
‘RLumCarlo’: Tedious features - fine examples

Sebastian Kreutzer, Johannes Friedrich, Vasilis Pagonis, Christoph Schmidt

RLumCarlo: v0.1.6 | last modified: 2020-07-05

1 Scope

‘RLumCarlo’ is a collection of energy-band models to simulate luminescence signals in dosimetric materials
using Monte-Carlo (MC) methods for various stimulation modes. This document aims at supplementing the
package documentation and elaborating the package examples.

2 The models in ‘RLumCarlo’

2.1 Overview

TRANSITION BASE MODEL IRSL OSL LM-OSL TL

Delocalised OTOR - X X X
Localised GOT X - X X
Excited state tunnelling LTM X - X X

In the table above column headers refer to stimulation modes, which are infrared stimulated luminescence
(IRSL), optically stimulated luminescence (OSL), LM-OSL (Bulur 1996), and thermally stimulated lumines-
cence (short: TL). In the column ‘BASE MODEL’ OTOR refers to ‘One Trap-One Recombination Centre’,
GOT to ‘General One Trap’, and LTM to ‘Localized Transition Model’ (Jain, Guralnik, and Andersen 2012;
Pagonis et al. 2019). For general overview we refer to the excellent book by Chen and Pagonis (2011).

2.2 Where to find them

The following table lists models as implemented in ‘RLumCarlo’ along with the R function call and the
corresponding R (*.R) and C++ (*.cpp) files. The modelling takes place in the C++ functions which are
wrapped by the R functions with a similar name. If you, however, want to cross-check the code, you should
inspect files with the ending .cpp.

1

MODEL_NAME R_CALL CORRESPONDING_FILES

MC_CW_IRSL_LOC run_MC_CW_IRSL_LOC() R/run_MC_CW_IRSL_LOC.R
src/MC_C_MC_CW_IRSL_LOC.cpp

MC_CW_IRSL_TUN run_MC_CW_IRSL_TUN() R/run_MC_CW_IRSL_TUN.R
src/MC_C_MC_CW_IRSL_TUN.cpp

MC_CW_OSL_DELOC run_MC_CW_OSL_DELOC() R/run_MC_CW_OSL_DELOC.R
src/MC_C_MC_CW_OSL_DELOC.cpp

MC_ISO_DELOC run_MC_ISO_DELOC() R/run_MC_ISO_DELOC.R

src/MC_C_MC_ISO_DELOC.cpp

MC_ISO_LOC run_MC_ISO_LOC() R/run_MC_ISO_LOC.R
src/MC_C_MC_ISO_LOC.cpp

MC_ISO_TUN run_MC_ISO_TUN() R/run_MC_ISO_TUN.R
src/MC_C_MC_ISO_TUN.cpp

MC_LM_OSL_DELOC run_MC_LM_OSL_DELOC() R/run_MC_LM_OSL_DELOC.R
src/MC_C_MC_LM_OSL_DELOC.cpp

MC_LM_OSL_LOC run_MC_LM_OSL_LOC() R/run_MC_LM_OSL_LOC.R
src/MC_C_MC_LM_OSL_LOC.cpp

MC_LM_OSL_TUN run_MC_LM_OSL_TUN() R/run_MC_LM_OSL_TUN.R

src/MC_C_MC_LM_OSL_TUN.cpp

MC_TL_DELOC run_MC_TL_DELOC() R/run_MC_TL_DELOC.R
src/MC_C_MC_TL_DELOC.cpp

MC_TL_LOC run_MC_TL_LOC() R/run_MC_TL_LOC.R
src/MC_C_MC_TL_LOC.cpp

MC_TL_TUN run_MC_TL_TUN() R/run_MC_TL_TUN.R
src/MC_C_MC_TL_TUN.cpp

Each model is run by calling one of the R functions starting with run_. Currently, three different model
types (TUN: tunnelling, LOC: localised transition, DELOC: delocalised transition) are implemented for the
stimulation types TL, IRSL, LM-OSL, and ISO (isothermal). Please note that each model has different
parameters and requirements.

3 ‘RLumCarlo’ model parameters and variables

The following table summarises the parameters used in the implemented MC models along with their physical
meaning, units and the range of realistic values. This range represents just a rough guideline and might be
exceeded for particular cases.

Stimulation mode Parameter Parameter description Unit Realistic
values

Delocalized TL E Thermal activation energy of the trap eV 0.5–3

s Frequency factor of the trap 1/s 1E8–1E16

times Sequence of time steps for simulation (heating rate is 1 K/s) s 0–700

clusters Number of MC runs 1 1E1–1E4

N_e Total number of electron traps available 1 2–1E5

n_filled Number of filled electron traps at the beginning of the
simulation

1 1–1E5

R Delocalized retrapping ratio 1 0–1

Delocalized

CW-IRSL

A Optical excitation rate from trap to conduction band 1/s 1E-3–1

times Sequence of time steps for simulation s 0–500

clusters Number of MC runs 1 1E1–1E4

2

N_e Total number of electron traps available 1 2–1E5

n_filled Number of filled electron traps at the beginning of the
simulation

1 1–1E5

R Delocalized retrapping ratio 1 0–1

Delocalized ISO E Thermal activation energy of the trap eV 0.5–3

s Frequency factor of the trap 1/s 1E8–1E16

T Temperature of the isothermal process ◦C 20–300

times Sequence of time steps for simulation s 0–1000

clusters Number of MC runs 1 1E1–1E4

N_e Number of electrons 1 2–1E5

n_filled Number of filled electron traps at the beginning of the
simulation

1 1–1E5

R Delocalized retrapping ratio 1 0–1

Delocalized LM-OSL A Optical excitation rate from trap to conduction band 1/s 1E-3–1

times Sequence of time steps for simulation s 0–3000

clusters Number of MC runs 1 1E1–1E4

N_e Total number of electron traps available 1 2–1E5

n_filled Number of filled electron traps at the beginning of the
simulation

1 1–1E5

R Delocalized retrapping ratio 1 0–1

Localized TL E Thermal activation energy of the trap eV 0.5–3

s Frequency factor of the trap 1/s 1E8–1E16

times Sequence of time steps for simulation (heating rate 1 K/s) s 0–700

clusters Number of MC runs 1 1E1–1E4

n_filled Number of filled electron traps at the beginning of the
simulation

1 1–1E5

r Localized retrapping ratio 1 0–1E5

Localized CW-IRSL A Optical excitation rate from ground state of the trap to the

excited state

1/s 1E-3–1

times Sequence of time steps for simulation s 0–500

clusters Number of MC runs 1 1E1–1E4

n_filled Number of filled electron traps at the beginning of the
simulation

1 1–1E5

r Localized retrapping ratio 1 0–1E5

Localized ISO E Thermal activation energy of the trap eV 0.5–3

s Frequency factor of the trap 1/s 1E8–1E16

T Temperature of the isothermal process ◦C 20–300

times Sequence of time steps for simulation s 0–1000

clusters Number of MC runs 1 1E1–1E4

n_filled Number of filled electron traps at the beginning of the
simulation

1 1–1E5

r Localized retrapping ratio 1 0–1E5

Localized LM-OSL A Optical excitation rate from ground state of the trap to the
excited state

1/s 1E-3–1

times Sequence of time steps for simulation s 0–3000

3

clusters Number of MC runs 1 1E1–1E4

n_filled Number of filled electron traps at the beginning of the
simulation

1 1–1E5

r Localized retrapping ratio 1 0–1E5

TL with tunneling

recombination

E Thermal activation energy of the trap eV 0.5–3

s Effective frequency factor of the tunneling process 1/s 1E8–1E16

rho Dimensionless density of recombination centers (defined as ρ
′

in Huntley 2006)
1 1E-7–1E-4

r_c Critical distance (>0) that is to be inserted if the sample has
been thermally and/or optically pretreated, so that the
electron-hole pairs within r_c have already recombined

1 0–2

times Sequence of time steps for simulation (heating rate 1 K/s) s 0–700

clusters Number of MC runs 1 1E1–1E4

N_e Total number of electron traps available 1 2–1E5

delta.r Increments of the unitless distance parameter r′ 1 1E-3–1E-1

CW-IRSL with

tunneling

recombination

A Effective optical excitation rate of the tunneling process 1/s 1E-3–1

rho Dimensionless density of recombination centers (defined as ρ
′

in Huntley 2006)
1 1E-7–1E-4

times Sequence of time steps for simulation s 0–500

clusters Number of MC runs 1 1E1–1E4

N_e Total number of electron traps available 1 2–1E5

r_c Critical distance (>0) that is to be inserted if the sample has

been thermally and/or optically pretreated, so that the
electron-hole pairs within r_c have already recombined

1 0–2

delta.r Increments of the unitless distance parameter r′ 1 1E-3–1E-1

ISO with tunneling

recombination

E Thermal activation energy of the trap eV 0.5–3

s Effective frequency factor of the tunneling process 1/s 1E8–1E16

T Temperature of the isothermal process ◦C 20–300

rho Dimensionless density of recombination centers (defined as ρ
′

in Huntley 2006)
1 1E-7–1E-4

times Sequence of time steps for simulation s 0–1000

clusters Number of MC runs 1 1E1–1E4

N_e Total number of electron traps available 1 2–1E5

r_c Critical distance (>0) that is to be inserted if the sample has

been thermally and/or optically pretreated, so that the
electron-hole pairs within r_c have already recombined

1 0–2

delta.r Increments of the unitless distance parameter r′ 1 1E-3–1E-1

LM-OSL with

tunneling

recombination

A Effective optical excitation rate of the tunneling process 1/s 1E-3–1

rho Dimensionless density of recombination centers (defined as ρ
′

in Huntley 2006)
1 1E-7–1E-4

times Sequence of time steps for simulation s 0–3000

clusters Number of MC runs 1 1E1–1E4

4

N_e Total number of electron traps available 1 2–1E5

r_c Critical distance (>0) that is to be inserted if the sample has
been thermally and/or optically pretreated, so that the

electron-hole pairs within r_c have already recombined

1 0–2

delta.r Increments of the unitless distance parameter r′ 1 1E-3–1E-1

4 Examples

The following examples illustrate the capacity of ‘RLumCarlo’, by using code-snippets deploying longer
simulation times than allowed for the standard package examples, which aim at a functionality test.

4.1 Example 1: A first example

The first example is an iso-thermal decay curve using the tunnelling model (other models work similarly).
Returned are either the simulated signal or the estimated remaining trapped charge carriers. The Function
plot_RLumCarlo() provides an easy way to visualise the modelling results and is here called using the tee
operator %T> from the package magrittr (which is imported by ‘RLumCarlo’). Simulation results are stored
in the object results while, at the same time, piped to the function plot_RLumCarlo() for the output
visualisation.

4.1.1 Model the signal

The most obvious modelling output is the luminescence signal itself, our example below simulates an iso-
thermal (ITL) signal for a temperature (T) of 200 °C over 5,000 s using a tunnelling transition model. Trap
parameters are E = 1.2 eV for the trap depth and a frequency factor of 1 × 10

10 (1/s). The parameter rho

(ρ′) defines the recombination centre density.

results <- run_MC_ISO_TUN(

E = 1.2,

s = 1e10,

T = 200,

N_e = 200,

rho = 0.007,

clusters = 10,

times = seq(0, 5000)

) %T>%

plot_RLumCarlo(norm = TRUE,

legend = TRUE,

main = "Iso-thermal decay (TUN)")

5

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Iso−thermal decay (TUN)

Time [s]

N
o

rm
a

liz
e

d
 s

ig
n

a
l

mean

range

In the example above N_e is a scalar, which means that all clusters start with the same number of electrons
(here 200). However, ‘RLumCarlo’ supports different starting conditions with regard to the initial number of
electrons. For example, one could assume that the number of initial electrons vary randomly between 190
and 210. Such a situation is created in the next example. Generally, ‘RLumCarlo’ supports such an input for
the parameters N_e and n_filled.

results <- run_MC_ISO_TUN(

E = 1.2,

s = 1e10,

T = 200,

N_e = sample(190:210,10,TRUE),

rho = 0.007,

clusters = 10,

times = seq(0, 5000)

) %T>%

plot_RLumCarlo(norm = TRUE,

legend = TRUE,

main = "Iso-thermal decay (TUN) for varying N_e")

6

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Iso−thermal decay (TUN) for varying N_e

Time [s]

N
o

rm
a

liz
e

d
 s

ig
n

a
l

mean

range

4.1.2 Model remaining charges

The first example can be slightly altered to provide alternative insight. Instead of the luminescence signal,
the variant below returns the number of remaining electrons in the trap.

results <- run_MC_ISO_TUN(

E = 1.2,

s = 1e10,

T = 200,

rho = 0.007,

times = seq(0, 5000),

output = "remaining_e"

) %T>%

plot_RLumCarlo(

legend = TRUE,

ylab = "Remaining electrons"

)

7

0 1000 2000 3000 4000 5000

0
1

0
0

0
3

0
0

0

Time [s]

R
e

m
a

in
in

g
 e

le
c
tr

o
n

s

mean

range

4.1.3 Understanding the numerical output

In both cases the modelling output is an object of class RLumCarlo_Model_Output, which is basically a list
consisting of an array and a numeric (vector).

str(results)

List of 2

$ signal: num [1:5001, 1:21, 1:10] 200 200 199 198 198 198 198 197 196 196 ...

..- attr(*, "dimnames")=List of 3

.. ..$: NULL

.. ..$: NULL

.. ..$: NULL

$ time : int [1:5001] 0 1 2 3 4 5 6 7 8 9 ...

- attr(*, "class")= chr "RLumCarlo_Model_Output"

- attr(*, "model")= chr "run_MC_ISO_TUN"

While this represents the full modelling output results, its interpretation might be less straight forward,
and the user may want to condense the information via summary(). The function summary() is also used
internally by the function plot_RLumCarlo() to simplify the data before there are plotted.

df <- summary(results)

time mean y_min y_max sd

Min. : 0 Min. :3080 Min. :3060 Min. :3100 Min. : 0.7379

1st Qu.:1250 1st Qu.:3188 1st Qu.:3159 1st Qu.:3219 1st Qu.:10.3392

Median :2500 Median :3341 Median :3320 Median :3370 Median :14.0637

Mean :2500 Mean :3423 Mean :3402 Mean :3445 Mean :13.7298

3rd Qu.:3750 3rd Qu.:3598 3rd Qu.:3581 3rd Qu.:3619 3rd Qu.:16.9509

Max. :5000 Max. :4199 Max. :4198 Max. :4200 Max. :20.9149

var sum

Min. : 0.5444 Min. :30800

1st Qu.:106.9000 1st Qu.:31880

Median :197.7889 Median :33410

Mean :205.2451 Mean :34231

3rd Qu.:287.3333 3rd Qu.:35983

Max. :437.4333 Max. :41991

8

head(df)

time mean y_min y_max sd var sum

1 0 4199.1 4198 4200 0.7378648 0.5444444 41991

2 1 4197.7 4195 4200 1.4181365 2.0111111 41977

3 2 4196.8 4195 4198 1.1352924 1.2888889 41968

4 3 4195.3 4193 4197 1.6363917 2.6777778 41953

5 4 4194.6 4191 4197 1.8378732 3.3777778 41946

6 5 4193.6 4190 4197 2.1186998 4.4888889 41936

The call summarises the modelling results and returns a terminal output and a data.frame with, e.g., the
mean or the standard deviation, which can be used to create plots for further insight. For instance, the
stimulation time against coefficient of variation (CV in %):

plot(

x = df$time,

y = (dfsd / dfmean) * 100,

pch = 20,

col = rgb(0,0,0,.1),

xlab = "Stimulation time [s]",

ylab = "CV [%]"

)

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

Stimulation time [s]

C
V

 [
%

]

4.2 Example 2: Combining two plots

The following examples use again the tunnelling model but for continuous wave (CW) infrared light stimulation
(IRSL), and they combine two plots in one single plot window.

set time vector

times <- seq(0, 1000)

Run MC simulation

run_MC_CW_IRSL_TUN(A = 0.12, rho = 0.003, times = times) %>%

plot_RLumCarlo(norm = TRUE, legend = TRUE)

run_MC_CW_IRSL_TUN(A = 0.21, rho = 0.003, times = times) %>%

plot_RLumCarlo(norm = TRUE, add = TRUE)

9

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time [s]

N
o

rm
a

liz
e

d
 s

ig
n

a
l

mean

range

mean

range

4.3 Example 3: Testing different parameters

The example above can be further extended to test the effect of different parameters. Contrary to the example
above, here the results are stored in a list and plot_RLumCarlo() is called only one time and it will then
iterate automatically over the results to create a combined plot.

s <- 3.5e12

rho <- 0.015

E <- 1.45

r_c <- c(0,0.7,0.77,0.86, 0.97)

times <- seq(100, 450) # here time = temperature

results <- lapply(r_c, function(x) {

run_MC_TL_TUN(

s = s,

E = E,

rho = rho,

r_c = x,

times = times

)

})

The plot output can be highly customised to provide a better visual experience, e.g., the manual setting of
the colours and the legend.

plot curves, but without legend

plot_RLumCarlo(

object = results,

ylab = "normalised TL signal",

xlab = "Temperature [\u00b0C]",

plot_uncertainty = "range",

col = khroma::colour("bright")(length(r_c)),

legend = FALSE,

norm = TRUE

)

10

add legend manually

legend(

"topleft",

bty = "n",

legend = paste0("r_c: ", r_c),

lty = 1,

col = khroma::colour("bright")(length(r_c))

)

100 150 200 250 300 350 400 450

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Temperature [°C]

n
o

rm
a

lis
e

d
 T

L
 s

ig
n

a
l

r_c: 0

r_c: 0.7

r_c: 0.77

r_c: 0.86

r_c: 0.97

4.4 Example 4: Dosimetric cluster systems

‘RLumCarlo’ supports the simulation of a cheap dosimetric cluster system with spatial correlation. Such a
dosimetric cluster system can be created with the function create_ClusterSystem():

clusters <- create_ClusterSystem(n = 100, plot = TRUE)

11

Cluster system (n = 100)

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0
0.2

0.4
0.6

0.8
1.0

Distance [a.u.]

D
is

ta
n

c
e

 [
a

.u
.]

D
is

ta
n

c
e

 [
a

.u
.]

h = 0.5 | n_groups = 16

The result is an arbitrary dosimetric system with randomly distributed clusters. The Euclidean distance is
used to group the clusters (colour code). To use the system in the simulation, instead of providing a scalar as
input to clusters, the output of create_ClusterSystem() can be injected in every run_MC function.

run_MC_TL_LOC(

s = 1e14,

E = 0.9,

times = 0:100,

b = 1,

n_filled = 1000,

method = "seq",

clusters = clusters,

r = 1) %>%

plot_RLumCarlo()

12

0 20 40 60 80 100

0
.0

0
.4

0
.8

Temperature [°C]

S
ig

n
a

l
[a

.u
.]

mean

range

Please note: For the simulation of a dosimetric cluster system, the meaning of n_filled changes. Instead of
defining the number of electrons per cluster, it becomes the total number of electrons in the system. Electrons
are distributed according to the grouping of the single clusters (the colours in the three-dimensional scatter
plot). Within one group, electrons are distributed evenly.

References

Bulur, Enver. 1996. “An Alternative Technique for Optically Stimulated Luminescence (OSL) Experiment.”
Radiation Measurements 26 (5): 701–9. https://doi.org/10.1016/S1350-4487(97)82884-3.

Chen, R, and Vasilis Pagonis. 2011. Thermally and Optically Stimulated Luminescence - A Simulation

Approach. Thermally and Optically Stimulated Luminescence a Simulation Approach. John Wiley &
Sons, Ltd.

Jain, Mayank, Benny Guralnik, and Martin Thalbitzer Andersen. 2012. “Stimulated luminescence emission
from localized recombination in randomly distributed defects.” Journal of Physics: Condensed Matter 24
(38): 385402. https://doi.org/10.1088/0953-8984/24/38/385402.

Pagonis, Vasilis, Johannes Friedrich, Michael Discher, Anna Müller-Kirschbaum, Veronika Schlosser, Sebastian
Kreutzer, Reuven Chen, and Christoph Schmidt. 2019. Journal of Luminescence 207: 266–72. https:
//doi.org/10.1016/j.jlumin.2018.11.024.

13

https://doi.org/10.1016/S1350-4487(97)82884-3
https://doi.org/10.1088/0953-8984/24/38/385402
https://doi.org/10.1016/j.jlumin.2018.11.024
https://doi.org/10.1016/j.jlumin.2018.11.024

	Scope
	The models in `RLumCarlo'
	Overview
	Where to find them

	`RLumCarlo' model parameters and variables
	Examples
	Example 1: A first example
	Model the signal
	Model remaining charges
	Understanding the numerical output

	Example 2: Combining two plots
	Example 3: Testing different parameters
	Example 4: Dosimetric cluster systems

	References

