Package 'RHMS'

April 9, 2019

Type Package
Title Hydrologic Modelling System for R Users
Version 1.6
Depends R (>= 3.0.0), graphics, stats, pso, Hmisc, network, GGally
Date 2019-04-07
Author Rezgar Arabzadeh; Shahab Araghinejad
Maintainer Rezgar Arabzadeh <rezgararabzadeh@ut.ac.ir>
Description Hydrologic modelling system is an object oriented tool which enables R users to simulate and analyze hydrologic events. The package proposes functions and methods for construction, simulation, visualization, and calibration of hydrologic systems.
License GPL-2
Imports ggplot2
NeedsCompilation no

Repository CRAN

Date/Publication 2019-04-09 07:42:43 UTC

R topics documented:

RHMS-package
abstraction
abstraction.base
abstraction.default
addObjectToBasin
baseFlowSeparation
baseFlowSeparation.base
baseFlowSeparation.default
createBasin
createBasin.base
createBasin.default
createDiversion
createDiversion.base
createDiversion.default

createJunction	15
createJunction.base	16
createJunction.default	17
createReach	18
createReach.base	19
createReach.default	20
createReservoir	21
createReservoir.base	22
createReservoir.default	23
createSubbasin	24
createSubbasin.base	25
createSubbasin.default	27
loss	28
	29
	30
1	31
I ····································	32
	32
	33
	34
	36
e	37
8	38
	39
	40
	42
	42
	43
	44
	45
	46
	47
Zaab	50
	51

Index

RHMS-package

Hydrologic Modelling System for R Users

Description

The RHMS package provides tools to R users for simulation of hydrologic events. The packages includes functions and methods for building, simulation, visualization, and calibration of hydrologic systems.

Details

Package:RHMSType:PackageVersion:1.6Date:2019-04-07License:GPL-3

the package include three major types of functions as follows:

- 1- functions for construction and manipulatation of hydrologic features.
 - createBasin. constructor for basin
 - createJunction. constructor for junction
 - createReach. constructor for reach, rivers, and channels
 - createReservoir. constructor for reservoirs
 - createSubbasin. constructor for sub-bains
 - createDiversion. constructor for diversions
 - set.as. objects connector
 - addObjectToBasin. adds objects form mentioned above constructors to a basin inherited from class of createBasin
- 2- functions for analysis and simulation of hydrologic events.
 - reachRouting. routes a flood in a channel or river
 - reservoirRouting. routes a flood in a reservoir
 - transform. trnasforms a rainfall event to runoff
 - loss. computes excess rainfall and loss depths
 - baseFlowSeparation. separates baseflow from a given discharge series
 - abstraction. computes simple surface and canopy methods
 - sim. simulates an objects inherited from class of createBasin

3- functions for tunning, summerizing, and visualization.

- plot.sim. plots the objects inherited from class of sim
- plot.createBasin. plots the objects inherited from class of createBasin
- summary.sim. summerzies the simulation results in the tabular form for every objects existing in the basin
- tune. calibrates an objects inherited from class of createBasin

Author(s)

Rezgar Arabzadeh ; Shahab Araghinejad

Maintainer: Rezgar Arabzadeh <rezgararabzadeh@ut.ac.ir>

References

Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.

See Also

sim

abstraction computes surg

computes surface and canopy abstractions

Description

computes surface and canopy abstractions for a given rainfall event.

Usage

```
abstraction(rainfall,abstractionParams)
```

Arguments

rainfall a vector : a time series of precipitation hyetograph (mm)

abstractionParams

a list: including parameters of simple surface and simple canopy methods.

- canopyAbstraction depth of canopy abstraction in (mm). default to zero
- surfaceAbstraction depth of surface abstraction in (mm). default to zero

Value

a list: an object from class of abstraction

Author(s)

Rezgar Arabzadeh

See Also

createSubbasin

Examples

```
rainfall<-5*exp(((seq(2.5,7.5,length.out=36))-5)^2/-0.8)
abstractionParams<-list(canopyAbstraction=2,surfaceAbstraction=3.5)
abstraction(rainfall,abstractionParams)</pre>
```

abstraction.base *base function for class of* abstraction

Description

instantiates an object from class of abstraction

Usage

```
## S3 method for class 'base'
abstraction(rainfall,abstractionParams)
```

Arguments

rainfall a vector : a time series of precipitation hyetograph (mm) abstractionParams

a list: including parameters of simple surface and simple canopy methods.

- canopyAbstraction depth of canopy abstraction in (mm). default to zero
- surfaceAbstraction depth of surface abstraction in (mm). default to zero

Value

a list: a list features for the constructed sub-basin

Author(s)

Rezgar Arabzadeh

See Also

createSubbasin

abstraction.default default function for class of abstraction

Description

instantiates an object from class of abstraction

Usage

Arguments

```
rainfall a vector : a time series of precipitation hyetograph (mm)
```

abstractionParams

a list: including parameters of simple surface and simple canopy methods.

- canopyAbstraction depth of canopy abstraction in (mm). default to zero
- surfaceAbstraction depth of surface abstraction in (mm). default to zero

Value

a list: an object from class of abstraction

Author(s)

Rezgar Arabzadeh

See Also

createSubbasin

addObjectToBasin adds an object to basin

Description

adds an object inherited from a hydrologic feature class to a basin instantiated from class of createBasin.

Usage

```
addObjectToBasin(object, basin)
```

Arguments

object	an object to be added to the basin inherited from one of the following classes:
	'createReservoir','createReach','createSubbasin','createJunction'
basin	an object inherited from class of createBasin

Value

an object from class of createBasin

Author(s)

Rezgar Arabzadeh

addObjectToBasin

See Also

sim

Examples

```
storageElevationCurve<-data.frame(s=0:100*10,h=100:200)</pre>
dischargeElevationCurve<-data.frame(q=seq(0,5000,length.out=10),</pre>
                                      h=seq(180,200,length.out=10))
geometry<-list(storageElevationCurve=storageElevationCurve,</pre>
                dischargeElevationCurve=dischargeElevationCurve,
                capacity=800)
Res1<-createReservoir(name = "Reservoir1",</pre>
                       geometry=geometry,initialStorage=550)
R1<-createReach(name="Reach1",routingParams=list(k=5,x=0.3))
R2<-createReach(name="Reach2",routingParams=list(k=5,x=0.3))
R3<-createReach(name="Reach3",routingParams=list(k=5,x=0.3))
R4<-createReach(name="Reach4",routingMethod="muskingumcunge",
                               routingParams=list(bedWith=100,
                                                    sideSlope=2,
                                                   channelSlope=0.01,
                                                   manningRoughness=0.05,
                                                   riverLength=120))
D1<-createDiversion(name="Diversion1", capacity=80)</pre>
Junc1<-createJunction(name = "Junc1")</pre>
S1<-createSubbasin(name="Sub1",Area=500,</pre>
                    precipitation=round(sin(seq(0,pi,length.out=24))*20),
                    transformMethod="SCS",lossMethod="SCS",BFSMethod='recession',
                transformParams=list(Tlag=4),lossParams=list(CN=70),BFSParams=list(k=1.1))
S2<-createSubbasin(name="Sub2",Area=500,</pre>
                    precipitation=round(sin(seq(0,pi,length.out=24))*20),
                    transformMethod="SCS",lossMethod="SCS",BFSMethod='recession',
                transformParams=list(Tlag=4),lossParams=list(CN=70),BFSParams=list(k=1.1))
S3<-createSubbasin(name="Sub3", Area=650,
                    precipitation=round(sin(seq(0,pi,length.out=24))*20),
                    transformMethod="snyder",lossMethod="horton",
                    transformParams=list(Cp=0.17,Ct=1.5,L=140,Lc=30),
                    lossParams=list(f0=5,f1=1,k=1))
S1<-set.as(R2,S1,'downstream')</pre>
R2<-set.as(Junc1,R2,'downstream')</pre>
Junc1<-set.as(R1, Junc1, 'downstream')</pre>
```

```
Junc1<-set.as(R1,Junc1, 'downstream')
R1<-set.as(Res1,R1, 'downstream')
S3<-set.as(Res1,R1, 'downstream')
R3<-set.as(Junc1,R3, 'downstream')
S2<-set.as(Junc1,R3, 'downstream')
R4<-set.as(D1,R4, 'downstream')
D1<-set.as(Junc1,D1, 'downstream')
D1<-set.as(S1,D1, 'divertTo')
```

basin1<-createBasin(name = "Unknown", simulation=list(start='2000-01-01',end='2000-01-10',by=7200))
basin1<-addObjectToBasin(Junc1, basin1)</pre>

```
basin1<--addObjectToBasin(R1, basin1)
basin1<-addObjectToBasin(R2, basin1)
basin1<-addObjectToBasin(R3, basin1)
basin1<-addObjectToBasin(R4, basin1)
basin1<-addObjectToBasin(S1, basin1)
basin1<-addObjectToBasin(S2, basin1)
basin1<-addObjectToBasin(Res1, basin1)
basin1<-addObjectToBasin(Res1, basin1)
basin1<-addObjectToBasin(D1, basin1)
## Not run: plot(basin1)
object<-sim(basin1)
plot(object)
summary(object)
```

baseFlowSeparation Parametric methods for separating baseflow

Description

This function calculates baseflow for agiven discharge series, discharge, using a number of method proposed in BFSMethod.

Usage

baseFlowSeparation(discharge,BFSMethod,BFSParams,plot)

Arguments

discharge	a vector of flow time series (cms) or an object inherited from class of 'transform'
BFSMethod	a string: The method of base flow separation. Available methods: 'nathan', 'chapman', 'eckhardt', 'recession'
BFSParams	a list including parameters associated with the method coerced in 'BFSMethod'.
	 alpha is in [0, 1] interval required for 'nathan', 'chapman', and 'eckhardt' methods
	 BFI is in [0, 1] interval required for 'eckhardt' method
	 k is in [0, 1] interval and timeInterval is in day required for 'recession' method
plot	(optional) logical statement to plot the result or not. default to FALSE

Value

a list: an object from class of baseFlowSeparation consisting matrix of results available at object\$operation.

baseFlowSeparation.base

Author(s)

Rezgar Arabzadeh

References

Chapman, Tom. "A comparison of algorithms for stream flow recession and baseflow separation." Hydrological Processes 13.5 (1999): 701-714.

See Also

baseFlowSeparation

Examples

```
discharge<-(dnorm(seq(-3,4,length.out=200),-.3,1)+dnorm(seq(-1,7,length.out=200),4.5,1)*2)*1200
BFSMethod<-c('nathan','chapman','eckhardt','recession')
BFSParams<-list(alpha=0.6,BFI=0.3,k=1.1,timeInterval=15*60)
simulation<-list(start='2000-01-01',end='2000-01-02',by=400)
baseFlowSeparation(discharge,BFSMethod[1],BFSParams,plot=TRUE)
baseFlowSeparation(discharge,BFSMethod[2],BFSParams,plot=TRUE)
baseFlowSeparation(discharge,BFSMethod[3],BFSParams,plot=TRUE)
baseFlowSeparation(discharge,BFSMethod[4],BFSParams,plot=TRUE)</pre>
```

baseFlowSeparation.base

base function for class of baseFlowSeparation

Description

base function of methods separating baseflow for a given flow discharge.

Usage

```
## S3 method for class 'base'
baseFlowSeparation(discharge,BFSMethod,BFSParams,plot)
```

Arguments

discharge	a vector of flow time series (cms) or an object inherited from class of 'transform'
BFSMethod	a string: The method of base flow separation. Available methods: 'nathan', 'chapman', 'eckhardt', 'recession'
BFSParams	a list including parameters associated with the method coerced in 'BFSMethod'.
	 alpha is in [0, 1] interval required for 'nathan', 'chapman', and 'eckhardt' methods
	 BFI is in [0, 1] interval required for 'eckhardt' method
	 k is in [0, 1] interval and timeInterval is in day required for 'recession' method
plot	(optional) logical statement to plot the result or not. default to FALSE

Value

a matrix: A matrix of results including computed separated flow for Q series

Author(s)

Rezgar Arabzadeh

See Also

baseFlowSeparation

baseFlowSeparation.default

default function for class of baseFlowSeparation

Description

default function of methods separating baseflow for a given flow discharge

Usage

```
## Default S3 method:
baseFlowSeparation(discharge,BFSMethod='none' ,
BFSParams=list(alpha=NULL ,
BFI=NULL ,
k=NULL ,
timeInterval=NULL),
plot=FALSE)
```

Arguments

discharge	a vector of flow time series (cms) or an object inherited from class of 'transform'
BFSMethod	a string: The method of base flow separation. Available methods: 'nathan', 'chapman', 'eckhardt', 'recession'
BFSParams	a list including parameters associated with the method coerced in 'BFSMethod'.
	 alpha is in [0, 1] interval required for 'nathan', 'chapman', and 'eckhardt' methods
	 BFI is in [0, 1] interval required for 'eckhardt' method
	 k is in [0, 1] interval and timeInterval is in day required for 'recession' method
plot	(optional) logical statement to plot the result or not. default to FALSE

Value

a list: an object from class of baseFlowSeparation consisting matrix of results available at object\$operation.

createBasin

Author(s)

Rezgar Arabzadeh

See Also

createSubbasin

createBasin

creates a basin

Description

instantiates an object from class of createBasin

Usage

createBasin(name, simulation)

Arguments

name	a string: a name for the basin
simulation	a list of simulation time and dates as below:
	• start: the date which simulation starts, must be in 'YYYY-MM-DD' format
	• start: the date which simulation ends, must be in 'YYYY-MM-DD' format
	• by: the interval of each steps in seconds

Value

a list: an object from class of creatBasin

Author(s)

Rezgar Arabzadeh

See Also

createBasin.base

Description

instantiates an object from class of createBasin

Usage

```
## S3 method for class 'base'
createBasin(name, simulation)
```

Arguments

name	a string: a name for the basin
simulation	a list of simulation time and dates as below:
	• start: the date which simulation starts, must be in 'YYYY-MM-DD' format
	• start: the date which simulation ends, must be in 'YYYY-MM-DD' format
	• by: the interval of each steps in seconds

Value

a list: an object from class of creatBasin

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

createBasin.default default function for class of createBasin

Description

instantiates an object from class of createBasin

Usage

```
## Default S3 method:
createBasin(name = "Untittled", simulation=list(start=NULL,end=NULL,by=NULL))
```

createDiversion

Arguments

name	a string: a name for the basin
simulation	a list of simulation time and dates as below:
	• start: the date which simulation starts, must be in 'YYYY-MM-DD' format
	• start: the date which simulation ends, must be in 'YYYY-MM-DD' format
	• by: the interval of each steps in seconds

Value

a list: an object from class of creatBasin

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

createDiversion creates a diversion object

Description

instantiates an object from class of createDiversion

Usage

createDiversion(name,downstream,divertTo,capacity)

Arguments

name	(optional) a string: the name of diversion to be instantiated
downstream	(optional) an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.
divertTo	an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.
capacity	diversion capacity (cms)

Value

a list: an object from class of list instantiated by createDiversion

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

createDiversion.base *base function for class of* createDiversion

Description

instantiates an object from class of createDiversion

Usage

S3 method for class 'base'
createDiversion(name,downstream,divertTo,capacity)

Arguments

name	(optional) a string: the name of diversion to be instantiated
downstream	(optional) an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.
divertTo	an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.
capacity	diversion capacity (cms)

Value

a list: an object from class of list instantiated by createDiversion

Author(s)

Rezgar Arabzadeh

See Also

createDiversion.default

default function for class of createDiversion

Description

instantiates an object from class of createDiversion

Usage

```
## Default S3 method:
createDiversion(name="Unttitled",downstream=NA,divertTo,capacity)
```

Arguments

name	(optional) a string: the name of diversion to be instantiated
downstream	(optional) an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.
divertTo	an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.
capacity	diversion capacity (cms)

Value

a list: an object from class of list instantiated by createDiversion

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

createJunction creates a junction object

Description

instantiates an object from class of createJunction

Usage

Arguments

name	(optional) a string: the name of junction to be instantiated
downstream	(optional) an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.
inflow	(optional): a vector of direct inflow rather than flows comming from upstream (cms)
delayInflow	(optional): an integer presenting the time steps to delay direct inflow time series

Value

a list: an object from class createJunction

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

createJunction.base base function for class of createJunction

Description

instantiates an object from class of createJunction

Usage

Arguments

name	(optional) a string: the name of junction to be instantiated
downstream	(optional) an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.
inflow	(optional): a vector of direct inflow rather than flows comming from upstream (cms)
delayInflow	(optional): an integer presenting the time steps to delay direct inflow time series

Value

a list: an object from class of createJunction

createJunction.default

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

createJunction.default

default function for class of createJunction

Description

instantiates an object from class of createJunction

Usage

Arguments

name	(optional) a string: the name of junction to be instantiated
downstream	(optional) an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.
inflow	(optional): a vector of direct inflow rather than flows comming from upstream (cms)
delayInflow	(optional): an integer presenting the time steps to delay direct inflow time series

Value

a list: an object from class of createJunction

Author(s)

Rezgar Arabzadeh

See Also

createReach

Description

instantiates an object from class of createReach

Usage

Arguments

name	(optional) a string: the name of reach to be instantiated
routingMethod	a string: the method of channel routing. available types: "muskingum", and "muskingumcunge". default to "muskingum"
inflow	(optional): a vector of direct inflow rather than flows comming from upstream (cms)
routingParams	a list : parameters associated to the routingMethod:
	 k and x for "muskingum", bedWith (m), sideSlope (m/m), channelSlope (m/m), manningRoughness, riverLength (Km) for "muskingumcunge"
delayInflow	(optional): an integer presenting the time steps to delay direct inflow time series
downstream	(optional) an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.

Value

a list: an object from class of createReach

Author(s)

Rezgar Arabzadeh

See Also

createReach.base *base function for class of* createReach

Description

instantiates an object from class of createReach

Usage

Arguments

name	(optional) a string: the name of reach to be instantiated
routingMethod	a string: the method of channel routing. available types: "muskingum", and "muskingumcunge". default to "muskingum"
inflow	(optional): a vector of direct inflow rather than flows comming from upstream (cms)
routingParams	a list : parameters associated to the routingMethod:
	• k and x for "muskingum",
	- bedWith (m), sideSlope (m/m), channelSlope (m/m), manningRoughness, riverLength (Km) for "muskingumcunge"
delayInflow	(optional): an integer presenting the time steps to delay direct inflow time series
downstream	(optional) an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.

Value

a list: an object from class of list instantiated by createReach

Author(s)

Rezgar Arabzadeh

See Also

createReach.default default function for class of createReach

Description

instantiates an object from class of createReach

Usage

Arguments

name	(optional) a string: the name of reach to be instantiated
routingMethod	a string: the method of channel routing. available types: "muskingum", and "muskingumcunge". default to "muskingum".
inflow	(optional): a vector of direct inflow rather than flows comming from upstream (cms)
routingParams	a list : parameters associated to the routingMethod:
	 k and x for "muskingum", bedWith (m), sideSlope (m/m), channelSlope (m/m), manningRoughness, riverLength (Km) for "muskingumcunge"
delayInflow	(optional): an integer presenting the time steps to delay direct inflow time series
downstream	(optional) an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.

Value

a list: an object from class of createReach

Author(s)

Rezgar Arabzadeh

See Also

createReservoir creates a reservoir object

Description

instantiates an object from class of createReservoir

Usage

Arguments

name	(optional): a string: the name of reservoir to be instantiated
inflow	(optional) : a vector of direct inflow rather than flows comming from upstream (cms)
geometry	a list of geometric specifications of the reservoir:
	• storageElevationCurve: a data frame: a data frame at which its first coll- umn includes height (masl) and second collums presents equivalant volume to the height at first collumn (MCM)
	• dischargeElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalant discharge rate to the height at first collumn (cms)
	• storage: the maximum volume of reservoir capacity (MCM)
initialStorage	(optional) the initial storage of reservoir at the first time step of simulation (MCM)
delayInflow	(optional): an integer presenting the time steps to delay direct inflow time series
downstream	(optional): an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.

Value

a list: an object from class of createReservoir

Author(s)

Rezgar Arabzadeh

See Also

createReservoir.base base function for class of createReservoir

Description

instantiates an object from class of createReservoir

Usage

Arguments

name	(optional): a string: the name of reservoir to be instantiated
inflow	(optional) : a vector of direct inflow rather than flows comming from upstream (cms)
geometry	a list of geometric specifications of the reservoir:
	• storageElevationCurve: a data frame: a data frame at which its first coll- umn includes height (masl) and second collums presents equivalant volume to the height at first collumn (MCM)
	• dischargeElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalant discharge rate to the height at first collumn (cms)
	• storage: the maximum volume of reservoir capacity (MCM)
initialStorage	(optional): the initial storage of reservoir at the first time step of simulation (MCM)
delayInflow	(optional): an integer presenting the time steps to delay direct inflow time series
downstream	(optional): an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.

Value

a list: an object from class of createReservoir

Author(s)

Rezgar Arabzadeh

See Also

createReservoir.default

default function for class of createReservoir

Description

instantiates an object from class of createReservoir

Usage

Arguments

name	(optional): a string: the name of reservoir to be instantiated
inflow	(optional): a vector of direct inflow rather than flows comming from upstream (cms)
geometry	a list of geometric specifications of the reservoir:
	• storageElevationCurve: a data frame: a data frame at which its first coll- umn includes height (masl) and second collums presents equivalant volume to the height at first collumn (MCM)
	• dischargeElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalant discharge rate to the height at first collumn (cms)
	• storage: the maximum volume of reservoir capacity (MCM)
initialStorage	(optional): the initial storage of reservoir at the first time step of simulation (MCM)
delayInflow	(optional): an integer presenting the time steps to delay direct inflow time series
downstream	(optional): an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.

Value

a list: an object from class of createReservoir

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

createSubbasin creates a sub-basin object

Description

instantiates an object from class of createSubbasin

Usage

```
createSubbasin(name,precipitation,
    inflow,Area,delayInflow,downstream,
    transformMethod,lossMethod,BFSMethod,UH,
    abstractionParams,transformParams,lossParams,BFSParams)
```

Arguments

name	(optional): a string: the name of sub-basin to be instantiated
precipitation	a vector : a time series of precipitation hytograph (mm)
inflow	(optional): a vector of direct inflow rather than flows comming from upstream (cms)
Area	the area of basin (Km ²)
delayInflow	(optional): an integer presenting the time steps to delay direct inflow time series
downstream	(optional): an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.
transformMethod	E Constantino de Const
	a string: the type of transformation method. Available types: "SCS", "snyder", and "user" for user defined unit hydrograph. default to "SCS"
lossMethod	a string: the type of loss method. Available types: "SCS" and "horton"
BFSMethod	a string: The method of base flow separation. Available methods: 'nathan', 'chapman', 'eckhardt', 'recession'
UH	a data.frame: including the ordinates of user UH. the HU first collumn indicates time (Hr) and second collumn include flow rates (cms)
abstractionPara	ams
	a list: including parameters of simple surface and simple canopy methods.
	 canopyAbstaction depth of canopy abstraction in (mm)
	• surfaceAbstaction depth of surface abstraction in (mm)
BFSParams	a list including parameters associated with the method coerced in 'BFSMethod'.
	 alpha is in [0, 1] interval required for 'nathan', 'chapman', and 'eckhardt' methods
	• BFI is in [0, 1] interval required for 'eckhardt' method

24

transformPara	 k is in [0, 1] interval and timeInterval is in day required for 'recession' method
	a list of parameters associated to the selcted type of transformMethod:
	• Tlag for "SCS" method in (Hours)
	• Ct, Cp, L, and Lc for "snyder" method
lossParams	a list of parameters associated to the selcted type of lossMethod:
	• CN for "SCS" method
	• f0, f1, k other for "horton" method

Value

a list: an object from class of createSubbasin

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

createSubbasin.base *base function for class of* createSubbasin

Description

instantiates an object from class of createSubbasin

Usage

Arguments

name	(optional): a string: the name of sub-basin to be instantiated
precipitation	a vector : a time series of precipitation hytograph (mm)
inflow	(optional): a vector of direct inflow rather than flows comming from upstream (cms)
Area	the area of basin (Km ²)
delayInflow	(optional): an integer presenting the time steps to delay direct inflow time series

downstream	(optional): an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.
transformMethod	
	a string: the type of transformation method. Available types: "SCS", "snyder", and "user" for user defined unit hydrograph. default to "SCS"
lossMethod	a string: the type of loss method. Available types: "SCS" and "horton"
BFSMethod	a string: The method of base flow separation. Available methods: 'nathan', 'chapman', 'eckhardt', 'recession'
UH	a data.frame: including the ordinates of user UH. the HU first collumn indicates time (Hr) and second collumn include flow rates (cms)
abstractionPara	ams
	a list: including parameters of simple surface and simple canopy methods.
	 canopyAbstaction depth of canopy abstraction in (mm)
	• surfaceAbstaction depth of surface abstraction in (mm)
BFSParams	a list including parameters associated with the method coerced in 'BFSMethod'.
	 alpha is in [0, 1] interval required for 'nathan', 'chapman', and 'eckhardt' methods
	• BFI is in [0, 1] interval required for 'eckhardt' method
	 k is in [0, 1] interval and timeInterval is in day required for 'recession' method
transformParams	3
	a list of parameters associated to the selcted type of transformMethod:
	• Tlag for "SCS" method in (Hours)
	• Ct, Cp, L, and Lc for "snyder" method
lossParams	a list of parameters associated to the selcted type of lossMethod:
	• CN for "SCS" method

• f0, f1, k other for "horton" method

Value

a list: a list features for the constructed sub-basin

Author(s)

Rezgar Arabzadeh

See Also

createSubbasin.default

default function for class of createSubbasin

Description

instantiates an object from class of createSubbasin

Usage

```
## Default S3 method:
createSubbasin(name="Unttitled",
    precipitation,inflow=NA,Area,delayInflow=1,
    downstream=NA,
    transformMethod="SCS",
    lossMethod="none",
    BFSMethod='none',
    UH=NA,
    abstractionParams=list(canopyAbstraction=NULL,surfaceAbstraction=NULL),
    transformParams=list(Tlag=NULL,Cp=NULL,Ct=NULL,L=NULL,Lc=NULL),
    lossParams=list(CN=NULL,f0=NULL,f1=NULL,k=NULL),
    BFSParams=list(alpha=NULL,BFI=NULL,k=NULL))
```

Arguments

name	(optional): a string: the name of sub-basin to be instantiated	
precipitation	a vector : a time series of precipitation hytograph (mm)	
inflow	(optional): a vector of direct inflow rather than flows comming from upstream (cms)	
Area	the area of basin (Km ²)	
delayInflow	(optional): an integer presenting the time steps to delay direct inflow time series	
downstream	(optional): an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.	
transformMethod		
	a string: the type of transformation method. Available types: "SCS", "snyder", and "user" for user defined unit hydrograph. default to "SCS"	
lossMethod	a string: the type of loss method. Available types: "SCS" and "horton"	
BFSMethod	a string: The method of base flow separation. Available methods: 'nathan', 'chapman', 'eckhardt', 'recession'	
UH	a data.frame: including the ordinates of user UH. the HU first collumn indicates time (Hr) and second collumn include flow rates (cms)	
abstractionParams		
	a list: including parameters of simple surface and simple canopy methods.	
	• canopyAbstaction depth of canopy abstraction in (mm)	

	• surfaceAbstaction depth of surface abstraction in (mm)
BFSParams	a list including parameters associated with the method coerced in 'BFSMethod'.
	 alpha is in [0, 1] interval required for 'nathan', 'chapman', and 'eckhardt' methods
	• BFI is in [0, 1] interval required for 'eckhardt' method
	 k is in [0, 1] interval and timeInterval is in day required for 'recession' method
transformParams	5
	a list of parameters associated to the selcted type of transformMethod:
	• Tlag for "SCS" method in (Hours)
	• Ct, Cp, L, and Lc for "snyder" method
lossParams	a list of parameters associated to the selcted type of lossMethod:
	• CN for "SCS" method
	 f0, f1, k other for "horton" method

Value

a list: an object from class of ${\tt createSubbasin}$

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

loss

Excess rainfall computation

Description

this function provides parametric methods (e.g. "horton" and "SCS") to compute loss and direct runoff depths

Usage

loss(precipitation,lossMethod,lossParams)

loss.base

Arguments

precipitation	a vector of precipitation time series(mm)
lossMethod	a string including the type of lossMethod: "SCS" and "horton". default to "SCS" method
lossParams	a list of parameters associated to the selcted type of lossMethod:
	• the curve number, CN, and imperviousness in precentage for "SCS" method
	• f0, f1, k for "horton" method
	• timeInterval: the interval of each steps in seconds needed for "horton" method

Value

a dataframe: including precipitation, loss, and exess rainfall depth

Author(s)

Rezgar Arabzadeh

See Also

transform

Examples

```
precipitation<-sin(seq(0.1,pi-0.1,length.out=20))*30
lossParams<-list(f0=20,f1=5,k=2,timeInterval=3600,CN=65)
lossMethod<-c("horton","SCS")
(Horton_loss<-loss(precipitation,lossMethod[1],lossParams))
(SCS_loss<-loss(precipitation,lossMethod[2],lossParams))</pre>
```

loss.base

base function for class of reachRouting

Description

this function provides parametric methods (e.g. "horton" and "SCS") to compute loss and direct runoff depths

Usage

```
## S3 method for class 'base'
loss(precipitation,lossMethod,lossParams)
```

Arguments

precipitation	a vector of precipitation time series(mm)
lossMethod	a string including the type of lossMethod: "SCS" and "horton". default to "SCS" method
lossParams	a list of parameters associated to the selcted type of lossMethod:
	 the curve number, CN, and imperviousness in precentage for "SCS" method f0, f1, k for "horton" method timeInterval: the interval of each steps in seconds needed for "horton" method

Value

a dataframe: including precipitation, loss, and exess rainfall depth

Author(s)

Rezgar Arabzadeh

See Also

loss

loss.default default function for class of loss

Description

this function provides parametric methods (e.g. "horton" and "SCS") to compute loss and direct runoff depths

Usage

plot.createBasin

Arguments

precipitation	a vector of precipitation time series(mm)
lossMethod	a string including the type of lossMethod: "SCS" and "horton". default to "SCS" method
lossParams	a list of parameters associated to the selcted type of lossMethod:
	• the curve number, CN, and imperviousness in precentage for "SCS" method
	• f0, f1, k for "horton" method
	• timeInterval: the interval of each steps in seconds needed for "horton" method

Value

a dataframe: including precipitation, loss, and exess rainfall depth

Author(s)

Rezgar Arabzadeh

See Also

loss

plot.createBasin plots basin layout

Description

plot method for objects inherited from class of createBasin

Usage

```
## S3 method for class 'createBasin'
plot(x,...)
```

Arguments

х	an object from class of createBasin
	other objects that can be passed to plot function

Author(s)

Rezgar Arabzadeh

See Also

sim

plot.sim

Description

plot method for objects inherited from class of sim

Usage

S3 method for class 'sim'
plot(x,...)

Arguments

х	an object from class of sim
	other objects that can be passed to plot function

Author(s)

Rezgar Arabzadeh

See Also

sim

reachRouting channel

channel routing computation

Description

function for flood routing using parameteric Muskingum and muskingum-cunge techniques.

Usage

Arguments

inflow	a vector of runoff (cms) presenting a runoff event generated by excess rainfall computed by loss methods or an object inherited from any of the following classes :transform ; reachRouting ; reservoirRouting.
routingMethod	a string: the type of channel routing method: "muskingum" or "muskingumcunge". default to "muskingum"
routingParams	a list : parameters associated to the routingMethod:

	 k and x for "muskingum",
	- bedWith (m), sideSlope (m/m), channelSlope (m/m), manningRoughness, riverLength (Km) for "muskingumcunge"
simulation	a list of simulation time and dates as below:
	• start: the date which simulation starts, must be in 'YYYY-MM-DD' format
	• start: the date which simulation ends, must be in 'YYYY-MM-DD' format

• by: the interval of each steps in seconds

Value

a data.frame: including inflow time series routing resaults and simulation details

Author(s)

Rezgar Arabzadeh

References

Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.

See Also

reservoirRouting

Examples

reachRouting(inflow,routingMethod[1],routingParams,simulation)
reachRouting(inflow,routingMethod[2],routingParams,simulation)

reachRouting.base *base function for class of* reachRouting

Description

function for flood routing using parameteric Muskingum and muskingum-cunge techniques.

Usage

Arguments

inflow	a vector of runoff (cms) presenting a runoff event generated by excess rainfall computed by loss methods or an object inherited from any of the following classes :transform ; reachRouting ; reservoirRouting.
routingMethod	a string: the type of channel routing method: "muskingum" or "muskingumcunge". default to "muskingum"
routingParams	a list : parameters associated to the routingMethod:
	 k and x for "muskingum", bedWith (m), sideSlope (m/m), channelSlope (m/m), manningRoughness, riverLength (Km) for "muskingumcunge"
simulation	a list of simulation time and dates as below:
	 start: the date which simulation starts, must be in 'YYYY-MM-DD' format start: the date which simulation ends, must be in 'YYYY-MM-DD' format

• by: the interval of each steps in seconds

Value

a data.frame: including inflow time series routing resaults and simulation details

Author(s)

Rezgar Arabzadeh

References

Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.

See Also

reachRouting

reachRouting.default default function for class of reachRouting

Description

function for flood routing in channels using parameteric Muskingum and muskingum-cunge techniques.

reachRouting.default

Usage

Arguments

inflow	a vector of runoff (cms) presenting a runoff event generated by excess rainfall computed by loss methods or an object inherited from any of the following classes :transform ; reachRouting ; reservoirRouting.
routingMethod	a string: the type of channel routing method: "muskingum" or "muskingumcunge". default to "muskingum"
routingParams	a list : parameters associated to the routingMethod:
	 k and x for "muskingum", bedWith (m), sideSlope (m/m), channelSlope (m/m), manningRoughness, riverLength (Km) for "muskingumcunge"
simulation	a list of simulation time and dates as below:
	 start: the date which simulation starts, must be in 'YYYY-MM-DD' format start: the date which simulation ends, must be in 'YYYY-MM-DD' format by: the interval of each steps in seconds

Value

a list: including inflow time series routing resaults and simulation details

Author(s)

Rezgar Arabzadeh

References

Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.

See Also

reachRouting

reservoirRouting reservoir routing

Description

function for routing flood through a reservoir using classical Muskingum technique

Usage

reservoirRouting(inflow,geometry,initialStorage,simulation)

Arguments

inflow	a vector of in (cms) presenting a runoff event generated by excess rainfall com- puted by loss methods or an object inherited from any of the following classes :transform; reachRouting; reservoirRouting.
geometry	a list of geometric specifications of the reservoir:
	• storageElevationCurve: a data frame: a data frame at which its first coll- umn includes height (masl) and second collums presents equivalant volume to the height at first collumn (MCM)
	• dischargeElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalant discharge rate to the height at first collumn (cms)
	• storage: the maximum volume of reservoir capacity (MCM)
initialStorage	(optional) the initial storage of reservoir at the first time step of simulation (MCM). default to the capacity.
simulation	a list of simulation time and dates as below:
	 start: the date which simulation starts, must be in 'YYYY-MM-DD' format start: the date which simulation ends, must be in 'YYYY-MM-DD' format by: the interval of each steps in seconds

Value

a data.frame: including inflow time series and routing resaults

Author(s)

Rezgar Arabzadeh

References

Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.

See Also

reachRouting

reservoirRouting.base

Examples

reservoirRouting.base base function for class of reservoirRouting

Description

function for routing flood through a reservoir using classical Muskingum technique

Usage

```
## S3 method for class 'base'
reservoirRouting(inflow, geometry, initialStorage, simulation)
```

Arguments

inflow	a vector of in (cms) presenting a runoff event generated by excess rainfall computed by loss methods or an object inherited from any of the following classes :transform; reachRouting; reservoirRouting.
geometry	a list of geometric specifications of the reservoir:
	• storageElevationCurve: a data frame: a data frame at which its first coll- umn includes height (masl) and second collums presents equivalant volume to the height at first collumn (MCM)
	• dischargeElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalant discharge rate to the height at first collumn (cms)
	 storage: the maximum volume of reservoir capacity (MCM)
initialStorage	(optional) the initial storage of reservoir at the first time step of simulation (MCM). default to the capacity.
simulation	a list of simulation time and dates as below:
	 start: the date which simulation starts, must be in 'YYYY-MM-DD' format start: the date which simulation ends, must be in 'YYYY-MM-DD' format by: the interval of each steps in seconds

Value

a data.frame: including inflow time series and routing resaults

Author(s)

Rezgar Arabzadeh

References

Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.

See Also

reservoirRouting

reservoirRouting.default

default function for class of reservoirRouting

Description

function for routing flood through a reservoir using classical Muskingum technique

Usage

Arguments

inflow	a vector of in (cms) presenting a runoff event generated by excess rainfall com- puted by loss methods or an object inherited from any of the following classes :transform; reachRouting; reservoirRouting.
geometry	a list of geometric specifications of the reservoir:
	• storageElevationCurve: a data frame: a data frame at which its first coll- umn includes height (masl) and second collums presents equivalant volume to the height at first collumn (MCM)
	• dischargeElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalant discharge rate to the height at first collumn (cms)
	• storage: the maximum volume of reservoir capacity (MCM)

set.as

initialStorage	(optional) the initial storage of reservoir at the first time step of simulation
	(MCM). default to the capacity.
simulation	a list of simulation time and dates as below:
	• start: the date which simulation starts, must be in 'YYYY-MM-DD' format
	• start: the date which simulation ends, must be in 'YYYY-MM-DD' format
	• by: the interval of each steps in seconds

Value

a data.frame: including inflow time series and routing resaults

Author(s)

Rezgar Arabzadeh

References

Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.

See Also

reservoirRouting

set.as

RHMS objects connector

Description

this function connects a base object as a either of: 'downstream' or 'divertTo' to a target object, which are both instantiated by RHMS constructors.

Usage

set.as(base,target,type='downstream')

Arguments

base	An object; from either of classes of createReservoir, createJunction, createDiversion, createSubbasin, or createReach
target	An object; from either of classes of createReservoir, createJunction, createDiversion, createSubbasin, or createReach
type	the type of base object to be set as to the target object: 'downstream', or 'divertTo'

Value

an object from class of target object.

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

sim

RHMS simulation function

Description

simulates an object inherited form class of createBasin

Usage

sim(object)

Arguments

object an object from class of createBasin

Value

a list: the same as objects inherited from class of createBasin

Author(s)

Rezgar Arabzadeh

References

NRCS, U. (1986). Urban hydrology for small watersheds-Technical Release 55 (TR55). Water Resources Learning Center. Washington DC.

Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.

Examples

sim

```
R3<-createReach(name="Reach 3",downstream=J1)
J2<-createJunction(name="Junction 1",downstream=R2)</pre>
R4<-createReach(name="Reach 4",downstream=J2)
R5<-createReach(name="Reach 5",downstream=J2)
geometry<-list(storageElevationCurve=Zaab[[1]]$Gordebin$storageElevationCurve,</pre>
                dischargeElevationCurve=Zaab[[1]]$Gordebin$dischargeElevationCurve,
                capacity=Zaab[[1]]$Gordebin$capacity)
GordebinDam<-createReservoir(name="Gordebin", geometry=geometry,</pre>
                               initialStorage=geometry$capacity,downstream=R4)
R6<-createReach(name="Reach 6",downstream=GordebinDam)</pre>
Zangabad<-createSubbasin(name="Zangabad",
                           precipitation=Zaab[[2]]$zangabad,
                           Area=338.2,
                           downstream=R6,
                           lossMethod="SCS"
                           transformParams=list(Tlag=4),
                           lossParams=list(CN=70))
geometry<-list(storageElevationCurve=Zaab[[1]]$Silveh$storageElevationCurve,</pre>
                dischargeElevationCurve=Zaab[[1]]$Silveh$dischargeElevationCurve,
                capacity=Zaab[[1]]$Silveh$capacity)
SilvehDam<-createReservoir(name="Silveh", geometry=geometry,</pre>
                             initialStorage=geometry$capacity,downstream=R5)
R7<-createReach(name="Reach 7",downstream=SilvehDam)</pre>
Darbekaykhaneh<-createSubbasin(name="Darbekaykhaneh",
                           precipitation=Zaab[[2]]$darbekaykhaneh,
                           Area=338.8,
                           downstream=R7,
                           lossMethod="SCS",
                           transformParams=list(Tlag=3),
                           lossParams=list(CN=65))
D1<-createDiversion(name="Diversion 1",downstream=R3,</pre>
                     divertTo=SilvehDam,capacity=100)
R8<-createReach(name="Reach 8",downstream=D1)</pre>
Pardanan<-createSubbasin(name="Pardanan",</pre>
                           precipitation=Zaab[[2]]$pardanan,
                           Area=200.1,
                           downstream=R8,
                           lossMethod="SCS",
                           transformParams=list(Tlag=2),
                           lossParams=list(CN=75))
ZaabRB<-createBasin(name="Zaab",
                     simulation=list(start='2000-01-01',
                                      end ='2000-01-15',
                                           =3600))
                                      by
ZaabRB<-addObjectToBasin(R1,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(R2,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(R3,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(R4,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(R5,ZaabRB)
ZaabRB<-addObjectToBasin(R6,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(R7,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(R8,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(J1,ZaabRB)</pre>
```

```
ZaabRB<-addObjectToBasin(J2,ZaabRB)
ZaabRB<-addObjectToBasin(D1,ZaabRB)
ZaabRB<-addObjectToBasin(SilvehDam,ZaabRB)
ZaabRB<-addObjectToBasin(GordebinDam,ZaabRB)
ZaabRB<-addObjectToBasin(KanisibDam,ZaabRB)
ZaabRB<-addObjectToBasin(Pardanan,ZaabRB)
ZaabRB<-addObjectToBasin(Zangabad,ZaabRB)
ZaabRB<-addObjectToBasin(Darbekaykhaneh,ZaabRB)
```

Not run: plot(ZaabRB)

plot(sim(ZaabRB))

sim.base

base function for class of sim

Description

simulates an object inherited form class of createBasin

Usage

S3 method for class 'base'
sim(object)

Arguments

object an object from class of createBasin

Author(s)

Rezgar Arabzadeh

See Also

sim

sim.default

default function for class of sim

Description

simulates an object inherited form class of createBasin

Usage

Default S3 method: sim(object)

42

summary.sim

Arguments

object	an object from class	of createBasin
--------	----------------------	----------------

Author(s)

Rezgar Arabzadeh

See Also

sim

summary.sim summary method for RHMS objects

Description

summary method for objects inherited from class of sim

Usage

S3 method for class 'sim'
summary(object,...)

Arguments

object	an object from class of sim
	other objects that can be passed to summary function

Value

a matrix: including inflow and outflow volumes and peaks rates respectively

Author(s)

Rezgar Arabzadeh

See Also

sim

transform

Description

This function transforms an excess rainfall event to a direct runoff hydorgraph.

Usage

```
transform(rainfall,transformMethod,transformParams,Area,UH,simulation)
```

Arguments

rainfall	an object inherited from loss function
transformMethod	
	a string: the type of transformation method. available types: "SCS", "snyder", and "user". default to "SCS"
transformParams	8
	a list of parameters associated to the selcted type of transformMethod:
	Tlag for "SCS" method
	 Ct, Cp, L, and Lc for "snyder" method
Area	the area of drainage basin (Km^2)
UH	a data.frame: must be provided when transformMethod is set to "user". UH is the ordinates of a user defined UH by the which its first collumn is time (Hr) and the second collumn includes flow rates (cms)
simulation	a list of simulation time and dates as below:
	 start: the date which simulation starts, must be in 'YYYY-MM-DD' format start: the date which simulation ends, must be in 'YYYY-MM-DD' format by: the interval of each steps in seconds

Value

Hydrogaph of direct runoff

Author(s)

Rezgar Arabzadeh

See Also

sim

transform.base

Examples

```
Area=200
lossMethod<-"SCS"
lossParams<-list(CN=65)</pre>
transformMethod<-c("snyder","SCS","user")</pre>
simulation<-list(start='2000-01-01',end='2000-01-7',by=7200)</pre>
precipitation<-sin(seq(0.1,pi-0.1,length.out=10))*20</pre>
transformParams=list(Tlag=4,Cp=0.15,Ct=2,L=100,Lc=15)
UH<-data.frame(t=1:20,q=sin(seq(0,pi,length.out=20))*1)
SCS_loss<-loss(precipitation,lossMethod,lossParams)</pre>
snyder_transformation<-transform(rainfall=SCS_loss,</pre>
                                   transformMethod=transformMethod[1],
                                   transformParams,Area,UH=NA,simulation)
SCS_transformation <-transform(rainfall=SCS_loss,</pre>
                                   transformMethod=transformMethod[2],
                                   transformParams,Area,UH=NA,simulation)
user_transformation <-transform(rainfall=SCS_loss,</pre>
                                   transformMethod=transformMethod[3],
                                   transformParams,Area,UH,simulation)
```

transform.base

base function for class of transform

Description

This function transforms an excess rainfall event to a direct runoff hydorgraph.

Usage

```
## S3 method for class 'base'
transform(rainfall,transformMethod,transformParams,Area,UH,simulation)
```

Arguments

rainfall	an object inherited from loss function	
transformMethod		
	a string: the type of transformation method. available types: "SCS", "snyder", and "user". default to "SCS"	
transformParams		
	a list of parameters associated to the selcted type of transformMethod:	
	• Tlag for "SCS" method	
	• Ct, Cp, L, and Lc for "snyder" method	
Area	the area of drainage basin (Km ²)	
UH	a data.frame: must be provided when transformMethod is set to "user". UH is the ordinates of a user defined UH by the which its first collumn is time (Hr) and the second collumn includes flow rates (cms)	

simulation	a list of simulation time and dates as below:
	• start: the date which simulation starts, must be in 'YYYY-MM-DD' format
	• start: the date which simulation ends, must be in 'YYYY-MM-DD' format

• by: the interval of each steps in seconds

Value

Hydrogaph of direct runoff

Author(s)

Rezgar Arabzadeh

See Also

transform

transform.default *default function for class of* transform

Description

This function transforms an excess rainfall event to a direct runoff hydorgraph.

Usage

Arguments

transformMethod

a string: the type of transformation method. available types: "SCS", "snyder", and "user". default to "SCS"

transformParams

a list of parameters associated to the selcted type of transformMethod:

• Tlag for "SCS" method

	• Ct, Cp, L, and Lc for "snyder" method
Area	the area of drainage basin (Km^2)
UH	a data.frame: must be provided when transformMethod is set to "user". UH is the ordinates of a user defined UH by the which its first collumn is time (Hr) and the second collumn includes flow rates (cms)
simulation	 a list of simulation time and dates as below: start: the date which simulation starts, must be in 'YYYY-MM-DD' format start: the date which simulation ends, must be in 'YYYY-MM-DD' format by: the interval of each steps in seconds

Value

Hydrogaph of direct runoff

Author(s)

Rezgar Arabzadeh

See Also

transform

tune

tunning an RHMS model

Description

a function for tunning an RHMS model based on a set of observed time series, using *particle swarm* optimization

Usage

Arguments

object	an object from class of createBasin
target0bject	an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach associated to the observationTS
decisionObject:	S
	A list of objects, also, already existing in the object which their parameters needed to be optimized. They objects must be from either of classes: createSubbasin, createReach
observationTS	a vector: an observed flow time series (cms)
delay	(optional) an integer presenting the number of time steps to delay observationTS time series
transformBandW	ith
	an list: a list of vector(s), including upper and lower limit of parameters of
	tansformation methods. Each parameter search domain is set as a two-value
	vector, whose first element indicates lower limit and second elemnt is upper limit.
	• Ct=[1, 2.5] and Cp=[0.1, 0.3] are parameters for "Snyder" Unit Hydro- graph (SUH)
	• cn=[25, 85] curve number for "SCS" loss method
	 k for "horton" loss method
routingBandWit	h
	an list: a list of vector(s), including upper and lower limit of parameters of routing methods. Each parameter search domain is set as a two-value vector, whose first element indicates lower limit and second element is upper limit.
	 manning=[0.0001, 0.1] is a parameter used "muskingumcunge" method
	• x = [0.2, 0.6] and k=[1, 5] belong to "muskingum" channel routing method
maxiter	(optional) an integer: maximum number of iterations. default to the square of dimension of decision variables
plot	(optional) logical: plots the optimization results
update	(optional) logical: If FALSE, the optimized parameter(s) are returned, If TRUE, the calibrated object from class of createBasin is returned

Value

a vector of tunned parameters or an object from class of createBasin

Author(s)

Rezgar Arabzadeh

References

Kennedy, J. (1997). "The particle swarm: social adaptation of knowledge". Proceedings of IEEE International Conference on Evolutionary Computation. pp. 303-308

tune

Examples

```
J1<-createJunction (name="J1")
R1<-createReach(name="R1",routingMethod="muskingum",
                 routingParams=list(k=3,x=0.2),
                 downstream=J1)
R2<-createReach(name="R2",routingMethod="muskingumcunge",
                 routingParams=list(bedWith=50,
                                     sideSlope=2.
                                     channelSlope=0.0005,
                                     manningRoughness=0.025,
                                     riverLength=100),
                 downstream=J1)
S1<-createSubbasin(name = "S1",</pre>
                    precipitation=sin(seq(0,pi,length.out=20))*40,
                    Area=100, downstream=R1,
                    transformMethod="SCS",lossMethod="SCS",
                    transformParams=list(Tlag=4),lossParams=list(CN=60))
S2<-createSubbasin(name = "S2",</pre>
                    precipitation=sin(seq(0,pi,length.out=20))*30,
                    Area=300, downstream=R2,
                    transformMethod="snyder",lossMethod="horton",
                    transformParams=list(Cp=0.17,Ct=2,L=30,Lc=15),
                    lossParams=list(f0=10,f1=4,k=1))
basin1<-createBasin(name = "Ghezil_Ozan",</pre>
                     simulation=list(start='2000-01-01',
                                      end ='2000-01-05',
                                          =3600))
                                      by
basin1<-addObjectToBasin(S1, basin1)</pre>
basin1<-addObjectToBasin(S2, basin1)</pre>
basin1<-addObjectToBasin(R1, basin1)</pre>
basin1<-addObjectToBasin(R2, basin1)</pre>
basin1<-addObjectToBasin(J1, basin1)</pre>
## Not run: plot(basin1)
simulated<-sim(basin1)</pre>
plot(simulated)
observationTS1<-simulated$operation$junctions[[1]]$outflo[,1]
set.seed(1)
observationTS1<-observationTS1+rnorm(length(observationTS1),0,25)</pre>
y<-observationTS1; x<-1:length(observationTS1)</pre>
observationTS1<-predict(loess(y~x),x)</pre>
observationTS1[which(observationTS1<0)]<-0</pre>
observationTS<-observationTS1
plot(simulated$operation$junctions[[1]]$outflow[,1],typ='o',ylab='flow rate (cms)',xlab='time step')
lines(observationTS, col=2)
transformBandWith=list(ct=c(1 ,2.5),
```

transformBandWith=List(ct=c(1 ,2.5), cp=c(0.1,0.3), cn=c(25 ,85) ,

```
k =c(0.1,2))
routingBandWith=list(maning = c(0.0001,0.1),
                            = c(0.2 ,0.6),
                     Х
                     k
                            = c(1
                                       ,5))
targetObject<-J1
decisionObjects<-list(R1,R2,S1,S2)</pre>
## Not run:
tune(object=basin1,
     targetObject=targetObject,
     decisionObjects=decisionObjects,
     observationTS=observationTS,
     routingBandWith=routingBandWith,
     transformBandWith=transformBandWith,
     plot=TRUE)
```

End(Not run)

Zaab

datasets for Zaab subbasin, a subbasin in Kurdistan, Iran.

Description

an object inherited from class of createBasin. including features, of a sub-basin in Kurditan known as Zaab, such as: reservoirs, reachs, subbasins, and junctions.

Usage

data(Zaab)

Source

Iran Water Resources Management Company (2015)

Examples

data(Zaab)

Index

*Topic array baseFlowSeparation, 8 baseFlowSeparation.base,9 summary.sim, 43 transform, 44 transform.base, 45 transform.default, 46 *Topic datasets Zaab, 50 *Topic graphs plot.createBasin, 31 plot.sim, 32 *Topic **iteration** addObjectToBasin, 6 *Topic **list** abstraction, 4 abstraction.base, 5 abstraction.default, 5 baseFlowSeparation.default, 10 createBasin, 11 createBasin.base, 12 createBasin.default, 12 createDiversion, 13 createDiversion.base, 14 createDiversion.default, 15 createJunction, 15 createJunction.base, 16 createJunction.default, 17 createReach, 18 createReach.base, 19 createReach.default, 20 createReservoir. 21 createReservoir.base, 22 createReservoir.default, 23 createSubbasin, 24 createSubbasin.base, 25 createSubbasin.default, 27 reachRouting, 32 reachRouting.base, 33

reachRouting.default, 34 reservoirRouting, 36 reservoirRouting.base, 37 reservoirRouting.default, 38 set.as, 39 sim. 40 sim.base, 42 sim.default, 42 *Topic matrix loss, 28 loss.base, 29 loss.default, 30 *Topic **optimize** tune, 47 *Topic package RHMS-package, 2 abstraction, 3, 4abstraction.base, 5 abstraction.default, 5 addObjectToBasin, 3, 6, 11-22, 24-26, 28, 40 baseFlowSeparation, 3, 8, 9, 10 baseFlowSeparation.base,9 baseFlowSeparation.default, 10 createBasin, 3, 11 createBasin.base, 12 createBasin.default, 12 createDiversion, 3, 13, 39 createDiversion.base, 14 createDiversion.default, 15 createJunction, 3, 15, 39 createJunction.base, 16 createJunction.default, 17 createReach, 3, 18, 39 createReach.base, 19 createReach.default, 20 createReservoir, 3, 21, 39 createReservoir.base, 22

INDEX

```
createReservoir.default,23
createSubbasin,3–6,11,24,39
createSubbasin.base,25
createSubbasin.default,27
```

loss, *3*, 28, *30*, *31* loss.base, 29 loss.default, 30

plot.createBasin, 3, 31
plot.sim, 3, 32

reachRouting, 3, 32, 34–36 reachRouting.base, 33 reachRouting.default, 34 reservoirRouting, 3, 33, 36, 38, 39 reservoirRouting.base, 37 reservoirRouting.default, 38 RHMS (RHMS-package), 2 RHMS-package, 2

set.as, 3, 39
sim, 3, 4, 7, 31, 32, 40, 42-44
sim.base, 42
sim.default, 42
summary.sim, 3, 43

transform, *3*, *29*, 44, *46*, *47* transform.base, 45 transform.default, 46 tune, *3*, 47

Zaab, 50