Package 'RMKdiscrete’

February 19, 2015
Version 0.1
Date 2014-10-17
Title Sundry Discrete Probability Distributions
Author Robert M. Kirkpatrick rkirkpatrick2@vcu.edu
Maintainer Robert M. Kirkpatrick rkirkpatrick2@vcu.edu
Description Sundry discrete probability distributions and helper functions.
Depends stats, $\mathrm{R}(>=2.15 .0)$
NeedsCompilation yes
Repository CRAN
License GPL (>= 2)
Date/Publication 2014-10-17 20:23:16
R topics documented:
RMKdiscrete-package 1
biLGP 2
binegbin 5
LGP 7
ManaClash 10
negbin 13
Index 15
RMKdiscrete-package

Description

RMKdiscrete implements several univariate and bivariate discrete probability distributions:

- The univariate Lagrangian Poisson distribution has five functions: $\operatorname{dLGP}(), \operatorname{pLGP}(), \operatorname{qLGP}()$, rLGP(), sLGP(), LGP.findmax(), LGP.get.nc(), and LGPMVP().
- The bivariate Lagrangian Poisson distribution has three functions: dbiLGP(), rbiLGP(), and biLGP. $\operatorname{logMV}()$.
- The bivariate negative binomial distribution has three functions: dbinegbin(), rbinegbin(), and binegbin. logMV().
- Although the univariate negative binomial distribution is implemented in base R, RMKdiscrete provides two helper functions for it: dnegbin() and negbinMVP().
Finally, the ManaClash distributions are provided just for fun.
The package is presently in an unoptimized but functional "beta" state. Additional helper functions and distributions, including multivariate distributions in more than two dimensions, are planned for subsequent versions of the package. Contact the maintainer, rkirkpatrick2@vcu.edu, with suggestions, bug reports, and feature requests.

Details

Package:	RMKdiscrete
Version:	0.1
Date:	$2014 / 10 / 17$
Depends:	R $(>=2.15 .0)$, stats
License:	GPL $(>=2)$

Author(s)

Robert M. Kirkpatrick <rkirkpatrick2@vcu. edu> Maintainer: Robert M. Kirkpatrick

biLGP
 The bivariate Lagrangian Poisson (LGP) distribution

Description

Density, random-number generation, and moments of the log-transformed distribution.

Usage

dbiLGP(y, theta, lambda, nc=NULL, log=FALSE, add.carefully=FALSE)
biLGP. logMV (theta, lambda, nc=NULL, const. add=1, tol=1e-14, add.carefully=FALSE)
rbiLGP(n, theta, lambda)

Arguments

y	Numeric vector or two-column matrix of bivariate data. If matrix, each row corresponds to an observation.
theta	Numeric vector or three-column matrix of non-negative values for index parameters θ_{0}, θ_{1}, and θ_{2}, in that order. If matrix, is read by row.
lambda	Numeric vector or three-column matrix of values for multiplicative parameters λ_{0}, λ_{1}, and λ_{2}, in that order. If matrix, is read by row. Values must be on the interval $[-1,1]$.
nc	Numeric vector or three-column matrix of (reciprocals of) the normalizing constants. These constants differ from 1 only if the corresponding lambda parameter is negative; see dLGP () for details. If matrix, is read by row. Defaults to NULL, in which case the normalizing constants are computed automatically.
log	Logical; should the natural \log of the probability be returned? Defaults to FALSE.
add.carefully	Logical. If TRUE, the program takes extra steps to try to prevent round-off error during the addition of probabilities. Defaults to FALSE, which is recommended, since using TRUE is slower and rarely makes a noticeable difference in practice.
const. add	Numeric vector of positive constants to add to the non-negative integers before taking their natural logarithm. Defaults to 1 , for the typical $\log (y+1)$ transformation.
tol	Numeric; must be positive. When biLGP. $\operatorname{logMV}()$ is calculating the second moment of the log-transformed distribution, it stops when the next term in the series is smaller than tol.
n	Integer; number of observations to be randomly generated.

Details

The bivariate LGP is constructed from three independent latent random variables, X_{0}, X_{1}, and X_{2}, where

$$
\begin{aligned}
& X_{0} \sim \operatorname{LGP}\left(\theta_{0}, \lambda_{0}\right) \\
& X_{1} \sim \operatorname{LGP}\left(\theta_{1}, \lambda_{1}\right) \\
& X_{2} \sim \operatorname{LGP}\left(\theta_{2}, \lambda_{2}\right)
\end{aligned}
$$

The observable variables, Y_{1} and Y_{2}, are defined as $Y_{1}=X_{0}+X_{1}$ and $Y_{2}=X_{0}+X_{2}$, and thus the dependence between Y_{1} and Y_{2} arises because of the common term X_{0}. The joint PMF of Y_{1} and Y_{2} is derived from the joint PMF of the three independent latent variables, with X_{1} and X_{2} re-expressed as $Y_{1}-X_{0}$ and $Y_{2}-X_{0}$, and after X_{0} is marginalized out.

Function $\operatorname{dbiLGP}()$ is the bivariate LGP density (PMF). Function rbiLGP() generates random draws from the bivariate LGP distribution, via calls to rLGP(). Function biLGP. $\log M V()$ numerically computes the means, variances, and covariance of a bivariate LGP distribution, after it has been \log transformed following addition of a positive constant.
Vectors of numeric arguments other than tol are cycled, whereas only the first element of logical and integer arguments is used.

Value

dbiLGP() returns a numeric vector of probabilities. rbiLGP() returns a matrix of random draws, which is of type 'numeric' (rather than 'integer', even though the bivariate LGP only has support on the non-negative integers). biLGP. logMV () returns a numeric matrix with the following five named columns:

1. EY1: Post-tranformation expectation of Y_{1}.
2. EY2: Post-tranformation expectation of Y_{2}.
3. VY1: Post-tranformation variance of Y_{1}.
4. VY2: Post-tranformation variance of Y_{2}.
5. COV: Post-tranformation covariance of Y_{1} and Y_{2}.

Author(s)

Robert M. Kirkpatrick rkirkpatrick2@vcu.edu

References

Famoye, F., \& Consul, P. C. (1995). Bivariate generalized Poisson distribution with some applications. Metrika, 42, 127-138.

Consul, P. C., \& Famoye, F. (2006). Lagrangian Probability Distributions. Boston: Birkhauser.

See Also

LGP, dpois()

Examples

```
## The following two lines do the same thing:
dbiLGP(y=1,theta=1, lambda=0.1)
dbiLGP(y=c(1,1), theta=c(1,1,1),lambda=c(0.1,0.1,0.1))
dbiLGP(y=c(1, 1,2,2,3,5), theta=c(1,1,1,2,2,2), lambda=0.1)
## Due to argument cycling, the above line is doing the following three steps:
dbiLGP(y=c(1,1), theta=c(1,1,1), lambda=c(0.1,0.1,0.1))
dbiLGP(y=c(2,2),theta=c(2,2,2),lambda=c(0.1,0.1,0.1))
dbiLGP(y=c(3,5),theta=c(1,1,1),lambda=c(0.1,0.1,0.1))
## Inputs to dbiLGP() can be matrices, too:
dbiLGP(y=matrix(c(1,1,2,2,3,5),ncol=2,byrow=TRUE),
    theta=matrix(c(1,1,1,2,2,2,1,1,1),ncol=3,byrow=TRUE),
    lambda=0.1)
## theta0 = 0 implies independence:
a <- dbiLGP(y=c(1,3),theta=c(0,1,2),lambda=c(0.1,-0.1,0.5))
b <- dLGP(x=1,theta=1,lambda=-0.1) * dLGP(x=3, theta=2, lambda=0.5)
a-b #<--near zero.
## lambdas of zero yield the ordinary Poisson:
a <- dbiLGP(y=c(1,3), theta=c(0,1,2),lambda=0)
```

```
b <- dpois(x=1,lambda=1) * dpois(x=3,lambda=2) #<--LGP theta is pois lambda
a-b #<--near zero
( y <- rbiLGP(10,theta=c(1.1,0.87,5.5),lambda=c(0.87,0.89,0.90)) )
dbiLGP(y=y, theta=c(1.1,0.87,5.5),lambda=c(0.87,0.89,0.90))
biLGP.logMV(theta=c(0.65,0.35,0.35),lambda=0.7,tol=1e-8)
```

binegbin The bivariate negative binomial distribution

Description

Functions for the bivariate negative binomial distribution, as generated via trivariate reduction: density, random-number generation, and moments of the log-transformed distribution.

Usage

dbinegbin(y, nu, p, log=FALSE, add.carefully=FALSE)
binegbin. $\log M V(n u, p$, const. $a d d=1$, tol=1e-14, add. carefully=FALSE)
rbinegbin(n, nu, p)

Arguments

y Numeric vector or two-column matrix of bivariate data. If matrix, each row corresponds to an observation.
nu Numeric vector or three-column matrix of non-negative values for index parameters ν_{0}, ν_{1}, and ν_{2}, in that order. If matrix, is read by row.
$\mathrm{p} \quad$ Numeric vector or three-column matrix of values for Bernoulli parameters p_{0}, p_{1}, and p_{2}, in that order. If matrix, is read by row. Values must be on the interval $(0,1]$.
log Logical; should the natural \log of the probability be returned? Defaults to FALSE.
add. carefully Logical. If TRUE, the program takes extra steps to try to prevent round-off error during the addition of probabilities. Defaults to FALSE, which is recommended, since using TRUE is slower and rarely makes a noticeable difference in practice.
const.add Numeric vector of positive constants to add to the non-negative integers before taking their natural logarithm. Defaults to 1 , for the typical $\log (y+1)$ transformation.
tol Numeric; must be positive. When binegbin. $\operatorname{logMV}()$ is calculating the second moment of the log-transformed distribution, it stops when the next term in the series is smaller than tol.
$\mathrm{n} \quad$ Integer; number of observations to be randomly generated.

Details

This bivariate negative binomial distribution is constructed from three independent latent variables, in the same manner as the bivariate Lagrangian Poisson distribution.
Function dbinegbin() is the bivariate negative binomial density (PMF). Function rbinegbin() generates random draws from the bivariate negative binomial distribution, via calls to rnbinom(). Function binegbin. $\log \mathrm{MV}()$ numerically computes the means, variances, and covariance of a bivariate LGP distribution, after it has been log transformed following addition of a positive constant.
Vectors of numeric arguments other than tol are cycled, whereas only the first element of logical and integer arguments is used.

Value

dbinegbin() returns a numeric vector of probabilities. rbinegbin() returns a matrix of random draws, which is of type 'numeric' (rather than 'integer', even though the negative binomial only has support on the non-negative integers). binegbin. $\operatorname{logMV}()$ returns a numeric matrix with the following five named columns:

1. EY1: Post-tranformation expectation of Y_{1}.
2. EY2: Post-tranformation expectation of Y_{2}.
3. VY1: Post-tranformation variance of Y_{1}.
4. VY2: Post-tranformation variance of Y_{2}.
5. COV: Post-tranformation covariance of Y_{1} and Y_{2}.

Author(s)

Robert M. Kirkpatrick rkirkpatrick2@vcu.edu

See Also

dbiLGP, dnbinom(), rnbinom()

Examples

```
## The following two lines do the same thing:
dbinegbin( }\textrm{y}=1,\textrm{nu=1,p=0.9)
dbinegbin(y=c(1,1),nu=c(1,1,1),p=c(0.9,0.9,0.9))
dbinegbin(y=c(1,1,2,2,3,5),nu=c(1,1,1,2,2,2),p=0.9)
## Due to argument cycling, the above line is doing the following three steps:
dbinegbin(y=c(1,1),nu=c(1,1,1),p=c(0.9,0.9,0.9))
dbinegbin(y=c(2,2),nu=c(2,2,2),p=c(0.9,0.9,0.9))
dbinegbin(y=c(3,5),nu=c(1,1,1),p=c(0.9,0.9,0.9))
## Inputs to dbinegbin() can be matrices, too:
dbinegbin(y=matrix(c(1,1,2,2,3,5),ncol=2,byrow=TRUE),
    nu=matrix(c(1,1,1,2,2,2,1,1,1),ncol=3,byrow=TRUE),
    p=0.9)
## nu0 = 0 implies independence:
```

```
a <- dbinegbin(y=c(1,3),nu=c(0,1,2),p=c(0.1,0.5,0.9))
b <- dnegbin(x=1,nu=1,p=0.5) * dnegbin(x=3,nu=2,p=0.9)
a-b #<--near zero.
( y <- rbinegbin(10,nu=c(1.1,0.87,5.5),p=c(0.87,0.89,0.90)) )
dbinegbin(y=y,nu=c(1.1,0.87,5.5),p=c(0.87,0.89,0.90))
( mv <- negbinMVP(nu=c(1.1,0.87,5.5),p=c(0.87,0.89,0.90)) )
mv[1,2] #<--Covariance of this distribution
mv[1,2]+mv[2,2] #<--Marginal variance of Y1
mv[1,2]+mv[3,2] #<--Marginal variance of Y2
mv[1,2]/(sqrt(mv[1,2]+mv[2,2])*sqrt(mv[1,2]+mv[3,2])) #<--Correlation
logmv <- binegbin.logMV(nu=c(1.1,0.87,5.5),p=c(0.87,0.89,0.90))
## Log transformation nearly cuts the correlation in half:
logmv[1,5]/sqrt(logmv[1,3]*logmv[1,4])
```

LGP The (univariate) Lagrangian Poisson (LGP) Distribution

Description

Density, distribution function, quantile function, summary, random number generation, and utility functions for the (univariate) Lagrangian Poisson distribution.

Usage

dLGP (x , theta, lambda, nc=NULL, log=FALSE)
pLGP (q, theta, lambda, nc=NULL, lower.tail=TRUE, log. $\mathrm{p}=$ FALSE, add. carefully=FALSE)
qLGP (p, theta, lambda, $n c=$ NULL, lower. tail=TRUE, log. $p=F A L S E$, add. carefully=FALSE)
rLGP(n, theta, lambda)
sLGP (theta, lambda, nc=NULL, do. numerically=FALSE, add. carefully=FALSE)
LGP.findmax (theta, lambda)
LGP.get.nc(theta, lambda, nctol=1e-14, add. carefully=FALSE)
LGPMVP (mu, sigma2, theta, lambda)

Arguments

$x, q \quad$ Numeric vector of quantiles.
$\mathrm{p} \quad$ Numeric vector of probabilities.
$\mathrm{n} \quad$ Integer; number of observations to be randomly generated.
theta Numeric; the index (or "additive") parameter of the LGP distribution. Must be non-negative.
lambda Numeric; the dispersion (or "Lagrangian" or "multiplicative") parameter of the LGP distribution. Must not exceed 1 in absolute value. When equal to zero, the LGP reduces to the ordinary Poisson distribution, with mean equal to theta. When negative, then the distribution has an upper limit to its support, which may be found with LGP. findmax ().

```
nc Numeric; the reciprocal of the normalizing constant of the distribution, by which the raw PMF must be multiplied so that it is a proper PMF, with values that sum to 1 across the support, when lambda is negative. Defaults to NULL, in which case it is computed numerically by a call to LGP.get.nc().
\(\log , \log . \mathrm{p} \quad\) Logical; if TRUE, then probabilities p are given as \(\log (\mathrm{p})\).
lower.tail Logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\).
nctol Numeric; while numerically computing the normalizing constant, how close to 1 should it be before stopping? Ignored unless lambda is negative, and the upper support limit exceeds 200,000.
add. carefully Logical. If TRUE, the program takes extra steps to try to prevent round-off error during the addition of probabilities. Defaults to FALSE, which is recommended, since using TRUE is slower and rarely makes a noticeable difference in practice.
do.numerically Logical; should moments be computed numerically when lambda<0? Defaults to FALSE, which is recommended unless the upper support limit is fairly small (say, less than 10).
mu \(\quad\) Numeric vector of mean parameters.
sigma2 "Sigma squared"-numeric vector of variance parameters.
```


Details

The Lagrangian Poisson (LGP) distribution has density

$$
p(x)=\frac{\theta(\theta+\lambda x)^{x-1} \exp (-\theta-\lambda x)}{x!}
$$

for $0,1,2, \ldots$,

$$
p(x)=0
$$

for $x>m$ if $\lambda<0$, and zero otherwise, where $\theta>0, m=\lfloor-\theta / \lambda\rfloor$ if $\lambda<0$, and $\max (-1,-\theta / m) \leq$ $\lambda \leq 1$. So, when λ is negative, there is an upper limit to the distribution's support, m, equal to $-\theta / \lambda$, rounded down to the next-smallest integer. When λ is negative, the PMF must also be normalized numerically if it is to describe a proper probability distribution. When $\lambda=0$, the Lagrangian Poisson reduces to the ordinary Poisson, with mean equal to θ. When $\theta=0$, we define the distribution as having unit mass on the event $X=0$.

Function LGP.findmax () calculates the value of upper support limit m; LGP.get.nc() calculates the (reciprocal of) the normalizing constant.
Function LGPMVP () accepts exactly two of its four arguments, and returns the corresponding values of the other two arguments. For example, if given values for theta and lambda, it will return the corresponding means (mu) and variances (sigma2) of an LGP distribution with the given values of θ and λ. LGPMVP () does not enforce the parameter space as strictly as other functions, but will throw a warning for bad parameter values.
When the upper support limit is 5 or smaller, rLGP() uses simple inversion (i.e., random unituniform draws passed to qLGP()). Otherwise, it uses random-number generation algorithms from Consul \& Famoye (2006); exactly which algorithm is used depends upon the values of theta and lambda. All four of $r \operatorname{LGP}(), \mathrm{dLGP}(), \mathrm{pLGP}()$, and qLGP() make calls to the corresponding functions for the ordinary Poisson distribution (dpois(), etc.) when lambda=0.
Vectors of numeric arguments are cycled, whereas only the first element of logical and integer arguments is used.

Value

dLGP() and pLGP() return numeric vectors of probabilities. qLGP(), rLGP(), and LGP.findmax () return vectors of quantiles, which are of class 'numeric' rather than 'integer' for the sake of compatibility with very large values. LGP.get.nc() returns a numeric vector of reciprocal normalizing constants. LGPMVP () returns a numeric matrix with two columns, named for the missing arguments in the function call.
$\operatorname{sLGP}()$ returns a numeric matrix with 10 columns, with the mostly self-explanatory names "Mean", "Median", "Mode", "Variance", "SD", "ThirdCentralMoment", "FourthCentralMoment",
"PearsonsSkewness", "Skewness", and "Kurtosis". Here, "Kurtosis" refers to excess kurtosis (greater than 3), and "PearsonsSkewness" equals $\frac{(\text { mean-mode })}{S D}$. A "Mode" of 0.5 indicates that the point probabilities at $x=0$ and $x=1$ are tied for highest density; other than this possibility, the LGP is strictly unimodal.

Warning

There is a known issue with $\operatorname{sLGP}()$: when lambda is negative and theta is large, the third and fourth moments returned by $\operatorname{sLGP}()$, with do. numerically=TRUE, can be quite incorrect due to numerical imprecision.

Author(s)

Robert M. Kirkpatrick rkirkpatrick2@vcu.edu

References

Consul, P. C. (1989). Generalized Poisson Distributions: Properties and Applications. New York: Marcel Dekker, Inc.
Consul, P. C., \& Famoye, F. (2006). Lagrangian Probability Distributions. Boston: Birkhauser.
Johnson, N. L., Kemp, A. W., \& Kotz, S. (2005). Univariate Discrete Distributions (3rd. ed.). Hoboken, NJ: John Wiley \& Sons, Inc.

Examples

```
LGP.findmax(theta=2, lambda=0.2) #<--No upper support limit
LGP.findmax(theta=2, lambda=-0.2) #<--Upper support limit of 9
LGP.get.nc(theta=2, lambda=0.2)-1==0 #<--TRUE
LGP.get.nc(theta=2, lambda=-0.2)-1 #<--nc differs appreciably from 1
LGP.get.nc(theta=2, lambda=-0.1)-1 #<--nc doesn't differ appreciably from 1
LGPMVP(theta=2, lambda=0.9)
LGPMVP(mu=20, sigma2=2000)
sLGP(theta=2, lambda=0.9)
dLGP(x=0:10, theta=1, lambda=0.1)
dLGP(x=0:10, theta=1,lambda=0)
dLGP(x=0:10,theta=1,lambda=-0.1) #<--Upper support limit of 9
pLGP(q=0:10, theta=1, lambda=0.1)
pLGP(q=0:10, theta=1,lambda=0)
pLGP(q=0:10, theta=1, lambda=-0.1)
qLGP(p=(0:9)/10, theta=1, lambda=0.1)
qLGP(p=(0:9)/10, theta=1,lambda=0)
```

```
qLGP(p=(0:9)/10, theta=1, lambda=-0.1)
rLGP(n=5, theta=1e12,lambda=-0.0001)
```

ManaClash The Mana Clash distributions (just for fun!)

Description

Density and random-number functions for distributions pertinent to "Mana Clash", a card from the Magic: The Gathering trading-card game. As of 08/29/2014, the official card text read: "You and target opponent each flip a coin. Mana Clash deals 1 damage to each player whose coin comes up tails. Repeat this process until both players' coins come up heads on the same flip."

Usage

```
dmanaclash.dmg(x,y,N=NULL, pA=0.25,pB=0.25,pC=0.25,pD=0.25,log=FALSE)
dmanaclash. xyN(x,y,N,pA=0.25,pB=0.25,pC=0.25,pD=0.25,log=FALSE)
dmanaclash.net(z,pA=0.25,pB=0.25,pC=0.25,pD=0.25,rel.eps=1e-8,log=FALSE)
rmanaclash(n,pA=0.25,pB=0.25,pC=0.25,pD=0.25,N=NULL)
```


Arguments

$x \quad$ Numeric amount of damage dealt to opponent.
y Numeric amount of damage dealt to Mana Clash's controller (hereinafter, "you").
$\mathrm{N} \quad$ Numeric. Number of rounds of coin-tossing that precede the last round, when double heads occurs. That is, N is the number of rounds of coin-tossing in which at least one player takes damage.

Z
$\mathrm{n} \quad$ Integer number of random vectors to generate.
pA Numeric; probability that both players take damage in a round of coin-tossing (i.e., double tails).
pB Numeric; probability that you take damage but opponent does not in a round of coin-tossing.
pC Numeric; probability that opponent takes damage but you do not in a round of coin-tossing.
pD Numeric; probability that neither player takes damage in a round of coin-tossing (i.e., double heads).
$\log \quad$ Logical; should the natural \log of the probability be returned? Defaults to FALSE.
rel.eps Numeric; when computing the sum of an infinite series, how small should the relative change in the sum get before stopping?

Details

The probability arguments-pA, pB, pC, and pD-are named as in a two-way contingency table. They cannot be negative, although rmanaclash accepts values of zero for pA, pB, and pC . If they do not sum to 1 , they are automatically normalized. They default to the scenario of two independent fair coins.
Vectors of numeric arguments other than rel.eps are cycled, whereas only the first element of logical and integer arguments is used.
Function dmanaclash.dmg() is the bivariate PMF of the amount of damage dealt to opponent and you. If $N=$ NULL (default), the probabilities are marginal with respect to the number of rounds of damage-dealing. Otherwise, the probabilities are conditioned upon the given value of N .
Function dmanaclash. xyN() is the trivariate joint PMF of the amount of damage dealt to opponent, the amount dealt to you, and the number of rounds of damage-dealing.
Function dmanaclash.net is the univariate PMF of the net amount of damage dealt to opponent, i.e. damage dealt to opponent minus damage dealt to you. This distribution has support on the set of integers-including negative values.
Function rmanaclash() generates random draws from the trivariate joint distribution of x, y, and N; if a non-NULL value for N is supplied, the random draws are generated conditionally on that number of damage-dealing rounds.

Value

dmanaclash.dmg(), dmanaclash.xyN(), and dmanaclash.net() all return numeric vectors of probabilities. rmanaclash() returns a numeric matrix, with n rows, and three columns, named "x", " y ", and " N ". Each row is a random draw.

Derivation

Note: This section is only displayed in the PDF of the package documentation.
Let random variables X, Y, and N respectively denote the amount of damage dealt to opponent, the amount of damage dealt to you, and the number of rounds of coin-tossing in which any damage is dealt. In a given round of coin-tossing, let a denote the probability of damage to both players (i.e., two tails), b, the probability of damage to you but not opponent, c, the probability of damage to opponent but not you, and d the probability of no damage (i.e., two heads, and no more cointossing). Define $r=a+b+c=1-d$.
It is obvious that the marginal distribution of N is geometric, with PMF

$$
p(n)=d r^{n}
$$

Further, given that $N=n$, the conditional distribution of X is binomial, with PMF

$$
p(x \mid n)=\left(\frac{n!}{(n-x)!x!}\right)\left(\frac{a+c}{r}\right)^{x}\left(\frac{b}{r}\right)^{n-x}
$$

Now, consider Y, given $N=n$ and $X=x$. Of course, Y cannot exceed n. On any of the n rounds in which the opponent took no damage, you must have taken damage, and you may or may not have taken damage on those rounds in which opponent did. Thus, Y cannot be less than $n-x$, and will equal $n-x$ only if exactly one player took damage on all n rounds (i.e., double tails
never occurred). On the x undetermined rounds, you take damage with probability $\frac{a}{a+c}$, and do not take damage with probability $\frac{c}{a+c}$. Thus, the random variable $Y-(n-x)$ follows a binomial distribution, with PMF

$$
p(y \mid x, n)=\left(\frac{x!}{(n-y)!(y-n+x)!}\right)\left(\frac{a}{a+c}\right)^{x+y-n}\left(\frac{c}{a+c}\right)^{n-y}
$$

The joint distribution of X and Y, conditional on $N=n$, has PMF

$$
p(x, y \mid n)=p(x \mid n) p(y \mid x, n)
$$

which is the product of two binomial PMFs. The joint distribution of X, Y, and N has PMF

$$
p(x, y, n)=p(n) p(x \mid n) p(y \mid x, n)
$$

which after some algebraic manipulation can be written as

$$
p(x, y, n)=\frac{n!}{(n-x)!(n-y)!(x+y-n)!} b^{n-x} c^{n-y} a^{x+y-n} d
$$

The joint distribution of X and Y, marginal with respect to N, then has PMF

$$
p(x, y)=\frac{d a^{x+y}}{b^{x} c^{y}} \cdot \sum_{n=\max (x, y)}^{x+y}\left[\left(\frac{b c}{a}\right)^{n}\left(\frac{n!}{(n-x)!(n-y)!(x+y-n)!}\right)\right]
$$

Now, define random variable $Z=X-Y$, i.e. the net amount of damage dealt to opponent. The PMF of Z may be obtained from $p(x, y)$, the joint PMF of X and Y :

$$
p(z)=\sum_{\{(x, y): x-y=z\}} p(x, y)
$$

That is, the probability that $Z=z$ is the sum of the probabilities of all pairs (x, y) such that $x-y=z$. For example, the probability that $Z=-2$ is the sum $p(0,2)+p(1,3)+p(2,4)+\ldots$

Author(s)

Robert M. Kirkpatrick rkirkpatrick2@vcu.edu

References

Magic: The Gathering is a trademark of Wizards of the Coast, LLC, a subsidiary of Hasbro, Inc.

Examples

```
## Same outcome, with and without conditioning on N:
dmanaclash.dmg( }x=1,y=1,N=1
dmanaclash.dmg(x=1,y=1)
## Same damage amounts, with N fixed versus random:
dmanaclash.dmg( }x=1,y=1,N=2
dmanaclash. xyN(x=1,y=1,N=2)
```

```
## Net damage distribution is symmetric with defaults:
dmanaclash.net(z=c(-3,-2,-1,0,1,2,3))
## But if coins are biased against opponent...:
dmanaclash.net(z=c(-3,-2,-1,0,1,2,3),pA=0.1,pB=0.1,pC=0.7,pD=0.1)
## Random draws:
rmanaclash(n=10)
rmanaclash(n=10,pA=0.1,pB=0.1,pC=0.7,pD=0.1)
rmanaclash(n=10,N=5)
```

negbin Helper functions for the (unvariate) negative binomial distribution.

Description

Helper functions for the (unvariate) negative binomial distribution: change-of-parameter, wrapper function for density.

Usage

dnegbin($x, n u, p, m u, l o g=F A L S E)$
negbinMVP(nu, p, mu, sigma2)

Arguments

x
nu Numeric; equivalent to argument size in dnbinom(), etc.
p Numeric; equivalent to argument prob in dnbinom(), etc.
$\mathrm{mu} \quad$ Numeric vector of mean parameters.
sigma2 "Sigma squared"-numeric vector of variance parameters.
$\log \quad$ Logical; should the natural \log of the probability be returned? Defaults to FALSE.

Details

Function dnegbin() is a wrapper for dnbinom(). Two of the three arguments nu, p, and mu must be provided. Unlike dnbinom(), dnegbin() will accept mu and p(prob) with nu(size) missing. In that case, it calculates nu as mu * $p /(1-p)$, and passes nu and p to dnbinom().
Function negbinMVP() accepts exactly two of its four arguments, and returns the corresponding values of the other two arguments. For example, if given values for nu and p, it will return the corresponding means (mu) and variances (sigma2) of a negative binomial distribution with the given values of nu and p. negbinMVP() does not strictly enforce the parameter space, but will throw a warning for bad input values.

Value

dnegbin() returns a numeric vector of probabilities. negbinMVP() returns a numeric matrix with two columns, named for the missing arguments in the function call.

Author(s)

Robert M. Kirkpatrick rkirkpatrick2@vcu.edu

See Also

```
dnbinom()
```


Examples

```
## These two lines do the same thing:
dnegbin( }x=1,nu=2,p=0.5
dnbinom(x=1,size=2,prob=0.5)
## What is the mean of this distribution?
negbinMVP(nu=2,p=0.5) #<--mu=2
## These two lines also do the same thing:
dnegbin(x=1,nu=2,mu=2)
dnbinom(x=1, size=2,mu=2)
## Parametrize with mu & p:
dnegbin(x=1,mu=2, p=0.5)
## Not run (will throw an error):
## dnbinom(x=1,prob=0.5,mu=2)
```


Index

```
*Topic package
    RMKdiscrete-package, 1
biLGP,2
biLGP.logMV, 2
binegbin, 5
binegbin.logMV, 2
bivariate Lagrangian Poisson,6
dbiLGP, 2, 6
dbiLGP (biLGP), 2
dbinegbin, 2
dbinegbin (binegbin), 5
dLGP, 2, 3
dLGP (LGP), 7
dmanaclash.dmg (ManaClash), 10
dmanaclash.net (ManaClash), 10
dmanaclash.xyN (ManaClash), 10
dnbinom, 6, 13, 14
dnegbin, 2
dnegbin (negbin), 13
dpois,4,8
LGP, 4, }
LGP.findmax, 2
LGP.get.nc, 2
LGPMVP, 2
LGPMVP (LGP), }
ManaClash, 2,10
negbin,13
negbinMVP, 2
negbinMVP (negbin), 13
pLGP, 2
pLGP (LGP), }
qLGP, 2
qLGP (LGP), }
```

rbiLGP, 2
rbiLGP (biLGP), 2
rbinegbin, 2
rbinegbin (binegbin), 5
rLGP, 2, 3
rLGP (LGP), 7
rmanaclash (ManaClash), 10
RMKdiscrete (RMKdiscrete-package), 1
RMKdiscrete-package, 1
rnbinom, 6
sLGP, 2
sLGP (LGP), 7
univariate negative binomial, 2

