
Package ‘RJDemetra’
March 11, 2020

Type Package

Title Interface to 'JDemetra+' Seasonal Adjustment Software

Version 0.1.5

Description Interface around 'JDemetra+' (<https://github.com/jdemetra/jdemetra-
app>), the seasonal adjustment software officially
recommended to the members of the European Statistical System (ESS) and the European Sys-
tem of Central Banks.
It offers full access to all options and outputs of 'JDemetra+', including the two leading sea-
sonal adjustment methods
TRAMO/SEATS+ and X-12ARIMA/X-13ARIMA-SEATS.

Depends R (>= 3.1.1),

Imports rJava (>= 0.9-8), graphics, grDevices, methods, stats, utils

SystemRequirements Java SE 8 or higher

License EUPL

URL https://github.com/jdemetra/rjdemetra

LazyData TRUE

Suggests knitr, rmarkdown

RoxygenNote 7.0.2

BugReports https://github.com/jdemetra/rjdemetra/issues

Encoding UTF-8

NeedsCompilation no

Author Alain Quartier-la-Tente [aut, cre]
(<https://orcid.org/0000-0001-7890-3857>),
Anna Michalek [aut],
Jean Palate [aut],
Raf Baeyens [aut]

Maintainer Alain Quartier-la-Tente <alain.quartier@yahoo.fr>

Repository CRAN

Date/Publication 2020-03-11 22:20:03 UTC

1

https://github.com/jdemetra/rjdemetra
https://github.com/jdemetra/rjdemetra/issues

2 add_sa_item

R topics documented:
add_sa_item . 2
compute . 3
count . 4
get_model . 5
get_name . 6
get_object . 7
get_ts . 8
ipi_c_eu . 9
jSA . 11
load_workspace . 13
new_workspace . 13
plot . 14
regarima . 16
regarima_spec_tramoseats . 21
regarima_spec_x13 . 31
save_spec . 41
save_workspace . 43
specification . 44
tramoseats . 47
tramoseats_spec . 51
user_defined_variables . 61
x13 . 62
x13_spec . 64

Index 76

add_sa_item Add a seasonally adjust model to a multi-processing

Description

Function to add a new seasonally adjust object (class "SA" or "jSA") in a workspace object.

Usage

add_sa_item(workspace, multiprocessing, sa_obj, name)

Arguments

workspace the workspace to add the seasonally adjust model.
multiprocessing

the name or index of the multiprocessing to add the seasonally adjust model.

sa_obj the seasonally adjust object to export.

name the name of the seasonally adjust model in the multiprocessing. By default the
name of the sa_obj is used.

compute 3

See Also

load_workspace, save_workspace

Examples

dir <- tempdir()
spec_x13 <- x13_spec(spec = "RSA5c", easter.enabled = FALSE)
sa_x13 <- x13(ipi_c_eu[, "FR"], spec = spec_x13)
spec_ts <- tramoseats_spec(spec = "RSA5")
sa_ts <- jtramoseats(ipi_c_eu[, "FR"], spec = spec_ts)

wk <- new_workspace()
new_multiprocessing(wk, "sa1")
add_sa_item(wk, "sa1", sa_x13, "X13")
add_sa_item(wk, "sa1", sa_ts, "TramoSeats")

save_workspace(wk, file.path(dir, "workspace.xml"))

compute Compute the multi-processing from a workspace

Description

Function to compute all the multi-processings or a given one from a workspace. By default the
workspace only contains definitions: computation is needed to get the seasonal adjustment model
(with get_model).

Usage

compute(workspace, i)

Arguments

workspace the workspace to compute.

i a character or numeric indicating the name or the index of the multiprocessing
to compute. By default all the multi-processings are compute.

See Also

get_model

4 count

Examples

spec_x13 <- x13_spec(spec = "RSA5c", easter.enabled = FALSE)
sa_x13 <- x13(ipi_c_eu[, "FR"], spec = spec_x13)

wk <- new_workspace()
mp <- new_multiprocessing(wk, "sa1")
add_sa_item(wk, "sa1", sa_x13, "X13")
sa_item1 <- get_object(mp, 1)

get_model(sa_item1, wk) # Returns NULL

compute(wk)

get_model(sa_item1, wk) # Returns the SA model sa_x13

count Count the number of objects inside a workspace or multiprocessing

Description

Generics functions to count the number of multiprocessing (respectively sa_item) inside a workspace
(respectively multiprocessing).

Usage

count(x)

Arguments

x the workspace or the codemultiprocessing.

See Also

Other functions to get informations from a workspace, multiprocessing or sa_item: get_model,
get_name, get_ts.

Examples

wk <- new_workspace()
mp <- new_multiprocessing(wk, "sa1")
count(wk) # 1 multiprocessing inside the workspace wk
count(mp) # 0 sa_item inside the multiprocessing mp

get_model 5

get_model Get the seasonally adjusted model from a workspace

Description

Generics functions to get seasonally adjusted model(s) from workspace, multiprocessing or
sa_item object. get_model returns a "SA" objects while get_jmodel returns the Java objects
of the models.

Usage

get_jmodel(x, workspace, userdefined = NULL, progress_bar = TRUE)

get_model(x, workspace, userdefined = NULL, progress_bar = TRUE)

Arguments

x the object to get the seasonally adjusted model.

workspace the workspace object where models are stored. If x is a workspace object this
parameter is not used.

userdefined vector with characters for additional output variables. (see x13 or tramoseats).

progress_bar boolean: if TRUE a progress bar is printed.

Value

get_model() returns a seasonally adjust object (class c("SA","X13") or c("SA","TRAMO_SEATS")
or list of seasonally adjust objects:

• if x is a sa_item object, get_model(x) returns a "SA" object (or a jSA object with get_jmodel(x));

• if x is a multiprocessing object, get_ts(x) returns list of length the number of sa_items,
each element containing a "SA" object (or a jSA object with get_jmodel(x));

• if x is a workspace object, get_ts(x) returns list of length the number of multiprocessing,
each element containing a list of a "SA" object (or a jSA object with get_jmodel(x)).

See Also

Other functions to get informations from a workspace, multiprocessing or sa_item: count, get_name,
get_ts.

compute

6 get_name

Examples

spec_x13 <- x13_spec(spec = "RSA5c", easter.enabled = FALSE)
sa_x13 <- x13(ipi_c_eu[, "FR"], spec = spec_x13)
spec_ts <- tramoseats_spec(spec = "RSA5")
sa_ts <- tramoseats(ipi_c_eu[, "FR"], spec = spec_ts)

wk <- new_workspace()
mp <- new_multiprocessing(wk, "sa1")
add_sa_item(wk, "sa1", sa_x13, "X13")
add_sa_item(wk, "sa1", sa_ts, "TramoSeats")

compute(wk) # It's important to compute the workspace to get the SA model
sa_item1 <- get_object(mp, 1)

get_model(sa_item1, wk) # Extract the model of the sa_item1: its the object sa_x13

To get all the models of the multiprocessing mp:
get_model(mp, wk)

To get all the models of the workspace wk:
get_model(wk)

get_name Get the Java name of a multiprocessing or a sa_item

Description

Generics functions to get the Java name of a multiprocessing or a sa_item.

Usage

get_name(x)

Arguments

x the object to get the name from.

Value

A character.

See Also

Other functions to get informations from a workspace, multiprocessing or sa_item: count, get_model,
get_ts.

get_object 7

Examples

spec_x13 <- x13_spec(spec = "RSA5c", easter.enabled = FALSE)
sa_x13 <- x13(ipi_c_eu[, "FR"], spec = spec_x13)
spec_ts <- tramoseats_spec(spec = "RSA5")
sa_ts <- tramoseats(ipi_c_eu[, "FR"], spec = spec_ts)

wk <- new_workspace()
mp <- new_multiprocessing(wk, "sa1")
add_sa_item(wk, "sa1", sa_x13, "X13")
add_sa_item(wk, "sa1", sa_ts, "TramoSeats")

sa_item1 <- get_object(mp, 1)
sa_item2 <- get_object(mp, 2)

get_name(sa_item1) # returns "X13"
get_name(sa_item2) # returns "TramoSeats"

get_name(mp) # returns "sa1"

To get all the name of the sa_items inside a multiprocessing:
sapply(get_all_objects(mp), get_name)

To get all the name of the multiprocessings inside a workspace:
sapply(get_all_objects(wk), get_name)

To get all the name of the sa_items inside a workspace:
lapply(get_all_objects(wk),function(mp){

sapply(get_all_objects(mp), get_name)
})

get_object Get objects inside a workspace or multiprocessing

Description

Generics functions to get all (get_all_objects()) multiprocessing (respectively sa_item) from
a workspace (respectively multiprocessing) or to get a given one (get_object()) .

Usage

get_object(x, pos = 1)

get_all_objects(x)

Arguments

x the object where to extract the multiprocessing or the sa_item.
pos the index of the object to extract.

8 get_ts

Value

An object of class multiprocessing or sa_item (for get_object()) or a list of objects of class
multiprocessing or sa_item (for get_all_objects()).

See Also

Other functions to get informations from a workspace, multiprocessing or sa_item: count, get_model,
get_name, get_ts.

Examples

sa_x13 <- x13(ipi_c_eu[, "FR"], spec = "RSA5c")

wk <- new_workspace()
mp <- new_multiprocessing(wk, "sa1")
add_sa_item(wk, "sa1", sa_x13, "X13")

Other way to get the multiprocessing:
mp <- get_object(wk, 1)
To get the sa_item object:
sa_item <- get_object(mp, 1)

get_ts Get the input raw time series

Description

Generics functions to get the input raw time series of a workspace, multiprocessing, sa_item or
SA object.

Usage

get_ts(x)

Arguments

x the object where to get the time series.

Value

get_ts() returns a ts object or list of ts objects:

• if x is a sa_item or a SA object, get_ts(x) returns a single ts object;
• if x is a multiprocessing object, get_ts(x) returns list of length the number of sa_items,

each a ts object;
• if x is a workspace object, get_ts(x) returns list of length the number of multiprocessing,

each element containing a list of ts object.

ipi_c_eu 9

See Also

Other functions to get informations from a workspace, multiprocessing or sa_item: count, get_model,
get_name.

Examples

sa_x13 <- x13(ipi_c_eu[, "FR"], spec = "RSA5c")

wk <- new_workspace()
mp <- new_multiprocessing(wk, "sa1")
add_sa_item(wk, "sa1", sa_x13, "X13")
sa_item <- get_object(mp, 1)

Extracting from a SA:
get_ts(sa_x13) # Returns the ts object ipi_c_eu[, "FR"]

Extracting from a sa_item:
get_ts(sa_item) # Returns the ts object ipi_c_eu[, "FR"]

Extracting from a multiprocessing:
Returns a list of length 1 named "X13" containing the ts object ipi_c_eu[, "FR"]:
get_ts(mp)

Extracting from a workspace:
Returns a list of length 1 named "sa1" containing a list
of length 1 named "X13" containing the ts object ipi_c_eu[, "FR"]
get_ts(wk)

ipi_c_eu Industrial Production Indices in manufacturing in the European Union

Description

A dataset containing on monthly industrial production indices in manufacturing in the European
Union (from sts_inpr_m dataset of Eurostat). Data are based 100 in 2015 and are unadjusted, i.e.
neither seasonally adjusted nor calendar adjusted.

Usage

ipi_c_eu

Format

A monthly ts object from january 1990 to december 2017 with 37 variables.

10 ipi_c_eu

Details

The dataset contains 37 time series corresponding to the following geographical area

jSA 11

EU28 European Union (current composition)
EU27_2019 European Union (without United Kingdom)

EA19 Euro area (19 countries)
BE Belgium
BG Bulgaria
CZ Czechia
DK Denmark
DE Germany (until 1990 former territory of the FRG)
EE Estonia
IE Ireland
EL Greece
ES Spain
FR France
HR Croatia
IT Italy
CY Cyprus
LV Latvia
LT Lithuania
LU Luxembourg
HU Hungary
MT Malta
NL Netherlands
AT Austria
PL Poland
PT Portugal
RO Romania
SI Slovenia
SK Slovakia
FI Finland
SE Sweden
UK United Kingdom
NO Norway
ME Montenegro
MK Former Yugoslav Republic of Macedonia, the
RS Serbia
TR Turkey
BA Bosnia and Herzegovina

Source

http://ec.europa.eu/eurostat/wdds/rest/data/v2.1/json/en/sts_inpr_m?nace_r2=C&precision=
1&sinceTimePeriod=1980M01&unit=I15&s_adj=NSA

jSA Functions around ’jSA’ objects

http://ec.europa.eu/eurostat/wdds/rest/data/v2.1/json/en/sts_inpr_m?nace_r2=C&precision=1&sinceTimePeriod=1980M01&unit=I15&s_adj=NSA
http://ec.europa.eu/eurostat/wdds/rest/data/v2.1/json/en/sts_inpr_m?nace_r2=C&precision=1&sinceTimePeriod=1980M01&unit=I15&s_adj=NSA

12 jSA

Description

get_dictionary returns the indicators that can be extracted from "jSA" objects, get_indicators
extract a list of indicators and jSA2R returns the corresponding "SA".

Usage

get_jspec(x, ...)

get_dictionary(x)

get_indicators(x, ...)

jSA2R(x, userdefined = NULL)

Arguments

x a "jSA" object.

... characters containing the names of the indicators to extract.

userdefined userdefined vector with characters for additional output variables (see user_defined_variables).
Only used for "SA" objects.

Details

A "jSA" object is a list with three elements:

• "result": the Java object with the results of a seasonal adjustment or a pre-adjustment
method.

• "spec": the Java object with the specification of a seasonal adjustment or a pre-adjustment
method.

• "dictionary": the Java object with dictionnary of a seasonal adjustment or a pre-adjustment
method. In particular, it contains all the user-defined regressors.

get_dictionary returns the list of indicators that can be extracted from a jSA object by the function
get_indicators.

jSA2R returns the corresponding formatted seasonal adjustment ("SA" object) or RegARIMA ("regarima"
object) model.

get_jspec returns the Java object that contains the specification from an object "jSA", "X13",
"TRAMO_SEATS" or "sa_item".

Value

get_dictionary a vector of characters, get_indicators returns a list containing the indicators
that are extracted, jSA2R returns a "SA" or a "regarima" object and get_jspec returns a Java
object.

load_workspace 13

Examples

myseries <- ipi_c_eu[, "FR"]
mysa <- jx13(myseries, spec = "RSA5c")
get_dictionary(mysa)

get_indicators(mysa, "decomposition.b2", "decomposition.d10")

To convert to the R object
jSA2R(mysa)

load_workspace Load a ’JDemetra+’ workpace

Description

Function to load a ’JDemetra+’ workspace.

Usage

load_workspace(file)

Arguments

file the path to the ’JDemetra+’ workspace to load. By default a dialog box opens.

Value

An object of class "workspace".

See Also

save_workspace, get_model

new_workspace Create a workspace or a multi-processing

Description

Functions to create a ’JDemetra+’ workspace (new_workspace()) add a multi-processing to it
(new_multiprocessing()).

Usage

new_workspace()

new_multiprocessing(workspace, name)

14 plot

Arguments

workspace a workspace object

name character name of the new multiprocessing

Value

new_workspace() returns an object of class workspace and new_multiprocessing() returns an
object of class multiprocessing.

See Also

load_workspace, save_workspace, add_sa_item

Examples

Create and export a empty 'JDemetra+' workspace
wk <- new_workspace()
mp <- new_multiprocessing(wk, "sa1")

plot Plotting regarima, decomposition or final results of SA

Description

Plotting methods for the S3 class objects around the seasonal adjustment: "regarima" for Re-
gARIMA,"decomposition_X11" and "decomposition_SEATS" for the decomposition with X13
and TRAMO-SEATS, "final" for the final SA results and "SA" for the entire seasonal adjustment
object. The function plot.SA just calls the function plot.final.

Usage

S3 method for class 'regarima'
plot(
x,
which = 1:6,
caption = list("Residuals", "Histogram of residuals", "Normal Q-Q",
"ACF of residuals", "PACF of residuals", "Decomposition", list("Y linearised",
"Calendar effects", "Outliers effects"))[sort(which)],

ask = prod(par("mfcol")) < length(which) && dev.interactive(),
...

)

S3 method for class 'decomposition_X11'
plot(x, first_date, last_date, caption = "S-I ratio", ylim, ...)

plot 15

S3 method for class 'decomposition_SEATS'
plot(x, first_date, last_date, caption = "S-I ratio", ylim, ...)

S3 method for class 'final'
plot(
x,
first_date,
last_date,
forecast = TRUE,
type_chart = c("sa-trend", "cal-seas-irr"),
caption = c(`sa-trend` = "Y, Sa, trend", `cal-seas-irr` =

"Cal., sea., irr.")[type_chart],
ask = length(type_chart) > 1 && dev.interactive(),
ylim,
...

)

S3 method for class 'SA'
plot(x, ...)

Arguments

x the object to plot.

which vector with numerics specifying which graphs should be plotted: (1) "Residu-
als", (2) "Histogram of residuals", (3) "Normal Q-Q", (4) "ACF of residuals",
(5) "PACF of residuals", (6) "Decomposition", (7) "Decomposition - zoom".

caption list or character with the graphs titles.

ask logicals. If TRUE, the user will in future be prompted before a new graphical
page is started.

... other parameters.

first_date the first date to start the plot. If missing the plot starts at the beginning of the
time-series.

last_date the last date to end the plot. If missing the plot ends at the end of the time-series
(eventually, including forecast).

ylim the y limits of the plot.

forecast logical indicating if forecasts should be included in the plot. If TRUE the forecast
is plotted.

type_chart character vector indicating which type of chart to plot.

Examples

myseries <- ipi_c_eu[, "FR"]
mysa <- x13(myseries, spec = c("RSA5c"))
RegArima

plot(mysa$regarima) # 6 graphics are plotted by default
To only plot one graphic (here the residuals) changing the title:

16 regarima

plot(mysa$regarima, which = 1, caption = "Plot of residuals")
plot(mysa$regarima, which = 7)

Decomposition
plot(mysa$decomposition) # To plot the S-I ratio
plot(mysa$decomposition, first_date = c(2010, 1)) # To start the plot in January 2010

Final
plot(mysa$final) # 2 graphics are plotted by default
To only plot one graphic (here raw data, seasonal adjusted data and trend),
changing the last date and the title
plot(mysa$final, last_date = c(2000, 1),

caption = "Results", type_chart = "sa-trend")

regarima RegARIMA model, pre-adjustment in X13 and TRAMO-SEATS

Description

regarima/regarima_x13/regarima_tramoseats decomposes the time series in a linear deter-
ministic component and in a stochastic component. The deterministic part of the series can con-
tain outliers, calendar effects and regression effects. The stochastic part is defined by a sea-
sonal multiplicative ARIMA model, as discussed by BOX, G.E.P., and JENKINS, G.M. (1970).
jregarima/jregarima_x13/jregarima_tramoseats does the same computation but returns the
Java objects without formatting the output

Usage

jregarima(series, spec = NA)

jregarima_tramoseats(
series,
spec = c("TRfull", "TR0", "TR1", "TR2", "TR3", "TR4", "TR5")

)

jregarima_x13(series, spec = c("RG5c", "RG0", "RG1", "RG2c", "RG3", "RG4c"))

regarima(series, spec = NA)

regarima_tramoseats(
series,
spec = c("TRfull", "TR0", "TR1", "TR2", "TR3", "TR4", "TR5")

)

regarima_x13(series, spec = c("RG5c", "RG0", "RG1", "RG2c", "RG3", "RG4c"))

regarima 17

Arguments

series a univariate time series

spec model specification. For the function:

• regarima, object of class c("regarima_spec","X13") or c("regarima_spec","TRAMO_SEATS")).
See functions regarima_spec_x13 and regarima_spec_tramoseats.

• regarima_x13, predefined X13 ’JDemetra+’ model specification (see De-
tails). The default is "RG5c".

• regarima_tramoseats, predefined TRAMO-SEATS ’JDemetra+’ model
specification (see Details). The default is "TRfull".

Details

In the X13 and TRAMO-SEATS seasonal adjustment the first step consists of pre-adjusting the
original series with a RegARIMA model, where the original series is corrected for any deterministic
effects and missing observations. This step is also referred as linearization of the original series.

The RegARIMA model (model with ARIMA errors) is specified as below.

zt = ytβ + xt

where:

• zt - is the original series;

• β = (β1, ..., βn) - a vector of regression coefficients;

• yt = (y1t, ..., ynt) - n regression variables (outliers, calendar effects, user-defined variables);

• xt - a disturbance that follows the general ARIMA process: φ(B)δ(B)xt = θ(B)at; φ(B), δ(B)
and θ(B) are the finite polynomials in B; at is a white-noise variable with zero mean and a
constant variance.

The polynomial φ(B) is a stationary autoregressive (AR) polynomial in B, which is a product of
the stationary regular AR polynomial in B and the stationary seasonal polynomial in Bs:

φ(B) = φp(B)Φbp(Bs) = (1 + φ1B + ...+ φpB
p)(1 + Φ1B

s + ...+ ΦbpB
bps)

where:

• p - number of regular AR terms (here and in ’JDemetra+’ p ≤ 3);

• bp - number of seasonal AR terms (here and in ’JDemetra+’ bp ≤ 1);

• s - number of observations per year (frequency of the time series).

The polynomial θ(B) is an invertible moving average (MA) polynomial in B, which is a product of
the invertible regular MA polynomial in B and the invertible seasonal MA polynomial in Bs:

θ(B) = θq(B)Θbq(Bs) = (1 + θ1B + ...+ θqB
q)(1 + Θ1B

s + ...+ ΘbqB
bqs)

where:

18 regarima

• q - number of regular MA terms (here and in ’JDemetra+’ q ≤ 3);

• bq - number of seasonal MA terms (here and in ’JDemetra+’ bq ≤ 1);

The polynomial δ(B) is the non-stationary AR polynomial in B (unit roots):

δ(B) = (1 −B)d(1 −Bs)ds

where:

• d - regular differencing order (here and in ’JDemetra+’ d ≤ 1);

• ds - seasonal differencing order (here and in ’JDemetra+’ ds ≤ 1);

Notations used for AR and MA processes, model denoted as ARIMA (P,D,Q)(BP,BD,BQ),
are consistent with those in ’JDemetra+’.

As regards the available predefined ’JDemetra+’ X13 and TRAMO-SEATS model specifications,
they are described in the tables below.

X13:

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
RG0 | NA | NA | NA | Airline(+mean)
RG1 | automatic | AO/LS/TC | NA | Airline(+mean)

RG2c | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
RG3 | automatic | AO/LS/TC | NA | automatic

RG4c | automatic | AO/LS/TC | 2 td vars + Easter | automatic
RG5c | automatic | AO/LS/TC | 7 td vars + Easter | automatic

TRAMO-SEATS:

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
TR0 | NA | NA | NA | Airline(+mean)
TR1 | automatic | AO/LS/TC | NA | Airline(+mean)
TR2 | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
TR3 | automatic | AO/LS/TC | NA | automatic
TR4 | automatic | AO/LS/TC | 2 td vars + Easter | automatic
TR5 | automatic | AO/LS/TC | 7 td vars + Easter | automatic

TRfull | automatic | AO/LS/TC | automatic | automatic

Value

jregarima/jregarima_x13/jregarima_tramoseats return a jSA object. It contains the Java ob-
jects of the result of the preadjustment method without any formatting. Therefore the computation
is faster than with regarima/regarima_x13/regarima_tramoseats. The results can the seasonal
adjustment can be extract by get_indicators.

regarima/regarima_x13/regarima_tramoseats return an object of class "regarima" and sub-
class "X13" or "TRAMO_SEATS". regarima_x13 returns an object of class c("regarima","X13")
and regarima_tramoseats an object of class c("regarima","TRAMO_SEATS"). For the function
regarima, the sub-class of the object depends on the used method that is defined by the class of the

regarima 19

spec object.

An object of class "regarima" is a list containing the following components:

specification list with the model specification as defined by the spec argument. See also Value
of the regarima_spec_x13 and regarima_spec_tramoseats functions.

arma vector with the orders of the autoregressive (AR), moving average (MA), sea-
sonal AR and seasonal MA processes, as well as with the regular and seasonal
differencing orders (P,D,Q) (BP,BD,BQ).

arima.coefficients

matrix with the regular and seasonal AR and MA coefficients. The matrix con-
tains the estimated coefficients, standard errors and t-statistics values. The es-
timated coefficients can be also extracted with the function coef (the output
includes also the regression coefficients).

regression.coefficients

matrix with the regression variables (i.e.: mean, calendar effect, outliers and
user-defined regressors) coefficients. The matrix contains the estimated coef-
ficients, standard errors and t-statistics values. The estimated coefficients can
be also extracted with the function coef (output includes also the arima coeffi-
cients).

loglik matrix containing the log-likelihood of the RegARIMA model as well as the
associated model selection criteria statistics (AIC, AICC, BIC and BICC) and
parameters (np = number of parameters in the likelihood, neffectiveobs =
number of effective observations in the likelihood). These statistics can be also
extracted with the function logLik.

model list containing the information on the model specification after its estimation
(spec_rslt), as well as the decomposed elements of the input series (ts matrix,
effects). The model specification includes the information on the estimation
method (Model) and time span (T.span), whether the original series was log
transformed (Log transformation) and details on the regression part of the
RegARIMA model; i.e. if it includes a Mean, Trading days effects (if yes, it
provides the number of regressors), Leap year effect, Easter effect and whether
outliers were detected (Outliers; if yes, it provides the number of outliers). The
decomposed elements of the input series contain the linearised series (y_lin)
and the deterministic components; i.e.: trading days effect (tde), Easter effect
(ee), other moving holidays effect (omhe) and outliers effect (total - out, related
to irregular - out_i, related to trend - out_t, related to seasonal - out_s).

residuals the residuals (time series). They can be also extracted with the function residuals.

residuals.stat List containing statistics on the RegARIMA residuals. It provides residuals stan-
dard error (st.error) and results for the tests on the normality, independence
and linearity of the residuals (tests) - object of class c("regarima_rtests","data.frame").

forecast ts matrix containing the forecast of the original series (fcst) and it’s standard
error (fcsterr).

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

20 regarima

BOX G.E.P. and JENKINS G.M. (1970), "Time Series Analysis: Forecasting and Control", Holden-
Day, San Francisco.

BOX G.E.P., JENKINS G.M., REINSEL G.C. and LJUNG G.M. (2015), "Time Series Analysis:
Forecasting and Control", John Wiley & Sons, Hoboken, N. J., 5th edition.

Examples

X13 method
myseries <- ipi_c_eu[, "FR"]
myreg <- regarima_x13(myseries, spec ="RG5c")
summary(myreg)
plot(myreg)

myspec1 <- regarima_spec_x13(myreg, tradingdays.option = "WorkingDays")
myreg1 <- regarima(myseries, myspec1)

myspec2 <- regarima_spec_x13(myreg, usrdef.outliersEnabled = TRUE,
usrdef.outliersType = c("LS", "AO"),
usrdef.outliersDate = c("2008-10-01", "2002-01-01"),
usrdef.outliersCoef = c(36, 14),
transform.function = "None")

myreg2 <- regarima(myseries, myspec2)
myreg2

myspec3 <- regarima_spec_x13(myreg, automdl.enabled = FALSE,
arima.p = 1, arima.q = 1,
arima.bp = 0, arima.bq = 1,
arima.coefEnabled = TRUE,
arima.coef = c(-0.8, -0.6, 0),
arima.coefType = c(rep("Fixed", 2), "Undefined"))

s_arimaCoef(myspec3)
myreg3 <- regarima(myseries, myspec3)
summary(myreg3)
plot(myreg3)

TRAMO-SEATS method
myspec <- regarima_spec_tramoseats("TRfull")
myreg <- regarima(myseries, myspec)
myreg

myspec2 <- regarima_spec_tramoseats(myspec, tradingdays.mauto = "Unused",
tradingdays.option = "WorkingDays",
easter.type = "Standard",
automdl.enabled = FALSE, arima.mu = TRUE)

myreg2 <- regarima(myseries, myspec2)

var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var <- ts.union(var1, var2)
myspec3 <- regarima_spec_tramoseats(myspec,

usrdef.varEnabled = TRUE, usrdef.var = var)

regarima_spec_tramoseats 21

s_preVar(myspec3)
myreg3 <- regarima(myseries, myspec3)
myreg3

regarima_spec_tramoseats

RegARIMA model specification, pre-adjustment in TRAMO-SEATS

Description

Function to create (and/or modify) a c("regarima_spec","TRAMO_SEATS") class object with the
RegARIMA model specification for the TRAMO-SEATS method. The object can be created from a
predefined ’JDemetra+’ model specification (a character), a previous specification (c("regarima_spec","TRAMO_SEATS")
object) or a TRAMO-SEATS RegARIMA model (c("regarima","TRAMO_SEATS")).

Usage

regarima_spec_tramoseats(
spec = c("TRfull", "TR0", "TR1", "TR2", "TR3", "TR4", "TR5"),
preliminary.check = NA,
estimate.from = NA_character_,
estimate.to = NA_character_,
estimate.first = NA_integer_,
estimate.last = NA_integer_,
estimate.exclFirst = NA_integer_,
estimate.exclLast = NA_integer_,
estimate.tol = NA_integer_,
estimate.eml = NA,
estimate.urfinal = NA_integer_,
transform.function = c(NA, "Auto", "None", "Log"),
transform.fct = NA_integer_,
usrdef.outliersEnabled = NA,
usrdef.outliersType = NA,
usrdef.outliersDate = NA,
usrdef.outliersCoef = NA,
usrdef.varEnabled = NA,
usrdef.var = NA,
usrdef.varType = NA,
usrdef.varCoef = NA,
tradingdays.mauto = c(NA, "Unused", "FTest", "WaldTest"),
tradingdays.pftd = NA_integer_,
tradingdays.option = c(NA, "TradingDays", "WorkingDays", "UserDefined", "None"),
tradingdays.leapyear = NA,
tradingdays.stocktd = NA_integer_,
tradingdays.test = c(NA, "Separate_T", "Joint_F", "None"),
easter.type = c(NA, "Unused", "Standard", "IncludeEaster", "IncludeEasterMonday"),

22 regarima_spec_tramoseats

easter.julian = NA,
easter.duration = NA_integer_,
easter.test = NA,
outlier.enabled = NA,
outlier.from = NA_character_,
outlier.to = NA_character_,
outlier.first = NA_integer_,
outlier.last = NA_integer_,
outlier.exclFirst = NA_integer_,
outlier.exclLast = NA_integer_,
outlier.ao = NA,
outlier.tc = NA,
outlier.ls = NA,
outlier.so = NA,
outlier.usedefcv = NA,
outlier.cv = NA_integer_,
outlier.eml = NA,
outlier.tcrate = NA_integer_,
automdl.enabled = NA,
automdl.acceptdefault = NA,
automdl.cancel = NA_integer_,
automdl.ub1 = NA_integer_,
automdl.ub2 = NA_integer_,
automdl.armalimit = NA_integer_,
automdl.reducecv = NA_integer_,
automdl.ljungboxlimit = NA_integer_,
automdl.compare = NA,
arima.mu = NA,
arima.p = NA_integer_,
arima.d = NA_integer_,
arima.q = NA_integer_,
arima.bp = NA_integer_,
arima.bd = NA_integer_,
arima.bq = NA_integer_,
arima.coefEnabled = NA,
arima.coef = NA,
arima.coefType = NA,
fcst.horizon = NA_integer_

)

Arguments

spec model specification. It can be a character of predefined ’JDemetra+’ model
specification (see Details), an object of class c("regarima_spec","TRAMO_SEATS")
or an object of class c("regarima","TRAMO_SEATS"). The default is "TRfull".

preliminary.check

boolean to check the quality of the input series and exclude highly problematic
ones: e.g. these with a number of identical observations and/or missing values
above pre-specified threshold values.

regarima_spec_tramoseats 23

The time span of the series to be used for the estimation of the RegArima model
coefficients (default from 1900-01-01 to 2020-12-31) is controlled by the fol-
lowing six variables: estimate.from,estimate.to,estimate.first,estimate.last,estimate.exclFirst
and estimate.exclLast; where estimate.from and estimate.to have prior-
ity over remaining span control variables, estimate.last and estimate.first
have priority over estimate.exclFirst and estimate.exclLast, and estimate.last
has priority over estimate.first.

estimate.from character in format "YYYY-MM-DD" indicating the start of the time span (e.g.
"1900-01-01"). Can be combined with estimate.to.

estimate.to character in format "YYYY-MM-DD" indicating the end of the time span (e.g.
"2020-12-31"). Can be combined with estimate.from.

estimate.first numeric specifying the number of periods considered at the beginning of the
series.

estimate.last numeric specifying the number of periods considered at the end of the series.
estimate.exclFirst

numeric specifying the number of periods excluded at the beginning of the se-
ries. Can be combined with estimate.exclLast.

estimate.exclLast

numeric specifying the number of periods excluded at the end of the series. Can
be combined with estimate.exclFirst.

estimate.tol numeric, convergence tolerance. The absolute changes in the log-likelihood
function are compared to this value to check for the convergence of the esti-
mation iterations.

estimate.eml logicals, exact maximum likelihood estimation. If TRUE the program performs
an exact maximum likelihood estimation. If FASLE the Unconditional Least
Squares method is used.

estimate.urfinal

numeric, final unit root limit. The threshold value for the final unit root test
for identification of differencing orders. If the magnitude of an AR root for the
final model is less than this number, a unit root is assumed, the order of the
AR polynomial is reduced by one, and the appropriate order of the differencing
(non-seasonal, seasonal) is increased.

transform.function

transformation of the input series: "None" - no transformation of the series;
"Log" - takes the log of the series; "Auto" - the program tests for the log-level
specification.

transform.fct numeric controlling the bias in the log/level pre-test: transform.fct > 1 favours
levels, transform.fct< 1 favours logs. Considered only when transform.function
is set to "Auto".
Control variables for the pre-specified outliers. The pre-specified outliers are
used in the model only if they are enabled (usrdef.outliersEnabled=TRUE)
and the outliers’ type (usrdef.outliersType) and date (usrdef.outliersDate)
are provided.

usrdef.outliersEnabled

logicals. If TRUE the program uses the pre-specified outliers.

24 regarima_spec_tramoseats

usrdef.outliersType

vector defining the outliers’ type. Possible types are: ("AO") - additive, ("LS") -
level shift, ("TC") - transitory change, ("SO") - seasonal outlier. E.g.: usrdef.outliersType
=c("AO","AO","LS").

usrdef.outliersDate

vector defining the outliers’ date. The dates should be characters in format
"YYYY-MM-DD". E.g.: usrdef.outliersDate=c("2009-10-01","2005-02-01","2003-04-01").

usrdef.outliersCoef

vector providing fixed coefficients for the outliers. The coefficients can’t be
fixed if transform.function is set to "Auto" - the series transformation need
to be pre-defined. E.g.: usrdef.outliersCoef=c(200,170,20).
Control variables for the user-defined variables:

usrdef.varEnabled

logicals. If TRUE the program uses the user-defined variables.

usrdef.var time series (ts) or matrix of time series (mts) with the user-defined variables.

usrdef.varType vector of character(s) defining the user-defined variables component type. Possi-
ble types are: "Undefined","Series","Trend","Seasonal","SeasonallyAdjusted","Irregular","Calendar".
The type "Calendar" has to be used with tradingdays.option = "UserDefined"
to use user-defined calendar regressors. If not specified, the program will assign
the "Undefined" type.

usrdef.varCoef vector providing fixed coefficients for the user-defined variables. The coeffi-
cients can’t be fixed if transform.function is set to "Auto" - the series trans-
formation need to be pre-defined.

tradingdays.mauto

defines whether the calendar effects should be added to the model manually
("Unused") or automatically. In the automatic selection, the choice of the num-
ber of calendar variables can be based on the F-Test ("FTest") or the Wald Test
("WaldTest"); the model with higher F value is chosen, provided that it is higher
than tradingdays.pftd).

tradingdays.pftd

numeric. P-value applied in the test specified by the automatic parameter (tradingdays.mauto)
to assess the significance of the pre-tested calendar effects variables and whether
they should be included in the RegArima model.
Control variables for the manual selection of calendar effects variables (tradingdays.mauto
is set to "Unused"):

tradingdays.option

defines the type of the trading days regression variables: "TradingDays" -
six day-of-the-week regression variables; "WorkingDays" - one working/non-
working day contrast variable; "None" - no correction for trading days and work-
ing days effects; "UserDefined" - user-defined trading days regressors (regres-
sors have to be defined by the usrdef.var argument with usrdef.varType set
to "Calendar" and usrdef.varEnabled = TRUE). "None" has also to be chosen
for the "day-of-week effects" correction (tradingdays.stocktd to be modified
accordingly).

tradingdays.leapyear

logicals. Specifies if the leap-year correction should be included. If TRUE the
model includes the leap-year effect.

regarima_spec_tramoseats 25

tradingdays.stocktd

numeric indicating the day of the month when inventories and other stock are
reported (to denote the last day of the month set the variable to 31). Modifica-
tions of this variable are taken into account only when tradingdays.option is
set to "None".

tradingdays.test

defines the pre-tests of the trading day effects: "None" - calendar variables are
used in the model without pre-testing; "Separate_T" - a t-test is applied to
each trading day variable separately and the trading day variables are included
in the RegArima model if at least one t-statistic is greater than 2.6 or if two t-
statistics are greater than 2.0 (in absolute terms); "Joint_F" - a joint F-test of
significance of all the trading day variables. The trading day effect is significant
if the F statistic is greater than 0.95.

easter.type specifies the presence and the length of the Easter effect: "Unused" - Easter
effect is not considered; "Standard" - influences the period of n days strictly
before Easter Sunday; "IncludeEaster" - influences the entire period (n) up to
and including Easter Sunday; "IncludeEasterMonday" - influences the entire
period (n) up to and including Easter Monday.

easter.julian logicals. If TRUE the program uses the Julian Easter (expressed in Gregorian
calendar).

easter.duration

numeric indicating the duration of the Easter effect (length in days, between 1
and 15).

easter.test logicals. If TRUE the program performs a t-test for the significance of the Easter
effect. The Easter effect is considered as significant if the modulus of t-statistic
is greater than 1.96.

outlier.enabled

logicals. If TRUE the automatic detection of outliers is enabled in the defined
time span.
The time span of the series to be searched for outliers (default from 1900-01-01
to 2020-12-31) is controlled by the following six variables: outlier.from,outlier.to,outlier.first,outlier.last,outlier.exclFirst
and outlier.exclLast; where outlier.from and outlier.to have priority
over remaining span control variables, outlier.last and outlier.first have
priority over outlier.exclFirst and outlier.exclLast, and outlier.last
has priority over outlier.first.

outlier.from character in format "YYYY-MM-DD" indicating the start of the time span (e.g.
"1900-01-01"). Can be combined with outlier.to.

outlier.to character in format "YYYY-MM-DD" indicating the end of the time span (e.g.
"2020-12-31"). Can be combined with outlier.from.

outlier.first numeric specifying the number of periods considered at the beginning of the
series.

outlier.last numeric specifying the number of periods considered at the end of the series.
outlier.exclFirst

numeric specifying the number of periods excluded at the beginning of the se-
ries. Can be combined with outlier.exclLast.

26 regarima_spec_tramoseats

outlier.exclLast

numeric specifying the number of periods excluded at the end of the series. Can
be combined with outlier.exclFirst.

outlier.ao logicals. If TRUE the automatic detection of additive outliers is enabled (outlier.enabled
must be also set to TRUE).

outlier.tc logicals. If TRUE the automatic detection of transitory changes is enabled (outlier.enabled
must be also set to TRUE).

outlier.ls logicals. If TRUE the automatic detection of level shifts is enabled (outlier.enabled
must be also set to TRUE).

outlier.so logicals. If TRUE the automatic detection of seasonal outliers is enabled (outlier.enabled
must be also set to TRUE).

outlier.usedefcv

logicals. If TRUE the critical value for the outliers’ detection procedure is auto-
matically determined by the number of observations in the outlier detection time
span. If FALSE the procedure uses the inputted critical value (outlier.cv).

outlier.cv numeric. Inputted critical value for the outliers’ detection procedure. The mod-
ification of this variable is taken in to account only when outlier.usedefcv is
set to FALSE.

outlier.eml logicals, exact likelihood estimation method.Controls the method applied for a
parameter estimation in the intermediate steps of the automatic detection and
correction of outliers. If TRUE an exact likelihood estimation method is used,
when FALSE the fast Hannan-Rissanen method is used.

outlier.tcrate numeric. The rate of decay for the transitory change outlier.
automdl.enabled

logicals. If TRUE the automatic modelling of the ARIMA model is enabled. If
FALSE the parameters of the ARIMA model can be specified.
Control variables for the automatic modelling of the ARIMA model (automdl.enabled
is set to TRUE):

automdl.acceptdefault

logicals. If TRUE the default model (ARIMA(0,1,1)(0,1,1)) may be chosen in the
first step of the automatic model identification. If the Ljung-Box Q statistics for
the residuals is acceptable, the default model is accepted and no further attempt
will be made to identify any other.

automdl.cancel numeric, cancelation limit. If the difference in moduli of an AR and an MA
roots (when estimating ARIMA(1,0,1)(1,0,1) models in the second step of the
automatic identification of the differencing orders) is smaller than cancelation
limit, the two roots are assumed equal and cancel out.

automdl.ub1 numeric, first unit root limit. It is the threshold value for the initial unit root test
in the automatic differencing procedure. When one of the roots in the estimation
of the ARIMA(2,0,0)(1,0,0) plus mean model, performed in the first step of the
automatic model identification procedure, is larger than first unit root limit in
modulus, it is set equal to unity.

automdl.ub2 numeric, second unit root limit. When one of the roots in the estimation of the
ARIMA(1,0,1)(1,0,1) plus mean model, which is performed in the second step
of the automatic model identification procedure, is larger than second unit root

regarima_spec_tramoseats 27

limit in modulus, it is checked if there is a common factor in the correspond-
ing AR and MA polynomials of the ARMA model that can be cancelled (see
automdl.cancel). If there is no cancellation, the AR root is set equal to unity
(i.e. the differencing order changes).

automdl.armalimit

numeric, arma limit. It is the threshold value for t-statistics of ARMA coeffi-
cients and constant term used for the final test of model parsimony. If the highest
order ARMA coefficient has a t-value less than this value in magnitude, the or-
der of the model is reduced. Also if the constant term has a t-value less than
arma limit in magnitude, it is removed from the set of regressors.

automdl.reducecv

numeric, ReduceCV. The percentage by which the outlier’s critical value will be
reduced when an identified model is found to have a Ljung-Box statistic with
an unacceptable confidence coefficient. The parameter should be between 0 and
1, and will only be active when automatic outlier identification is enabled. The
reduced critical value will be set to (1-ReduceCV)xCV, where CV is the original
critical value.

automdl.ljungboxlimit

numeric, Ljung Box limit. Acceptance criterion for the confidence intervals of
the Ljung-Box Q statistic. If the LjungBox Q statistics for the residuals of a final
model is greater than Ljung Box limit, the model is rejected, the outlier critical
value is reduced, and model and outlier identification (if specified) is redone
with a reduced value.

automdl.compare

logicals. If TRUE the program compares the model identified by the automatic
procedure to the default model (ARIMA(0,1,1)(0,1,1)) and the model with the
best fit is selected. Criteria considered are residual diagnostics, the model struc-
ture and the number of outliers.
Control variables for the non-automatic modelling of the ARIMA model (automdl.enabled
is set to FALSE):

arima.mu logicals. If TRUE, the mean is considered as part of the ARIMA model.

arima.p numeric. The order of the non-seasonal autoregressive (AR) polynomial.

arima.d numeric. Regular differencing order.

arima.q numeric. The order of the non-seasonal moving average (MA) polynomial.

arima.bp numeric. The order of the seasonal autoregressive (AR) polynomial.

arima.bd numeric. Seasonal differencing order.

arima.bq numeric. The order of the seasonal moving average (MA) polynomial.
Control variables for the user-defined ARMA coefficients. Coefficients can be
defined for the regular and seasonal autoregressive (AR) polynomials and mov-
ing average (MA) polynomials. The model considers the coefficients only if the
procedure for their estimation (arima.coefType) is provided, and the number
of provided coefficients matches the sum of (regular and seasonal) AR and MA
orders (p,q,bp,bq).

arima.coefEnabled

logicals. If TRUE the program uses the user-defined ARMA coefficients.

28 regarima_spec_tramoseats

arima.coef vector providing the coefficients for the regular and seasonal AR and MA poly-
nominals. The length of the vector must equal the sum of the regular and
seasonal AR and MA orders. The coefficients shall be provided in the or-
der: regular AR (Phi - p elements), regular MA (Theta - q elements), sea-
sonal AR (BPhi - bp elements) and seasonal MA (BTheta - bq elements). E.g.:
arima.coef=c(0.6,0.7) with arima.p=1,arima.q=0,arima.bp=1 and arima.bq=0.

arima.coefType vector defining ARMA coefficients estimation procedure. Possible procedures
are: "Undefined" - no use of user-defined input (i.e. coefficients are estimated),
"Fixed" - fixes the coefficients at the value provided by the user, "Initial"
- the value defined by the user is used as initial condition. For orders for
which the coefficients shall not be defined, the arima.coef can be set to NA
or 0 or the arima.coefType can be set to "Undefined". E.g.: arima.coef =
c(-0.8,-0.6,NA), arima.coefType = c("Fixed","Fixed","Undefined").

fcst.horizon numeric, forecasts horizon. Length of the forecasts generated by the RegARIMA
model in periods (positive values) or years (negative values). By default the pro-
gram generates two years forecasts (fcst.horizon set to -2).

Details

The available predefined ’JDemetra+’ model specifications are described in the table below.

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
TR0 | NA | NA | NA | Airline(+mean)
TR1 | automatic | AO/LS/TC | NA | Airline(+mean)
TR2 | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
TR3 | automatic | AO/LS/TC | NA | automatic
TR4 | automatic | AO/LS/TC | 2 td vars + Easter | automatic
TR5 | automatic | AO/LS/TC | 7 td vars + Easter | automatic

TRfull | automatic | AO/LS/TC | automatic | automatic

Value

A list of class c("regarima_spec","TRAMO_SEATS") with the below components. Each compo-
nent refers to different part of the RegARIMA model specification, mirroring the arguments of the
function (for details see arguments description). Each of the lowest-level component (except span,
pre-specified outliers, user-defined variables and pre-specified ARMA coefficients) is structured
within a data frame with columns denoting different variables of the model specification and rows
referring to: first row - base specification, as provided within the argument spec; second row - user
modifications as specified by the remaining arguments of the function (e.g.: arima.d); and third
row - final model specification, values that will be used in the function regarima. The final speci-
fication (third row) shall include user modifications (row two) unless they were wrongly specified.
The pre-specified outliers, user-defined variables and pre-specified ARMA coefficients consist of a
list with the Predefined (base model specification) and Final values.

estimate data frame. Variables referring to: span - time span for the model estimation,
tolerance - argument estimate.tol, exact_ml - argument estimate.eml,
urfinal - argument esimate.urfinal. The final values can be also accessed
with the function s_estimate.

regarima_spec_tramoseats 29

transform data frame. Variables referring to: tfunction - argument transform.function,
fct - argument transform.fct. The final values can be also accessed with the
function s_transform.

regression list including the information on the user-defined variables (userdef), trading.days
effect and easter effect. The user-defined part includes: specification -
data frame with the information if pre-specified outliers (outlier) and user-
defined variables (variables) are included in the model and if fixed coeffi-
cients are used (outlier.coef and variables.coef). The final values can be
also accessed with the function s_usrdef; outliers - matrixes with the out-
liers (Predefined and Final). The final outliers can be also accessed with
the function s_preOut; and variables - list with the Predefined and Final
user-defined variables (series) and its description (description) including
the information on the variable type and values of fixed coefficients. The fi-
nal user-defined variables can be also accessed with the function s_preVar.
Within the data frame trading.days variables refer to: automatic - argu-
ment tradingdays.mauto, pftd - argument tradingdays.pftd, option - ar-
gument tradingdays.option, leapyear - argument tradingdays.leapyear,
stocktd - argument tradingdays.stocktd, test - argument tradingdays.test.
The final trading.days values can be also accessed with the function s_td.
Within the data frame easter variables refer to: type - argument easter.type,
julian - argument easter.julian, duration - argument easter.duration,
test - argument easter.test. The final easter values can be also accessed
with the function s_easter.

outliers data frame. Variables referring to: ao - argument outlier.ao, tc - argument
outlier.tc, ls - argument outlier.ls, so - argument outlier.so, usedefcv
- argument outlier.usedefcv, cv - argument outlier.cv, eml - argument
outlier.eml, tcrate - argument outlier.tcrate. The final values can be
also accessed with the function s_out.

arima list containing a data frame with the ARIMA settings (specification) and ma-
trixes with the information on the pre-specified ARMA coefficients (coefficients).
The matrix Predefined refers to the pre-defined model specification and ma-
trix Final to the final specification. Both matrixes contain the value of the
ARMA coefficients and the procedure for its estimation. Within the data frame
specification the variable enabled refer to the argument automdl.enabled
and all the remaining variables (automdl.acceptdefault,automdl.cancel,automdl.ub1,automdl.ub2,automdl.armalimit,automdl.reducecv,automdl.ljungboxlimit,automdl.compare,arima.mu,arima.p,arima.d,arima.q,arima.bp,arima.bd,arima.bq)
to the respective function arguments. The final values of the specification
can be also accessed with the function s_arima and final pre-specified ARMA
coefficients with the function s_arimaCoef.

forecast data frame with the forecast horizon (argument fcst.horizon). The final value
can be also accessed with the function s_fcst.

span matrix containing the final time span for the model estimation and outliers’ de-
tection. Contains the same information as the variable span in the data frames
estimate and outliers.The matrix can be also accessed with the function s_span.

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

30 regarima_spec_tramoseats

Examples

myseries <- ipi_c_eu[, "FR"]
myspec1 <- regarima_spec_tramoseats(spec = "TRfull")
myreg1 <- regarima(myseries, spec = myspec1)

Modify a pre-specified model specification
myspec2 <- regarima_spec_tramoseats(spec = "TRfull",

tradingdays.mauto = "Unused",
tradingdays.option = "WorkingDays",
easter.type = "Standard",
automdl.enabled = FALSE, arima.mu = TRUE)

myreg2 <- regarima(myseries, spec = myspec2)

Modify the model specification from a "regarima" object
myspec3 <- regarima_spec_tramoseats(myreg1,

tradingdays.mauto = "Unused",
tradingdays.option = "WorkingDays",
easter.type = "Standard", automdl.enabled = FALSE,
arima.mu = TRUE)

myreg3 <- regarima(myseries, myspec3)

Modify the model specification from a "regarima_spec" object
myspec4 <- regarima_spec_tramoseats(myspec1,

tradingdays.mauto = "Unused",
tradingdays.option = "WorkingDays",
easter.type = "Standard",
automdl.enabled = FALSE, arima.mu = TRUE)

myreg4 <- regarima(myseries, myspec4)

Pre-specified outliers
myspec1 <- regarima_spec_tramoseats(spec = "TRfull",

usrdef.outliersEnabled = TRUE,
usrdef.outliersType = c("LS", "LS"),
usrdef.outliersDate = c("2008-10-01" ,"2003-01-01"),
usrdef.outliersCoef = c(10, -8), transform.function = "None")

s_preOut(myspec1)
myreg1 <- regarima(myseries, myspec1)
myreg1
s_preOut(myreg1)

User-defined variables
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries),

frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries),

frequency = 12)
var <- ts.union(var1, var2)

myspec1 <- regarima_spec_tramoseats(spec = "TRfull",
usrdef.varEnabled = TRUE, usrdef.var = var)

s_preVar(myspec1)

regarima_spec_x13 31

myreg1 <- regarima(myseries,myspec1)

myspec2 <- regarima_spec_tramoseats(spec = "TRfull",
usrdef.varEnabled = TRUE,
usrdef.var = var, usrdef.varCoef = c(17,-1),
transform.function = "None")

myreg2 <- regarima(myseries, myspec2)

Pre-specified ARMA coefficients
myspec1 <- regarima_spec_tramoseats(spec = "TRfull",

arima.coefEnabled = TRUE, automdl.enabled = FALSE,
arima.p = 2, arima.q = 0, arima.bp = 1, arima.bq = 1,
arima.coef = c(-0.12, -0.12, -0.3, -0.99),
arima.coefType = rep("Fixed", 4))

myreg1 <- regarima(myseries, myspec1)
myreg1
summary(myreg1)
s_arimaCoef(myspec1)
s_arimaCoef(myreg1)

regarima_spec_x13 RegARIMA model specification, pre-adjustment in X13

Description

Function to create (and/or modify) a c("regarima_spec","X13") class object with the RegARIMA
model specification for the X13 method. The object can be created from a predefined ’JDemetra+’
model specification (a character), a previous specification (c("regarima_spec","X13") object)
or a X13 RegARIMA model (c("regarima","X13")).

Usage

regarima_spec_x13(
spec = c("RG5c", "RG0", "RG1", "RG2c", "RG3", "RG4c"),
preliminary.check = NA,
estimate.from = NA_character_,
estimate.to = NA_character_,
estimate.first = NA_integer_,
estimate.last = NA_integer_,
estimate.exclFirst = NA_integer_,
estimate.exclLast = NA_integer_,
estimate.tol = NA_integer_,
transform.function = c(NA, "Auto", "None", "Log"),
transform.adjust = c(NA, "None", "LeapYear", "LengthOfPeriod"),
transform.aicdiff = NA_integer_,
usrdef.outliersEnabled = NA,
usrdef.outliersType = NA,
usrdef.outliersDate = NA,

32 regarima_spec_x13

usrdef.outliersCoef = NA,
usrdef.varEnabled = NA,
usrdef.var = NA,
usrdef.varType = NA,
usrdef.varCoef = NA,
tradingdays.option = c(NA, "TradingDays", "WorkingDays", "UserDefined", "None"),
tradingdays.autoadjust = NA,
tradingdays.leapyear = c(NA, "LeapYear", "LengthOfPeriod", "None"),
tradingdays.stocktd = NA_integer_,
tradingdays.test = c(NA, "Remove", "Add", "None"),
easter.enabled = NA,
easter.julian = NA,
easter.duration = NA_integer_,
easter.test = c(NA, "Add", "Remove", "None"),
outlier.enabled = NA,
outlier.from = NA_character_,
outlier.to = NA_character_,
outlier.first = NA_integer_,
outlier.last = NA_integer_,
outlier.exclFirst = NA_integer_,
outlier.exclLast = NA_integer_,
outlier.ao = NA,
outlier.tc = NA,
outlier.ls = NA,
outlier.so = NA,
outlier.usedefcv = NA,
outlier.cv = NA_integer_,
outlier.method = c(NA, "AddOne", "AddAll"),
outlier.tcrate = NA_integer_,
automdl.enabled = NA,
automdl.acceptdefault = NA,
automdl.cancel = NA_integer_,
automdl.ub1 = NA_integer_,
automdl.ub2 = NA_integer_,
automdl.mixed = NA,
automdl.balanced = NA,
automdl.armalimit = NA_integer_,
automdl.reducecv = NA_integer_,
automdl.ljungboxlimit = NA_integer_,
automdl.ubfinal = NA_integer_,
arima.mu = NA,
arima.p = NA_integer_,
arima.d = NA_integer_,
arima.q = NA_integer_,
arima.bp = NA_integer_,
arima.bd = NA_integer_,
arima.bq = NA_integer_,
arima.coefEnabled = NA,

regarima_spec_x13 33

arima.coef = NA,
arima.coefType = NA,
fcst.horizon = NA_integer_

)

Arguments

spec model specification. It can be a character of predefined ’JDemetra+’ model
specification (see Details), an object of class c("regarima_spec","X13") or
an object of class c("regarima","X13"). The default is "RG5c".

preliminary.check

boolean to check the quality of the input series and exclude highly problematic
ones: e.g. these with a number of identical observations and/or missing values
above pre-specified threshold values.
The time span of the series to be used for the estimation of the RegARIMA
model coefficients (default from 1900-01-01 to 2020-12-31) is controlled by the
following six variables: estimate.from,estimate.to,estimate.first,estimate.last,estimate.exclFirst
and estimate.exclLast; where estimate.from and estimate.to have prior-
ity over remaining span control variables, estimate.last and estimate.first
have priority over estimate.exclFirst and estimate.exclLast, and estimate.last
has priority over estimate.first.

estimate.from character in format "YYYY-MM-DD" indicating the start of the time span (e.g.
"1900-01-01"). Can be combined with estimate.to.

estimate.to character in format "YYYY-MM-DD" indicating the end of the time span (e.g.
"2020-12-31"). Can be combined with estimate.from.

estimate.first numeric specifying the number of periods considered at the beginning of the
series.

estimate.last numeric specifying the number of periods considered at the end of the series.
estimate.exclFirst

numeric specifying the number of periods excluded at the beginning of the se-
ries. Can be combined with estimate.exclLast.

estimate.exclLast

numeric specifying the number of periods excluded at the end of the series. Can
be combined with estimate.exclFirst.

estimate.tol numeric, convergence tolerance. The absolute changes in the log-likelihood
function are compared to this value to check for the convergence of the esti-
mation iterations.

transform.function

transformation of the input series: "None" - no transformation of the series;
"Log" - takes the log of the series; "Auto" - the program tests for the log-level
specification.

transform.adjust

pre-adjustment of the input series for length of period or leap year effects:
"None" - no adjustment; "LeapYear" - leap year effect; "LengthOfPeriod"
- length of period. Modifications of this variable are taken into account only
when transform.function is set to "Log".

34 regarima_spec_x13

transform.aicdiff

numeric defining the difference in AICC needed to accept no transformation
when the automatic transformation selection is chosen (considered only when
transform.function is set to "Auto").
Control variables for the pre-specified outliers. The pre-specified outliers are
used in the model only if they are enabled (usrdef.outliersEnabled=TRUE)
and the outliers’ type (usrdef.outliersType) and date (usrdef.outliersDate)
are provided.

usrdef.outliersEnabled

logicals. If TRUE the program uses the pre-specified outliers.
usrdef.outliersType

vector defining the outliers’ type. Possible types are: ("AO") - additive, ("LS")
- level shift, ("TC") - transitory change, ("SO") - seasonal outlier. E.g.: usrdef.outliersType
=c("AO","AO","LS").

usrdef.outliersDate

vector defining the outliers’ date. The dates should be characters in format
"YYYY-MM-DD". E.g.: usrdef.outliersDate=c("2009-10-01","2005-02-01","2003-04-01").

usrdef.outliersCoef

vector providing fixed coefficients for the outliers. The coefficients can’t be
fixed if transform.function is set to "Auto" - the series transformation need
to be pre-defined. E.g.: usrdef.outliersCoef=c(200,170,20).
Control variables for the user-defined variables:

usrdef.varEnabled

logicals. If TRUE the program uses the user-defined variables.

usrdef.var time series (ts) or matrix of time series (mts) with the user-defined variables.

usrdef.varType vector of character(s) defining the user-defined variables component type. Possi-
ble types are: "Undefined","Series","Trend","Seasonal","SeasonallyAdjusted","Irregular","Calendar".
The type "Calendar" has to be used with tradingdays.option = "UserDefined"
to use user-defined calendar regressors. If not specified, the program will assign
the "Undefined" type.

usrdef.varCoef vector providing fixed coefficients for the user-defined variables. The coeffi-
cients can’t be fixed if transform.function is set to "Auto" - the series trans-
formation need to be pre-defined.

tradingdays.option

defines the type of the trading days regression variables: "TradingDays" -
six day-of-the-week regression variables; "WorkingDays" - one working/non-
working day contrast variable; "None" - no correction for trading days and work-
ing days effects; "UserDefined" - user-defined trading days regressors (regres-
sors have to be defined by the usrdef.var argument with usrdef.varType set
to "Calendar" and usrdef.varEnabled = TRUE). "None" has also to be chosen
for the "day-of-week effects" correction (tradingdays.stocktd to be modified
accordingly).

tradingdays.autoadjust

logicals. If TRUE the program corrects automatically for the leap year effect.
Modifications of this variable are taken into account only when transform.function
is set to "Auto".

regarima_spec_x13 35

tradingdays.leapyear

option for including the leap-year effect in the model: "LeapYear" - leap year
effect; "LengthOfPeriod" - length of period, "None" - no effect included. The
leap-year effect can be pre-specified in the model only if the input series was
not pre-adjusted (transform.adjust set to "None") and the automatic correc-
tion for the leap-year effect was not selected (tradingdays.autoadjust set to
FALSE).

tradingdays.stocktd

numeric indicating the day of the month when inventories and other stock are
reported (to denote the last day of the month set the variable to 31). Modifica-
tions of this variable are taken into account only when tradingdays.option is
set to "None".

tradingdays.test

defines the pre-tests for the significance of the trading day regression variables
based on the AICC statistics: "Add" - the trading day variables are not included
in the initial regression model but can be added to the RegARIMA model after
the test; "Remove" - the trading day variables belong to the initial regression
model but can be removed from the RegARIMA model after the test; "None" -
the trading day variables are not pre-tested and are included in the model.

easter.enabled logicals. If TRUE the program considers the Easter effect in the model.

easter.julian logicals. If TRUE the program uses the Julian Easter (expressed in Gregorian
calendar).

easter.duration

numeric indicating the duration of the Easter effect (length in days, between 1
and 20).

easter.test defines the pre-tests for the significance of the Easter effect based on the t-
statistic (Easter effect is considered as significant if the t-statistic is greater than
1.96): "Add" - the Easter effect variable is not included in the initial regression
model but can be added to the RegARIMA model after the test; "Remove" - the
Easter effect variable belong to the initial regression model but can be removed
from the RegARIMA model after the test; "None" - the Easter effect variable is
not pre-tested and is included in the model.

outlier.enabled

logicals. If TRUE the automatic detection of outliers is enabled in the defined
time span.
The time span of the series to be searched for outliers (default from 1900-01-01
to 2020-12-31) is controlled by the following six variables: outlier.from,outlier.to,outlier.first,outlier.last,outlier.exclFirst
and outlier.exclLast; where outlier.from and outlier.to have priority
over remaining span control variables, outlier.last and outlier.first have
priority over outlier.exclFirst and outlier.exclLast, and outlier.last
has priority over outlier.first.

outlier.from character in format "YYYY-MM-DD" indicating the start of the time span (e.g.
"1900-01-01"). Can be combined with outlier.to.

outlier.to character in format "YYYY-MM-DD" indicating the end of the time span (e.g.
"2020-12-31"). Can be combined with outlier.from.

outlier.first numeric specifying the number of periods considered at the beginning of the
series.

36 regarima_spec_x13

outlier.last numeric specifying the number of periods considered at the end of the series.
outlier.exclFirst

numeric specifying the number of periods excluded at the beginning of the se-
ries. Can be combined with outlier.exclLast.

outlier.exclLast

numeric specifying the number of periods excluded at the end of the series. Can
be combined with outlier.exclFirst.

outlier.ao logicals. If TRUE the automatic detection of additive outliers is enabled (outlier.enabled
must be also set to TRUE).

outlier.tc logicals. If TRUE the automatic detection of transitory changes is enabled (outlier.enabled
must be also set to TRUE).

outlier.ls logicals. If TRUE the automatic detection of level shifts is enabled (outlier.enabled
must be also set to TRUE).

outlier.so logicals. If TRUE the automatic detection of seasonal outliers is enabled (outlier.enabled
must be also set to TRUE).

outlier.usedefcv

logicals. If TRUE the critical value for the outliers’ detection procedure is auto-
matically determined by the number of observations in the outlier detection time
span. If FALSE the procedure uses the inputted critical value (outlier.cv).

outlier.cv numeric. Inputted critical value for the outliers’ detection procedure. The mod-
ification of this variable is taken into account only when outlier.usedefcv is
set to FALSE.

outlier.method determines how the program successively adds detected outliers to the model.
At present only the AddOne method is supported.

outlier.tcrate numeric. The rate of decay for the transitory change outlier.
automdl.enabled

logicals. If TRUE the automatic modelling of the ARIMA model is enabled. If
FALSE the parameters of the ARIMA model can be specified.
Control variables for the automatic modelling of the ARIMA model (automdl.enabled
is set to TRUE):

automdl.acceptdefault

logicals. If TRUE the default model (ARIMA(0,1,1)(0,1,1)) may be chosen in the
first step of the automatic model identification. If the Ljung-Box Q statistics for
the residuals is acceptable, the default model is accepted and no further attempt
will be made to identify any other.

automdl.cancel numeric, cancelation limit. If the difference in moduli of an AR and an MA
roots (when estimating ARIMA(1,0,1)(1,0,1) models in the second step of the
automatic identification of the differencing orders) is smaller than cancelation
limit, the two roots are assumed equal and cancel out.

automdl.ub1 numeric, first unit root limit. It is the threshold value for the initial unit root test
in the automatic differencing procedure. When one of the roots in the estimation
of the ARIMA(2,0,0)(1,0,0) plus mean model, performed in the first step of the
automatic model identification procedure, is larger than first unit root limit in
modulus, it is set equal to unity.

regarima_spec_x13 37

automdl.ub2 numeric, second unit root limit. When one of the roots in the estimation of the
ARIMA(1,0,1)(1,0,1) plus mean model, which is performed in the second step
of the automatic model identification procedure, is larger than second unit root
limit in modulus, it is checked if there is a common factor in the correspond-
ing AR and MA polynomials of the ARMA model that can be cancelled (see
automdl.cancel). If there is no cancellation, the AR root is set equal to unity
(i.e. the differencing order changes).

automdl.mixed logicals. The variable controls whether ARIMA models with non-seasonal AR
and MA terms or seasonal AR and MA terms will be considered in the automatic
model identification procedure. If FALSE a model with AR and MA terms in both
the seasonal and non-seasonal parts of the model can be acceptable, provided
there are not AR and MA terms in either the seasonal or non-seasonal.

automdl.balanced

logicals. If TRUE, the automatic model identification procedure will have a pref-
erence for balanced models (i.e. models for which the order of the combined AR
and differencing operator is equal to the order of the combined MA operator).

automdl.armalimit

numeric, arma limit. It is the threshold value for t-statistics of ARMA coeffi-
cients and constant term used for the final test of model parsimony. If the highest
order ARMA coefficient has a t-value less than this value in magnitude, the or-
der of the model is reduced. Also if the constant term has a t-value less than
arma limit in magnitude, it is removed from the set of regressors.

automdl.reducecv

numeric, ReduceCV. The percentage by which the outlier’s critical value will be
reduced when an identified model is found to have a Ljung-Box statistic with
an unacceptable confidence coefficient. The parameter should be between 0 and
1, and will only be active when automatic outlier identification is enabled. The
reduced critical value will be set to (1-ReduceCV)xCV, where CV is the original
critical value.

automdl.ljungboxlimit

numeric, Ljung Box limit. Acceptance criterion for the confidence intervals of
the Ljung-Box Q statistic. If the LjungBox Q statistics for the residuals of a final
model is greater than Ljung Box limit, the model is rejected, the outlier critical
value is reduced, and model and outlier identification (if specified) is redone
with a reduced value.

automdl.ubfinal

numeric, final unit root limit. The threshold value for the final unit root test.
If the magnitude of an AR root for the final model is less than the final unit
root limit, a unit root is assumed, the order of the AR polynomial is reduced
by one, and the appropriate order of the differencing (non-seasonal, seasonal) is
increased. The parameter value should be greater than one.
Control variables for the non-automatic modelling of the ARIMA model (automdl.enabled
is set to FALSE):

arima.mu logicals. If TRUE, the mean is considered as part of the ARIMA model.

arima.p numeric. The order of the non-seasonal autoregressive (AR) polynomial.

arima.d numeric. Regular differencing order.

arima.q numeric. The order of the non-seasonal moving average (MA) polynomial.

38 regarima_spec_x13

arima.bp numeric. The order of the seasonal autoregressive (AR) polynomial.

arima.bd numeric. Seasonal differencing order.

arima.bq numeric. The order of the seasonal moving average (MA) polynomial.
Control variables for the user-defined ARMA coefficients. Coefficients can be
defined for the regular and seasonal autoregressive (AR) polynomials and mov-
ing average (MA) polynomials. The model considers the coefficients only if the
procedure for their estimation (arima.coefType) is provided, and the number
of provided coefficients matches the sum of (regular and seasonal) AR and MA
orders (p,q,bp,bq).

arima.coefEnabled

logicals. If TRUE the program uses the user-defined ARMA coefficients.

arima.coef vector providing the coefficients for the regular and seasonal AR and MA poly-
nominals. The length of the vector must equal the sum of the regular and
seasonal AR and MA orders. The coefficients shall be provided in the or-
der: regular AR (Phi - p elements), regular MA (Theta - q elements), sea-
sonal AR (BPhi - bp elements) and seasonal MA (BTheta - bq elements). E.g.:
arima.coef=c(0.6,0.7) with arima.p=1,arima.q=0,arima.bp=1 and arima.bq=0.

arima.coefType vector defining ARMA coefficients estimation procedure. Possible procedures
are: "Undefined" - no use of user-defined input (i.e. coefficients are estimated),
"Fixed" - fixes the coefficients at the value provided by the user, "Initial"
- the value defined by the user is used as initial condition. For orders for
which the coefficients shall not be defined, the arima.coef can be set to NA
or 0 or the arima.coefType can be set to "Undefined". E.g.: arima.coef =
c(-0.8,-0.6,NA), arima.coefType = c("Fixed","Fixed","Undefined").

fcst.horizon numeric, forecasts horizon. Length of the forecasts generated by the RegARIMA
model in periods (positive values) or years (negative values). By default the pro-
gram generates two years forecasts (fcst.horizon set to -2).

Details

The available predefined ’JDemetra+’ model specifications are described in the table below.

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
RG0 | NA | NA | NA | Airline(+mean)
RG1 | automatic | AO/LS/TC | NA | Airline(+mean)

RG2c | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
RG3 | automatic | AO/LS/TC | NA | automatic

RG4c | automatic | AO/LS/TC | 2 td vars + Easter | automatic
RG5c | automatic | AO/LS/TC | 7 td vars + Easter | automatic

Value

A list of class c("regarima_spec","X13") with the below components. Each component refers to
different part of the RegARIMA model specification, mirroring the arguments of the function (for
details see arguments description). Each of the lowest-level component (except span, pre-specified
outliers, user-defined variables and pre-specified ARMA coefficients) is structured within a data
frame with columns denoting different variables of the model specification and rows referring to:

regarima_spec_x13 39

first row - base specification, as provided within the argument spec; second row - user modifications
as specified by the remaining arguments of the function (e.g.: arima.d); and third row - final
model specification, values that will be used in the function regarima. The final specification
(third row) shall include user modifications (row two) unless they were wrongly specified. The
pre-specified outliers, user-defined variables and pre-specified ARMA coefficients consist of a list
with the Predefined (base model specification) and Final values.

estimate data frame. Variables referring to: span - time span for the model estimation,
tolerance - argument estimate.tol. The final values can be also accessed
with the function s_estimate.

transform data frame. Variables referring to: tfunction - argument transform.function,
adjust - argument transform.adjust, aicdiff - argument transform.aicdiff.
The final values can be also accessed with the function s_transform.

regression list including the information on the user-defined variables (userdef), trading.days
effect and easter effect. The user-defined part includes: specification -
data frame with the information if pre-specified outliers (outlier) and user-
defined variables (variables) are included in the model and if fixed coeffi-
cients are used (outlier.coef and variables.coef). The final values can be
also accessed with the function s_usrdef; outliers - matrixes with the out-
liers (Predefined and Final). The final outliers can be also accessed with
the function s_preOut; and variables - list with the Predefined and Final
user-defined variables (series) and its description (description) including
the information on the variable type and values of fixed coefficients. The fi-
nal user-defined variables can be also accessed with the function s_preVar.
Within the data frame trading.days variables refer to: option - argument
tradingdays.option,autoadjust - argument tradingdays.autoadjust,leapyear
- argument tradingdays.leapyear,stocktd - argument tradingdays.stocktd,test
- argument tradingdays.test. The final trading.days values can be also ac-
cessed with the function s_td. Within the data frame easter variables refer to:
enabled - argument easter.enabled,julian - argument easter.julian,duration
- argument easter.duration,test - argument easter.test. The final easter
values can be also accessed with the function s_easter.

outliers data frame. Variables referring to: enabled - argument outlier.enabled, span
- time span for the outliers’ detection, ao - argument outlier.ao,tc - argument
outlier.tc,ls - argument outlier.ls,so - argument outlier.so,usedefcv
- argument outlier.usedefcv,cv - argument outlier.cv,method - argument
outlier.method,tcrate - argument outlier.tcrate. The final values can be
also accessed with the function s_out.

arima list containing a data frame with the ARIMA settings (specification) and ma-
trixes with the information on the pre-specified ARMA coefficients (coefficients).
The matrix Predefined refers to the pre-defined model specification and ma-
trix Final to the final specification. Both matrixes contain the value of the
ARMA coefficients and the procedure for its estimation. Within the data frame
specification the variable enabled refer to the argument automdl.enabled
and all the remaining variables (automdl.acceptdefault,automdl.cancel,automdl.ub1,automdl.ub2,automdl.mixed,automdl.balanced,automdl.armalimit,automdl.reducecv,automdl.ljungboxlimit,automdl.ubfinal,arima.mu,arima.p,arima.d,arima.q,arima.bp,arima.bd,arima.bq)
to the respective function arguments. The final values of the specification
can be also accessed with the function s_arima and final pre-specified ARMA
coefficients with the function s_arimaCoef.

40 regarima_spec_x13

forecast data frame with the forecast horizon (argument fcst.horizon). The final value
can be also accessed with the function s_fcst.

span matrix containing the final time span for the model estimation and outliers’ de-
tection. Contains the same information as the variable span in the data frames
estimate and outliers. The matrix can be also accessed with the function s_span.

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en

Examples

myseries <- ipi_c_eu[, "FR"]
myspec1 <- regarima_spec_x13(spec = "RG5c")
myreg1 <- regarima(myseries, spec = myspec1)

Modify a pre-specified model specification
myspec2 <- regarima_spec_x13(spec = "RG5c",

tradingdays.option = "WorkingDays")
myreg2 <- regarima(myseries, spec = myspec2)

Modify the model specification from a "regarima" object
myspec3 <- regarima_spec_x13(myreg1, tradingdays.option = "WorkingDays")
myreg3 <- regarima(myseries, myspec3)

Modify the model specification from a "regarima_spec" object
myspec4 <- regarima_spec_x13(myspec1, tradingdays.option = "WorkingDays")
myreg4 <- regarima(myseries, myspec4)

Pre-specified outliers
myspec1 <- regarima_spec_x13(spec = "RG5c", usrdef.outliersEnabled = TRUE,

usrdef.outliersType = c("LS", "AO"),
usrdef.outliersDate = c("2008-10-01", "2002-01-01"),
usrdef.outliersCoef = c(36, 14),
transform.function = "None")

myreg1 <- regarima(myseries, myspec1)
myreg1
s_preOut(myreg1)

User-defined variables
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries),

frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries),

frequency = 12)
var <- ts.union(var1, var2)

myspec1 <- regarima_spec_x13(spec = "RG5c", usrdef.varEnabled = TRUE,
usrdef.var = var)

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

save_spec 41

myreg1 <- regarima(myseries, myspec1)
myreg1

myspec2 <- regarima_spec_x13(spec = "RG5c", usrdef.varEnabled = TRUE,
usrdef.var = var1, usrdef.varCoef = 2,
transform.function = "None")

myreg2 <- regarima(myseries, myspec2)
s_preVar(myreg2)

Pre-specified ARMA coefficients
myspec1 <- regarima_spec_x13(spec = "RG5c", automdl.enabled =FALSE,

arima.p = 1, arima.q = 1, arima.bp = 0, arima.bq = 1,
arima.coefEnabled = TRUE, arima.coef = c(-0.8, -0.6, 0),
arima.coefType = c(rep("Fixed", 2), "Undefined"))

s_arimaCoef(myspec1)
myreg1 <- regarima(myseries, myspec1)
myreg1

save_spec Saving and loading a model specification, SA and pre-adjustment in
X13 and TRAMO-SEATS

Description

save_spec saves a SA or RegARIMA model specification. load_spec loads the previously saved
model specification.

Usage

save_spec(object, file = file.path(tempdir(), "spec.RData"))

load_spec(file = "spec.RData")

Arguments

object object of one of the classes: c("SA_spec","X13"), c("SA_spec","TRAMO_SEATS"),
c("SA","X13"), c("SA","TRAMO_SEATS"), c("regarima_spec","X13"), c("regarima_spec","TRAMO_SEATS"),
c("regarima","X13"), c("regarima","TRAMO_SEATS").

file (path and) name of the file where the model specification will be saved (have
been saved).

Details

save_spec saves the final model specification of a "SA_spec", "SA", "regarima_spec" or "regarima"
class object. load_spec loads the previously saved model specification. It creates a c("SA_spec","X13"),
c("sA_spec","TRAMO_SEATS"), c("regarima_spec","X13") or c("regarima_spec","TRAMO_SEATS")
class object, in line with the class of the previously saved model specification.

42 save_spec

Value

load_spec returns an object of class "SA_spec" or "regarima_spec".

References

Info on JDemtra+, usage and functions: https://ec.europa.eu/eurostat/cros/content/documentation_
en

Examples

myseries <- ipi_c_eu[, "FR"]
myreg1 <- regarima_x13(myseries, spec = "RG5c")
myspec2 <- regarima_spec_x13(myreg1, estimate.from = "2005-10-01", outlier.from = "2010-03-01")
myreg2 <- regarima(myseries, myspec2)

myreg3 <- regarima_tramoseats(myseries, spec = "TRfull")
myspec4 <-regarima_spec_tramoseats(myreg3, tradingdays.mauto = "Unused",

tradingdays.option ="WorkingDays",
easter.type = "Standard",
automdl.enabled = FALSE, arima.mu = TRUE)

myreg4 <-regarima(myseries, myspec4)

myspec6 <- x13_spec("RSA5c")
mysa6 <- x13(myseries, myspec6)

myspec7 <- tramoseats_spec("RSAfull")
mysa7 <- tramoseats(myseries, myspec7)

dir <- tempdir()

Save the model specification from a c("regarima_spec","X13") class object
save_spec(myspec2, file.path(dir, "specx13.RData"))
Save the model specification from a c("regarima","X13") class object

save_spec(myreg2, file.path(dir,"regx13.RData"))
Save the model specification from a c("regarima_spec","TRAMO_SEATS") class object

save_spec(myspec4, file.path(dir,"specTS.RData"))
Save the model specification from a c("regarima","TRAMO_SEATS") class object

save_spec(myreg4, file.path(dir,"regTS.RData"))
Save model from a c("SA_spec","X13") class object

save_spec(myspec6, file.path(dir,"specFullx13.RData"))
Save model from a c("SA","X13") class object

save_spec(mysa6, file.path(dir,"sax13.RData"))
Save model from a c("SA_spec","TRAMO_SEATS") class object

save_spec(myspec7, file.path(dir,"specFullTS.RData"))
Save model from a c("SA","TRAMO_SEATS") class object

save_spec(mysa7, file.path(dir,"saTS.RData"))

Load the model specification
myspec2a <- load_spec(file.path(dir,"specx13.RData"))
myspec2b <- load_spec(file.path(dir,"regx13.RData"))
myspec4a <- load_spec(file.path(dir,"specTS.RData"))

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

save_workspace 43

myspec4b <- load_spec(file.path(dir,"regTS.RData"))
myspec6a <- load_spec(file.path(dir,"specFullx13.RData"))
myspec6b <- load_spec(file.path(dir,"sax13.RData"))
myspec7a <- load_spec(file.path(dir,"specFullTS.RData"))
myspec7b <- load_spec(file.path(dir,"saTS.RData"))

regarima(myseries, myspec2a)
x13(myseries, myspec6a)
tramoseats(myseries, myspec7a)

regarima(myseries, myspec4a)
x13(myseries, myspec6b)
tramoseats(myseries, myspec7b)

save_workspace Save a workspace

Description

Functions save a workspace object into a ’JDemetra+” workspace.

Usage

save_workspace(workspace, file)

Arguments

workspace a workspace object to export
file the path to the export ’JDemetra+’ workspace (.xml file). By default a dialog

box opens.

Value

A boolean indicating whether the export has suceed.

See Also

load_workspace

Examples

dir <- tempdir()
Create and export a empty 'JDemetra+' workspace
wk <- new_workspace()
new_multiprocessing(wk, "sa1")
save_workspace(wk, file.path(dir, "workspace.xml"))

44 specification

specification Access model specification, SA and pre-adjustment in X13 and
TRAMO-SEATS

Description

Below functions access different parts of the final model specification as included in the "SA","regarima","SA_spec"
and "regarima_spec" S3 class objects.

Usage

s_estimate(object = NA)

s_transform(object = NA)

s_usrdef(object = NA)

s_preOut(object = NA)

s_preVar(object = NA)

s_td(object = NA)

s_easter(object = NA)

s_out(object = NA)

s_arima(object = NA)

s_arimaCoef(object = NA)

s_fcst(object = NA)

s_span(object = NA)

s_x11(object = NA)

s_seats(object = NA)

Arguments

object object of one of the classes: c("SA","X13"), c("SA","TRAMO_SEATS"), c("SA_spec","X13"),
c("SA_spec","TRAMO_SEATS"), c("regarima","X13"), c("regarima","TRAMO_SEATS"),
c("regarima_spec","X13"), c("regarima_spec","TRAMO_SEATS").

Value

• s_estimate returns a data.frame with the estimate variables

specification 45

• s_transform returns a data.frame with the transform varaibles

• s_usrdef returns a data.frame with the user-defined regressors (outliers and variables) model
specification, indicating if those variables are included in the model and if coefficients are
pre-specified

• s_preOut returns a data.frame with the pre-specified outliers

• s_preVar returns a list with the information on the user-defined variables, including: series
- the time series and description - data.frame with the variable type and coefficients

• s_td returns a data.frame with the trading.days variables

• s_easter returns a data.frame with the easter variables

• s_out returns a data.frame with the outliers detection variables

• s_arima returns a data.frame with the arima variables

• s_arimaCoef returns a data.frame with the user-specified ARMA coefficients

• s_fcst returns a data.frame with the forecast horizon

• s_span returns a data.frame with the span variables

• s_x11 returns a data.frame with the x11 variables

• s_seats returns a data.frame with the seats variables

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en

Examples

myseries <- ipi_c_eu[, "FR"]
myreg1 <- regarima_x13(myseries, spec = "RG5c")
myspec1 <- regarima_spec_x13(myreg1,

estimate.from = "2005-10-01",
outlier.from = "2010-03-01")

s_estimate(myreg1)
s_estimate(myspec1)

s_transform(myreg1)
s_transform(myspec1)

s_usrdef(myreg1)
s_usrdef(myspec1)

myspec2 <- regarima_spec_x13(myreg1, usrdef.outliersEnabled = TRUE,
usrdef.outliersType = c("LS", "AO"),
usrdef.outliersDate = c("2009-10-01", "2005-02-01"))

myreg2 <- regarima(myseries, myspec2)

s_preOut(myreg2)
s_preOut(myspec2)

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

46 specification

var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var3 <- ts.union(var1, var2)
myspec3 <- regarima_spec_x13(spec = "RG5c",

usrdef.varEnabled = TRUE,
usrdef.var = var3)

myreg3 <- regarima(myseries, myspec3)

s_preVar(myspec3)
s_preVar(myreg3)

s_td(myreg1)
s_td(myspec1)

s_easter(myreg1)
s_easter(myspec1)

s_out(myreg1)
s_out(myspec1)

s_arima(myreg1)
s_arima(myspec1)

myspec4 <- regarima_spec_x13(myreg1, automdl.enabled = FALSE,
arima.coefEnabled = TRUE,
arima.p = 1,arima.q = 1, arima.bp = 1, arima.bq = 1,
arima.coef = rep(0.2, 4),
arima.coefType = rep("Initial", 4))

myreg4 <- regarima(myseries, myspec4)

s_arimaCoef(myreg4)
s_arimaCoef(myspec4)

s_fcst(myreg1)
s_fcst(myspec1)

s_span(myreg1)
s_span(myspec1)

myspec5 <- x13_spec(spec = "RSA5c", x11.seasonalComp = FALSE)
mysa5 <- x13(myseries, myspec5)

s_x11(mysa5)
s_x11(myspec5)

myspec6 <- tramoseats_spec(spec = "RSAfull", seats.approx = "Noisy")
mysa6 <- tramoseats(myseries, myspec6)

s_seats(mysa6)
s_seats(mysa6)

tramoseats 47

tramoseats Seasonal Adjustment with TRAMO-SEATS

Description

Function to estimate the seasonally adjusted series (sa) with the TRAMO-SEATS method. This is
achieved by decomposing the time series (y) into the: trend-cycle (t), seasonal component (s) and
irregular component (i). The final seasonally adjusted series shall be free of seasonal and calendar-
related movements. tramoseats returns a preformatted result while jtramoseats returns the Java
objects of the seasonal adjustment.

Usage

jtramoseats(
series,
spec = c("RSAfull", "RSA0", "RSA1", "RSA2", "RSA3", "RSA4", "RSA5"),
userdefined = NULL

)

tramoseats(
series,
spec = c("RSAfull", "RSA0", "RSA1", "RSA2", "RSA3", "RSA4", "RSA5"),
userdefined = NULL

)

Arguments

series a univariate time series

spec model specification TRAMO-SEATS. It can be a character of the predefined
TRAMO-SEATS ’JDemetra+’ model specification (see Details), or an object of
class c("SA_spec","TRAMO_SEATS"). The default is "RSAfull".

userdefined vector with characters for additional output variables (see user_defined_variables).

Details

The first step of the seasonal adjustment consist of pre-adjusting the time series by removing from
it the deterministic effects by means of a regression model with ARIMA noise (RegARIMA, see:
regarima). In the second part, the pre-adjusted series is decomposed into the following compo-
nents: trend-cycle (t), seasonal component (s) and irregular component (i). The decomposition can
be: additive (y = t+ s+ i) or multiplicative (y = t ∗ s ∗ i). The final seasonally adjusted series (sa)
shall be free of seasonal and calendar-related movements.

In the TRAMO-SEATS method, the second step - SEATS ("Signal Extraction in ARIMA Time
Series") - performs an ARIMA-based decomposition of an observed time series into unobserved
components. More information on the method can be found on the Bank of Spian website (https:
//www.bde.es).

https://www.bde.es
https://www.bde.es

48 tramoseats

As regards the available predefined ’JDemetra+’ TRAMO-SEATS model specifications, they are
described in the table below.

tramoseats 49

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
RSA0 | NA | NA | NA | Airline(+mean)
RSA1 | automatic | AO/LS/TC | NA | Airline(+mean)
RSA2 | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
RSA3 | automatic | AO/LS/TC | NA | automatic
RSA4 | automatic | AO/LS/TC | 2 td vars + Easter | automatic
RSA5 | automatic | AO/LS/TC | 7 td vars + Easter | automatic

RSAfull | automatic | AO/LS/TC | automatic | automatic

Value

jtramoseats returns a jSA object. It contains the Java objects of the result of the seasonal ad-
justment without any formatting. Therefore the computation is faster than with tramoseats. The
results can the seasonal adjustment can be extract by get_indicators.

tramoseats returns an object of class c("SA","TRAMO_SEATS"), a list containing the following
components:

regarima object of class c("regarima","TRAMO_SEATS"). See Value of the function
regarima.

decomposition object of class "decomposition_SEATS", five elements list:
• specification list with the SEATS algorithm specification. See also func-

tion tramoseats_spec

• mode decomposition mode
• model list with the SEATS models: model,sa,trend,seasonal,transitory,irregular.

Each of them is a matrix with the estimated coefficients.
• linearized time series matrix (mts) with the stochastic series decomposi-

tion (input series y_lin, seasonally adjusted sa_lin, trend t_lin, seasonal
s_lin, irregular i_lin)

• components time series matrix (mts) with the decomposition components
(input series y_cmp, seasonally adjusted sa_cmp, trend t_cmp, seasonal
s_cmp, irregular i_cmp)

final object of class c("final","mts","ts","matrix"). Matrix with the final re-
sults of the seasonal adjustment. It includes time series: original time series (y),
forecast of the original series (y_f), trend (t), forecast of the trend (t_f), sea-
sonally adjusted series (sa), forecast of the seasonally adjusted series (sa_f),
seasonal component (s), forecast of the seasonal component (s_f), irregular
component (i) and the forecast of the irregular component (i_f).

diagnostics object of class "diagnostics", list with three type of diagnostics tests:
• variance_decomposition data.frame with the tests on the relative contri-

bution of the components to the stationary portion of the variance in the
original series, after the removal of the long term trend.

• residuals_test data.frame with the tests on the presence of seasonality
in the residuals (includes the statistic, p-value and parameters description)

• combined_test combined tests for stable seasonality in the entire series.
Two elements list with: tests_for_stable_seasonality - data.frame
with the tests (includes the statistic, p-value and parameters description)
and combined_seasonality_test - the summary.

50 tramoseats

user_defined object of class "user_defined". List containing the userdefined additional vari-
ables defined in the userdefined argument.

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en

BOX G.E.P. and JENKINS G.M. (1970), "Time Series Analysis: Forecasting and Control", Holden-
Day, San Francisco.

BOX G.E.P., JENKINS G.M., REINSEL G.C. and LJUNG G.M. (2015), "Time Series Analysis:
Forecasting and Control", John Wiley & Sons, Hoboken, N. J., 5th edition.

See Also

tramoseats_spec, x13

Examples

myseries <- ipi_c_eu[, "FR"]
myspec <- tramoseats_spec("RSAfull")
mysa <- tramoseats(myseries, myspec)
mysa

Equivalent to:
mysa1 <- tramoseats(myseries, spec = "RSAfull")
mysa1

var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var <- ts.union(var1, var2)
myspec2 <- tramoseats_spec(myspec, tradingdays.mauto = "Unused",

tradingdays.option = "WorkingDays",
easter.type = "Standard",
automdl.enabled = FALSE, arima.mu = TRUE,
usrdef.varEnabled = TRUE, usrdef.var = var)

s_preVar(myspec2)
mysa2 <- tramoseats(myseries, myspec2,

userdefined = c("decomposition.sa_lin_f",
"decomposition.sa_lin_e"))

mysa2
plot(mysa2)
plot(mysa2$regarima)
plot(mysa2$decomposition)

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

tramoseats_spec 51

tramoseats_spec TRAMO-SEATS model specification, SA/TRAMO-SEATS

Description

Function to create (and/or modify) a c("SA_spec","TRAMO_SEATS") class object with the SA
model specification for the TRAMO-SEATS method. It can be done from a pre-defined ’JDeme-
tra+’ model specification (a character), a previous specification (c("SA_spec","TRAMO_SEATS")
object) or a seasonal adjustment model (c("SA","TRAMO_SEATS") object).

Usage

tramoseats_spec(
spec = c("RSAfull", "RSA0", "RSA1", "RSA2", "RSA3", "RSA4", "RSA5"),
preliminary.check = NA,
estimate.from = NA_character_,
estimate.to = NA_character_,
estimate.first = NA_integer_,
estimate.last = NA_integer_,
estimate.exclFirst = NA_integer_,
estimate.exclLast = NA_integer_,
estimate.tol = NA_integer_,
estimate.eml = NA,
estimate.urfinal = NA_integer_,
transform.function = c(NA, "Auto", "None", "Log"),
transform.fct = NA_integer_,
usrdef.outliersEnabled = NA,
usrdef.outliersType = NA,
usrdef.outliersDate = NA,
usrdef.outliersCoef = NA,
usrdef.varEnabled = NA,
usrdef.var = NA,
usrdef.varType = NA,
usrdef.varCoef = NA,
tradingdays.mauto = c(NA, "Unused", "FTest", "WaldTest"),
tradingdays.pftd = NA_integer_,
tradingdays.option = c(NA, "TradingDays", "WorkingDays", "UserDefined", "None"),
tradingdays.leapyear = NA,
tradingdays.stocktd = NA_integer_,
tradingdays.test = c(NA, "Separate_T", "Joint_F", "None"),
easter.type = c(NA, "Unused", "Standard", "IncludeEaster", "IncludeEasterMonday"),
easter.julian = NA,
easter.duration = NA_integer_,
easter.test = NA,
outlier.enabled = NA,
outlier.from = NA_character_,
outlier.to = NA_character_,

52 tramoseats_spec

outlier.first = NA_integer_,
outlier.last = NA_integer_,
outlier.exclFirst = NA_integer_,
outlier.exclLast = NA_integer_,
outlier.ao = NA,
outlier.tc = NA,
outlier.ls = NA,
outlier.so = NA,
outlier.usedefcv = NA,
outlier.cv = NA_integer_,
outlier.eml = NA,
outlier.tcrate = NA_integer_,
automdl.enabled = NA,
automdl.acceptdefault = NA,
automdl.cancel = NA_integer_,
automdl.ub1 = NA_integer_,
automdl.ub2 = NA_integer_,
automdl.armalimit = NA_integer_,
automdl.reducecv = NA_integer_,
automdl.ljungboxlimit = NA_integer_,
automdl.compare = NA,
arima.mu = NA,
arima.p = NA_integer_,
arima.d = NA_integer_,
arima.q = NA_integer_,
arima.bp = NA_integer_,
arima.bd = NA_integer_,
arima.bq = NA_integer_,
arima.coefEnabled = NA,
arima.coef = NA,
arima.coefType = NA,
fcst.horizon = NA_integer_,
seats.predictionLength = NA_integer_,
seats.approx = c(NA, "None", "Legacy", "Noisy"),
seats.trendBoundary = NA_integer_,
seats.seasdBoundary = NA_integer_,
seats.seasdBoundary1 = NA_integer_,
seats.seasTol = NA_integer_,
seats.maBoundary = NA_integer_,
seats.method = c(NA, "Burman", "KalmanSmoother", "McElroyMatrix")

)

Arguments

spec model specification X13. It can be a character of predefined TRAMO-SEATS
’JDemetra+’ model specification (see Details), an object of class c("SA_spec","TRAMO_SEATS")
or an object of class c("SA","TRAMO_SEATS"). The default is "RSAfull".

preliminary.check

boolean to check the quality of the input series and exclude highly problematic

tramoseats_spec 53

ones: e.g. these with a number of identical observations and/or missing values
above pre-specified threshold values.
The time span of the series to be used for the estimation of the RegArima model
coefficients (default from 1900-01-01 to 2020-12-31) is controlled by the fol-
lowing six variables: estimate.from,estimate.to,estimate.first,estimate.last,estimate.exclFirst
and estimate.exclLast; where estimate.from and estimate.to have prior-
ity over remaining span control variables, estimate.last and estimate.first
have priority over estimate.exclFirst and estimate.exclLast, and estimate.last
has priority over estimate.first.

estimate.from character in format "YYYY-MM-DD" indicating the start of the time span (e.g.
"1900-01-01"). Can be combined with estimate.to.

estimate.to character in format "YYYY-MM-DD" indicating the end of the time span (e.g.
"2020-12-31"). Can be combined with estimate.from.

estimate.first numeric specifying the number of periods considered at the beginning of the
series.

estimate.last numeric specifying the number of periods considered at the end of the series.
estimate.exclFirst

numeric specifying the number of periods excluded at the beginning of the se-
ries. Can be combined with estimate.exclLast.

estimate.exclLast

numeric specifying the number of periods excluded at the end of the series. Can
be combined with estimate.exclFirst.

estimate.tol numeric, convergence tolerance. The absolute changes in the log-likelihood
function are compared to this value to check for the convergence of the esti-
mation iterations.

estimate.eml logicals, exact maximum likelihood estimation. If TRUE the program performs
an exact maximum likelihood estimation. If FASLE the Unconditional Least
Squares method is used.

estimate.urfinal

numeric, final unit root limit. The threshold value for the final unit root test
for identification of differencing orders. If the magnitude of an AR root for the
final model is less than this number, a unit root is assumed, the order of the
AR polynomial is reduced by one, and the appropriate order of the differencing
(non-seasonal, seasonal) is increased.

transform.function

transformation of the input series: "None" - no transformation of the series;
"Log" - takes the log of the series; "Auto" - the program tests for the log-level
specification.

transform.fct numeric controlling the bias in the log/level pre-test: transform.fct > 1 favours
levels, transform.fct< 1 favours logs. Considered only when transform.function
is set to "Auto".
Control variables for the pre-specified outliers. The pre-specified outliers are
used in the model only if they are enabled (usrdef.outliersEnabled=TRUE)
and the outliers’ type (usrdef.outliersType) and date (usrdef.outliersDate)
are provided.

54 tramoseats_spec

usrdef.outliersEnabled

logicals. If TRUE the program uses the pre-specified outliers.
usrdef.outliersType

vector defining the outliers’ type. Possible types are: ("AO") - additive, ("LS") -
level shift, ("TC") - transitory change, ("SO") - seasonal outlier. E.g.: usrdef.outliersType
=c("AO","AO","LS").

usrdef.outliersDate

vector defining the outliers’ date. The dates should be characters in format
"YYYY-MM-DD". E.g.: usrdef.outliersDate=c("2009-10-01","2005-02-01","2003-04-01").

usrdef.outliersCoef

vector providing fixed coefficients for the outliers. The coefficients can’t be
fixed if transform.function is set to "Auto" - the series transformation need
to be pre-defined. E.g.: usrdef.outliersCoef=c(200,170,20).
Control variables for the user-defined variables:

usrdef.varEnabled

logicals. If TRUE the program uses the user-defined variables.

usrdef.var time series (ts) or matrix of time series (mts) with the user-defined variables.

usrdef.varType vector of character(s) defining the user-defined variables component type. Possi-
ble types are: "Undefined","Series","Trend","Seasonal","SeasonallyAdjusted","Irregular","Calendar".
The type "Calendar" has to be used with tradingdays.option = "UserDefined"
to use user-defined calendar regressors. If not specified, the program will assign
the "Undefined" type.

usrdef.varCoef vector providing fixed coefficients for the user-defined variables. The coeffi-
cients can’t be fixed if transform.function is set to "Auto" - the series trans-
formation need to be pre-defined.

tradingdays.mauto

defines whether the calendar effects should be added to the model manually
("Unused") or automatically. In the automatic selection, the choice of the num-
ber of calendar variables can be based on the F-Test ("FTest") or the Wald Test
("WaldTest"); the model with higher F value is chosen, provided that it is higher
than tradingdays.pftd).

tradingdays.pftd

numeric. P-value applied in the test specified by the automatic parameter (tradingdays.mauto)
to assess the significance of the pre-tested calendar effects variables and whether
they should be included in the RegArima model.
Control variables for the manual selection of calendar effects variables (tradingdays.mauto
is set to "Unused"):

tradingdays.option

defines the type of the trading days regression variables: "TradingDays" -
six day-of-the-week regression variables; "WorkingDays" - one working/non-
working day contrast variable; "None" - no correction for trading days and work-
ing days effects; "UserDefined" - user-defined trading days regressors (regres-
sors have to be defined by the usrdef.var argument with usrdef.varType set
to "Calendar" and usrdef.varEnabled = TRUE). "None" has also to be chosen
for the "day-of-week effects" correction (tradingdays.stocktd to be modified
accordingly).

tramoseats_spec 55

tradingdays.leapyear

logicals. Specifies if the leap-year correction should be included. If TRUE the
model includes the leap-year effect.

tradingdays.stocktd

numeric indicating the day of the month when inventories and other stock are
reported (to denote the last day of the month set the variable to 31). Modifica-
tions of this variable are taken into account only when tradingdays.option is
set to "None".

tradingdays.test

defines the pre-tests of the trading day effects: "None" - calendar variables are
used in the model without pre-testing; "Separate_T" - a t-test is applied to
each trading day variable separately and the trading day variables are included
in the RegArima model if at least one t-statistic is greater than 2.6 or if two t-
statistics are greater than 2.0 (in absolute terms); "Joint_F" - a joint F-test of
significance of all the trading day variables. The trading day effect is significant
if the F statistic is greater than 0.95.

easter.type specifies the presence and the length of the Easter effect: "Unused" - Easter
effect is not considered; "Standard" - influences the period of n days strictly
before Easter Sunday; "IncludeEaster" - influences the entire period (n) up to
and including Easter Sunday; "IncludeEasterMonday" - influences the entire
period (n) up to and including Easter Monday.

easter.julian logicals. If TRUE the program uses the Julian Easter (expressed in Gregorian
calendar).

easter.duration

numeric indicating the duration of the Easter effect (length in days, between 1
and 15).

easter.test logicals. If TRUE the program performs a t-test for the significance of the Easter
effect. The Easter effect is considered as significant if the modulus of t-statistic
is greater than 1.96.

outlier.enabled

logicals. If TRUE the automatic detection of outliers is enabled in the defined
time span.
The time span of the series to be searched for outliers (default from 1900-01-01
to 2020-12-31) is controlled by the following six variables: outlier.from,outlier.to,outlier.first,outlier.last,outlier.exclFirst
and outlier.exclLast; where outlier.from and outlier.to have priority
over remaining span control variables, outlier.last and outlier.first have
priority over outlier.exclFirst and outlier.exclLast, and outlier.last
has priority over outlier.first.

outlier.from character in format "YYYY-MM-DD" indicating the start of the time span (e.g.
"1900-01-01"). Can be combined with outlier.to.

outlier.to character in format "YYYY-MM-DD" indicating the end of the time span (e.g.
"2020-12-31"). Can be combined with outlier.from.

outlier.first numeric specifying the number of periods considered at the beginning of the
series.

outlier.last numeric specifying the number of periods considered at the end of the series.

56 tramoseats_spec

outlier.exclFirst

numeric specifying the number of periods excluded at the beginning of the se-
ries. Can be combined with outlier.exclLast.

outlier.exclLast

numeric specifying the number of periods excluded at the end of the series. Can
be combined with outlier.exclFirst.

outlier.ao logicals. If TRUE the automatic detection of additive outliers is enabled (outlier.enabled
must be also set to TRUE).

outlier.tc logicals. If TRUE the automatic detection of transitory changes is enabled (outlier.enabled
must be also set to TRUE).

outlier.ls logicals. If TRUE the automatic detection of level shifts is enabled (outlier.enabled
must be also set to TRUE).

outlier.so logicals. If TRUE the automatic detection of seasonal outliers is enabled (outlier.enabled
must be also set to TRUE).

outlier.usedefcv

logicals. If TRUE the critical value for the outliers’ detection procedure is auto-
matically determined by the number of observations in the outlier detection time
span. If FALSE the procedure uses the inputted critical value (outlier.cv).

outlier.cv numeric. Inputted critical value for the outliers’ detection procedure. The mod-
ification of this variable is taken in to account only when outlier.usedefcv is
set to FALSE.

outlier.eml logicals, exact likelihood estimation method.Controls the method applied for a
parameter estimation in the intermediate steps of the automatic detection and
correction of outliers. If TRUE an exact likelihood estimation method is used,
when FALSE the fast Hannan-Rissanen method is used.

outlier.tcrate numeric. The rate of decay for the transitory change outlier.
automdl.enabled

logicals. If TRUE the automatic modelling of the ARIMA model is enabled. If
FALSE the parameters of the ARIMA model can be specified.
Control variables for the automatic modelling of the ARIMA model (automdl.enabled
is set to TRUE):

automdl.acceptdefault

logicals. If TRUE the default model (ARIMA(0,1,1)(0,1,1)) may be chosen in the
first step of the automatic model identification. If the Ljung-Box Q statistics for
the residuals is acceptable, the default model is accepted and no further attempt
will be made to identify any other.

automdl.cancel numeric, cancelation limit. If the difference in moduli of an AR and an MA
roots (when estimating ARIMA(1,0,1)(1,0,1) models in the second step of the
automatic identification of the differencing orders) is smaller than cancelation
limit, the two roots are assumed equal and cancel out.

automdl.ub1 numeric, first unit root limit. It is the threshold value for the initial unit root test
in the automatic differencing procedure. When one of the roots in the estimation
of the ARIMA(2,0,0)(1,0,0) plus mean model, performed in the first step of the
automatic model identification procedure, is larger than first unit root limit in
modulus, it is set equal to unity.

tramoseats_spec 57

automdl.ub2 numeric, second unit root limit. When one of the roots in the estimation of the
ARIMA(1,0,1)(1,0,1) plus mean model, which is performed in the second step
of the automatic model identification procedure, is larger than second unit root
limit in modulus, it is checked if there is a common factor in the correspond-
ing AR and MA polynomials of the ARMA model that can be cancelled (see
automdl.cancel). If there is no cancellation, the AR root is set equal to unity
(i.e. the differencing order changes).

automdl.armalimit

numeric, arma limit. It is the threshold value for t-statistics of ARMA coeffi-
cients and constant term used for the final test of model parsimony. If the highest
order ARMA coefficient has a t-value less than this value in magnitude, the or-
der of the model is reduced. Also if the constant term has a t-value less than
arma limit in magnitude, it is removed from the set of regressors.

automdl.reducecv

numeric, ReduceCV. The percentage by which the outlier’s critical value will be
reduced when an identified model is found to have a Ljung-Box statistic with
an unacceptable confidence coefficient. The parameter should be between 0 and
1, and will only be active when automatic outlier identification is enabled. The
reduced critical value will be set to (1-ReduceCV)xCV, where CV is the original
critical value.

automdl.ljungboxlimit

numeric, Ljung Box limit. Acceptance criterion for the confidence intervals of
the Ljung-Box Q statistic. If the LjungBox Q statistics for the residuals of a final
model is greater than Ljung Box limit, the model is rejected, the outlier critical
value is reduced, and model and outlier identification (if specified) is redone
with a reduced value.

automdl.compare

logicals. If TRUE the program compares the model identified by the automatic
procedure to the default model (ARIMA(0,1,1)(0,1,1)) and the model with the
best fit is selected. Criteria considered are residual diagnostics, the model struc-
ture and the number of outliers.
Control variables for the non-automatic modelling of the ARIMA model (automdl.enabled
is set to FALSE):

arima.mu logicals. If TRUE, the mean is considered as part of the ARIMA model.

arima.p numeric. The order of the non-seasonal autoregressive (AR) polynomial.

arima.d numeric. Regular differencing order.

arima.q numeric. The order of the non-seasonal moving average (MA) polynomial.

arima.bp numeric. The order of the seasonal autoregressive (AR) polynomial.

arima.bd numeric. Seasonal differencing order.

arima.bq numeric. The order of the seasonal moving average (MA) polynomial.
Control variables for the user-defined ARMA coefficients. Coefficients can be
defined for the regular and seasonal autoregressive (AR) polynomials and mov-
ing average (MA) polynomials. The model considers the coefficients only if the
procedure for their estimation (arima.coefType) is provided, and the number
of provided coefficients matches the sum of (regular and seasonal) AR and MA
orders (p,q,bp,bq).

58 tramoseats_spec

arima.coefEnabled

logicals. If TRUE the program uses the user-defined ARMA coefficients.

arima.coef vector providing the coefficients for the regular and seasonal AR and MA poly-
nominals. The length of the vector must equal the sum of the regular and
seasonal AR and MA orders. The coefficients shall be provided in the or-
der: regular AR (Phi - p elements), regular MA (Theta - q elements), sea-
sonal AR (BPhi - bp elements) and seasonal MA (BTheta - bq elements). E.g.:
arima.coef=c(0.6,0.7) with arima.p=1,arima.q=0,arima.bp=1 and arima.bq=0.

arima.coefType vector defining ARMA coefficients estimation procedure. Possible procedures
are: "Undefined" - no use of user-defined input (i.e. coefficients are estimated),
"Fixed" - fixes the coefficients at the value provided by the user, "Initial"
- the value defined by the user is used as initial condition. For orders for
which the coefficients shall not be defined, the arima.coef can be set to NA
or 0 or the arima.coefType can be set to "Undefined". E.g.: arima.coef =
c(-0.8,-0.6,NA), arima.coefType = c("Fixed","Fixed","Undefined").

fcst.horizon numeric, forecasts horizon. Length of the forecasts generated by the RegARIMA
model in periods (positive values) or years (negative values). By default the pro-
gram generates two years forecasts (fcst.horizon set to -2).

seats.predictionLength

integer, number of forecasts used in the decomposition. Negative values corre-
spond to numbers of years.

seats.approx character, approximation mode. When the ARIMA model estimated by TRAMO
does not accept an admissible decomposition, SEATS: "None" - performs an ap-
proximation; "Legacy" - replaces the model with a decomposable one; "Noisy"
- estimates a new model by adding a white noise to the non-admissible model
estimated by TRAMO.

seats.trendBoundary

numeric, trend boundary. The boundary from which an AR root is integrated
in the trend component. If the modulus of the inverse real root is greater than
Trend boundary, the AR root is integrated in the trend component. Below this
value the root is integrated in the transitory component.

seats.seasdBoundary

numeric, seasonal boundary. Boundary from which a negative AR root is inte-
grated in the seasonal component.

seats.seasdBoundary1

numeric, seasonal boundary (unique). Boundary from which a negative AR root
is integrated in the seasonal component when the root is the unique seasonal
root.

seats.seasTol numeric, seasonal tolerance. The tolerance (measured in degrees) to allocate
the AR non-real roots to the seasonal component (if the modulus of the inverse
complex AR root is greater than Trend boundary and the frequency of this root
differs from one of the seasonal frequencies by less than Seasonal tolerance) or
the transitory component (otherwise).

seats.maBoundary

numeric, MA unit root boundary. When the modulus of an estimated MA root
falls in the range (xl, 1), it is set to xl.

tramoseats_spec 59

seats.method character, estimation method of the unobserved components. The choice can be
made from: "Burman" (default, may result in a significant underestimation of the
standard deviations of the components as it may become numerically unstable
when some roots of the MA polynomial are near 1); "KalmanSmoother" (it is
not disturbed by the (quasi-) unit roots in MA); "McElroyMatrix" (has the same
stability issues as the Burman’s algorithm).

Details

The available predefined ’JDemetra+’ model specifications are described in the table below.

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
RSA0 | NA | NA | NA | Airline(+mean)
RSA1 | automatic | AO/LS/TC | NA | Airline(+mean)
RSA2 | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
RSA3 | automatic | AO/LS/TC | NA | automatic
RSA4 | automatic | AO/LS/TC | 2 td vars + Easter | automatic
RSA5 | automatic | AO/LS/TC | 7 td vars + Easter | automatic

RSAfull | automatic | AO/LS/TC | automatic | automatic

Value

A two-elements list of class c("SA_spec","TRAMO_SEATS"): (1) object of class c("regarima_spec","TRAMO_SEATS")
with the RegARIMA model specification, (2) object of class c("seats_spec","data.frame")
with the SEATS algorithm specification. Each component refers to different part of the SA model
specification, mirroring the arguments of the function (for details see arguments description). Each
of the lowest-level component (except span, pre-specified outliers, user-defined variables and pre-
specified ARMA coefficients) is structured within a data frame with columns denoting different
variables of the model specification and rows referring to: first row - base specification, as provided
within the argument spec; second row - user modifications as specified by the remaining arguments
of the function (e.g.: arima.d); and third row - final model specification. The final specification
(third row) shall include user modifications (row two) unless they were wrongly specified. The
pre-specified outliers, user-defined variables and pre-specified ARMA coefficients consist of a list
with the Predefined (base model specification) and Final values.

regarima object of class c("regarima_spec","TRAMO_SEATS"). See Value of the func-
tion regarima_spec_tramoseats

seats data.frame of class c("seats_spec","data.frame"), containing the seats vari-
ables in line with the names of the arguments variables. The final values can be
also accessed with the function s_seats.

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en BOX G.E.P. and JENKINS G.M. (1970), "Time Series Analysis: Forecasting
and Control", Holden-Day, San Francisco.

BOX G.E.P., JENKINS G.M., REINSEL G.C. and LJUNG G.M. (2015), "Time Series Analysis:
Forecasting and Control", John Wiley & Sons, Hoboken, N. J., 5th edition.

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

60 tramoseats_spec

See Also

tramoseats

Examples

myseries <- ipi_c_eu[, "FR"]
myspec1 <- tramoseats_spec(spec = c("RSAfull"))
mysa1 <- tramoseats(myseries, spec = myspec1)

Modify a pre-specified model specification
myspec2 <- tramoseats_spec(spec = "RSAfull", tradingdays.mauto = "Unused",

tradingdays.option = "WorkingDays",
easter.type = "Standard",
automdl.enabled = FALSE, arima.mu = TRUE)

mysa2 <- tramoseats(myseries, spec = myspec2)

Modify the model specification from a "SA" object
myspec3 <- tramoseats_spec(mysa1, tradingdays.mauto = "Unused",

tradingdays.option = "WorkingDays",
easter.type = "Standard", automdl.enabled = FALSE, arima.mu = TRUE)

mysa3 <- tramoseats(myseries, myspec3)

Modify the model specification from a "SA_spec" object
myspec4 <- tramoseats_spec(myspec1, tradingdays.mauto = "Unused",

tradingdays.option = "WorkingDays",
easter.type = "Standard", automdl.enabled = FALSE, arima.mu = TRUE)

mysa4 <- tramoseats(myseries, myspec4)

Pre-specified outliers
myspec5 <- tramoseats_spec(spec = "RSAfull",

usrdef.outliersEnabled = TRUE,
usrdef.outliersType = c("LS", "LS"),
usrdef.outliersDate = c("2008-10-01", "2003-01-01"),
usrdef.outliersCoef = c(10,-8), transform.function = "None")

s_preOut(myspec5)
mysa5 <- tramoseats(myseries, myspec5)
mysa5
s_preOut(mysa5)

User-defined calendar regressors
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var<- ts.union(var1, var2)

myspec6 <- tramoseats_spec(spec = "RSAfull", tradingdays.option = "UserDefined",
usrdef.varEnabled = TRUE, usrdef.var = var,
usrdef.varType = c("Calendar", "Calendar"))

s_preVar(myspec6)
mysa6 <- tramoseats(myseries, myspec6)

myspec7 <- tramoseats_spec(spec = "RSAfull", usrdef.varEnabled = TRUE,

user_defined_variables 61

usrdef.var = var, usrdef.varCoef = c(17,-1),
transform.function = "None")

mysa7 <- tramoseats(myseries, myspec7)

Pre-specified ARMA coefficients
myspec8 <- tramoseats_spec(spec = "RSAfull",

arima.coefEnabled = TRUE, automdl.enabled = FALSE,
arima.p = 2, arima.q = 0,
arima.bp = 1, arima.bq = 1,
arima.coef = c(-0.12, -0.12, -0.3, -0.99),
arima.coefType = rep("Fixed", 4))

mysa8 <- tramoseats(myseries, myspec8)
mysa8
s_arimaCoef(myspec8)
s_arimaCoef(mysa8)

user_defined_variables

Get the names of the user-defined variables

Description

Function to get the names of the additional output variables that can be defined in x13 and tramoseats
with the parameter userdefined.

Usage

user_defined_variables(sa_object = c("X13-ARIMA", "TRAMO-SEATS"))

Arguments

sa_object a character: "X13-ARIMA" to get the additional output variables available for the
X13-ARIMA method and "TRAMO-SEATS" for the TRAMO-SEATS method.

Examples

user_defined_variables("X13-ARIMA")
user_defined_variables("TRAMO-SEATS")

62 x13

x13 Seasonal Adjustment with X-13ARIMA-SEATS

Description

Functions to estimate the seasonally adjusted series (sa) with the X-13ARIMA-SEATS method.
This is achieved by decomposing the time series (y) into the: trend-cycle (t), seasonal component
(s) and irregular component (i). The final seasonally adjusted series shall be free of seasonal and
calendar-related movements. x13 returns a preformatted result while jx13 returns the Java objects
of the seasonal adjustment.

Usage

jx13(
series,
spec = c("RSA5c", "RSA0", "RSA1", "RSA2c", "RSA3", "RSA4c", "X11"),
userdefined = NULL

)

x13(
series,
spec = c("RSA5c", "RSA0", "RSA1", "RSA2c", "RSA3", "RSA4c", "X11"),
userdefined = NULL

)

Arguments

series a univariate time series
spec model specification X13. It can be a character of predefined X13 ’JDemetra+’

model specification (see Details), or a specification created by x13_spec. The
default is "RSA5c".

userdefined vector with characters for additional output variables (see user_defined_variables).

Details

The first step of the seasonal adjustment consist of pre-adjusting the time series by removing from
it the deterministic effects by means of a regression model with ARIMA noise (RegARIMA, see:
regarima). In the second part, the pre-adjusted series is decomposed into the following com-
ponents: trend-cycle (t), seasonal component (s) and irregular component (i). The decomposi-
tion can be: additive (y = t + s + i), multiplicative (y = t ∗ s ∗ i), log-additive (log(y) =
log(t) + log(s) + log(i)) or pseudo-additive (y = t ∗ (s + i − 1)). The final seasonally adjusted
series (sa) shall be free of seasonal and calendar-related movements.

In the X13 method, the X11 algorithm (second step) decomposes the time series by means of linear
filters. More information on the method can be found on the U.S. Census Bureau website.

As regards the available predefined ’JDemetra+’ X13 model specifications, they are described in
the table below.

x13 63

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
RSA0 | NA | NA | NA | Airline(+mean)
RSA1 | automatic | AO/LS/TC | NA | Airline(+mean)

RSA2c | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
RSA3 | automatic | AO/LS/TC | NA | automatic

RSA4c | automatic | AO/LS/TC | 2 td vars + Easter | automatic
RSA5c | automatic | AO/LS/TC | 7 td vars + Easter | automatic

X11 | NA | NA | NA | NA

Value

jx13 returns a jSA object. It contains the Java objects of the result of the seasonal adjustment
without any formatting. Therefore the computation is faster than with x13. The results can the
seasonal adjustment can be extract by get_indicators.

x13 returns an object of class c("SA","X13"), a list containing the following components:

regarima object of class c("regarima","X13"). See Value of the function regarima.

decomposition object of class "decomposition_X11", six elements list:

• specification list with the X11 algorithm specification. See also function
x13_spec

• mode decomposition mode
• mstats matrix with the M statistics
• si_ratio time series matrix (mts) with the d8 and d10 series
• s_filter seasonal filters
• t_filter trend filter

final object of class c("final","mts","ts","matrix"). Matrix with the final re-
sults of the seasonal adjustment. It includes time series: original time series (y),
forecast of the original series (y_f), trend (t), forecast of the trend (t_f), sea-
sonally adjusted series (sa), forecast of the seasonally adjusted series (sa_f),
seasonal component (s), forecast of the seasonal component (s_f), irregular
component (i) and the forecast of the irregular component (i_f).

diagnostics object of class "diagnostics", list with three type of diagnostics tests:

• variance_decomposition data.frame with the tests on the relative contri-
bution of the components to the stationary portion of the variance in the
original series, after the removal of the long term trend.

• residuals_test data.frame with the tests on the presence of seasonality
in the residuals (includes the statistic, p-value and parameters description)

• combined_test combined tests for stable seasonality in the entire series.
Two elements list with: tests_for_stable_seasonality - data.frame
with the tests (includes the statistic, p-value and parameters description)
and combined_seasonality_test - the summary.

user_defined object of class "user_defined". List containing the userdefined additional vari-
ables defined in the userdefined argument.

64 x13_spec

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en

BOX G.E.P. and JENKINS G.M. (1970), "Time Series Analysis: Forecasting and Control", Holden-
Day, San Francisco.

BOX G.E.P., JENKINS G.M., REINSEL G.C. and LJUNG G.M. (2015), "Time Series Analysis:
Forecasting and Control", John Wiley & Sons, Hoboken, N. J., 5th edition.

See Also

x13_spec, tramoseats

Examples

myseries <- ipi_c_eu[, "FR"]
mysa <- x13(myseries, spec = "RSA5c")

myspec1 <- x13_spec(mysa, tradingdays.option = "WorkingDays",
usrdef.outliersEnabled = TRUE,
usrdef.outliersType = c("LS","AO"),
usrdef.outliersDate = c("2008-10-01", "2002-01-01"),
usrdef.outliersCoef = c(36, 14),
transform.function = "None")

mysa1 <- x13(myseries, myspec1)
mysa1
summary(mysa1$regarima)

myspec2 <- x13_spec(mysa, automdl.enabled =FALSE,
arima.coefEnabled = TRUE,
arima.p = 1, arima.q = 1, arima.bp = 0, arima.bq = 1,
arima.coef = c(-0.8, -0.6, 0),
arima.coefType = c(rep("Fixed", 2), "Undefined"))

s_arimaCoef(myspec2)
mysa2 <- x13(myseries, myspec2,

userdefined = c("decomposition.d18", "decomposition.d19"))
mysa2
plot(mysa2)
plot(mysa2$regarima)
plot(mysa2$decomposition)

x13_spec X-13ARIMA-SEATS model specification, SA/X13

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

x13_spec 65

Description

Function to create (and/or modify) a c("SA_spec","X13") class object with the SA model spec-
ification for the X13 method. It can be done from a pre-defined ’JDemetra+’ model specification
(a character), a previous specification (c("SA_spec","X13") object) or a seasonal adjustment
model (c("SA","X13") object).

Usage

x13_spec(
spec = c("RSA5c", "RSA0", "RSA1", "RSA2c", "RSA3", "RSA4c", "X11"),
preliminary.check = NA,
estimate.from = NA_character_,
estimate.to = NA_character_,
estimate.first = NA_integer_,
estimate.last = NA_integer_,
estimate.exclFirst = NA_integer_,
estimate.exclLast = NA_integer_,
estimate.tol = NA_integer_,
transform.function = c(NA, "Auto", "None", "Log"),
transform.adjust = c(NA, "None", "LeapYear", "LengthOfPeriod"),
transform.aicdiff = NA_integer_,
usrdef.outliersEnabled = NA,
usrdef.outliersType = NA,
usrdef.outliersDate = NA,
usrdef.outliersCoef = NA,
usrdef.varEnabled = NA,
usrdef.var = NA,
usrdef.varType = NA,
usrdef.varCoef = NA,
tradingdays.option = c(NA, "TradingDays", "WorkingDays", "UserDefined", "None"),
tradingdays.autoadjust = NA,
tradingdays.leapyear = c(NA, "LeapYear", "LengthOfPeriod", "None"),
tradingdays.stocktd = NA_integer_,
tradingdays.test = c(NA, "Remove", "Add", "None"),
easter.enabled = NA,
easter.julian = NA,
easter.duration = NA_integer_,
easter.test = c(NA, "Add", "Remove", "None"),
outlier.enabled = NA,
outlier.from = NA_character_,
outlier.to = NA_character_,
outlier.first = NA_integer_,
outlier.last = NA_integer_,
outlier.exclFirst = NA_integer_,
outlier.exclLast = NA_integer_,
outlier.ao = NA,
outlier.tc = NA,
outlier.ls = NA,

66 x13_spec

outlier.so = NA,
outlier.usedefcv = NA,
outlier.cv = NA_integer_,
outlier.method = c(NA, "AddOne", "AddAll"),
outlier.tcrate = NA_integer_,
automdl.enabled = NA,
automdl.acceptdefault = NA,
automdl.cancel = NA_integer_,
automdl.ub1 = NA_integer_,
automdl.ub2 = NA_integer_,
automdl.mixed = NA,
automdl.balanced = NA,
automdl.armalimit = NA_integer_,
automdl.reducecv = NA_integer_,
automdl.ljungboxlimit = NA_integer_,
automdl.ubfinal = NA_integer_,
arima.mu = NA,
arima.p = NA_integer_,
arima.d = NA_integer_,
arima.q = NA_integer_,
arima.bp = NA_integer_,
arima.bd = NA_integer_,
arima.bq = NA_integer_,
arima.coefEnabled = NA,
arima.coef = NA,
arima.coefType = NA,
fcst.horizon = NA_integer_,
x11.mode = c(NA, "Undefined", "Additive", "Multiplicative", "LogAdditive",
"PseudoAdditive"),

x11.seasonalComp = NA,
x11.lsigma = NA_integer_,
x11.usigma = NA_integer_,
x11.trendAuto = NA,
x11.trendma = NA_integer_,
x11.seasonalma = NA_character_,
x11.fcasts = NA_integer_,
x11.bcasts = NA_integer_,
x11.calendarSigma = NA,
x11.sigmaVector = NA,
x11.excludeFcasts = NA

)

Arguments

spec model specification X13. It can be a character of predefined X13 ’JDemetra+’
model specification (see Details), an object of class c("SA_spec","X13") or an
object of class c("SA","X13"). The default is "RSA5c".

preliminary.check

boolean to check the quality of the input series and exclude highly problematic

x13_spec 67

ones: e.g. these with a number of identical observations and/or missing values
above pre-specified threshold values.
The time span of the series to be used for the estimation of the RegARIMA
model coefficients (default from 1900-01-01 to 2020-12-31) is controlled by the
following six variables: estimate.from,estimate.to,estimate.first,estimate.last,estimate.exclFirst
and estimate.exclLast; where estimate.from and estimate.to have prior-
ity over remaining span control variables, estimate.last and estimate.first
have priority over estimate.exclFirst and estimate.exclLast, and estimate.last
has priority over estimate.first.

estimate.from character in format "YYYY-MM-DD" indicating the start of the time span (e.g.
"1900-01-01"). Can be combined with estimate.to.

estimate.to character in format "YYYY-MM-DD" indicating the end of the time span (e.g.
"2020-12-31"). Can be combined with estimate.from.

estimate.first numeric specifying the number of periods considered at the beginning of the
series.

estimate.last numeric specifying the number of periods considered at the end of the series.

estimate.exclFirst

numeric specifying the number of periods excluded at the beginning of the se-
ries. Can be combined with estimate.exclLast.

estimate.exclLast

numeric specifying the number of periods excluded at the end of the series. Can
be combined with estimate.exclFirst.

estimate.tol numeric, convergence tolerance. The absolute changes in the log-likelihood
function are compared to this value to check for the convergence of the esti-
mation iterations.

transform.function

transformation of the input series: "None" - no transformation of the series;
"Log" - takes the log of the series; "Auto" - the program tests for the log-level
specification.

transform.adjust

pre-adjustment of the input series for length of period or leap year effects:
"None" - no adjustment; "LeapYear" - leap year effect; "LengthOfPeriod"
- length of period. Modifications of this variable are taken into account only
when transform.function is set to "Log".

transform.aicdiff

numeric defining the difference in AICC needed to accept no transformation
when the automatic transformation selection is chosen (considered only when
transform.function is set to "Auto").
Control variables for the pre-specified outliers. The pre-specified outliers are
used in the model only if they are enabled (usrdef.outliersEnabled=TRUE)
and the outliers’ type (usrdef.outliersType) and date (usrdef.outliersDate)
are provided.

usrdef.outliersEnabled

logicals. If TRUE the program uses the pre-specified outliers.

68 x13_spec

usrdef.outliersType

vector defining the outliers’ type. Possible types are: ("AO") - additive, ("LS")
- level shift, ("TC") - transitory change, ("SO") - seasonal outlier. E.g.: usrdef.outliersType
=c("AO","AO","LS").

usrdef.outliersDate

vector defining the outliers’ date. The dates should be characters in format
"YYYY-MM-DD". E.g.: usrdef.outliersDate=c("2009-10-01","2005-02-01","2003-04-01").

usrdef.outliersCoef

vector providing fixed coefficients for the outliers. The coefficients can’t be
fixed if transform.function is set to "Auto" - the series transformation need
to be pre-defined. E.g.: usrdef.outliersCoef=c(200,170,20).
Control variables for the user-defined variables:

usrdef.varEnabled

logicals. If TRUE the program uses the user-defined variables.
usrdef.var time series (ts) or matrix of time series (mts) with the user-defined variables.
usrdef.varType vector of character(s) defining the user-defined variables component type. Possi-

ble types are: "Undefined","Series","Trend","Seasonal","SeasonallyAdjusted","Irregular","Calendar".
The type "Calendar" has to be used with tradingdays.option = "UserDefined"
to use user-defined calendar regressors. If not specified, the program will assign
the "Undefined" type.

usrdef.varCoef vector providing fixed coefficients for the user-defined variables. The coeffi-
cients can’t be fixed if transform.function is set to "Auto" - the series trans-
formation need to be pre-defined.

tradingdays.option

defines the type of the trading days regression variables: "TradingDays" -
six day-of-the-week regression variables; "WorkingDays" - one working/non-
working day contrast variable; "None" - no correction for trading days and work-
ing days effects; "UserDefined" - user-defined trading days regressors (regres-
sors have to be defined by the usrdef.var argument with usrdef.varType set
to "Calendar" and usrdef.varEnabled = TRUE). "None" has also to be chosen
for the "day-of-week effects" correction (tradingdays.stocktd to be modified
accordingly).

tradingdays.autoadjust

logicals. If TRUE the program corrects automatically for the leap year effect.
Modifications of this variable are taken into account only when transform.function
is set to "Auto".

tradingdays.leapyear

option for including the leap-year effect in the model: "LeapYear" - leap year
effect; "LengthOfPeriod" - length of period, "None" - no effect included. The
leap-year effect can be pre-specified in the model only if the input series was
not pre-adjusted (transform.adjust set to "None") and the automatic correc-
tion for the leap-year effect was not selected (tradingdays.autoadjust set to
FALSE).

tradingdays.stocktd

numeric indicating the day of the month when inventories and other stock are
reported (to denote the last day of the month set the variable to 31). Modifica-
tions of this variable are taken into account only when tradingdays.option is
set to "None".

x13_spec 69

tradingdays.test

defines the pre-tests for the significance of the trading day regression variables
based on the AICC statistics: "Add" - the trading day variables are not included
in the initial regression model but can be added to the RegARIMA model after
the test; "Remove" - the trading day variables belong to the initial regression
model but can be removed from the RegARIMA model after the test; "None" -
the trading day variables are not pre-tested and are included in the model.

easter.enabled logicals. If TRUE the program considers the Easter effect in the model.

easter.julian logicals. If TRUE the program uses the Julian Easter (expressed in Gregorian
calendar).

easter.duration

numeric indicating the duration of the Easter effect (length in days, between 1
and 20).

easter.test defines the pre-tests for the significance of the Easter effect based on the t-
statistic (Easter effect is considered as significant if the t-statistic is greater than
1.96): "Add" - the Easter effect variable is not included in the initial regression
model but can be added to the RegARIMA model after the test; "Remove" - the
Easter effect variable belong to the initial regression model but can be removed
from the RegARIMA model after the test; "None" - the Easter effect variable is
not pre-tested and is included in the model.

outlier.enabled

logicals. If TRUE the automatic detection of outliers is enabled in the defined
time span.
The time span of the series to be searched for outliers (default from 1900-01-01
to 2020-12-31) is controlled by the following six variables: outlier.from,outlier.to,outlier.first,outlier.last,outlier.exclFirst
and outlier.exclLast; where outlier.from and outlier.to have priority
over remaining span control variables, outlier.last and outlier.first have
priority over outlier.exclFirst and outlier.exclLast, and outlier.last
has priority over outlier.first.

outlier.from character in format "YYYY-MM-DD" indicating the start of the time span (e.g.
"1900-01-01"). Can be combined with outlier.to.

outlier.to character in format "YYYY-MM-DD" indicating the end of the time span (e.g.
"2020-12-31"). Can be combined with outlier.from.

outlier.first numeric specifying the number of periods considered at the beginning of the
series.

outlier.last numeric specifying the number of periods considered at the end of the series.
outlier.exclFirst

numeric specifying the number of periods excluded at the beginning of the se-
ries. Can be combined with outlier.exclLast.

outlier.exclLast

numeric specifying the number of periods excluded at the end of the series. Can
be combined with outlier.exclFirst.

outlier.ao logicals. If TRUE the automatic detection of additive outliers is enabled (outlier.enabled
must be also set to TRUE).

outlier.tc logicals. If TRUE the automatic detection of transitory changes is enabled (outlier.enabled
must be also set to TRUE).

70 x13_spec

outlier.ls logicals. If TRUE the automatic detection of level shifts is enabled (outlier.enabled
must be also set to TRUE).

outlier.so logicals. If TRUE the automatic detection of seasonal outliers is enabled (outlier.enabled
must be also set to TRUE).

outlier.usedefcv

logicals. If TRUE the critical value for the outliers’ detection procedure is auto-
matically determined by the number of observations in the outlier detection time
span. If FALSE the procedure uses the inputted critical value (outlier.cv).

outlier.cv numeric. Inputted critical value for the outliers’ detection procedure. The mod-
ification of this variable is taken into account only when outlier.usedefcv is
set to FALSE.

outlier.method determines how the program successively adds detected outliers to the model.
At present only the AddOne method is supported.

outlier.tcrate numeric. The rate of decay for the transitory change outlier.
automdl.enabled

logicals. If TRUE the automatic modelling of the ARIMA model is enabled. If
FALSE the parameters of the ARIMA model can be specified.
Control variables for the automatic modelling of the ARIMA model (automdl.enabled
is set to TRUE):

automdl.acceptdefault

logicals. If TRUE the default model (ARIMA(0,1,1)(0,1,1)) may be chosen in the
first step of the automatic model identification. If the Ljung-Box Q statistics for
the residuals is acceptable, the default model is accepted and no further attempt
will be made to identify any other.

automdl.cancel numeric, cancelation limit. If the difference in moduli of an AR and an MA
roots (when estimating ARIMA(1,0,1)(1,0,1) models in the second step of the
automatic identification of the differencing orders) is smaller than cancelation
limit, the two roots are assumed equal and cancel out.

automdl.ub1 numeric, first unit root limit. It is the threshold value for the initial unit root test
in the automatic differencing procedure. When one of the roots in the estimation
of the ARIMA(2,0,0)(1,0,0) plus mean model, performed in the first step of the
automatic model identification procedure, is larger than first unit root limit in
modulus, it is set equal to unity.

automdl.ub2 numeric, second unit root limit. When one of the roots in the estimation of the
ARIMA(1,0,1)(1,0,1) plus mean model, which is performed in the second step
of the automatic model identification procedure, is larger than second unit root
limit in modulus, it is checked if there is a common factor in the correspond-
ing AR and MA polynomials of the ARMA model that can be cancelled (see
automdl.cancel). If there is no cancellation, the AR root is set equal to unity
(i.e. the differencing order changes).

automdl.mixed logicals. The variable controls whether ARIMA models with non-seasonal AR
and MA terms or seasonal AR and MA terms will be considered in the automatic
model identification procedure. If FALSE a model with AR and MA terms in both
the seasonal and non-seasonal parts of the model can be acceptable, provided
there are not AR and MA terms in either the seasonal or non-seasonal.

x13_spec 71

automdl.balanced

logicals. If TRUE, the automatic model identification procedure will have a pref-
erence for balanced models (i.e. models for which the order of the combined AR
and differencing operator is equal to the order of the combined MA operator).

automdl.armalimit

numeric, arma limit. It is the threshold value for t-statistics of ARMA coeffi-
cients and constant term used for the final test of model parsimony. If the highest
order ARMA coefficient has a t-value less than this value in magnitude, the or-
der of the model is reduced. Also if the constant term has a t-value less than
arma limit in magnitude, it is removed from the set of regressors.

automdl.reducecv

numeric, ReduceCV. The percentage by which the outlier’s critical value will be
reduced when an identified model is found to have a Ljung-Box statistic with
an unacceptable confidence coefficient. The parameter should be between 0 and
1, and will only be active when automatic outlier identification is enabled. The
reduced critical value will be set to (1-ReduceCV)xCV, where CV is the original
critical value.

automdl.ljungboxlimit

numeric, Ljung Box limit. Acceptance criterion for the confidence intervals of
the Ljung-Box Q statistic. If the LjungBox Q statistics for the residuals of a final
model is greater than Ljung Box limit, the model is rejected, the outlier critical
value is reduced, and model and outlier identification (if specified) is redone
with a reduced value.

automdl.ubfinal

numeric, final unit root limit. The threshold value for the final unit root test.
If the magnitude of an AR root for the final model is less than the final unit
root limit, a unit root is assumed, the order of the AR polynomial is reduced
by one, and the appropriate order of the differencing (non-seasonal, seasonal) is
increased. The parameter value should be greater than one.
Control variables for the non-automatic modelling of the ARIMA model (automdl.enabled
is set to FALSE):

arima.mu logicals. If TRUE, the mean is considered as part of the ARIMA model.

arima.p numeric. The order of the non-seasonal autoregressive (AR) polynomial.

arima.d numeric. Regular differencing order.

arima.q numeric. The order of the non-seasonal moving average (MA) polynomial.

arima.bp numeric. The order of the seasonal autoregressive (AR) polynomial.

arima.bd numeric. Seasonal differencing order.

arima.bq numeric. The order of the seasonal moving average (MA) polynomial.
Control variables for the user-defined ARMA coefficients. Coefficients can be
defined for the regular and seasonal autoregressive (AR) polynomials and mov-
ing average (MA) polynomials. The model considers the coefficients only if the
procedure for their estimation (arima.coefType) is provided, and the number
of provided coefficients matches the sum of (regular and seasonal) AR and MA
orders (p,q,bp,bq).

arima.coefEnabled

logicals. If TRUE the program uses the user-defined ARMA coefficients.

72 x13_spec

arima.coef vector providing the coefficients for the regular and seasonal AR and MA poly-
nominals. The length of the vector must equal the sum of the regular and
seasonal AR and MA orders. The coefficients shall be provided in the or-
der: regular AR (Phi - p elements), regular MA (Theta - q elements), sea-
sonal AR (BPhi - bp elements) and seasonal MA (BTheta - bq elements). E.g.:
arima.coef=c(0.6,0.7) with arima.p=1,arima.q=0,arima.bp=1 and arima.bq=0.

arima.coefType vector defining ARMA coefficients estimation procedure. Possible procedures
are: "Undefined" - no use of user-defined input (i.e. coefficients are estimated),
"Fixed" - fixes the coefficients at the value provided by the user, "Initial"
- the value defined by the user is used as initial condition. For orders for
which the coefficients shall not be defined, the arima.coef can be set to NA
or 0 or the arima.coefType can be set to "Undefined". E.g.: arima.coef =
c(-0.8,-0.6,NA), arima.coefType = c("Fixed","Fixed","Undefined").

fcst.horizon numeric, forecasts horizon. Length of the forecasts generated by the RegARIMA
model in periods (positive values) or years (negative values). By default the pro-
gram generates two years forecasts (fcst.horizon set to -2).

x11.mode character, decomposition mode. Determines the mode of the seasonal adjust-
ment decomposition to be performed: "Undefined" - no assumption concern-
ing the relationship between the time series components is made; "Additive" -
assumes an additive relationship; "Multiplicative" - assumes a multiplicative
relationship; "LogAdditive" - performs an additive decomposition of the log-
arithms of the series being adjusted; "PseudoAdditive" - assumes an pseudo-
additive relationship. Could be changed by the program, if needed.

x11.seasonalComp

logicals. If TRUE the program computes a seasonal component. Otherwise, the
seasonal component is not estimated and its values are all set to 0 (additive
decomposition) or 1 (multiplicative decomposition).

x11.lsigma numeric, lower sigma boundary for the detection of extreme values.

x11.usigma numeric, upper sigma boundary for the detection of extreme values.

x11.trendAuto logicals, automatic Henderson filter. If TRUE an automatic selection of the Hen-
derson filter’s length for the trend estimation is enabled.

x11.trendma numeric, length of the Henderson filter. The user-defined length of the Hender-
son filter. The option is available when the automatic Henderson filter selection
is disabled (x11.trendAuto=FALSE). Should be an odd number in the range (1,
101].

x11.seasonalma vector of character(s) specifying which seasonal moving average (i.e. seasonal
filter) will be used to estimate the seasonal factors for the entire series. The vec-
tor can be of length: 1 - same seasonal filters for all periods (e.g.: seasonalma=c("Msr"));
or period’s number - a seasonal filer is defined for each period (e.g. for quarterly
series: seasonalma=c("S3X3","Msr","S3X3","Msr")). Possible filters are:
"Msr","Stable","X11Default","S3X1","S3X3","S3X5","S3X9","S3X15". "Msr"
- the program chooses the final seasonal filter automatically.

x11.fcasts numeric, RegARIMA forecast. Length of the forecasts generated by the Re-
gARIMA model in periods (positive values) or years (negative values).

x11.bcasts numeric, backcast. Length of the backcasts used in X11. Negative figures are
translated in years of backcasts.

x13_spec 73

x11.calendarSigma

character to specify if the standard errors used for extreme values detection and
adjustment are computed from 5 year spans of irregulars ("None", the default);
separately for each calendar month/quarter ("All"); separately for each period
only if Cochran’s hypothesis test determines that the irregular component is het-
eroskedastic by calendar month/quarter ("Signif"); separately for two com-
plementary sets of calendar months/quarters specified by the x11.sigmaVector
parameter ("Select", see parameter x11.sigmaVector).

x11.sigmaVector

vector to specifies one of the two groups of periods for whose standard errors
used for extreme values detection and adjustment will be computed. Only used if
x11.calendarSigma = "Select". Possibe values are: "Group1" and "Group2".

x11.excludeFcasts

logicals, exclude forecats and backcasts. If TRUE forecasts and backcasts from
the RegARIMA model are not used in the generation of extreme values in the
seasonal adjustment routines.

Details

The available predefined ’JDemetra+’ model specifications are described in the table below.

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
RSA0 | NA | NA | NA | Airline(+mean)
RSA1 | automatic | AO/LS/TC | NA | Airline(+mean)

RSA2c | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
RSA3 | automatic | AO/LS/TC | NA | automatic

RSA4c | automatic | AO/LS/TC | 2 td vars + Easter | automatic
RSA5c | automatic | AO/LS/TC | 7 td vars + Easter | automatic

X11 | NA | NA | NA | NA

Value

A two-elements list of class c("SA_spec","X13"): (1) object of class c("regarima_spec","X13")
with the RegARIMA model specification, (2) object of class c("X11_spec","data.frame") with
the X11 algorithm specification. Each component refers to different part of the SA model spec-
ification, mirroring the arguments of the function (for details see arguments description). Each
of the lowest-level component (except span, pre-specified outliers, user-defined variables and pre-
specified ARMA coefficients) is structured within a data frame with columns denoting different
variables of the model specification and rows referring to: first row - base specification, as provided
within the argument spec; second row - user modifications as specified by the remaining arguments
of the function (e.g.: arima.d); and third row - final model specification. The final specification
(third row) shall include user modifications (row two) unless they were wrongly specified. The
pre-specified outliers, user-defined variables and pre-specified ARMA coefficients consist of a list
with the Predefined (base model specification) and Final values.

regarima object of class c("regarima_spec","x13"). See Value of the function regarima_spec_x13

x11 data.frame of class c("X11_spec","data.frame"), containing the x11 vari-
ables in line with the names of the arguments variables. The final values can be
also accessed with the function s_x11.

74 x13_spec

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en BOX G.E.P. and JENKINS G.M. (1970), "Time Series Analysis: Forecasting
and Control", Holden-Day, San Francisco.

BOX G.E.P., JENKINS G.M., REINSEL G.C. and LJUNG G.M. (2015), "Time Series Analysis:
Forecasting and Control", John Wiley & Sons, Hoboken, N. J., 5th edition.

See Also

x13

Examples

myseries <- ipi_c_eu[, "FR"]
myspec1 <- x13_spec(spec = "RSA5c")
myreg1 <- x13(myseries, spec = myspec1)

Modify a pre-specified model specification
myspec2 <- x13_spec(spec = "RSA5c", tradingdays.option = "WorkingDays")
myreg2 <- x13(myseries, spec = myspec2)

Modify the model specification from a "X13" object
myspec3 <- x13_spec(myreg1, tradingdays.option = "WorkingDays")
myreg3 <- x13(myseries, myspec3)

Modify the model specification from a "X13_spec" object
myspec4 <- x13_spec(myspec1, tradingdays.option = "WorkingDays")
myreg4 <- x13(myseries, myspec4)

Pre-specified outliers
myspec1 <- x13_spec(spec = "RSA5c", usrdef.outliersEnabled = TRUE,

usrdef.outliersType = c("LS", "AO"),
usrdef.outliersDate = c("2008-10-01", "2002-01-01"),
usrdef.outliersCoef = c(36, 14),
transform.function = "None")

myreg1 <- x13(myseries, myspec1)
myreg1
s_preOut(myreg1)

User-defined calendar regressors
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var <- ts.union(var1, var2)
myspec1 <- x13_spec(spec = "RSA5c", tradingdays.option = "UserDefined",

usrdef.varEnabled = TRUE,
usrdef.var = var,
usrdef.varType = c("Calendar", "Calendar"))

myreg1 <- x13(myseries, myspec1)

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

x13_spec 75

myreg1

myspec2 <- x13_spec(spec = "RSA5c", usrdef.varEnabled = TRUE,
usrdef.var = var1, usrdef.varCoef = 2,
transform.function = "None")

myreg2 <- x13(myseries, myspec2)
s_preVar(myreg2)

Pre-specified ARMA coefficients
myspec1 <- x13_spec(spec = "RSA5c", automdl.enabled = FALSE,

arima.p = 1, arima.q = 1, arima.bp = 0, arima.bq = 1,
arima.coefEnabled = TRUE,
arima.coef = c(-0.8, -0.6, 0),
arima.coefType = c(rep("Fixed", 2), "Undefined"))

s_arimaCoef(myspec1)
myreg1 <- x13(myseries, myspec1)
myreg1

Defined seasonal filters
myspec1 <- x13_spec("RSA5c", x11.seasonalma = rep("S3X1", 12))
mysa1 <- x13(myseries, myspec1)

Index

∗Topic datasets
ipi_c_eu, 9

add_sa_item, 2, 14

coef, 19
compute, 3, 5
count, 4, 5, 6, 8, 9

get_all_objects (get_object), 7
get_dictionary (jSA), 11
get_indicators, 18, 49, 63
get_indicators (jSA), 11
get_jmodel (get_model), 5
get_jspec (jSA), 11
get_model, 3, 4, 5, 6, 8, 9, 13
get_name, 4, 5, 6, 8, 9
get_object, 7
get_ts, 4–6, 8, 8

ipi_c_eu, 9

jregarima (regarima), 16
jregarima_tramoseats (regarima), 16
jregarima_x13 (regarima), 16
jSA, 5, 11, 18, 49, 63
jSA2R (jSA), 11
jtramoseats (tramoseats), 47
jx13 (x13), 62

load_spec (save_spec), 41
load_workspace, 3, 13, 14, 43
logLik, 19

new_multiprocessing (new_workspace), 13
new_workspace, 13

plot, 14

regarima, 16, 28, 39, 47, 49, 62, 63
regarima_spec_tramoseats, 17, 19, 21, 59

regarima_spec_x13, 17, 19, 31, 73
regarima_tramoseats (regarima), 16
regarima_x13 (regarima), 16
residuals, 19

s_arima, 29, 39
s_arima (specification), 44
s_arimaCoef, 29, 39
s_arimaCoef (specification), 44
s_easter, 29, 39
s_easter (specification), 44
s_estimate, 28, 39
s_estimate (specification), 44
s_fcst, 29, 40
s_fcst (specification), 44
s_out, 29, 39
s_out (specification), 44
s_preOut, 29, 39
s_preOut (specification), 44
s_preVar, 29, 39
s_preVar (specification), 44
s_seats, 59
s_seats (specification), 44
s_span, 29, 40
s_span (specification), 44
s_td, 29, 39
s_td (specification), 44
s_transform, 29, 39
s_transform (specification), 44
s_usrdef, 29, 39
s_usrdef (specification), 44
s_x11, 73
s_x11 (specification), 44
save_spec, 41
save_workspace, 3, 13, 14, 43
specification, 44

tramoseats, 5, 47, 60, 61, 64
tramoseats_spec, 49, 50, 51
ts, 8

76

INDEX 77

user_defined_variables, 12, 47, 61, 62

x13, 5, 50, 61, 62, 74
x13_spec, 62–64, 64

	add_sa_item
	compute
	count
	get_model
	get_name
	get_object
	get_ts
	ipi_c_eu
	jSA
	load_workspace
	new_workspace
	plot
	regarima
	regarima_spec_tramoseats
	regarima_spec_x13
	save_spec
	save_workspace
	specification
	tramoseats
	tramoseats_spec
	user_defined_variables
	x13
	x13_spec
	Index

