.weta.models=function()
{
use make.time.factor to create time-varying dummy variables Obs1 and Obs2
observer 3 is used as the intercept

weta=make.time.factor(weta,"Obs",1:5,intercept=3)
Process data and use Browse covariate to group sites; it could have also
been used an individual covariate because it is a 0/1 variable.

weta.process=process.data(weta,model="Occupancy",groups="Browse")
weta.ddl=make.design.data(weta.process)

time factor variable copied to Day to match names used in book
weta.ddlpDay=weta.ddlptime

Define p models
p.dot=list(formula=~1)
p.day=list(formula=~Day)
p.obs=list(formula=~Obs1+Obs2)
p.browse=list(formula=~Browse)
p.day.obs=list(formula=~Day+Obs1+Obs2)
p.day.browse=list(formula=~Day+Browse)
p.obs.browse=list(formula=~Obs1+Obs2+Browse)
p.day.obs.browse=list(formula=~Day+Obs1+Obs2+Browse)

Define Psi models
Psi.dot=list(formula=~1)
Psi.browse=list(formula=~Browse)

Create model list
cml=create.model.list("Occupancy")

Run and return marklist of models

184 Whatsnew

return(mark.wrapper(cml,data=weta.process,ddl=weta.ddl))
}
weta.models=fit.weta.models()
Modify the model table to show -2lnl and use AIC rather than AICc
weta.models$model.table=model.table(weta.models,use.AIC=TRUE,use.lnl=TRUE)
Show new model table which duplicates the results except they have
some type of error with the model Psi(.)P(Obs+Browse) which should have
5 parameters rather than 4 and the -2lnl also doesn't agree with the results here
weta.models
#
display beta vcv matrix of the Psi parameters (intercept + browse=1)
matches what is shown on pg 122 of Occupancy book
weta.models[[7]]$result$beta.vcv[8:9,8:9]
compute variance-covariance matrix of Psi0(6; unbrowsed) ,Psi1(7; browsed)
vcv.psi=get.real(weta.models[[7]],"Psi",vcv=TRUE)$vcv.real
vcv.psi
Compute proportion unbrowsed and browsed
prop.browse=c(37,35)/72
prop.browse
compute std error of overall estimate as shown on pg 121-122
sqrt(sum(prop.browse^2*diag(vcv.psi)))
compute std error and correctly include covariance between Psi0 and Psi1
sqrt(t(prop.browse) %*% vcv.psi %*% prop.browse)
show missing part of variance 2 times cross-product of prop.browse * covariance
2*prod(prop.browse)*vcv.psi[1,2]
sqrt(sum(prop.browse^2*diag(vcv.psi))+2*prod(prop.browse)*vcv.psi[1,2])

Whatsnew Summary of changes by version

Description

A good place to look for changes. Often I’ll add changes here but don’t always get to it in the
documentation for awhile. They are ordered from newest to oldest.

Details

Version 2.0.9 (1 Dec 2011)

• Patch was made to make.mark.model to fix bug in PIM creation for a multi-session model
and there was just 1 session. Thanks to Erin Roche for helping to identify this bug.

• Patch was made to make.mark.model to fix bug in handling of mlogits for pi and Omega pa-
rameters with more than one group. These parameters were introduced with the RDMSMis-
Class and other new models that were recently added.

• Additional changes were made to export.MARK to re-fix changes for robust and nest survival
model export to MARK.

Whatsnew 185

• A function mark.wrapper.parallel written by Eldar Rakhimberdiev provides a parallel pro-
cessing version of mark.wrapper. See the example in the help for the function. The parallel
version is functionally the same and can be used in place of mark.wrapper to run sequentially
or in parallel. It does not include the run argument however.

• A bug was fixed in get.real which caused an R error for a triangular PIM that had only a
single entry. Thanks to Amanda Goldberg for discovering and reporting this error.

Version 2.0.8 (7 Oct 2011)

• Both setup.model and setup.parameters were re-written to use data files models.txt and
parameters.txt to define models and parameters which should make it easier to add new mod-
els. The latter function is now much simpler and smaller.

• Model RDOccupEG now allows sharing Epsilon and Gamma parameters. Epsilon is the dom-
inant parameter which gets the share=TRUE argument. See RDOccupancy for an example.
Thanks to Jake Ivan for an example of what was needed.

• To avoid confusion, the arguments component and component.name were removed from the
parameter specification because these have not been required since v1.3 when full support
for individual covariates were included. Likewise the argument covariates in mark and
make.mark.model was removed because it was only needed to support the component ap-
proach.

• export.MARK was modified so that if all individual covariates are output, it excludes factor
covariates.

• Many more models were added to those supported in RMark. Now 92 of the 137 models in
MARK are supported. See MarkModels.pdf in the RMark directory of your R library to see
which models are supported (in red). Most of the remaining unsupported models are versions
with mis-identification error and they are not shown in MarkModels.pdf.

• Previously RMark stored the input file in a temporary file Markxxx.tmp. Using a common
filename caused problems when more than one model were spawned to different CPUs, so
now it uses a random temporary file name. It also no longer uses common file markxxx.vcv.
Thanks to Glenn Stauffer for testing these changes.

• Sessions are now labelled using value of session time rather than numerically from 1 to largest
session number in robust designs. Thanks to Tommy Garrison for this suggestion.

• A bug was fixed in get.real which caused incorrect assignments of fixed parameter values
in the unusual case where a fixed parameter had a non-zero design matrix row.

• mark.wrapper was modified so it returns a list of the models that were constructed if run==FALSE.
Thanks to Eldar Rakhimberdiev for the suggestion and code.

• Code was added to extract.mark.output to extract deviance degrees of freedom. Thanks
again to Eldar for contributing this code.

• A bug was fixed in make.mark.model that prevented use of sin link on within session param-
eters in a robust design model. Thanks to Tommy Garrison for reporting this bug.

• A bug was fixed in make.mark.model which prevented the use of time varying covariates with
shared parameters. Thanks to Andre Breton for reporting this bug.

• simplify argument was removed from functions because I have not found a reason not to
simplify and I have not been testing code with simplify=FALSE.

Version 2.0.7 (25 August 2011)

186 Whatsnew

• Change to make.mark.model to fix bug in which mlogits were incorrectly assigned in OR-
DMS model when both Psi and pent used mlogit links. Thanks to Glenn Stauffer for identify-
ing and tracking down this error.

• Fixed export.chdata and export.MARK so Nest survival models can be exported. Also
changed default of argument ind.covariates to "all" which will use all individual covariates
in the data in the file sent to MARK. Thanks to Jay Rotella for his help.

• Made change to process.data and mark to include a new argument reverse, which if set
to TRUE with model="Multistratum" will reverse the timing of transition and survival. See
mstrata for an example of a reverse multistratum model.

• Made change to make.design.data to allow for zero time intervals in non-robust design
model. This was needed to allow use of the reverse time structure in multi-state models. In
addition, for the reverse multistate model the function now adds an occasion (occ) field to the
design data because the time field will be constant when with a 0 time interval. The row names
of the design matrix and real parameters was extended for this model to include occasion (o)
and occasion cohort (oc) to create unique labels because cohort and time are not unique with
0 time intervals.

Version 2.0.6 (1 July 2011)

• Change to MR resight examples so the output does not appear in notepad which was causing
problem with check on CRAN submission

Version 2.0.5 (29 June 2011)

• Order of arguments for model.average.marklist were switched incorrectly such that ... was
the second argument. This has been fixed to the original format where ... is at the end. This
resulted in the value of any arguments other than the first to be ignored unless specifically
named e.g., parameter="Phi". Thanks to Rod Towell for reporting this error.

• Additional changes were made to .First.lib to 1) examine any MarkPath setting, 2) look in
C:/program files/mark or c:/program files (x86)/mark, 3) or to search the path. If MARK
executable cannot be found in any of those ways then a warning is issued that the user needs
to set MarkPath to the path specification for the location of the MARK executable. Thanks to
Bryan Wright for help with tracking down a bug.

• A bug in add.design.data was fixed where the function gave incorrect results in pim.type
was anything other than "all". Thanks to Jeff Hostetler for reporting this error.

• The mark-resight models PoissonMR, LogitNormalMR, and IELogitNormalMR were added.
This required some changes to make.mark.model,make.design.data and compute.design.data
and the addition of an argument counts to process.data to provide mark-resight count data
that are not in the capture history format. The format for counts is a named list of vectors
(one group) or matrices (each group is a row) where the names of the list elements are specific
to the model. Currently there is no checking to make sure these are named correctly. Some of
these models are very sensitive to starting values; thus the use of initial values in the examples.
Thanks to Brett McClintock for his help incorporating these models.

Version 2.0.4 (1 June 2011)

• Change made to .First.lib to check for availability of mark software that depends on operating
system. It now provides a warning rather than stopping package attachment. This allows the
user to set MarkPath to some location outside of default location Program Files or Program
Files (x86) without changing path which requires administrator privilege on Windows.

Whatsnew 187

• Change made to run.mark.model to use shQuote because link to mark.exe was not working
in some cases.

Version 2.0.3 (17 May 2011)

• Now requires R 2.13 to use path.package function

• Change made to .First.lib to check for availability of mark software that depends on operating
system.

Version 2.0.2 (16 May 2011)

• MarkPath no longer needs to be set if mark.exe is no longer in the default location (c:/Program
Files/mark) but is specified in the path. The code now uses the R function Sys.which to find
the correct location for mark.exe, if it is contained in the Path.

• Code for crm models was removed from RMark and moved to a different R package called
marked that is under-development. This removes the FORTRAN code and accompanying dll
and some functions and help files that were extraneous to RMark capabilities. There is still
some code in some functions for crm that could be removed at some point. None of this
matters to those who use RMark for its original purpose as an interface to mark.exe.

• Many superficial changes were made to code so it could be posted on CRAN. Three changes
that may be noticed by users involved renaming deriv.inverse.link, summary.ch and merge.design.covariates
to deriv_inverse.link, summary_ch, and merge_design.covariates. These names conflicted
with the generic functions deriv, summary and merge. It is only the last 2 that you may have in
your scripts and you will have to rename them. The deprecated function merge.occasion.data
was removed. Sorry for any inconvenience.

• The dependency on Hmisc for the examples was removed by replacing errbar with plotCI.

Version 2.0.1 (21 Feb 2011)

• Made a change to run.mark.model to handle output filenames that exceeded mark9999.

• Added an argument prefix in mark, run.mark.model and cleanup. Like other parameters
for mark, it can also be used in mark.wrapper as one of the ... arguments. Previously the mark
files have always been named "marknnn.*". By specifying prefix you can now create sets of
models with different prefixes. For example, prefix="cu" would result in cu001.*(cu001.out,
cu001.inp, etc), cu002.* etc. This provides the ability to name files to do things like naming
them based on the species being analyzed. In general, there is no need to work with these files
directly because the filename.* is stored with each mark object and the various R functions use
that link to provide the information from the files. If you use prefixes other than "mark", you’ll
need to call call cleanup with each prefix to remove unused files. See run.mark.model for an
example that shows use of the prefix argument to split the dipper data into separate analyses
for each sex. Note that use of prefix was not mandatory here to separate the analyses but it
provided a useful example.

• Additional usefulness has been coded for argument initial for assigning initial values to
beta parameters. Previously, the options were either a vector of the same length as the new
model to be run or a previously run model in a mark object from which equivalent betas are
extracted based on their names in the design matrix. Now if the vector contains names for the
elements they will be matched with the new model like with the model option for initial. If
any betas in the new model are not matched, they are assigned 0 as their initial value, so the
length of the initial vector no longer needs to match the number of parameters in the new

188 Whatsnew

model as long as the elements are named. The names can be retrieved either from the column
names of the design matrix or from rownames(x$results$beta) where x is the name of the
mark object.

• Using the feature above, I added a new argument use.initial to mark.wrapper. If use.initial=TRUE,
prior to running a model it looks for the first model that has already been run (if any) for each
parameter formula and constructs an initial vector from that previous run. For example, if
you provided 5 models for p and 3 for Phi in a CJS model, as soon as the first model for p is
run, in the subsequent 2 models with different Phi models, the initial values for p are assigned
based on the run with the first Phi model. At the outset this seemed like a good idea to speed
up execution times, but from the one set of examples I ran where several parameters were
at boundaries, the results were discouraging because the models converged to a sub-optimal
likelihood value than the runs using the default initial values. I’ve left this option in but set its
default value to FALSE.

• A possibly more useful argument and feature was added to mark.wrapper in the argument
initial. Previously, you could use initial=model and it would use the estimates from that
model to assign initial values for any model in the set defined in mark.wrapper. Now I’ve
defined initial as a specific argument and it can be used as above but you can also use it to
specify a marklist of previously run models. When you do that, the code will lookup each
new model to be run in the set of models specified by initial and if it finds one with the
matching name then it will use the estimates for any matching parameters as initial values in
the same way as initial=model does. The model name is based on concatenating the names
of each of the parameter specification objects. To make this useful, you’ll want to adapt to an
approach that I’ve started to use of naming the objects something like p.1,p.2 etc rather than
naming them something like p.dot, p.time as done in many of the examples. I’ve found that
using numeric approach is much less typing and cumbersome rather than trying to reflect the
formula in the name. By default, the formula is shown in the model selection results table,
so it was a bit redundant. Now where I see this being the most benefit. Individual covariate
models tend to run rather slowly. So one approach is to run the sequence of models (eg results
stored in initial_marklist), including the set of formulas with all of the variables other than
individual covariates. Then run another set with the same numbering scheme, but adding the
individual covariates to the formula and using initial=initial_marklist That will work
if each parameter specification has the same name (eg., p.1=list(formula=~time) and then
p.1=list(formula=~time+an_indiv_covariate)). All of the initial values will be assigned for the
previous run except for any added parameters (eg. an_indiv_covariate) which will start with a
0 initial value.

• I added a new function search.output.files to the set of utility functions. This can be
useful to search all of the output files in a marklist for a specific string like "numerical
convergence suspect" or just "WARNING". The function returns the model numbers in the
marklist that contain that string in the output file.

• Further changes were needed to popan.derived to handle data that are summarized (i.e. fre-
quency of capture history >1). Thanks to Carl Schwarz for reporting and finding the change
needed.

• A bug was fixed in create.dm was fixed so it would return a matrix instead of a vector with
the formula ~1

Version 2.0.0 (14 Jan 2011)

• The packages msm, Hmisc, nlme, plotrix are now explicitly required to install RMark. These

Whatsnew 189

were used in examples or for specialty functions, but to avoid problems these must be installed
as well.

• Added example for "CRDMS" model that was created by Andrew Paul. See crdms.

• Change was made for gamma link in v1.9.3 was only made to Pradel model and not Pradsen
like it stated. Both now correctly use the logit link as the default for gamma. Thanks to Gina
Barton for bringing this to my attention.

• Change was made in make.mark.model that prevented use of groups with Nest survival mod-
els. Thanks to Jeff Warren for bringing this to my attention.

• Change was made in make.design.data because re-ordering of parameters caused issues
with the CRDMS model because the subtract.stratum were not being set for Psi.

Version 1.9.9 (2 Nov 2010)

• This version was built with R 2.12 and will not work with earlier versions of R. It contains
both 32 and 64 bit versions and R will automatically ascertain which to use.

• Parameter ordering for some models (RDHet, RDFullHet, RDHHet, RDHFHet, OccupHet,
RDOccupHetPE, RDOccupHetPG, RDOccupHetEG, MSOccupancy, ORDMS, and CRDMS)
had to be changed such that the models could be imported into the MARK interface. This
change can influence any code you have written for those models if you specified parameter
indices because the ordering of the parameters were changed. For example, see change in
example for RDOccupancy to use indices=c(1) from c(10). Thanks to Gary White for helping
me work this out.

• Modified code in extract.mark.output to handle cases with more than 9999 real parameters
because MARK outputs **** when it exceeds 9999.

Version 1.9.8 (15 Sept 2010)

• Added model="CRDMS" with parameters S, Psi, N, p, and c for closed robust design multi-state
models

• Patched popan.derived which produced incorrect abundance estimates with unequal time
intervals. Thanks to Andy Paul for finding this error and testing for me.

• Patched export.MARK which failed for robust design models. Thanks to Dave Hewitt and
Gary White for discovering and isolating the problem.

Version 1.9.7 (14 April 2010)

• Added model="Brownie" with parameters S and f which is the Brownie et al. parameteriza-
tion of the recovery model. "Recovery only" (in RMark) model="Recovery" which is also
encounter type "dead" in MARK uses the Seber parameterization with parameters S and r
which is also used in the models for live and dead encounter models.

• Added model="MSLiveDead" with parameters S, r, Psi and p. It is the multistate version of
the Burnham model in which F=1.

• Added compute.Sn to utility functions for computation of natural survival from total survival
when all harvest is reported. Patched nat.surv which was incorrectly rejecting based on
model type.

• Added var.components.reml to provide an alternate variance components estimation using
REML or maximum likelihood. It allows a random component that is not iid which is all that
var.components can do.

190 Whatsnew

• Replaced all T/F values with TRUE/FALSE to avoid conflicts with objects named TRUE or
FALSE.

Version 1.9.6 (1 February 2010)

• Writing the popan.derived function has led me down all sorts of paths. I had to make one
small change to this function to handle externally saved models. However, various changes
listed below were brought on by using this function with a relatively large POPAN model.

• Most importantly I discovered an error in computations of real parameters with an mlogit
link in which some of the real parameters involved in the mlogit link were fixed. This is NOT
a problem if you simply used the real parameter values extracted from MARK; however, if you
were using either compute.real (model.average uses this function) or covariate.predictions
to compute those real parameters (with an mlogit link) then they may be incorrect. This would
have been apparent because their value would have changed relative to the original values ex-
tracted from the MARK output. Correcting this error involved changes in compute.real,
convert.link.to.real and covariate.predictions to correct the real parameter esti-
mates and their standard errors. I’ve not found it in the MARK documentation but de-
duced that if you use the mlogit link and fix real parameters it uses those fixed real pa-
rameter values in the calculation. A simple example will make it clear. Consider pent for
5 occasions where the first is computed by subtraction and you then have 4 real parame-
ters. Let’s assume that the 3rd and fourth parameters were fixed to 0. Then the real param-
eters are calculated as follows: pent2=exp(beta2)/(1+ exp(beta2)+exp(beta3)+exp(0)+exp(0)),
pent3=exp(beta3)/(1+ exp(beta2)+exp(beta3)+exp(0)+exp(0)), pent4=0, pent5=0 and pent1=1-
pent2-pent3-0-0 (in this case). Obviously you would not want to fix any real parameters to
be >1, <0 or to have the sum to be <0 or >1. This structure also had implications on how the
standard error was calculated.

• In addition the coding was made more efficient in covariate.predictions for the case
where data(index=somevector) is used without any data entries for covariate values in the
design matrix. While the task performed with that use of the function could be done with
compute.real, it is useful to have the capability in covariate.predictions as well be-
cause it will then model average over the listed set of parameters. The previous approach to
coding was inefficient and led to very large matrices that were unnecessary and could cause
failure with insufficient memory for large analyses.

• Calculation of NGross was added to popan.derived and logical arguments N and NGross
were added to control what was computed in the call. In addition, argument drop was added
which is passed to covariate.predictions to control whether models are dropped when
variance of betas are not all positive.

• var.components was modified to use qr matrix inversion. The returned value for beta is now
a dataframe that includes the std errors which are extracted from the vcv matrix. Also, if the
design matrix only uses a portion of the vcv matrix, the appropriate rows and columns are now
extracted. Prior to this change, the standard errors would have been unreliable if the design
matrix didn’t use the entire set of thetas and vcv matrix.

Version 1.9.5 (4 December 2009)

• A bug in covariate.predictions was fixed that would assign fixed values incorrectly if the
parameter indices were specified in anything but ascending order. The error would have been
obvious to anyone that may have encountered it because estimated parameters would likely
have been assigned a fixed value. In most cases indices would be passed in order if they were

Whatsnew 191

selected from the design data unless indices were chosen from more than one parameter type.
I discovered it using the popan.derived function I added in v1.9.4 because it requests indices
for multiple parameters in a single function call.

Version 1.9.4 (6 November 2009)

• Note that this version was built with R 2.10 which no longer supports compiled help files
(chtml). If you were using compiled help files to get help with RMark, you’ll need to switch
to regular html files by using options(help_type="html") in R. You can put this command in
your RProfile.site file so it is set up that way each time you start R. The functionality is the
same but it is not as pretty. You can find the index (what used to be in a window on the left)
as a link at the bottom of each help page.

• Changed export.MARK so it will not allow selection of a project name that would over-write
an existing .inp file.

• Added the function popan.derived which for POPAN models computes derived abundance
estimates by group and occasion and sum of group abundances for each occasion. For some
reason RMark is unable to extract all of the derived parameters from the MARK binary file
for POPAN models. This function provides the derived abundance estimates and their var-cov
matrix and adds the abundance estimate sum across groups for each occasion which is not pro-
vided by MARK. Note that by default confidence intervals are based on a normal distribution
to match the output of MARK, but if you want log-normal intervals use normal=FALSE.

• The model.average.list and model.average.marklist functions were modified to use
revised estimator for the unconditional standard error (eq 6.12 of Burnham and Anderson
(2002)) which is now the default in MARK. To use eq 4.9 (the prior formula) set the argument
revised=FALSE.

• Fixed bug in model.average.list which in some cases failed when the list of var-cov ma-
trices were specified.

• Code in model.average.marklist was changed to set standard error to 0 if the variance
is negative. The same is done in the var-cov matrix for the variance and any corresponding
covariances. The results from RMark will now match the model average results from MARK
for this case. It is not entirely clear that this is the best approach when ill-fitted models are
included.

• Changed code in cleanup to handle case in which a model did not run.

• Changed use of grep and regexpr in convert.inp and extract.mark.output to accomo-
date change in R.2.10. The code should work in earlier versions of R but if not update to
R2.10.

• Created a function adjust.value and kept special case of adjust.chat. For any field other
than chat it will adjust the value in model$results. As an example, to adjust the effective
sample size (ESS) use model.list=adjust.value("n",value,model.list) where value is
replaced with the ESS you want to use. As part of the change model.table was changed to
recompute AICc.

Version 1.9.3 (24 September 2009)

• Default link function for Gamma in the Pradel seniority model had been incorrectly set to log
and has now been changed to logit to restrict it to be a probability.

192 Whatsnew

• A bug was fixed in compute.real and covariate.predictions in which confidence inter-
vals were being incorrectly scaled by c (chat adjustment) instead of sqrt(c). The reported
standard errors were correctly using sqrt(c) and only the confidence intervals for the real pre-
dictions were too large. Simply re-running the prediction computations for a model will pro-
vide the correct results. There is no reason to re-run the models. Also this in no way affects
model selection.

• A related bug was fixed in compute.real and covariate.predictions which created invalid
confidence intervals for real parameters if a probability link other than logit was used and a
single type of link was used for all real parameters (e.g., sin).

Version 1.9.2 (10 August 2009)

• Added the function export.MARK which creates a .Rinp, .inp and optionally renames one
or more output files for import to MARK. The July 2009 version of MARK now contains
a File/RMARK Import menu item which will automatically create the MARK project using
the information in these files. This prevents problems that have been encountered in creating
MARK projects with RMark output because the data/group structures are setup exactly in
MARK as they were in RMark. See export.MARK for an example and instructions.

• Fixed a problem in make.design.data which prevented use of remove.unused with unequal
time intervals and more than one group.

• At least one person has encountered a problem with a very large number of parameters in
which RMark created the input file with PIMs written in exponential notation for the larger
indices. MARK will not accept that format and it will fail. The solution to this is to set the R
option scipen to a positive number. Start with options(scipen=1) and increase if necessary.

Version 1.9.1 (2 June 2009)

• Fixed a problem make.design.data which was not using begin.time to label the session
values

• Made a change in export.chdata like the change in make.mark.model to accomodate change
with release of version R2.9.0.

• Made a change in process.data so that strata.labels can be specified for Multistrata
designs like with ORDMS so an unobserved strata can be included.

• A warning was added to the help file for export.chdata and export.model so it is clear that
the MARK database must be created correctly and with the .inp file created by export.chdata
from the processed data that was used to create the models that are being exported. This is
to ensure that the group structure is setup such that the assumed model structure for groups
matches the model structure setup in the .inp file.

Version 1.9.0 (30 April 2009)

• Fixed a bug in summary.mark which occasionally produced erroneous results with showall=FALSE.

• Made a change in make.mark.model to accomodate change with release of version R2.9.0.

• RMark now requires R version 2.8.1 or higher.

Version 1.8.9 (9 March 2009)

Whatsnew 193

• Changed model.average.marklist and covariate.predictions to set NaN or Inf results
in v-c matrix to 0 to cope with poorly determined models. Also, for each function the drop-
ping of models is now restricted to cases in which there are negative variances for the betas
being used in the averaged parameter estimates. Unused betas are ignored. For example, if
model.average is called with parameter="Phi", then the model will only be dropped if there
is a negative variance for one of the betas associated with "Phi".

• In var.components the tolerance value (tol) in the call to uniroot was reduced to 1e-15
which should provide better estimates of the process variance when it is small. Previously a
process variance less than 1e-5 would be treated as 0.

• Made changes to cleanup, coef.mark, and make.mark.model to accomodate externally saved
model objects (external=TRUE).

Version 1.8.8 (5 December 2008)

• An error was fixed in make.time.factor which created incorrect assignments when only
some of the time dependent variables contained a "." for occasions with no data.

• Patched compute.design.data which was not creating the design data in the same order as
the PIM construction for the newly added ORDMS model.

• Generalized section of code in make.mark.model to handle mlogit structure for ORDMS model.

• Fixed a bug in process.data in which the initial ages were not correctly assigned in some
situations with multiple grouping variables. Note that it is always a good idea to examine the
design data after it is created to make sure it is structured properly because it relates the data
and model structure via the grouping variables and the pre-defined variables (ie age, time etc),
While I’ve done a lot of testing, I have certainly not tried every possible example and there is
always the potential for an error to occur in a circumstance that I’ve not encountered.

Version 1.8.7 (13 November 2008)

• An argument common.zero was added to function make.design.data and compute.design.data.
It can be set to TRUE to make the Time variable have a common time origin of begin.time
which is useful for shared parameters like p and c in closed capture and similar models.

• The function read.mark.binary was patched to work with the newer versions of MARK.EXE
since 1 Oct 2008.

• The model type ORDMS for open robust design multi-state models was added. An example data
set will be added at a later date after further testing has been completed.

• Some patches were made to fix some aspects of profile intervals and to fix adjustment by
chat in summary.mark when showall=F. The notation for profile intervals is now included in
the field model$results$real$note where model is the name of a mark model. Previously
an incomplete notation was kept in model$results$real$fixed but that field is now used
exclusively to denote fixed parameters. It is important to realize that profile intervals computed
by MARK are only found in model$results$real$note and are not changed by a chat
adjustment unless the model is re-run. None of the intervals computed by RMark and displayed
by summary.mark are profile intervals.

Version 1.8.6 (28 October 2008)

• A bug in an error message for initial.ages in process.data was fixed.

194 Whatsnew

• A new function var.components was added to provide variance components capability as in
the MARK interface except that shrinkage estimators are not computed currently.

• Fixed parameter values are now being reported correctly by covariate.predictions. Also
over-dispersion (c>1) was not being included in the variances for parameters except those
using the mlogit link.

• Some utility functions were added including pop.est,nat.surv, and extract.indices.

• The function model.average has been changed to a generic function. Currently it sup-
ports 2 classes: 1) list, and 2) marklist. The latter was the original model.average which
has been renamed model.average.marklist and the first argument has been renamed x in-
stead of model.list to match the standard generic function approach. The previous syntax
model.average(...) will work as long as the usage does not name the first agument as
in the example model.average(model.list=dipper.results,...). The list formulation
(model.average.list) was created to enable a generic model averaging of estimates instead
of just real parameter estimates from a mark model. It could be used with any set of estimates,
model weights and estimates of precision.

• A change is needed to read.mark.binary to accomodate the change to mark.exe with the
version dated 1 Oct 2008. Some data types (notably Nest survival) may not work with the new
version of mark.exe. Working with Gary to make the patch. If you need an older version of
mark.exe contact me.

Version 1.8.5 (8 October 2008)

• A bug in process.data was fixed that prevented use of a dataframe contained in a list while
using the groups argument.

• Profile intervals on the real parameters can now be obtained from MARK using the arguments
profile.int and optionally chat in mark. The argument profile.int can be set to TRUE
and a profile interval will be constructed for all real parameters, or a vector of parameter
indices can be specified to restrict the profiling to certain parameters. The value specified by
chat is passed to MARK for over-dispersion.

• References to cjs, js etc have been removed from here because this code was removed 5/11/11.

• Yet another fix to summary.ch which gave incorrect results for the number recaptured at least
once when marray=F and the data contained non-unity values for freq.

Version 1.8.4 (29 August 2008)

• A generic function coef.mark was added to extract the table of betas from the model with the
expression coef(model) where model is a mark model that has been run and contains output.
The table includes standard errors and confidence intervals.

• An argument brief was added to summary.mark. If brief=TRUE the real parameters are not
included in the summary.

• References to cjs, js etc have been removed from here because this code was removed 5/11/11.

• A bug in summary.ch was fixed. It would produce erroneous results when the data contained
a non-constant freq field. Results with the default of freq=1 were fine.

• The function adjust.chat and its help file were changed such that it was clear that a model.list
argument was needed.

Version 1.8.3 (25 July 2008)

Whatsnew 195

• For robust design models, an error trap was added to process.data to make sure that the
capture history length matches the specification for the time.intervals. This error was
already trapped for non-robust models.

• Fixed an error in make.mark.model that prevented interaction model of session/time-specific
individual covariates in a robust design model.

• Fixed an error in process.data so that the field freq is optional for nest survival data sets.
• print.mark was modified to add an argument input which if set to input=TRUE will have

the MARK input file be displayed rather than the output file. Also, wait=FALSE was set in the
system command which means the viewer window will be opened and you can carry on with
R. Before you had to close the viewer window before proceeding with R.

• An example RDOccupancy provided by Bret Collier was added for the Robust Occupancy
model which shows the use of session and time-varying individual covariates in a robust design
model.

Version 1.8.2 (26 June 2008)

• summary.ch was modified to allow missing cohorts (no captures/recaptures) for an occasion
and to fix a bug in which bygroup=FALSE did not work when groups were defined.

• To avoid running out of memory, an argument external has been added to collect.models,
mark, rerun.mark, and run.mark.model. As with all arguments of mark, external can also
be set in mark.wrapper. Likewise, external can also be set in run.models and it is passed to
run.mark.model. The default is external=FALSE but if it is set to TRUE then the mark model
object is saved in an external file with an extension .rda and the same base filename as its
matching MARK output files. The mark object in the workspace is a character string which
is the name of the file with the saved image (e.g., "mark001.rda"). If external=TRUE with
mark.wrapper then the resulting marklist contains a list entry for each mark model which is
only the filename and then the last entry is the model.table. All of the functions recognize
the dual nature of the mark object (i.e., filename or mark object) in the workspace. So even
if the mark object only contains the filename, functions like print.mark or summary.mark
will work. However, if you have used external=TRUE and you want to look at part of a mark
object without using one of the functions, then use the function load.model. Whereas, before
you may have typed mymark$results, if you use external=TRUE, you would replace the
above with load.model(mymark)$results.

• Functions store and restore were created to store externally and restore models from
external storage into the R workspace. They work on a marklist and are only needed to
store externally existing marklist models or ones originally created with external=FALSE or
to restore if you change your mind and decide to keep them in the R workspace.

• Error in setup for robust design occupancy models with more than 2 primary sessions was
fixed. The error resulted in mark.exe crashing.

• The concept of time-varying individual covariates has been expanded to include robust de-
sign models which have both primary (session) and secondary (time) occasion-specific data.
For a robust design, a time-varying individual covariate can be either session-dependent or
session-time dependent. As an example, if there are 3 primary sessions and each has 4 sec-
ondary occasions, then the individual covariates can be named x1,x2,x3 to be primary session-
dependent or named x11,x12,x13,x14,x21,x22,x23,x24,x31,x32,x33,x34. The value of x can
be any name for the covariate. In the formula only the base name is used (e.g., ~x) and RMark
fills in the individual covariate names that it finds that match either the session or session-time
individual covariates.

196 Whatsnew

Version 1.8.1 (19 May 2008)

• Added function summary.ch to provide summaries of the capture history data (resighting
matrices and m-arrays). It will not work with all types of models at present. It will work with
CJS and Jolly-type models.

• Added argument model.name to model.table to be able to use alternate names in the model
table. It can use either the model name with each mark object which uses a formula notation
(the current approach) or it can use the name of the R object containing the mark model
(model.name=FALSE). See model.table for an example. Also, the help file for model.table
was updated to reflect the code changes implemented in version 1.7.3.

• Code in mark.wrapper was modified to output the number of columns and column names of
the design matrix for each model if run=FALSE. This allows a check of each of the columns
included in the model. By reviewing these you can assess whether the model was constucted as
you intended. If there is any question you can either use model.matrix or make.mark.model
to examine the design matrix more thoroughly.

• A bug in the new function merge.design.covariates was fixed in which merge was sorting
the design data which does obvious bad things. Adding sort=FALSE does not appear to mean
that the data frame is left in its original order. To prevent this, the dataframe is forced to remain
in its original order by adding a sequence field for re-sorting after the merge.

Version 1.8.0 (8 May 2008)

• Fixed a bug in model.average that caused it to fail and issue an error when any of the models
included a time dependent covariate in the parameter being averaged.

• Added merge.design.covariates which is meant to replace merge.occasion.data. This
new function allows covariates to be assigned by time, time and group, or just group. It also
uses a simplified list of arguments and works with individual design dataframes rather than
the entire ddl. It uses the R function merge which can be used on its own to merge design
covariates into the design data. You can use merge directly as this function only checks for
some common mistakes before it calls merge and it handles reassignemnt of row names in the
case were design data have been deleted. An example, where you might want to use merge
instead of this function would be situations where the design data are not just group, time or
group-time specific. For example, if groups were specified by two different factor variables
say initial age and region and the design covariates were only region-specific. It would be
more efficient to use merge directly rather than this function which would require an entry
for each group which would be each pairing of inital age and region. If you use merge and
you deleted design data prior to merging, save the row.names, merge and then reassign the
row.names.

• An argument run was added to mark.wrapper. If set to FALSE, then it will run through each
set of models in model.list and try to build each model but does not attempt to run it. This
is useful to check for and fix any errors in the formula before setting off a large run. If you
use run=FALSE do not include arguments that are meant to be passed to run.mark.model like
adjust.

Version 1.7.9 (7 April 2008)

• make.design.data was fixed so that remove.unused=T will work properly when different
begin.time values are specified for each group.

Whatsnew 197

Version 1.7.8 (12 March 2008)

• Changed the default link for N to log in the setup.parameters for the HetClosed and
FullHet. It was incorrectly set to logit which created incorrect estimates to be computed
in model.average because MARK forces the log link for N regardless of what is set in the
input file.

Version 1.7.7 (6 March 2008)

• Supressed warning message that occurred with code to check the validity of the sin link in
make.mark.model.

• Fixed a couple of bugs in covariate.predictions that prevented it from working for some
cases after including code for the sin link.

• Added function release.gof to construct the RELEASE goodness of fit test and extract the
TEST2 and TEST3 final chi-square, df and P-values.

Version 1.7.6 (26 Feb 2008)

• make.mark.model was modified to change the capitalization of the link functions and to re-
move all spaces after "=" in the input file for mark.exe. These differences were preventing the
MARK interface from fully importing the model. Although the model would be imported and
could be run inside the MARK interface, median c-hat would not run and would give an error
stating "Invalid Link" for any model imported from RMark. Now transfering a model from
RMark to the MARK interface is fully functional (I hope). If you want to import an output file
that was created with a prior version of RMark without re-running it, use a text editor on the
output file and remove any spaces before and after an = sign. Then change the capitalization
of the links to "Logit", "MLogit", "Log", "LogLog", "CLogLog", "Identity".

• The sin link is now supported if the formula for the parameter generates an identity matrix for
the parameter. For example, if you use ~-1+time instead of ~time then the resulting design
matrix will be an identity for time. Likewise, for interactions use ~-1+group:time instead of
~group*time. If you select the sin link and the resulting design matrix is not an identity for
the parameter, an error will be given and the run will stop.

• To match the output from MARK, the confidence intervals for real parameters using any 0-1
link including loglog,cloglog,logit and sin are now computed using the logit transformation.
For previous versions this will only affect any results that were using loglog and cloglog.
Previously, it was using the chosen link to compute the se and the interval endpoints. The
latter is still used for the log and identity links which are not bounded in 0-1.

• The model "Jolly" was added to the supported list of models. Parameters include Phi,p,Lambda,N.
It is not a particularly numerically stable model and often will not converge. Use of op-
tions="SIMANNEAL" in call to mark is recommended for better convergence. It will take
much longer to converge but is mroe reliable.

Version 1.7.5 (24 Jan 2008)

• model.average was modified to ignore any models that did not run and either had no attached
output file or no results.

• read.mark.binary and extract.mark.output were modified to extract and store the real.vcv
matrix (var-cov matrix of the simplified real parameters) in the mark object if realvcv=TRUE.
The default is realvcv=FALSE. This argument has been added to functions mark, run.mark.model
and rerun.mark.

198 Whatsnew

• An argument delete has also been added to mark and run.mark.model. The default value
is FALSE but if set to TRUE it deletes all output files created by MARK after extracting
the results. This is most useful for simulations that could easily create thousands of output
files and after extracting the results the model objects are no longer needed. This is just a
convenience to replace the need to call cleanup.

Version 1.7.4 (10 Jan 2008)

• A bug in make.mark.model was fixed. It was preventing creation of individual (site) covariate
models for parameters with only a single parameter (single index) in certain circumstances like
Psi1 in the MSOccupancy model.

• The fix to merge.occasion.data in version 1.7.1 did not work when design data had been
deleted. That has been remedied.

• Various functions with some operating specific calls have been modified so they will work
on either Windows or Linux. Thus, the there is a single file for all source/help for both
operating systems in RMarkSource.zip. It can be downloaded to either Windows or Linux
to build the package. You need to build the package for Linux but not for Windows. For
Windows, you only need RMark.zip which contains the pre-built package which only needs
to be installed. Currently, with Linux the variable MarkPath is ignored and mark.exe is as-
sumed to be in the path. Also, for Linux the default for MarkViewer is "pico" (an editor on
some Linux machines). This can be modified in print.mark or by setting MarkViewer to
a different value. The one Linux specific function is read.mark.binary.linux. The func-
tion extract.mark.output calls either read.mark.binary.linux or read.mark.binary
depending on the operating system. A Linux version of mark.exe (32 or 64 bit) can be ob-
tained from Evan.

Version 1.7.3 (4 Jan 2008)

• In working with the occupancy models, it became apparent that it would be useful to have a
new function called make.time.factor which creates time-varying dummy variables from a
time-varying factor variable. An example is given using observer with the occupancy dataset
weta from the MacKenzie et al Occupancy modelling book.

• To match the results in the book, I added arguments use.AIC and use.lnl to function model.table
to construct a results table with AIC rather than AICc and -2LnL values. The latter is more
useful with a mix of models some using individual covariates and others not.

• A modification was made to make.mark.model with the MSOccupancy model to fix the name
of the added data for parameter p1 when share=TRUE to be p2. For an example which uses p2
to construct an additive model, see NicholsMSOccupancy.

Version 1.7.2 (20 Dec 2007)

• In changing code for the occupancy models, a brace was misplaced which prevented the nest
survival models from working. This has been fixed. Also, the example code for mallard and
killdeer was modified to exclude the calls to process the input file. This enables use of the
function example() to run the example code (e.g. example(mallard)). From now on as I
add examples they are being included in my test set to avoid this type of problem in the future.

Version 1.7.1 (14 Dec 2007)

• If you update with this version of RMark make sure to update MARK also, so you get the
fixes for some of the occupancy models.

Whatsnew 199

• A minor bug was fixed in function merge.occasion.data that created duplicate row names
and prevented the design data from being used in a model.

• Thirteen different occupancy models were added. Models in the following list use the designa-
tion from MARK: Occupancy,OccupHet,RDOccupEG,RDOccupPE,RDOccupPG,RDOccupHetEG,RDOccupHetPE,RDOccupHetPG,OccupRNPoisson,
OccupRNNegBin,OccupRPoisson,OccupRNegBin,MSOccupancy. Het means it uses the Pledger
mixture and those with RD are the robust design models. The 2 letter designations for the RD
models are shorthand for the parameters that are estimated. For EG, Psi, Epsilon, and Gamma
are estimated, for PE gamma is dropped and for PG, Epsilon is dropped. For the latter 2 models,
Psi can be estimated for each primary occasion. The last 5 models include the Royle/Nichols
count (RPoisson) and presence (RNPoisson) models and the multi-state occupancy model.
See salamander for an example of Occupancy,OccupHet, Donovan.7 for an example of
OccupRNPoisson,OccupRNNegBin, Donovan.8 for an example of OccupRPoisson,OccupRNegBin,
see RDSalamander for an example of the robust design models and NicholsMSOccupancy for
an example of MSOccupancy. salamander data.

• The functions create.model.list and mark.wrapper were modified so that a list of pa-
rameters can be used to loop. This is useful in the situation with shared parameters such as
p1 and p2 in the MSOccupancy model, closed models etc. See p1.p2.different.dot in
NicholsMSOccupancy for an example. It can also be useful if the model definitions are linked
conceptually (e.g., when one parameter is time dependent, the other should also be time de-
pendent).

• The "." value in an encounter history is now acceptable to RMark and gets passed to MARK
for interpretation as a missing value.

• print.marklist was fixed to show the model table properly after a c-hat adjustment was
made. The change in the code in version 1.6.5 to add parameter specific values to the model
table had the side-effect of dropping the model name if c-hat was adjusted.

Version 1.7.0 (7 Nov 2007)

• A function deltamethod.special for computation of delta method variances of some special
functions was added. It uses the function deltamethod from the package msm. You need to
install the package msm from CRAN to use it.

• A more complete example (mallard) created by Jay Rotella was added for the nest survival
model. His script provides a nice tutorial for RMark and the utility of R to provide a wide-
open capability to calculate/plot etc with the results. It also demonstrates the advantages of
scripting in R to document your analysis and enable it to be repeated. Before you use his
tutorial you need to install the package plotrix from CRAN. At a later date, Jay has said he
will add some additional examples to demonstrate use of the deltamethod function to create
variances for functions of the results from MARK.

• Various changes were made to help files. A more complete description of cleanup was given
to tie into mallard example.

Version 1.6.9 (10 Oct 2007)

• Nest survival model was added to list of MARK models supported by RMark. See killdeer
for an example. Note that the data structure for nest models is completely different from the
standard capture history so the functions import.chdata, export.chdata and convert.inp
do not work with nest data structure.

200 Whatsnew

• Slight change was made to run.mark.model and print.markto accomodate change in R
2.6.0.

Version 1.6.8 (2 Oct 2007)

• Changes were made to merge.occasion.data to enable group and time-specific design co-
variates to be added to the design data.

• Change was made to setup.parameters to use a log-link for N in the closed-capture models.
MARK forces that link for N but the change was needed for model.average which does the
inverse-link computation. Note that the reported N in model.average is actually f0 (number
not seen). To get the correct values for N simply add M_t+1 (unique number captured) to f0.
That is the way MARK computes N. The std error and confidence interval is on f0 such that
the lower ci on N will never be less than M_t+1.

• An error was fixed in the output of model.average. When you selected a specific parameter,
it was giving a UCL which was a copy from one of the models and not the UCL from the
model averaging. If you didn’t specify vcv=T it only showed the errant UCL and if you did
specify vcv=T then it showed the correct LCL and UCL but then added the errant UCL in a
column. This occurred because it was adding covariate data for the specific parameter and was
shifted a column because of a change in 1.6.1.

Version 1.6.7 (7 Aug 2007)

• Changes were made in print.mark, print.summary.mark and compute.design.data to
acommodate changes in V2.5.1 of R. When upgrading versions of R problems may occur if
RMark was built with an earlier version of R. The version of R that was used to build RMark is
listed on the screen each time it is loaded with library(RMark) This is RMark 1.6.7 Built:
R 2.5.1; i386-pc-mingw32; 2007-08-07 09:00:33; windows

• The help file for import.chdata was expanded to clarify the differences between it and
convert.inp and the use of the freq field.

Version 1.6.6 (14 May 2007)

• Function make.mark.model was fixed so that the real label indices were properly written when
simplify=FALSE is used.

• Function make.mark.model was also changed to remove the parameter simplification for
mlogit parameters that was added in v1.4.5. I mistakenly assumed that the mlogit parame-
ters were setup such that the normalization to sum to 1 was done will all the real parameters
in the set (i.e., all PSI for a single stratum). In fact, the mlogit values are only specified for
the unique real parameters so if there is any simplification and the sum of the probabilities
is close to 1 (excluding subtraction value) the values will not be properly constrained. For
example, with the mstrata data if the problem was constrained such that PSI from AtoB was
equal to AtoC, it is still necessary to have these as separate real parameters and constrain them
with the design matrix. As it turns out, with the mstrata example it does not matter because
the problem is such that the sum of Psi for AtoB and AtoC is not close to 1 (same for other
strata) and any link will work. This change will only be noticeable in situations in which the
constraint matters (i.e., the probability for the subtraction parameter is near 0). The change
back to non-simplification for mlogit parameters may increase execution times because the
design matrix size has been increased. Previous users of the Multistrata design will see very
little difference in there results if they only used models containing stratum:tostratum because

Whatsnew 201

that will create an all-different PIM within each mlogit set. When I ran the mstrata exam-
ples with this version and compared them to v1.6.5 the results were different but they were
differences in the 5th or smaller decimal point due to differences in numerical optimization.

Version 1.6.5 (3 May 2007)

• Function model.table was modified to include parameter formula fields in the model.table
dataframe of a marklist. Previously only the model.name was included which is a concate-
nation of the individual parameter formulas. The additional fields allows extracting the model
table results based on one of the parameter formulas or to create a matrix of model AICc or
other values with rows as one parameter and colums as the other. See model.table for an
example.

• Function process.data was modified such that factor variables used for grouping retain the
ordering of the factor levels in the data file. Previously they would revert back to default
ordering and the re-leveling would also have to be repeated on the design data also.

• An argument brief was added to mark to control amount of summary output.
• Fixed a bug in get.real that prevented computation for models without the stored covariate

values.
• Added code to make.mark.model that prevents constructing models with empty rows in the

design matrix unless the parameter is fixed. For example, if you were to try ~-1+Time for the
dipper data, it will fail now because there is no value for the intercept (Time=0).

• Function mark.wrapper outputs the model name to the screen before running the model which
helps associate any error messages to the model if output=F.

Version 1.6.4 (7 March 2007)

• A new function export.model was created to copy the output files into the naming convention
needed to append them into a MARK .dbf/.fpt database so they can be used with the MARK
interface features. This is useful to be able to use some of the features not contained in RMark
such as median c-hat and variance component estimation. To create a MARK database, first
use export.chdata to create a .inp file to pass the data into MARK. Start MARK and use
File/New to create a new database. Select the appropriate Data Type (model in RMark) and
fill in the appropriate values for encounter occasions etc. For the Encounter Histories File
Name, select the file you created with export.chdata. Once you have created the database in
the Program MARK interface, click on the Browse menu item and then Output/Append and
select the output file(s) (i.e those with a Y.tmp) that you exported with export.model. Note
that this will not work with output files run with versions of RMark prior to this one because
the MARK interface will give a parse error for the design matrix. To get around that you
can edit the output file and remove the spaces in the line with the design matrix header. For
example, it should look as follows design matrix constraints=7 covariates=7 without
spaces around the = sign.

• The minor change described above was made in the input file with spacing on the design
matrix line to enable proper appending of the output into a MARK .dbf/.fpt database.

• The function cleanup was modified to delete all mark*.tmp files. Do not use cleanup until
you have appended any exported models.

• An argument use.comments was added to import.chdata to enable comment fields to be
used as row names in the data frame. A comment is indicated as in MARK with /* comment
*/. They can be anywhere in the record but they must be unique and they can not have a
column header (field name).

202 Whatsnew

• Function create.model.list was modified such that it only includes lists with a formula
element. This prevents collecting other objects that are named similarly but are not model
defintions.

Version 1.6.3 (5 March 2007)

• A minor change in make.mark.model and find.covariates was made to accommodate use
of the same covariate in different formulas (e.g. Phi and p). Previous code worked except any
call to get.real would fail. Previously a duplicate of the covariate was entered in the data
file to MARK. Now only a single copy is passed.

• An argument default has been added to the model definition (parameters in make.mark.model
and model.parameters in mark). The argument sets the default value for parameters repre-
sented by design data that have been deleted.

• Checks were added in make.mark.model to fail if any of the individual covariates used are ei-
ther factor variables or contain NAs. Both could fail in the MARK.EXE run but the error mes-
sage would be less obvious. Factor variables can work as an individual covariate, if the levels
are numeric. But it was easier to exclude all factor variables from being individual covariates.
They can easily be converted to a continuous version (e.g. Blackduck$BirdAge=as.numeric(Blackduck$BirdAge)-
1). The code for the Blackduck was changed to make BirdAge a continuous rather than factor
variable. Factor variables can still be used to define groups and then used in the formula. They
just can’t be used as individual covariates. This change was made because a factor variable
was in the data but not defined in groups and when it was used in the formula it would create
a float error in MARK.EXE and that would be confusing and hard to track down.

Version 1.6.2 (28 Feb 2007)

• The fix in 1.6.1 to avoid the incorrect design matrix was not sufficiently general and created
a parse error in R if you attempted to use any design data covariates that were created with a
cut function to create factor variables by binning a variable. This has been corrected in this
version.

• The code in read.mark.binary has been changed to skip over the v-c matrix for the derived
parameters if it is not found in the file. This was causing an error with the PRADREC model
type.

Version 1.6.1 (17 Jan 2007)

• An important bug was fixed in make.mark.model in which an incorrect design matrix would
be created if you used two individual covariates in the same formula whereby one of the
covariate names was contained within the other. For example, if you used ~mass+mass2
where mass2=mass^2, it would actually create a design matrix with columns mass prod-
uct(mass,mass2) which would be the model mass+mass^3. This happened due to the way
the code identified columns where it needed to replace dummy values with individual covari-
ate names. Since mass was contained in mass2 it added mass to the column as a product. The
code now does exact matching so the error can no longer occur.

• An argument indices was added to the function model.average which enables restricting
the model averaging to a specific set of parameters as identified by the all-different parameter
indices. This is most useful in large models with many different indices such that memory lim-
itations are encountered in constructing the variance-covariance matrix of the real parameters.
For example, with a CJS analysis of data with 18 groups and 26 years of data, the number

Whatsnew 203

of parameter indices exceeds 22,000. Even by restricting the parameters to either Phi or p
with the parameter argument there are still 11,000 which would attempt to create a matrix
containing 11,000 x 11,000 elements which can exceed the memory limit. In most cases, there
are far fewer unique parameters and this argument allows you to select which parameters to
average.

• Time-varying covariates are no longer needed for all times if the formula is correctly written
to exclude them in the resulting design matrix. make.mark.model still reports missing time-
varying covariates but will continue to try and fit the model but if the missing variables are
used in the design matrix the model will fail. As an example consider a time varying covariate
x for recapture times 1990 to 1995. The code expects to find variables x1990, x1991, x1992,
x1993, x1994, x1995. However, lets say that the values are only known for 1993-1995. If
you define a variable I’ll call recap in the design data which has a value 1 for 1993-1995 and
a value 0 for 1990-1992 then if you use the formula ~recap:x the resulting design matrix will
only use the known variables for 1993-1995 but you will still be warned that the other values
(x1990 - x1992) are missing.

• A bug was fixed in extract.mark.output which prevented it from obtaining more than the
last mean covariate value from the MARK output.

• fill.covariates was modified such that only a partial list of covariate values need to be
specified with data and the remainder are filled in with default values depending on argument
usemean.

• The output from summary.mark was modified for real parameters when se=T to include
all.diff.index to provide the indices of each real parameter in the all-different PIM struc-
ture. They are useful to restrict covariate.predictions and model.average to a specific
set of real parameters.

• A new function covariate.predictions was created to compute real parameter values for
multiple covariate values and their variance-covariance matrix. It will also model average
those values if a marklist is passed to the function. Two examples from chapter 12 of Cooch
and White are provided to give examples of models with individual covariates and the use of
this function.

• The default value of vcv in model.average has been changed to FALSE.

Version 1.6.0 (27 Nov 2006)

• A bug was fixed in PIMS which prevented it from working with Multistrata models.

• Bugs were fixed in make.design.data which prevented use of argument remove.unused=T
with Multistrata models and also for any type of model when there were no grouping variables.

• Bugs were fixed in process.data which gave incorrect ordering of intial ages if the factor
variable for the age group was numeric and more than two digits. Also, the number of groups
in the data was not correct if the number of loss on capture records exceeded the number
without loss on capture within a group.

• Bugs were fixed in setup.parameters and setup.model that prevented use of the Barker
model and that reported an erroneous list of model names when an incorrect type of model
was selected.

Version 1.5.9 (26 June 2006)

204 Whatsnew

• A bug was fixed in convert.inp which prevented the code from working with groups and two
or more covariates. Note that there are limitations to this function which may require some
minor editing of the file. The limitations have been added to the help file (convert.inp).

Version 1.5.8 (22 June 2006)

• Argument options was added to mark and make.mark.model with a default NULL value. It
is simply a character string that is tacked onto the Proc Estimate statement for the MARK
.inp file. It can be used to request options such as NoStandDM (to not standardize the design
matrix) or SIMANNEAL (to request use of the simulated annealing optimization method) or
any existing or new options that can be set on the estimate proc.

• A bug in model.table was fixed so it would accomodate the change from v1.3 to a marklist
in which the model.table was switched to the last entry in the list.

• A bug in summary.mark was fixed so it would properly display QAICc when chat > 1.

• Function adjust.chat was modified such that it returns a marklist with each model having a
new chat value and the model.table is adjusted for the new chat value.

• Function adjust.parameter.count was modfied so it returns the mark model object rather
than using eval to modify the object in place. The latter does not work with models in a
marklist and calls made within functions.

Version 1.5.7 (8 June 2006)

• Argument data was added to function model.average to enable model averaging parameters
at specific covariate values rather than the mean value of the observed data. An example is
given in the help file.

• Argument parameter of function model.average now has a default of NULL and if it is not
specified then all of the real parameters are model averaged rather than those for a particular
type of parameter (eg p or Psi).

• A bug was fixed in function compute.real that caused the function to fail for computations
of Psi.

Version 1.5.6 (6 June 2006)

• print.summary.mark was modified so fixed parameters are noted.

• Argument show.fixed was added to summary.mark to control whether fixed parameters are
shown as NA (FALSE) or as the value at which they were fixed. If se=T the default is
show.fixed=T otherwise show.fixed=F. The latter is most useful in displaying values in
PIM format (without std errors), so fixed values are displayed as blanks instead of NA.

• Argument links was added to convert.link.to.real and the default value for argument
model is now NULL. One or the other must be given. If the value for links is given then
they are used in place of the links specified in the model object. This provides for additional
flexibility in changing link values for computation (eg use of log with mlogit).

• Argument drop was added to model.average. If drop=TRUE (the default), then any model
with one or more non-positive (0 or negative) variances is not used in the model averaging.

• An error in computation of the v-c matrix of mlogit link values in compute.links.from.reals
was fixed. This did not affect confidence intervals for real parameters (eg Psi) in model.average
because it uses the logit transformation for confidence intervals on real parameters that use
mlogit link (eg Psi).

Whatsnew 205

• get.real was unable to extract a single parameter value(eg constant Phi model). This was
fixed.

• The argument parm.indices was removed from the functions compute.real and convert.link.to.real
because the subsetting can be done easily with the complete results returned by the functions.
This changed the examples in fill.covariates.

• compute.real and subsequently get.real return a field fixed when se=TRUE that denotes
whether a real parameter is a fixed parameter or an estimated parameter at a boundary which
is identified by having a standard error=0.

Version 1.5.5 (1 June 2006)

• model has been deleted from the arguments in TransitionMatrix. It was only being used to
ascertain whether the model was a Multistrata model. This is now determined more accurately
by looking for the presence of tostratum in the argument x which is a dataframe created
for Psi from the function get.real. The function also works with the estimates dataframe
generated from model.average. See help for TransitionMatrix for an example.

• An argument vcv was added to function model.average. If the argument is TRUE (the de-
fault value) then the var-cov matrix of the model averaged real parameters is computed and
returned and the confidence intervals for the model averaged parameters are constructed. Mod-
els with non-positive variances for betas are reported and dropped from model averaging and
the weights are renormalized for the remaining models.

• A new function compute.links.from.reals was added to the library to transform real pa-
rameters to its link space. It has 2 functions both related to model averaged estimates. Firstly,
it is used to transform model averaged estimates so the normal confidence interval can be con-
structed on the link values and then back-transformed to real space. The second function is
to enable parametric bootstrapping in which the error distbution is assumed to be multivariate
normal for the link values. From a single model, the link values are easily constructed from
the betas and design matrix so this function is not needed. But for model averaging there is
no equivalent because the real parameters are averaged over a variety of models with the same
real parameter structure but differing design structures. This function allows for link values
and their var-cov matrix to be created from the model averaged real estimates.

Version 1.5.4 (30 May 2006)

• In function mark an argument retry was added to enable the analysis to be re-run up to the
number of times specified. An analysis is only re-run if there are "singular" beta parameters
which means that they are either non-estimable (confounded) or they are at a boundary. Begin-
ning with this version, extract.mark.output was modified such that the singular parameters
identified by MARK are extracted from the output (if any) and the indices for the beta param-
eters are stored in the list element model$results$singular. The default value for retry
is 0 which means it will not retry. When the model is re-run the initial values are set to the
values at the completion of the last run except for the "singular" parameters which are set to 0.
Using retry will not help if the parameters are non-estimable. However, if the parameters are
at a boundary because the optimization "converged" to a sub-optimal set of parameters, then
setting retry to 1 or a suitably small value will often help it find the MLEs by moving away
from the boundary. If the parameters are estimable and setting retry does not work, then it
may be better to set new initial parameters by either specifying their values or using a model
with similar parameters that did converge.

206 Whatsnew

• A new function rerun.mark was created to simplify the process of refitting models with new
starting values when the models were initially created with mark.wrapper which runs a list
of models by using all combinations of the formulas defined for the various parameters in
the model. Thus, individual calls to mark are not constructed by the user and re-running
an analysis from the resulting list would require constructing those calls. The argument
model.parameters is now stored in the model object and it is used by this new function
to avoid constructing calls to rerun the analysis. With this new function you only need to
specify the model list element to be refitted, the processed dataframe, the design data and the
model list element (or different model) to be used for initial values. See rerun.mark for an
example.

• To make rerun.mark a viable approach for all circumstances, the functions mark.wrapper
and model.table were modified such that models that fail to converge at the outset (i.e., does
not provide estimates in the output file) are stored in the model list created by the former
function and they are reported as models that did not run and are skipped in the model.table
by the latter function. This enables a failed model to be reanalyzed with rerun.mark using
another model that converged for starting values.

Version 1.5.3 (25 May 2006)

• In function get.real a fix was made to accommodate constant pims and a warning is given if
the v-c matrix for the betas has non-positive variances.

• In function make.mark.model, the argument initial can now be a single value which is then
assigned as the initial value for all betas. I have found this useful for POPAN models. For
some models I have run, the models fail to converge in MARK with the default initial values
it uses (I believe it uses initial=0). I have had better luck using initial=1. By allowing
the use of a single value you can use the same generic starting value for each model without
figuring out the number of betas in each model. Also note that you can specify another model
that has already been run to use as initial values for a new model and it will match parameter
values.

• A bad bug was fixed in cleanup which was unfortunately deleting files containing "out",
"inp", "res" or "vcv" rather than those having these as extensions. This happened without
your knowledge if you chose ask=FALSE. Good thing I had a backup. Anyhow, I have now
restricted it to files that are named by RMark with markxxxx.inp etc where xxxx is a numeric
value. Thus if you assign your own basefile name for output files you’ll have to delete them
manually. Better safe than sorry.

Version 1.5.2 (18 May 2006)

• Two new functions were added in this version. convert.inp converts a MARK encounter
history input file to an RMark dataframe. This will be particularly useful for those folks
who have already been using MARK. Instead of converting and importing their data with
import.chdata they can use the convert.inp to import their .inp file directly. It can also be
used to directly import any of the example .inp files that accompany MARK and the MARK
electronic book (http://www.phidot.org/software/mark/docs/book/). The second new
function is only useful for tutorials and for first time users trying to understand the way RMark
works. The function PIMS displays the full PIM structure or the simplified PIM structure for
a parameter in a model. The user does not directly manipulate PIMS in RMark and they are
essentially transparent to the user but for those with MARK experience being able to look at
the PIMS may help with the transition.

http://www.phidot.org/software/mark/docs/book/

Whatsnew 207

Version 1.5.1 (11 May 2006)

• Functions compute.link and get.link were added to compute link values rather than the
parameter estimates.

• A function convert.link.to.real was added to convert link estimates to real parameter
estimates. Previously a similar internal function was used within compute.real but to provide
more flexibility it was put into a separate function.

• An argument beta was added to get.real to enable it to be changed in the computation of
the real parameters rather than always using the values in results$beta.

• A function TransitionMatrix was added to create a transition matrix for the Psi values. It
is provided for all strata including the subtract.stratum. Standard errors and confidence
intervals can also be returned.

• make.mark.model was modified to include time.intervals as an element in the mark object.

Version 1.5.0 (9 May 2006)

• If output file already exists user is given option to create mark model from existing files. Only
really useful if a bug occurs (which occurred to me from 1.4.9 changes) and once fixed any
models already run can be brought into R by running the same model over and specifying the
existing base filename. Base filename values are no longer prefixed with MRK to enable
this change.

• On occasion MARK will complete the analysis but fail to create the v-c matrix and v-c file.
The code has been modified to skip over the file if it is missing and output a warning.

• Two new functions have been added to ease handling of marklist objects. merge.mark merges
an unspecified number of marklist and mark model objects into a new marklist with an optional
model.table. remove.mark can be used to remove mark models from a marklist. See dipper
for examples of each function.

• Various changes were made to functions that compute real parameter estimates, their standard
errors, confidence intervals and variance-covariance matrix. The functions that were changed
include compute.real,find.covariates,get.real,fill.covariates. For examples, see
help for latter two functions.

Version 1.4.9 (3 May 2006)

• Argument initial of make.mark.model was not working after model simplification was
added in v1.2. This was modified to select initial values from the model based on names of
design matrix columns rather than column contents which have different numbers of rows
depending on the simplification.

• extract.mark.output was fixed to extract the correct -2LnL from the output file in situations
in which initial values were specified.

Version 1.4.8 (25 April 2006)

• Argument silent was added to mark and mark.wrapper with a default value of FALSE. This
overcomes the problem described above in 1.4.7.

• Code was added to collect.model.names to prevent it from tripping up when files contain
an asterisk which R uses for special names.

208 Whatsnew

• Use of T and F was properly changed to TRUE and FALSE in various functions to prevent
errors when T or F are R objects.

• Code for naming files was modified to avoid problems when more than 999 analyses were run
in the same directory.

• Bug in setting fixed parameters with argument fixed=list(index=,value=) was corrected.

• Argument remove.intercept was added to parameter definition to force removal of intercept
in designs with nested factor interactions with additional factor variables (e.g., Psi=list(formula=~sex+stratum:tostratum,remove.intercept=TRUE)).

Version 1.4.7 (10 April 2006)

• An error was fixed in the Psi simplification code. Note that with the fix in 1.4.2 to trap errors,
a side effect is that non-trapped errors that occur in the R code will now fail without any error
messages. If the error occurs in making the model, then the model will not be run, but you
will not receive a message that the model failed. I may have to make the error trapping a
user-settable option to provide better error tracking.

Version 1.4.6 (7 April 2006)

• Assurance code was added to test that the mlogits were properly assigned. An error message
will be given if there has been any unforeseen problem created by the simplification. This
eliminates any need for the user to check them as described under 1.4.5 above.

Version 1.4.5 (6 April 2006)

• For multistrata models, the code for creating the mlogit links for Psi was not working properly
if there was more than one group. This was fixed in this version.

• Simplification of the PIMS has now been extended to include mlogit parameters. That was not
a trivial exercise and while I feel confident it is correct, double check the assignment of mlogit
links for complex models, as I have not checked many examples at present. Within a stratum,
the corresponding elements for Psi for each of the tostratum (movement from stratum to each
of the other strata excluding the subtract.stratum) should have the same mlogit(xxx) value
such that it can properly compute the value for subtract.stratum by subtraction.

Version 1.4.4 (4 April 2006)

• By including the test on model failure, errors that would stop program were not being dis-
played. This has been fixed in this version.

• An error was fixed in using time-varying covariates when some of the design data had been
deleted.

Version 1.4.3 (30 March 2006)

• Problem with pop up window has been fixed. It will no longer appear if the model does not
converge but the model will show as having failed.

• An error was fixed in extracting output from the MARK output file when for some circum-
stances the label for beta parameters included spaces. This now works properly.

Version 1.4.2 (14 March 2006)

Whatsnew 209

• Errors in the FORTRAN code were preventing completion of large batch jobs. Now these
errors are caught and models that fail are reported and skipped over. Unfortunately, it does
require user intervention to close the popup window. Make sure you select Yes to close the
window especially if you use the default invisible=FALSE such that the window does not
appear. If you select No, you will not able to close the window and R will hang.

• A new list element was added to parameters in make.design.data for parameters such as
Psi to set the value of tostratum that is computed by subtraction. The default is to compute
the probabilitity of remaining in the stratum. The following is an example with strata A to D
and setting A to be computed by subtraction for each stratum:
ddl=make.design.data(data.processed,
parameters=list(Psi=list(pim.type="constant",subtract.stratum=c("A","A","A","A")),
p=list(pim.type="constant"),S=list(pim.type="constant")))

Version 1.4.1 (11 March 2006)

• A value "constant" was added for the argument pim.type. Note that pim.type is only used
for triangular PIMS. See make.design.data

• Some code changes were made to make.mark.model which lessen time to create the MARK
input file for large models.

• Function add.design.data was modified to accomodate robust design and deletion of design
data; this was missed in v1.4 changes.

• model.name argument in mark and make.mark.model was not working. This was fixed.

Version 1.4 (9 March 2006)

• Robust design models added. See robust for an example.

• Function cleanup was modified so warning messages/errors do not occur if no models/files
are found.

• Parameters in the design matrix are now ordered in the same consistent arrangement. In prior
versions they were arranged based on their order in the argument call.

• Argument right was added to make.design.data, add.design.data and in design.parameters
of make.mark.model to control whether bins are inclusive on the right (default). The robust
example uses this argument in a call to mark.

Version 1.3 (22 Feb 2006)

• Time varying covariates can now be included in the model formula. See make.mark.model
for details.

• New model types for Known (Known-fate) and Multistrata (CJS with different strata) were
added. See Blackduck and mstrata for examples.

• Specific rows of the design data can now be removed for parameters that should not be esti-
mated. Default fixed values can be assigned. The function make.design.data now accepts
an argument remove.unused which can be used to automatically remove unused design data
for nested models. It’s behavior is also determined by the new argument default.fixed in
make.mark.model.

• summary.mark now produces a summary object and print.summary.mark prints the sum-
mary object. Changes were made to output when se=T.

210 wwdo.popan

• A new function merge.occasion.data was created to add occasion specific covariates to the
design data.

• New functions mark.wrapper and create.model.list were created to automate running
models from a set of model specifications for each model parameter.

• The argument begin.time in process.data can now be a vector to enable a different begin-
ning time for each group.

• An argument pim.type was added to parameter specification to enable using pims with time
structure for data sets with a single release cohort for CJS. See make.design.data

• Model lists created with collect.models are now given the class "marklist" which is used
with cleanup and print.marklist (see print.mark).

• The function collect.models now places the model.table at the end of the returned list such
that each model number in model.table is now the element number in the returned list. Previ-
ously it was 1+ that number.

• Input, output, v-c and residual results files from MARK are now stored in the directory con-
taining the .Rdata workspace. They are numbered consecutively and the field output con-
tains the base filename. The function cleanup was created to delete files that are no longer
linked to mark or marklist objects.

• Model averaged estimates and standard errors of real parameters can be obtained with the
function model.average.

Version 1.2 (4 Oct 2005)

• By default the PIM structure is simplified to use the fewest number of unique parameters. This
reduces the size of the design matrix and should reduce run times.

• The above change was made in some versions still numbered 1.1, but it contained an error that
caused the links command for MARK to be constructed incorrectly.

• adjust argument has been added to collect.models to enable control of number of param-
eters and resulting AIC values.

• model.list in model.table and adjust.chat can now also be a list of models created by
collect.models which allows operating on sets of models.

Author(s)

Jeff Laake

wwdo.popan White-winged dove Jolly-Seber POPAN Analysis Details

Description

This dataset represents 2 years of capture-mark-recapture data collected on uniquely identifiable
leg-banded (size 4) white-winged dove captured in Alice, Texas, USA (Latitude 27.25, Longitude
-98.07) between mid-February and mid-September during 2009 and 2010. The package was devel-
oped such that others could recreate the analysis developed by Collier, B. A., S. R. Kremer, C. D.
Mason, J. Stone, K. W. Calhoun, and M. J. Peterson. 2012. Immigration and recruitment in an ur-
ban white-winged dove breeding colony. Journal of Fish and Wildlife Management, In review., and
see how the data and results were used to estimate population level recruitment (number juveniles
in population over number adults in population).

wwdo.popan 211

Format

The format is 2 data frames, one for 2009 and one for 2010. 2009 has 5101 unique captures, 2010
has 3502 unique captures.

Prefix Unique band prefix identifier (usually 0914 or 0984)

Suffix Unique band suffix (numeric value)

E0-E13 0/1 representing whether a dove was captured (1) or not captured (0) during that (E) sam-
pling occasion

Age Age class with AHY=after-hatch year and HY=hatch year

Details

White-winged doves were captured (aged: AHY=after-hatch year, HY=hatch year) continuously
in baited walk-in dove traps beginning in Februrary and ending in September in each year (2009
and 2010). During 2009 5,101 white-winged doves were captured (2,894 AHY, 2,207 HY) while
in 2010 3,502 white-winged doves were captured (3,106 AHY, 486 HY). We used approximately
2 week date windows to categorized our encounter histories for analysis in MARK http://www.
phidot.org/software/mark/ via RMark using these dates: 27 Feb; 13 March; 27 March; 10
April; 24 April; 8 May; 22 May; 5 June; 19 June; 3 July; 17 July; 31 July; 14 August-End; giving
us 13 encounter occasions.

I wanted to force b0=0 for the first time frame, as none could be there when we started as they had
not arrived yet in any real number. If you take the first column out, the numbers get ridiculously
screwy for the super population size and the entry parameters, because the initial population has
individuals in it, thus the JSPOPAN estimates something like 40 the population pre-trapping, which
is biologically impossible.

Initially, because of the parameter structure in a JS-POPAN model and the fact that the initial entry
probability is 1 minus the sum of the resultant entry probabilities for subsequent sampling occasions,
and because occasionally a couple of doves were captured during the initial time frame, we were
getting entry values for the initial time period representing >40 To obtain reasonable results a ’fake’
encounter occasion (time -1) with no captures ("0") was appended to beginning of each capture
history to force b0=0. As such, the data for wwdo.09 and wwdo.10 will have 14, not 13 encounter
histories.

Important to note, in case you don’t read Collier et al. (2012), is the fact that the 2010 dataset is
kind of screwy relative to the estimation of the entry parameters for HY wwdo. Basically, what
happened was we caught a bunch of AHY birds, but when we captured HY birds, we only caught a
few (~400 in 2010) and of those we captured, we rarely, if ever had any recaptures. Without getting
into a bunch of speculation on what happened, as we don’t really know, we suspect it had something
to do with the fact that 2009 was a extreme drought in Texas, as to where 2010 was extremely wet,
so mast based food sources (mulberry tree’s are everywhere) and such were readily available in the
urban environment, as such, lower trapping success. So, when you fit the 2010 dataset using the
same candidate model set at the 2009, you get pretty nonsensical answers for the entry b parameters.
As such, we did not use a group specific entry model for 2010. If you want more detail, see Collier
et al. (2012).

Within the model code below, you can see that we fixed the both the Phi and p parameters for those
periods in the analysis when HY birds could not be in the population (e.g., when all birds migrated
into the breeding colony and no HY birds had been produced yet). There is probably a little slack

http://www.phidot.org/software/mark/
http://www.phidot.org/software/mark/

212 wwdo.popan

in the range, as it is possible that there were some HY white-winged doves in the population in the
last period we fixed, but we did not catch any there so we opted to fix it as well.

Note that the R function wwdo.popan is set up in RMark speak, and will run either the wwdo.09 or
wwdo.10 datasets as long as you specify one in the lines where I have listed data(wwdo.09) and
wwdo=wwdo.09. If you want to see the 2010 analysis, just change those lines to wwdo.10.

References

Collier, B. A., S. R. Kremer, C. D. Mason, J. Stone, K. W. Calhoun, and M. J. Peterson. 2012.
Immigration and recruitment in an urban white-winged dove breeding colony. Journal of Fish and
Wildlife Management, In review.

Examples

This example is excluded from testing to reduce package check time
data(wwdo.09)
wwdo=wwdo.09
wwdo.popan=function(){
wwdo.proc=process.data(wwdo, model="POPAN", groups="Age")
wwdo.ddl=make.design.data(wwdo.proc)

#Fixing Phi Parameters for sampling periods where HY WWDO were not available in population
hy.phi1=as.numeric(row.names(wwdo.ddl$Phi[wwdo.ddl$Phi$group=="HY" &

wwdo.ddlPhitime==1,]))
hy.phi2=as.numeric(row.names(wwdo.ddl$Phi[wwdo.ddl$Phi$group=="HY" &

wwdo.ddlPhitime==2,]))
hy.phi3=as.numeric(row.names(wwdo.ddl$Phi[wwdo.ddl$Phi$group=="HY" &

wwdo.ddlPhitime==3,]))
hy.phi4=as.numeric(row.names(wwdo.ddl$Phi[wwdo.ddl$Phi$group=="HY" &

wwdo.ddlPhitime==4,]))
hy.phi5=as.numeric(row.names(wwdo.ddl$Phi[wwdo.ddl$Phi$group=="HY" &

wwdo.ddlPhitime==5,]))
hy.phi6=as.numeric(row.names(wwdo.ddl$Phi[wwdo.ddl$Phi$group=="HY" &

wwdo.ddlPhitime==6,]))
hy.phi7=as.numeric(row.names(wwdo.ddl$Phi[wwdo.ddl$Phi$group=="HY" &

wwdo.ddlPhitime==7,]))
hy.phi.fix=c(hy.phi1, hy.phi2, hy.phi3, hy.phi4, hy.phi5, hy.phi6, hy.phi7)

#Fixing PENT Parameters for sampling period where HY WWDO were not available in population
hy.pent2=as.numeric(row.names(wwdo.ddl$pent[wwdo.ddl$pent$group=="HY" &

wwdo.ddl$pent$time==2,]))
hy.pent3=as.numeric(row.names(wwdo.ddl$pent[wwdo.ddl$pent$group=="HY" &

wwdo.ddl$pent$time==3,]))
hy.pent4=as.numeric(row.names(wwdo.ddl$pent[wwdo.ddl$pent$group=="HY" &

wwdo.ddl$pent$time==4,]))
hy.pent5=as.numeric(row.names(wwdo.ddl$pent[wwdo.ddl$pent$group=="HY" &

wwdo.ddl$pent$time==5,]))
hy.pent6=as.numeric(row.names(wwdo.ddl$pent[wwdo.ddl$pent$group=="HY" &

wwdo.ddl$pent$time==6,]))
hy.pent7=as.numeric(row.names(wwdo.ddl$pent[wwdo.ddl$pent$group=="HY" &

wwdo.popan 213

wwdo.ddl$pent$time==7,]))
hy.pent.fix=c(hy.pent2, hy.pent3, hy.pent4, hy.pent5, hy.pent6, hy.pent7)

#####
#Real Parameter Definitions
#####
#Detection process
p.dot=list(formula=~1)
p.time=list(formula=~time)
p.group=list(formula=~group)
p.g.time=list(formula=~group:time)

#Survival process
Phi.dot.fix=list(formula=~1, fixed=list(index=hy.phi.fix, value=c(0,0,0,0,0,0,0)))
Phi.time.fix=list(formula=~time, fixed=list(index=hy.phi.fix, value=c(0,0,0,0,0,0,0)))
Phi.age.fix=list(formula=~group, fixed=list(index=hy.phi.fix, value=c(0,0,0,0,0,0,0)))
Phi.timeage.fix=list(formula=~time:group,

fixed=list(index=hy.phi.fix, value=c(0,0,0,0,0,0,0)))

#Entry Process-always time dependent, otherwise makes no sense in my situation
pent.time.fix=list(formula=~time, fixed=list(index=hy.pent.fix, value=c(0,0,0,0,0,0)))

Model.1=mark(wwdo.proc, wwdo.ddl,
model.parameters=list(Phi=Phi.dot.fix, p=p.dot, pent=pent.time.fix, N=list(formula=~group)),
invisible=FALSE,threads=1,options="SIMANNEAL")

Model.2=mark(wwdo.proc, wwdo.ddl,
model.parameters=list(Phi=Phi.time.fix, p=p.dot, pent=pent.time.fix, N=list(formula=~group)),
invisible=FALSE,threads=1,options="SIMANNEAL")

Model.3=mark(wwdo.proc, wwdo.ddl,
model.parameters=list(Phi=Phi.age.fix, p=p.dot, pent=pent.time.fix, N=list(formula=~group)),

invisible=FALSE,threads=1,options="SIMANNEAL")
Model.4=mark(wwdo.proc, wwdo.ddl,
model.parameters=list(Phi=Phi.timeage.fix, p=p.dot, pent=pent.time.fix, N=list(formula=~group)),

invisible=FALSE,threads=1,options="SIMANNEAL")
Model.5=mark(wwdo.proc, wwdo.ddl,
model.parameters=list(Phi=Phi.timeage.fix, p=p.time, pent=pent.time.fix, N=list(formula=~group)),
invisible=FALSE,threads=1,options="SIMANNEAL")

Model.6=mark(wwdo.proc, wwdo.ddl,
model.parameters=list(Phi=Phi.timeage.fix,p=p.g.time, pent=pent.time.fix,

N=list(formula=~group)),
invisible=FALSE,threads=1,options="SIMANNEAL")

collect.models()
}
wwdo.out=wwdo.popan()
wwdo.out

Index

∗Topic datasets
Blackduck, 11
brownie, 13
crdms, 35
deer, 40
Density, 44
dipper, 47
Donovan.7, 53
Donovan.8, 54
edwards.eberhardt, 55
example.data, 57
IELogitNormalMR, 71
killdeer, 75
larksparrow, 76
LogitNormalMR, 79
mallard, 95
mstrata, 123
NicholsMSOccupancy, 127
NSpeciesOcc, 128
Paradise_shelduck, 129
Poisson_twoMR, 132
PoissonMR, 132
RDOccupancy, 145
RDSalamander, 151
robust, 157
salamander, 164
weta, 182
wwdo.popan, 210

∗Topic models
mark, 100

∗Topic model
make.mark.model, 86
rerun.mark, 155
run.mark.model, 160

∗Topic utility
ABeginnersGuide, 4
add.design.data, 6
adjust.parameter.count, 8
adjust.value, 9

cleanup, 16
coef.mark, 17
collect.model.names, 18
collect.models, 19
compute.design.data, 20
compute.link, 22
compute.links.from.reals, 23
compute.real, 24
convert.inp, 26
convert.link.to.real, 28
covariate.predictions, 29
create.mark.mcmc, 37
create.model.list, 38
deltamethod.special, 43
deriv_inverse.link, 46
export.chdata, 58
export.MARK, 59
export.model, 61
extract.mark.output, 64
fill.covariates, 65
find.covariates, 67
get.link, 68
get.real, 69
import.chdata, 72
inverse.link, 74
load.model, 78
make.design.data, 80
make.time.factor, 93
mark.wrapper, 105
mark.wrapper.parallel, 106
merge.mark, 111
merge_design.covariates, 112
model.average, 113
model.average.list, 114
model.average.marklist, 117
PIMS, 131
popan.derived, 133
predict_real, 135
print.mark, 137

214

INDEX 215

print.marklist, 138
print.summary.mark, 139
process.data, 141
read.mark.binary, 152
release.gof, 153
remove.mark, 154
run.models, 163
setup.model, 165
setup.parameters, 166
store, 171
strip.comments, 171
summary.mark, 172
summary_ch, 174
TransitionMatrix, 175
valid.parameters, 178

ABeginnersGuide, 4
add.design.data, 5, 6, 21, 22, 82, 86, 90,

113, 142, 186, 209
adjust.chat, 5, 19, 20, 194, 204, 210
adjust.chat (adjust.value), 9
adjust.parameter.count, 5, 8, 47, 156, 162,

204
adjust.value, 9, 191

Blackduck, 5, 11, 202, 209
brownie, 13
Burnham, 14

cleanup, 5, 16, 156, 161, 162, 187, 191, 193,
198, 199, 201, 206, 209, 210

coef.mark, 17, 193, 194
collapseCH (splitCH), 169
collect.model.names, 5, 18, 19, 20, 122,

163, 207
collect.models, 5, 10, 16, 18, 19, 105, 106,

108, 111, 117, 118, 121, 122, 137,
138, 154, 195, 210

compute.design.data, 5, 20, 186, 193, 200
compute.link, 22, 69, 207
compute.links.from.reals, 23, 118, 205
compute.real, 5, 10, 22, 24, 29–31, 46,

66–68, 70, 74, 190, 192, 204, 205,
207

compute.Sn, 189
compute.Sn (extract.indices), 62
convert.inp, 26, 73, 75, 191, 200, 204, 206
convert.link.to.real, 28, 190, 204, 205,

207

covariate.predictions, 5, 29, 63, 118, 134,
190, 192–194, 197, 203

crdms, 35, 189
create.mark.mcmc, 37
create.model.list, 5, 38, 89, 105–108, 199,

202, 210

deer, 40
deltamethod.special, 42, 199
Density, 44
deriv.inverse.link, 5
deriv.inverse.link

(deriv_inverse.link), 46
deriv_inverse.link, 25, 46, 74, 137
dipper, 4, 5, 19, 20, 30, 31, 47, 111, 142, 143,

154, 207
Donovan.7, 53, 199
Donovan.8, 54, 199

edwards.eberhardt, 5, 20, 55, 142, 143
example.data, 5, 57, 142, 143
export.chdata, 5, 47, 58, 58, 60, 61, 73, 186,

192, 201
export.MARK, 59, 184–186, 189, 191, 192
export.model, 5, 60, 61, 192, 201
extract.indices, 62, 194
extract.mark.output, 5, 64, 153, 156, 162,

185, 189, 191, 197, 198, 203, 205,
207

fill.covariates, 5, 25, 65, 67, 68, 70, 203,
205, 207

find.covariates, 5, 25, 65, 66, 67, 70, 202,
207

find.possible.transitions
(TransitionMatrix), 175

get.link, 22, 23, 68, 207
get.real, 5, 10, 22, 24, 25, 69, 69, 176, 185,

201, 202, 205–207

IELogitNormalMR, 71
import.chdata, 5, 59, 72, 75, 143, 200, 201,

206
inverse.link, 5, 24, 25, 29, 46, 74, 137

killdeer, 75, 95, 198, 199

larksparrow, 76
LASP (larksparrow), 76

216 INDEX

load.model, 78
logitCI (extract.indices), 62
LogitNormalMR, 79

make.design.data, 5–8, 21, 22, 80, 87, 88,
90–92, 102–104, 112, 113, 131, 142,
186, 189, 192, 193, 196, 203, 209,
210

make.mark.model, 5, 20, 38, 80, 83–86, 86,
102–105, 123, 142, 156, 161, 162,
166, 184–186, 189, 192, 193,
195–198, 200–204, 206, 207, 209

make.time.factor, 93, 193, 198
mallard, 17, 95, 198, 199
mark, 4, 5, 9, 17, 87, 88, 92, 100, 105–108,

141, 156, 162, 166, 185–187, 194,
195, 197, 198, 201, 202, 204, 205,
207, 209

mark.wrapper, 5, 38, 39, 89, 105, 185, 187,
188, 195, 196, 199, 201, 206, 207,
210

mark.wrapper.parallel, 106, 185
mata.wald, 109
merge, 112, 196
merge.design.covariates, 196
merge.design.covariates

(merge_design.covariates), 112
merge.mark, 20, 111, 154, 207
merge_design.covariates, 5, 83, 86, 112
model.average, 5, 24, 31, 113, 193, 194, 196,

197, 200, 202–205, 210
model.average.list, 113, 114, 114, 118,

191, 194
model.average.marklist, 113–115, 117,

186, 191, 193, 194
model.matrix, 81, 196
model.table, 5, 9, 10, 18, 20, 111, 118, 120,

154, 191, 196, 198, 201, 204, 206,
210

MS_popan, 126
mstrata, 5, 90, 123, 186, 200, 201, 209
MStruncate, 125

nat.surv, 189, 194
nat.surv (extract.indices), 62
NicholsMSOccupancy, 127, 198, 199
NSpeciesOcc, 128

Paradise_shelduck, 129

PIMS, 31, 131, 203, 206
Poisson_twoMR, 132
PoissonMR, 132
pop.est, 194
pop.est (extract.indices), 62
popan.derived, 133, 188–191
popan.NGross (popan.derived), 133
popan.Nt (popan.derived), 133
predict_real, 135
print.mark, 5, 104, 137, 195, 198, 200, 210
print.marklist, 5, 138, 199, 210
print.summary.mark, 5, 139, 200, 209
process.ch, 140
process.data, 5, 6, 8, 20, 27, 47, 73, 82, 86,

87, 89, 90, 92, 102, 104, 113, 133,
141, 147, 158, 186, 192–195, 201,
203, 210

ps (Paradise_shelduck), 129

RDMultScalOcc, 144
RDOccupancy, 145, 185, 189, 195
RDSalamander, 151, 199
read.mark.binary, 5, 152, 193, 194, 197,

198, 202
release.gof, 5, 153, 197
remove.mark, 20, 111, 154, 207
rerun.mark, 155, 195, 197, 206
restore, 195
restore (store), 171
robust, 157, 209
run.mark.model, 5, 8, 9, 64, 65, 86, 88, 92,

102–104, 156, 160, 163, 187,
195–198, 200

run.models, 5, 18, 20, 111, 154, 156, 161,
162, 163, 195

salamander, 164, 199
search.output.files, 188
search.output.files (extract.indices),

62
setup.model, 5, 21, 165, 167, 178, 185, 203
setup.parameters, 5, 165, 166, 178, 185,

197, 200, 203
skagit, 168
splitCH, 169
store, 171, 195
strip.comments, 171
summary.ch, 194–196
summary.ch (summary_ch), 174

INDEX 217

summary.mark, 5, 10, 31, 70, 92, 102, 104,
138, 139, 172, 192–195, 203, 204,
209

summary_ch, 174

tailarea.t (mata.wald), 109
tailarea.z (mata.wald), 109
transition.pairs (TransitionMatrix), 175
TransitionMatrix, 175, 205, 207

valid.parameters, 5, 165–167, 178
var.components, 179, 181, 189, 190, 193, 194
var.components.reml, 180, 189

weta, 182, 198
Whatsnew, 184
wwdo.09 (wwdo.popan), 210
wwdo.10 (wwdo.popan), 210
wwdo.popan, 210

	ABeginnersGuide
	add.design.data
	adjust.parameter.count
	adjust.value
	Blackduck
	brownie
	Burnham
	cleanup
	coef.mark
	collect.model.names
	collect.models
	compute.design.data
	compute.link
	compute.links.from.reals
	compute.real
	convert.inp
	convert.link.to.real
	covariate.predictions
	crdms
	create.mark.mcmc
	create.model.list
	deer
	deltamethod.special
	Density
	deriv_inverse.link
	dipper
	Donovan.7
	Donovan.8
	edwards.eberhardt
	example.data
	export.chdata
	export.MARK
	export.model
	extract.indices
	extract.mark.output
	fill.covariates
	find.covariates
	get.link
	get.real
	IELogitNormalMR
	import.chdata
	inverse.link
	killdeer
	larksparrow
	load.model
	LogitNormalMR
	make.design.data
	make.mark.model
	make.time.factor
	mallard
	mark
	mark.wrapper
	mark.wrapper.parallel
	mata.wald
	merge.mark
	merge_design.covariates
	model.average
	model.average.list
	model.average.marklist
	model.table
	mstrata
	MStruncate
	MS_popan
	NicholsMSOccupancy
	NSpeciesOcc
	Paradise_shelduck
	PIMS
	PoissonMR
	Poisson_twoMR
	popan.derived
	predict_real
	print.mark
	print.marklist
	print.summary.mark
	process.ch
	process.data
	RDMultScalOcc
	RDOccupancy
	RDSalamander
	read.mark.binary
	release.gof
	remove.mark
	rerun.mark
	robust
	run.mark.model
	run.models
	salamander
	setup.model
	setup.parameters
	skagit
	splitCH
	store
	strip.comments
	summary.mark
	summary_ch
	TransitionMatrix
	valid.parameters
	var.components
	var.components.reml
	weta
	Whatsnew
	wwdo.popan
	Index

