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cov2 Variance and Covariance (Matrices)

Description
cov2() is similar to cov() but has an additional argument. The denominator n (bias = TRUE) can be
used (instead of n — 1) to give a biased estimator of the (co)variance.

Usage

cov2(x, y = NULL, bias = TRUE)

Arguments
X A numeric vector, matrix or data.frame.
y A numeric vector, matrix or data.frame.
bias A logical value. If bias = TRUE, n is used to give a biased estimator of the
(co)variance. If bias = FALSE, n — 1 is used (default: TRUE).
Value
C Estimation of the variance (resp. covariance) of x (resp. x and y).
defl.select deflation function
Description
The function defl.select() computes residual matrices X1 41, ..., X jn+1. These residual matrices

are determined according to the following formula: X 11 = X5, — yjhpz. .

Usage

defl.select(yy, rr, nncomp, nn, nbloc)

Arguments
vy A matrix that contains the SGCCA block components of each block: y14, ..., ysn
rr A list that contains the residual matrices X1, ..., X s
nncomp A 1 x J vector that contains the number of components to compute for each
block.
nn A 1 x J vector that contains the numbers of already computed components for
each block

nbloc Number of blocks.
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Value
resdefl A list of J elements that contains X1 41, ..., X jht1.
pdefl A list of J elements that contains pip,...,PJh.
miscrossprod Cross product function for inputs with missing data.
Description

Given vectors = and y as arguments, the function miscrossprod() returns the cross-product z‘y.
miscrossprod() handles missing data.

Usage

miscrossprod(x, y)

Arguments
X A numeric vector.
y A numeric vector.
Value
d.p The dot product between x and y: z*y
rgcca Regularized Generalized Canonical Correlation Analysis (RGCCA)
Description

Regularized Generalized Canonical Correlation Analysis (RGCCA) is a generalization of regular-
ized canonical correlation analysis to three or more sets of variables. Given J matrices X1, Xo, ..., Xy
that represent J sets of variables observed on the same set of n individuals. The matrices X1, X, ..., X5
must have the same number of rows, but may (and usually will) have different numbers of columns.
The aim of RGCCA is to study the relationships between these J blocks of variables. It consti-
tutes a general framework for many multi-block data analysis methods. It combines the power of
multi-block data analysis methods (maximization of well identified criteria) and the flexibility of
PLS path modeling (the researcher decides which blocks are connected and which are not). Hence,
the use of RGCCA requires the construction (user specified) of a design matrix C, that characterize
the connections between blocks. Elements of the symmetric design matrix C' = (¢, is equal to 1
if block ;7 and block k are connected, and 0 otherwise. The function rgcca() implements a monoton-
ically convergent algorithm (i.e. the bounded criteria to be maximized increases at each step of the
iterative procedure) that is very similar to the PLS algorithm proposed by Herman Wold and finds
at convergence a stationnary point of the RGCCA optimization problem. . Moreover, depending
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on the dimensionality of each block X}, j = 1, ..., J, the primal (when n > p;) algorithm or the
dual (when n < p;) algorithm is used (see Tenenhaus et al. 2015). Moreover, by deflation strategy,
rgeca() allow to compute several RGCCA block components (specified by ncomp) for each block.
Within each block, block components are guaranteed to be orthogonal using the deflation procedure.
The so-called symmetric deflation is considered in this implementation, i.e. each block is deflated
with respect to its own component(s). It should be noted that the numbers of components per block
can differ from one block to another.

Usage

rgcca(A, C = 1 - diag(length(A)), tau = rep(1, length(A)), ncomp = rep(1,
length(A)), scheme = "centroid”, scale = TRUE, init = "svd",

bias

Arguments

A
C

tau

ncomp

scheme

scale

init

bias

tol

verbose

Value

Y

TRUE, tol = 1e-08, verbose = TRUE)

A list that contains the J blocks of variables X1, X5, ..., X ;.

A design matrix that describes the relationships between blocks (default: com-
plete design).

tau is either a 1x.J vector or a max (ncomp)=*J matrix, and contains the values of
the shrinkage parameters (default: tau = 1, for each block and each dimension).
If tau = "optimal" the shrinkage paramaters are estimated for each block and
each dimension using the Schafer and Strimmer (2005) analytical formula . If
tau is a 1 * J numeric vector, tau[j] is identical across the dimensions of block
X;. If tau is a matrix, tau[k, j] is associated with X, (kth residual matrix for
block j)

A 1% J vector that contains the numbers of components for each block (default:
rep(1, length(A)), which gives one component per block.)

The value is "horst", "factorial”, "centroid" or any diffentiable convex scheme
function g designed by the user (default: "centroid").

If scale = TRUE, each block is standardized to zero means and unit variances
and then divided by the square root of its number of variables (default: TRUE).

The mode of initialization to use in RGCCA algorithm. The alternatives are
either by Singular Value Decompostion ("svd") or random ("random") (Default:
"SVd”).

A logical value for biaised or unbiaised estimator of the var/cov (default: bias =
TRUE).

The stopping value for convergence.

If verbose = TRUE, the progress will be report while computing (default: TRUE).

A list of J elements. Each element of Y is a matrix that contains the RGCCA
components for the corresponding block.

Alist of J elements. Each element of a is a matrix that contains the outer weight
vectors for each block.
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astar A list of J elements. Each element of astar is a matrix defined as Y[[j]][, h] =
A[[j11%* %astar([j]1[, h].

C A design matrix that describes the relation between blocks (user specified).

tau A vector or matrix that contains the values of the shrinkage parameters applied
to each block and each dimension (user specified).

scheme The scheme chosen by the user (user specified).

ncomp A 1 x J vector that contains the numbers of components for each block (user
specified).

crit A vector that contains the values of the criteria across iterations.

primal_dual A 1% J vector that contains the formulation ("primal” or "dual") applied to each
of the J blocks within the RGCCA alogrithm

AVE indicators of model quality based on the Average Variance Explained (AVE):

AVE(for one block), AVE(outer model), AVE(inner model).

References

Tenenhaus M., Tenenhaus A. and Groenen PJF (2017), Regularized generalized canonical correla-
tion analysis: A framework for sequential multiblock component methods, Psychometrika, in press

Tenenhaus A., Philippe C., & Frouin V. (2015). Kernel Generalized Canonical Correlation Analysis.
Computational Statistics and Data Analysis, 90, 114-131.

Tenenhaus A. and Tenenhaus M., (2011), Regularized Generalized Canonical Correlation Analysis,
Psychometrika, Vol. 76, Nr 2, pp 257-284.

Schafer J. and Strimmer K., (2005), A shrinkage approach to large-scale covariance matrix estima-
tion and implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32.

Examples

R HHHEHE
# Example 1 #
HHHHHHHEEEE
data(Russett)
X_agric =as.matrix(Russett[,c("gini","farm","rent"”)])
X_ind = as.matrix(Russett[,c("gnpr"”,"labo")])
X_polit = as.matrix(Russett[ , c("demostab”, "dictator”)])
A = list(X_agric, X_ind, X_polit)
#Define the design matrix (output = C)
C = matrix(c(o, o, 1, @, o, 1, 1, 1, @), 3, 3)
result.rgcca = rgcca(A, C, tau = c(1, 1, 1), scheme = "factorial”, scale = TRUE)
lab = as.vector(apply(Russett[, 9:11]1, 1, which.max))
plot(result.rgcca$Y[[1]], result.rgcca$Y[[2]1], col = "white",
xlab = "Y1 (Agric. inequality)”, ylab = "Y2 (Industrial Development)")
text(result.rgcca$Y[[11], result.rgcca$Y[[2]1], rownames(Russett), col = lab, cex = .7)

SR
# Example 2 #
SHEHHEHHHHHEE
data(Russett)
X_agric =as.matrix(Russett[,c("gini","farm”,"rent")])
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X_ind = as.matrix(Russett[,c("gnpr”,"labo")]1)

X_polit = as.matrix(Russett[ , c("inst”, "ecks"”, "death”,
"demostab”, "dictator”)])

A = list(X_agric, X_ind, X_polit, cbind(X_agric, X_ind, X_polit))

#Define the design matrix (output = C)
C = matrix(c(o, @, 0, 1, 0, @0, 0, 1, 0, @, 0, 1, 1, 1, 1, @), 4, 4)
result.rgcca = rgcca(A, C, tau = c(1, 1, 1, @), ncomp = rep(2, 4),
scheme = function(x) x*4, scale = TRUE) # HPCA
lab = as.vector(apply(Russett[, 9:11], 1, which.max))
plot(result.rgcca$Y[[4]11[, 11, result.rgcca$Y[[4]11[, 2], col = "white”,
xlab = "Global Component 1", ylab = "Global Component 2")
text(result.rgcca$Y[[4]11[, 1], result.rgcca$Y[[4]1]1[, 2], rownames(Russett),
col = lab, cex = .7)

## Not run:

HHHHHAAEH A

# example 3: RGCCA and leave one out #

HHHEHHAEEEE AR

Ytest = matrix(Q, 47, 3)

X_agric =as.matrix(Russett[,c("gini","farm”,"rent")])

X_ind = as.matrix(Russett[,c("gnpr”,"labo")]1)

X_polit = as.matrix(Russett[ , c("demostab”, "dictator”)])

A = list(X_agric, X_ind, X_polit)

#Define the design matrix (output = C)

C = matrix(c(o, o, 1, 0, o, 1, 1, 1, @), 3, 3)

result.rgcca = rgcca(A, C, tau = rep(1, 3), ncomp = rep(1, 3),
scheme = "factorial”, verbose = TRUE)

for (i in 1:nrow(Russett)){
B = lapply(A, function(x) x[-i, 1)
B = lapply(B, scale2)
resB = rgcca(B, C, tau = rep(1, 3), scheme = "factorial”, scale = FALSE, verbose = FALSE)
# look for potential conflicting sign among components within the loo loop.
for (k in 1:1length(B)){
if (cor(result.rgccasal[k]], resBsal[kl]) >= @)
resB$al[k]] = resB$al[[k]] else resB$al[k]] = -resB$al[k]]
}
Btest =lapply(A, function(x) x[i, 1)
Btest[[1]1]=(Btest[[1]1]-attr(BL[11],"scaled:center”)) /
(attr(BL[1]1], "scaled:scale"))/sqrt(NCOL(BLL1]11))
Btest[[2]1]=(Btest[[2]]-attr(BL[2]1], "scaled:center")) /
(attr(BL[2]], "scaled:scale"))/sqrt(NCOL(BL[21]1))
Btest[[3]1]1=(Btest[[3]]1-attr(BL[3]], "scaled:center”)) /
(attr(BLL3]1], "scaled:scale"))/sqrt(NCOL(BLL3]11))
Ytest[i, 1] = Btest[[1]1]1%*%resB$al[1]]
Ytest[i, 2] Btest[[2]1%*%resB$al[2]1]
Ytest[i, 3] = Btest[[3]1%x%resB$al[3]1]
}
lab = apply(Russett[, 9:11]1, 1, which.max)
plot(result.rgcca$Y[[1]1], result.rgcca$Y[[2]1], col = "white",
xlab = "Y1 (Agric. inequality)”, ylab = "Y2 (Ind. Development)")
text(result.rgcca$Y[[1]], result.rgcca$Y[[2]], rownames(Russett),
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col = lab, cex = .7)
text(Ytest[, 1], Ytest[, 2], substr(rownames(Russett), 1, 1),
col = lab, cex = .7)

## End(Not run)

rgccak

Internal function for computing the RGCCA parameters (RGCCA
block components, outer weight vectors, etc.).

Description

The function rgccak() is called by rgcca() and does not have to be used by the user. The function
rgccak() computes the RGCCA block components, outer weight vectors, etc., for each block and
each dimension. Depending on the dimensionality of each block X, j = 1, ..., J, the primal (when
n > p;) or the dual (when n < p;) algorithm is used (see Tenenhaus et al. 2015)

Usage

rgccak(A, C, tau = "optimal”, scheme = "centroid”, scale = FALSE,

verbose

Arguments

A

tau

scheme

scale

verbose

init

bias

tol

FALSE, init = "svd", bias = TRUE, tol = 1e-08)

A list that contains the J blocks of variables. Either the blocks (X7, X5, ..., X5)
or the residual matrices (Xp1, Xno, ..., XpJg)-

A design matrix that describes the relationships between blocks. (Default: com-
plete design).

A 1 % J vector that contains the values of the shrinkage parameters 7;, j =
1,...,J. (Default: 7; =1, j = 1,...,J). If tau = "optimal" the shrinkage inten-
sity paramaters are estimated using the Schafer and Strimmer (2005) analytical
formula.

The value is "horst", "factorial", "centroid" or any diffentiable convex scheme
function g designed by the user (default: "centroid").

if scale = TRUE, each block is standardized to zero means and unit variances
(default: TRUE).

Will report progress while computing if verbose = TRUE (default: TRUE).

The mode of initialization to use in the RGCCA algorithm. The alternatives are
either by Singular Value Decompostion or random (default : "svd").

A logical value for either a biaised or unbiaised estimator of the var/cov.

Stopping value for convergence.
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Value
Y A n * J matrix of RGCCA outer components
Z A n x J matrix of RGCCA inner components
a A list of outer weight vectors
crit The values of the objective function to be optimized in each iteration of the
iterative procedure.
AVE Indicators of model quality based on the Average Variance Explained (AVE):
AVE(for one block), AVE(outer model), AVE(inner model).
C A design matrix that describes the relationships between blocks (user specified).
tau 1 * J vector containing the value for the tau penalties applied to each of the J
blocks of data (user specified)
scheme The scheme chosen by the user (user specified).
References

Tenenhaus M., Tenenhaus A. and Groenen PJF (2017), Regularized generalized canonical correla-
tion analysis: A framework for sequential multiblock component methods, Psychometrika, in press

Tenenhaus A., Philippe C., & Frouin V. (2015). Kernel Generalized Canonical Correlation Analysis.
Computational Statistics and Data Analysis, 90, 114-131.

Tenenhaus A. and Tenenhaus M., (2011), Regularized Generalized Canonical Correlation Analysis,
Psychometrika, Vol. 76, Nr 2, pp 257-284.

Schafer J. and Strimmer K., (2005), A shrinkage approach to large-scale covariance matrix estima-
tion and implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32.

Russett Russett data

Description

The Russett data set (Russett, 1964) are studied in Gifi (1990). Three blocks of variables have been
defined for 47 countries. The first block X1 = [GINI, FARM, RENT] is related to "Agricultural In-
equality". The second block X2 = [GNPR, LABO] describes "Industrial Development". The third
one X3 = [INST, ECKS, DEAT] measures "Political Instability". An additional variable DEMO
describes the political regime: stable democracy, unstable democracy or dictatorship. Russett col-
lected this data to study relationships between Agricultural Inequality, Industrial Development and
Political Instability. Russett’s hypotheses can be formulated as follows: It is difficult for a country to
escape dictatorship when its agricultural inequality is above-average and its industrial development
below-average.

Usage

data(Russett)
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Format
A data frame with 47 observations on the following 11 numeric variables.

gini Inequality of land distribution

farm % farmers that own half of the land

rent % farmers that rent all their land

gnpr Gross national product per capita ($1955)

labo % of labor force employed in agriculture

inst Instability of executive (45-61)

ecks Number of violent internal war incidents (46-61)

death Number of people killed as a result of civic group violence (50-62)
demostab binary variable equal to 1 for stable democraty and 0 otherwise
demoinst binary variable equal to 1 for unstable democraty and O otherwise

dictator binary variable equal to 1 for dictatorship and O otherwise

References

Russett B.M. (1964), Inequality and Instability: The Relation of Land Tenure to Politics, World
Politics 16:3, 442-454.

Gifi, A. (1990), Nonlinear multivariate analysis, Chichester: Wiley.

Examples

#lLoading of the Russett dataset

data(Russett)

#Russett is partitioned into three blocks (X_agric, X_ind, X_polit)

X_agric =as.matrix(Russett[,c("gini","farm”,"rent")])

X_ind = as.matrix(Russett[,c("gnpr”,"labo")])

X_polit = as.matrix(Russett[ , c("inst”, "ecks”, "death”, "demostab”,
"demoinst”, "dictator”)1])

A = list(X_agric, X_ind, X_polit)

lapply(A, dim)

scale2 Scaling and Centering of Matrix-like Objects

Description

Standardization (to zero means and unit variances) of matrix-like objects.

Usage

scale2(A, center = TRUE, scale = TRUE, bias = TRUE)
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Arguments
A A numeric matrix.
center A logical value. If center = TRUE, each column is translated to have zero mean
(default: TRUE).
scale A logical value. If scale = TRUE, each column is transformed to have unit
variance (default = TRUE).
bias Logical value for biaised (1/n) or unbiaised (1/(n — 1)) estimator of the var/cov
(default = TRUE).
Value
A The centered and/or scaled matrix. The centering and scaling values (if any) are
returned as attributes "scaled:center" and "scaled:scale".
sgcca Variable Selection For Generalized Canonical Correlation Analysis
(SGCCA)
Description

SGCCA extends RGCCA to address the issue of variable selection. Specifically, RGCCA is com-
bined with an L1-penalty that gives rise to Sparse GCCA (SGCCA) which is implemented in the
function sgcca(). Given J matrices X1, Xo, ..., X s, that represent J sets of variables observed on
the same set of n individuals. The matrices X1, Xo, ..., X ; must have the same number of rows,
but may (and usually will) have different numbers of columns. Blocks are not necessarily fully
connected within the SGCCA framework. Hence the use of SGCCA requires the construction (user
specified) of a design matrix (C) that characterizes the connections between blocks. Elements of
the symmetric design matrix C' = (¢;;) are equal to 1 if block j and block £ are connected, and
0 otherwise. The SGCCA algorithm is very similar to the RGCCA algorithm and keeps the same
monotone convergence properties (i.e. the bounded criteria to be maximized increases at each step
of the iterative procedure and hits at convergence a stationary point). Moreover, using a defla-
tion strategy, sgcca() enables the computation of several SGCCA block components (specified by
ncomp) for each block. Block components for each block are guaranteed to be orthogonal when us-
ing this deflation strategy. The so-called symmetric deflation is considered in this implementation,
i.e. each block is deflated with respect to its own component. Moreover, we stress that the numbers
of components per block could differ from one block to another.

Usage

sgcca(A, C = 1 - diag(length(A)), c1 = rep(1, length(A)), ncomp = rep(1,
length(A)), scheme = "centroid”, scale = TRUE, init = "svd",
bias = TRUE, tol = .Machine$double.eps, verbose = FALSE)
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Arguments

A
C

cl

ncomp

scheme

scale
init
bias
tol

verbose

Value

Y

astar

scheme

cl

ncomp

crit
AVE

11

A list that contains the J blocks of variables X1, X5, ..., X ;.

A design matrix that describes the relationships between blocks (default: com-
plete design).

Either a 1 * J vector or a maxz(ncomp) * J matrix encoding the L1 constraints
applied to the outer weight vectors. Elements of c1 vary between 1/sqrt(p;)
and 1 (larger values of cl correspond to less penalization). If cl is a vector,
L1-penalties are the same for all the weights corresponding to the same block
but different components:

forallh,|ajn|r, < c1lily/pj

with p; the number of variables of X;. If c1 is a matrix, each row h defines the
constraints applied to the weights corresponding to components h:

forallh, |ajn|z, < cilh,jl\/p;-

A 1 x J vector that contains the numbers of components for each block (default:
rep(1, length(A)), which means one component per block).

Either "horst", "factorial" or "centroid" (Default: "centroid").

If scale = TRUE, each block is standardized to zero means and unit variances
and then divided by the square root of its number of variables (default: TRUE).

Mode of initialization use in the SGCCA algorithm, either by Singular Value
Decompostion ("svd") or random ("random") (default : "svd").

A logical value for biaised or unbiaised estimator of the var/cov.
Stopping value for convergence.

Will report progress while computing if verbose = TRUE (default: TRUE).

A list of J elements. Each element of Y is a matrix that contains the SGCCA
components for each block.

A list of J elements. Each element of a is a matrix that contains the outer weight
vectors for each block.

A list of J elements. Each element of astar is a matrix defined as Y[[j]][, h] =
A[[j11%*%astar[[j]][, h]

A design matrix that describes the relationships between blocks (user specified).
The scheme chosen by the user (user specified).

A vector or matrix that contains the value of cl applied to each block X, j =
1,...,J and each dimension (user specified).

A 1 x J vector that contains the number of components for each block (user
specified).

A vector that contains the values of the objective function at each iterations.

Indicators of model quality based on the Average Variance Explained (AVE):
AVE(for one block), AVE(outer model), AVE(inner model).
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References

Tenenhaus, A., Philippe, C., Guillemot, V., Le Cao, K. A., Grill, J., and Frouin, V. , "Variable
selection for generalized canonical correlation analysis.," Biostatistics, vol. 15, no. 3, pp. 569-583,
2014.

Examples

SEHEHRHHARNEHE

# Example 1 #

AR

## Not run:

# Download the dataset's package at http://biodev.cea.fr/sgcca/.
# --> gliomaData_0.4.tar.gz

require(gliomaData)
data(ge_cgh_locIGR)

A <- ge_cgh_locIGR$multiblocks

Loc <- factor(ge_cgh_locIGR$y) ; levels(Loc) <- colnames(ge_cgh_locIGR$multiblocks$y)
C <- matrix(c(e, 0, 1, @, 9, 1, 1, 1, @), 3, 3)

tau = c(1, 1, @)

# rgcca algorithm using the dual formulation for X1 and X2
# and the dual formulation for X3
ALC3]1] = ALC311C, -31
result.rgcca = rgcca(A, C, tau, ncomp = c(2, 2, 1), scheme = "factorial”, verbose = TRUE)
# sgcca algorithm
result.sgcca = sgcca(A, C, c1 = c(.071,.2, 1), ncomp = c(2, 2, 1),
scheme = "centroid”, verbose = TRUE)

S

# plot(yl, y2) for (RGCCA) #

S

layout(t(1:2))

plot(result.rgcca$Y[[1]11[, 1], result.rgcca$Y[[2]11[, 1], col = "white”, xlab = "Y1 (GE)",
ylab = "Y2 (CGH)", main = "Factorial plan of RGCCA")

text(result.rgcca$Y[[1]1]1[, 1], result.rgcca$Y[[2]1][, 11, Loc, col = as.numeric(Loc), cex =

plot(result.rgcca$Y[[1]1[, 11, result.rgcca$Y[[11][, 2], col = "white", xlab = "Y1 (GE)",
ylab = "Y2 (GE)", main = "Factorial plan of RGCCA")

text(result.rgcca$Y[[1]1]1[, 11, result.rgcca$Y[[1]11[, 21, Loc, col = as.numeric(Loc), cex =

HHHHHHHEEE A

# plot(yl, y2) for (SGCCA) #

HHHHHHAEE

layout (t(1:2))

plot(result.sgcca$Y[[1]1[, 1], result.sgcca$Y[[2]1][, 11, col = "white"”, xlab = "Y1 (GE)",
ylab = "Y2 (CGH)", main = "Factorial plan of SGCCA")

text(result.sgcca$Y[[1]1]1[, 1], result.sgcca$Y[[2]1][, 11, Loc, col = as.numeric(Loc), cex

plot(result.sgcca$Y[[1]1[, 1], result.sgcca$Y[[11]1[, 2], col = "white"”, xlab = "Y1 (GE)",
ylab = "Y2 (GE)", main = "Factorial plan of SGCCA")

.6)

.6)

.6)
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text(result.sgcca$Y[[1]1]1[, 1], result.sgcca$Y[[1]1I[, 21, Loc, col = as.numeric(Loc), cex = .6)

# sgcca algorithm with multiple components and different L1 penalties for each components
# (> cl1 is a matrix)
init = "random”
result.sgcca = sgcca(A, C, ¢l = matrix(c(.071,.2, 1, 0.06, 0.15, 1), nrow = 2, byrow = TRUE),
ncomp = c(2, 2, 1), scheme = "factorial”, scale = TRUE, bias = TRUE,
init = init, verbose = TRUE)
# number of non zero elements per dimension
apply(result.sgcca$al[1]1], 2, function(x) sum(x!=0))
#(-> 145 non zero elements for all and 107 non zero elements for al2)
apply(result.sgcca$al[2]], 2, function(x) sum(x!=0))
#(-> 85 non zero elements for a21 and 52 non zero elements for a22)
init = "svd"
result.sgcca = sgcca(A, C, ¢l = matrix(c(.071,.2, 1, 0.06, @.15, 1), nrow = 2, byrow = TRUE),
ncomp = c(2, 2, 1), scheme = "factorial”, scale = TRUE, bias = TRUE,
init = init, verbose = TRUE)
## End(Not run)

sgccak Internal function for computing the SGCCA parameters (SGCCA
block components, outer weight vectors etc.)

Description

The function sgccak() is called by sgcca() and does not have to be used by the user. sgccak() enables
the computation of SGCCA block components, outer weight vectors, etc., for each block and each
dimension.

Usage

sgccak(A, C, c1 = rep(1, length(A)), scheme = "centroid”, scale = FALSE,
tol = .Machine$double.eps, init = "svd”, bias = TRUE, verbose = TRUE)

Arguments
A A list that contains the J blocks of variables from which block components
are constructed. It could be eiher the original matrices (X1, Xa, ..., X 7) or the
residual matrices (Xp1, Xpo, ..., Xpny).
C A design matrix that describes the relationships between blocks.
cl A 1% J vector that contains the value of c1 applied to each block. The L1 bound

on a[[j]] is
lajlle < eililv/py-

with p; the number of variables of X; and with c1[j] between 0 and 1 (larger L1
bound corresponds to less penalization).

scheme Either "horst", "factorial" or "centroid" (default: centroid).
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scale If scale = TRUE, each block is standardized to zero means and unit variances
(default: TRUE).

tol Stopping value for convergence.

init Mode of initialization of the SGCCA algorithm. Either by Singular Value De-
compostion ("svd") or random ("random") (default: "svd").

bias Logical value for biaised (1/n) or unbiaised (1/(n—1)) estimator of the var/cov.

verbose Reports progress while computing, if verbose = TRUE (default: TRUE).

Value

Y A n * J matrix of SGCCA block components.

a A list of J elements. Each element contains the outer weight vector of each
block.

crit The values of the objective function at each iteration of the iterative procedure.

converg Speed of convergence of the alogrithm to reach the tolerance.

AVE Indicators of model quality based on the Average Variance Explained (AVE):
AVE(for one block), AVE(outer model), AVE(inner model).

C A design matrix that describes the relationships between blocks (user specified).

scheme The scheme chosen by the user (user specified).

soft.threshold The function soft.threshold() soft-thresholds a vector such that the LI-

norm constraint is satisfied.

Description

The function soft.threshold() soft-thresholds a vector such that the L.1-norm constraint is satisfied.

Usage
soft.threshold(x, sumabs = 1)

Arguments

X A numeric vector.

sumabs A numeric constraint on x’s L1 norm.
Value

Returns a vector resulting from the soft thresholding of = given sumabs

Examples

X <= rnorm(10@)
soft.threshold(x,0.5)
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tau.estimate Optimal shrinkage intensity parameters.

Description

Estimation of the optimal shrinkage parameters as described in [1,2] and implemented in a more
general version within the SHIP package [2].

Usage

tau.estimate(x)

Arguments

X Data set on which the covariance matrix is estimated.
Value

tau Optimal shrinkage intensity parameter
References

[1] Schaefer J. and Strimmer K., 2005. A shrinkage approach to large-scale covariance matrix
estimation and implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32.

[2] Jelizarow M., Guillemot V., Tenenhaus A., Strimmer K., Boulesteix A.-L., 2010. Over-optimism
in bioinformatics: an illustration. Bioinformatics 26:1990-1998.
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