
Package ‘RFGLS’
February 19, 2015

Version 1.1

Date 2013-8-29

Title Rapid Feasible Generalized Least Squares

Author Robert M. Kirkpatrick <rkirkpatrick2@vcu.edu>, Xi-
ang Li <lixxx554@umn.edu>, and Saonli Basu <saonli@umn.edu>.

Maintainer Saonli Basu <saonli@umn.edu>

Description
RFGLS uses a generalized least-squares method to perform single-marker association analysis,
in datasets of nuclear families containing parents, twins, and/or adoptees

Depends stats, bdsmatrix, Matrix, R (>= 2.15.0)

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2013-09-03 19:29:45

R topics documented:

RFGLS-package . 2
fgls . 3
FSV.frompedi . 9
geno . 12
gls.batch . 13
gls.batch.get . 19
map . 24
pedigree . 25
pheno . 26
rescovmtx . 28

Index 30

1

2 RFGLS-package

RFGLS-package Rapid Feasible Generalized Least Squares

Description

RFGLS uses a generalized least-squares method to perform single-marker association analysis, in
datasets of nuclear families containing parents, twins, and/or adoptees. It is designed for families
of no greater than four members. When conducting association analysis with a large number of
markers, as in GWAS, RFGLS uses rapid feasible generalized least-squares, an approximation to
feasible generalized least-squares (FGLS) that considerably reduces computation time with minimal
bias in p-values, and with negligible loss in power.

The package includes four functions. Function gls.batch() actually conducts GWAS using the
rapid feasible generalized least-squares approximation, under which the residual variance-covariance
matrix is estimated once from a regression of the phenotype onto covariates only, and is subse-
quently "plugged in" for use in all subsequent single-SNP analyses. Function fgls() is called by
gls.batch(), and conducts a single FGLS regression. It can be used to simultaneously estimate
fixed-effects regression coefficients and the residual covariance matrix. Function gls.batch.get()
is useful to restructure data, for use with fgls(). Function FSV.frompedi() creates family-
structure variables based upon available information in a pedigree file. Functions gls.batch()
and gls.batch.get() use these family-structure variables, which represent the type of family to
which each participant belongs and how s/he fits into that family.

Details

Package: RFGLS
Version: 1.1
Date: 2013/8/29
Depends: R (>= 2.15.0), stats, bdsmatrix, Matrix
License: GPL (>= 2)

Author(s)

Robert M. Kirkpatrick <rkirkpatrick2@vcu.edu>, Xiang Li <lixxx554@umn.edu>, and Saonli
Basu <saonli@umn.edu> .

Maintainer: Saonli Basu <saonli@umn.edu>

References

Li X, Basu S, Miller MB, Iacono WG, McGue M: A Rapid Generalized Least Squares Model for a
Genome-Wide Quantitative Trait Association Analysis in Families. Human Heredity 2011;71:67-82
(DOI: 10.1159/000324839)

fgls 3

fgls Feasible Generalized Least Squares regression with family GWAS
data.

Description

Jointly estimates the fixed-effects coefficients and residual variance-covariance matrix in a general-
ized least squares model by minimizing the (multivariate-normal) negative loglikelihood function,
via optim() in the R base distribution. The residual variance-covariance matrix is block-diagonal
sparse, constructed with bdsmatrix() from the bdsmatrix package.

Usage

fgls(fixed, data=parent.frame(), tlist=tlist, sizelist=sizelist,
med=c("UN","VC"), vmat=NULL, start=NULL, theta=NULL, drop=NULL,
get.hessian=FALSE, optim.method="BFGS", control=list(), weights=NULL,
sizeLab=NULL,Mz=NULL,Bo=NULL,Ad=NULL,Mix=NULL,indobs=NULL)

Arguments

fixed An object of class ’formula’ (or one that can be coerced to that class): a symbolic
description of the regression model to be fitted. The RHS of the formula contains
the fixed effects of the model.

data An optional data frame, list or environment (or object coercible by as.data.frame()
to a data frame) containing the variables in the model, as specified in argument
‘fixed’. If not found in ‘data’ the variables are taken from environment(formula),
typically the environment from which fgls() is called. If it contains a column
named "ID", then that column’s values will be the row and column names of
output element sigma (see below, under "Value").

tlist The character vector of the family labels ("famlab") in the data. The length of the
vector equals the number of family units. It should be ordered in the same order
as the families appear in the data. Object ‘tlist’ is created by the gls.batch()
and gls.batch.get() functions.

sizelist The integer vector of the family sizes in the data. The length of the vector
equals the number of family units. It should be ordered in the same order as the
families appear in the data. Object ‘sizelist’ is created by the gls.batch()
and gls.batch.get() functions.

med A character string, either "UN" or "VC", which are the two RFGLS methods
described by Li et al. (2011). If "UN" (default), which stands for "unstruc-
tured," the residual covariance matrix will be constructed from, at most, 12 pa-
rameters (8 correlations and 4 variances). If "VC", which stands for "variance
components," the residual covariance matrix will be constructed from, at most,
3 variance components (additive-genetic, shared-environmental, and unshared-
environmental).

4 fgls

vmat The previously estimated (or known) residual covariance matrix (for conducting
Rapid FGLS). If it is NULL (default), the matrix will either be jointly estimated
with the fixed-effects coefficients (FGLS), or will be constructed values sup-
plied to ‘theta’. If not NULL, must be either (1) an object of class ’bdsmatrix’
(from the bdsmatrix package), or (2) a character string specifying the filename
and path for a single-column text file, with header, containing the "blocks" of a
bdsmatrix. Note that at least one of ‘vmat’ and ‘theta’ must be NULL.

start A numeric vector of initial values for the residual-covariance parameters. If
NULL (default), generic start values are used. Otherwise, it must be a numerical
vector of either length 12 if med="UN", or of length 3 if med="VC". Each vector
element provides the initial value for the parameter corresponding to its index
(serial position). Values of NA are accepted, and will be replaced with the generic
start value for that parameter. See below under "Details" for which parameters
correspond to which indices. Users should bear in mind that especially poor
start values can cause optimization to fail. Ignored if no residual-covariance
parameters are estimated.

theta A numeric vector of previously estimated (or known) residual-covariance pa-
rameters. Defaults to NULL, in which case it is ignored. Otherwise, it must be a
numerical vector of of either length 12 if med="UN", or of length 3 if med="VC".
Each vector element provides the value for the parameter corresponding to its
index (serial position). Values of NA are accepted for extraneous parameters. See
below under "Details" for which parameters correspond to which indices. The
residual covariance matrix is constructed from the elements of ‘theta’, exactly
as-is. Note that at least one of ‘vmat’ and ‘theta’ must be NULL.

drop An integer vector of indices (serial positions) specifying which residual-covariance
parameters to drop. Dropped parameters are not estimated. In addition to those
specified by ‘drop’, fgls() automatically identifies which parameters are com-
pletely unidentified from the data (i.e., zero observations in the data are infor-
mative about them), and drops them as well. If ‘drop’ is NULL (default), no
user-specified parameters are dropped. Otherwise, it must be a vector of in-
tegers, either between 1 and 12 (inclusive) if med="UN", or between 1 and 2
(inclusive) if med="VC". Note that if a user-specified-dropped parameter ends
up being needed to construct the residual covariance matrix, its value is taken
to be that of its OLS equivalent: zero for correlations (med="UN") and for the
familial variance components (med="VC"), and the OLS residual variance for
variances (med="UN"). It may be prudent to drop parameters when very few
observations in the data are informative about them, which can at least save
computation time. See below under "Details" for which parameters correspond
to which indices. Ignored if no residual-covariance parameters are estimated.

get.hessian Logical; default is FALSE. If TRUE, fgls() will include the Hessian matrix from
optim() in its output list. Otherwise, the entry ’hessian’ in the list will be NULL.
Ignored if no residual-covariance parameters are estimated.

optim.method Character string, passed as ‘method’ to optim(). Ignored if no residual-covariance
parameters are estimated. The default, "BFGS", is usually fast and is recom-
mended for general use. If method "L-BFGS-B" is used, fgls() will supply
optim() with reasonable box constraints on the parameters, intended for use
with optim()’s default control parameters (see argument ‘control’ below).

fgls 5

Method "BFGS" (the default) may fail when any of the residual-covariance pa-
rameters are poorly identified from the data. In these cases, it may be wise
simply to drop the offending parameters. Other optimization methods, includ-
ing "L-BFGS-B", can succeed where "BFGS" fails. Method "SANN" should not
generally be relied upon to find the global optimum, but it can sometimes pro-
duce reasonable, approximate solutions in instances where no other method
works. As a last-resort diagnostic, one can combine optim.method="SANN"
with hessian=TRUE, since the resulting Hessian matrix may provide clues as to
which parameters are causing problems.

control A list of control parameters passed to optim(), intended for advanced users.
The default is also optim()’s default, which should be adequate for general use.

weights A numeric vector of weights, with length equal to the number of observations in
the data. Defaults to NULL.

sizeLab This is an optional argument, and may be eliminated in future versions of this
package. Defaults to NULL; otherwise, must be a character string. If the number
of characters in the string is not equal to the size of the largest family in the data,
fgls() will produce a warning.

Mz, Bo, Ad, Mix, indobs

These arguments are deprecated, and their values are ignored. They are retained
in this package version for legacy reasons, but will be eliminated in future ver-
sions.

Details

Function fgls() was originally intended to be called automatically, from within gls.batch().
However, calling it directly is likely to be useful to advanced users. The difficulty when directly
invoking fgls() is supplying the function with arguments ‘tlist’ and ‘sizelist’. But, these can
be obtained easily via gls.batch.get().

When residual-covariance parameters are to be estimated, fgls() will attempt optimization, at
most, two times. If the initial attempt fails, fgls() prints a message saying so to the console,
and tries a second time. On the second attempt, before each evaluation of the objective function,
the blocks composing the block-diagonal residual covariance matrix are forced to be positive def-
inite. This uses nearPD() from the Matrix package, which turns each block matrix into its near-
est positive-definite approximation (where "nearest" is meant in a least-squares sense). Forcing
positive-definiteness in this way is only used for the second attempt, and not for the initial attempt
(which has its own way of ensuring a positive-definite solution), since it slows down optimization
and is unnecessary when the parameters are well-identified. Furthermore, it can have consequences
the user might not expect. For instance, in fgls()’s output (see below, under "Value"), the ele-
ments of the residual covariance matrix sigma might not correspond to the parameter estimates in
estimates, or covariances that are supposed to be the same across families might not be so in the
actual matrix sigma. Nevertheless, the second attempt may succeed when the initial attempt fails.

When med="UN", the residual covariance matrix is constructed from, at most, 12 parameters–8
correlations and 4 variances. Below is an enumerated list of those 12 parameters, in which the
number of each list entry is the index (serial position) of that parameter, and the quoted text is the
element name of each estimated parameter as it appears in fgls() output:

1. "cor(m,f)", correlation between mothers and fathers.

6 fgls

2. "cor(c/b,m)", correlation between biological offspring and mothers.

3. "cor(c/b,f)", correlation between biological offspring and fathers.

4. "cor(c,c)", MZ-twin correlation.

5. "cor(b,b)", full-sibling (DZ-twin) correlation.

6. "cor(a,m)", correlation between adoptees and mothers.

7. "cor(a,f)", correlation between adoptees and fathers.

8. "cor(a,a)", adoptive-sibling correlation.

9. "var(O)", offspring variance.

10. "var(m)", mother variance.

11. "var(f)", father variance.

12. "var(ind)", variance for "independent observations."

When med="VC", the residual covariance matrix is constructed from, at most, 3 variance compo-
nents. Below is an enumerated list of those 3 parameters, in which the number of each list entry
is the index (serial position) of that parameter, and the quoted text is the label of each estimated
parameter as it appears in fgls() output:

1. "A", additive-genetic variance.

2. "C", shared-environmental variance (compound-symmetric within families).

3. "E", unshared-environmental variance (which cannot be dropped).

Additive-genetic variance contributes to covariance between family members commensurately to
the expected proportion of segregating alleles they share: 1.0 for MZ twins, 0.5 for first-degree
relatives, 0 for spouses and adoptive relatives. Shared-environmental variance, as defined here,
represents covariance between biologically unrelated family members (including spouses).

In package version 1.0, arguments ‘subset’ and ‘na.action’ were accepted, and passed to lm().
Neither are accepted any longer. Subsetting should be done before directly calling fgls(); the
function handles NA’s in the data by what is (in effect) na.action=na.omit.

Value

An object of class ’fgls’. It includes the following components:

ctable Table of coefficients reminiscent of output from summary.lm(). Each fixed-
effect term (including the intercept) has one row of the table, which are ordered
as the terms appear in argument ‘fixed’. Each row contains a point estimate, an
estimated standard error, a t-statistic, and a two-tailed p-value.

Rsqd The generalized-least-squares coefficient of determination, a la Buse (1973).

estimates The vector of MLEs of the parameters used to construct the residual covariance
matrix, ordered as in the lists above, under "Details." Dropped parameters are
given value NA. If no residual-covariance parameters are estimated, will instead
be a single NA.

drop A vector of parameter indices, representing which residual-covariance param-
eters were dropped (not estimated). See above, under "Details," for which pa-
rameters correspond to which indices. NULL if no parameters were dropped or
estimated.

fgls 7

iter NULL if no residual-covariance parameters were estimated. Otherwise, a single-
row data frame, containing miscellaneous output pertaining to the optimization,
specifically, the following named columns:

1. iterations (integer): the number of function iterations, as returned from
optim().

2. convergence (integer): convergence code, as returned from optim(); value
0 means that convergence was successful.

3. message (character): additional information from the optimizer; a single
whitespace means that optim() returned a message of NULL.

4. first_try (logical): Did fgls()’s first attempt at optimization succeed?
If FALSE, then during the second attempt, fgls() had to force the block ma-
trices of the residual covariance matrix to be positive-definite, as described
above, under "Details."

loglik The negative loglikelihood, at the solution. If the residual-covariance parame-
ters were estimated, then it equals -1 times the maximized joint loglikelihood
of those parameters and the regression coefficients. If the residual-covariance
parameter values were provided with argument ‘vmat’ or ‘theta’, then it equals
-1 times the maximized joint loglikelihood of the regression coefficients, condi-
tional on the values supplied for the residual-covariance parameters.

sigma The residual covariance matrix. It is of class ’bdsmatrix’. Its row and col-
umn names are taken from the column named "ID", if any, in argument data,
otherwise its row and column names are sequential numbers. One of its slots,
sigma@blocks, can be written to a single-column text file and subsequently read
in by gls.batch(). Due to its potential size, it is not advised to return sigma to
R’s standard output or print it to the console.

hessian If get.hessian=TRUE and residual-covariance parameters were estimated, the
Hessian matrix from optim() for those parameters; NULL otherwise.

n Sample size (i.e., number of individual participants), after excluding those with
missing data (NA’s).

df.residual Residual degrees of freedom in the feasible generalized-least-squares regres-
sion, as returned by lm(). Note that it only reflects the number of regression
coefficients, and not the number of residual-covariance parameters that were
estimated.

residuals Residuals from the feasible generalized-least-squares regression. It is a vector
of length n, i.e. it is not padded with NA’s for participants with missing data.

fitted.values Predicted phenotype scores from the feasible generalized-least-squares regres-
sion. It is a vector of length n, i.e. it is not padded with NA’s for participants with
missing data.

variance The estimated covariance matrix for (the sampling distribution of) the fixed-
effects regression coefficients.

call Echo of fgls() function call.

Function fgls() also prints to console the estimates of non-dropped residual-covariance parameters
(if any).

8 fgls

Author(s)

Xiang Li <lixxx554@umn.edu>, Robert M. Kirkpatrick <kirk0191@umn.edu>, and Saonli Basu
<saonli@umn.edu> .

References

Li X, Basu S, Miller MB, Iacono WG, McGue M: A Rapid Generalized Least Squares Model for a
Genome-Wide Quantitative Trait Association Analysis in Families. Human Heredity 2011;71:67-82
(DOI: 10.1159/000324839)

Buse, A: Goodness of Fit in Generalized Least Squares Estimation The American Statistician
1973;27:106-108

See Also

gls.batch

Examples

data(pheno)
data(geno)
data(map)
data(pedigree)
data(rescovmtx)
foo <- gls.batch.get(

phenfile=pheno,genfile=data.frame(t(geno)),pedifile=pedigree,
covmtxfile.in=NULL,theta=NULL,snp.names=map[,2],input.mode=c(1,2,3),
pediheader=FALSE,pedicolname=c("FAMID","ID","PID","MID","SEX"),
sep.phe=" ",sep.gen=" ",sep.ped=" ",
phen="Zscore",covars="IsFemale",med=c("UN","VC"),
outfile,col.names=TRUE,return.value=FALSE,
covmtxfile.out=NULL,
covmtxparams.out=NULL,
sizeLab=NULL,Mz=NULL,Bo=NULL,Ad=NULL,Mix=NULL,indobs=NULL)

bar <- fgls(
Zscore ~ rs3934834 + IsFemale, data=foo$test.dat, tlist=foo$tlist,
sizelist=foo$sizelist,med=c("UN","VC"),
vmat=rescovmtx, #<--Resid. cov. matrix from fgls onto IsFemale only.
start=NULL, theta=NULL, drop=NULL, get.hessian=FALSE,
optim.method="BFGS", control=list(), weights=NULL,
sizeLab=NULL,Mz=NULL,Bo=NULL,Ad=NULL,Mix=NULL,indobs=NULL)

bar$ctable
To simultaneously estimate residual covariance matrix
and regression coefficients for rs3934834 & IsFemale,
use the same syntax, except with vmat = NULL .

FSV.frompedi 9

FSV.frompedi Family-Structure Variables from Pedigree File

Description

This function creates the family-structure variables "FTYPE" (family-type) and "INDIV" (individual
code) from available information in a pedigree file. Note that FSV.frompedi() is called internally
by gls.batch() and gls.batch.get() when their argument ‘input.mode’ is set to 3.

Usage

FSV.frompedi(pedi.dat,phen.dat)

Arguments

pedi.dat A pedigree file, as a data frame, with named columns. Typically, it will con-
tain at least the following five named columns (which correspond to the default
for argument ‘pedicolname’ to gls.batch()): "FAMID", (family IDs), "ID"
(unique individual IDs), "PID" (paternal ID), "MID" (maternal ID), and "SEX"
(coded 1 for male, 2 for female). The paternal and maternal IDs of founders
must either be 0 or NA.
Argument ‘pedi.dat’ may also contain any/all of the following three named
columns, the effects of which are described below under "Details": "ZYGOSITY",
"ADOPTED", and "INDEP". The "ZYGOSITY" column must contain a value of 1
for each MZ twin, and a value of 2 for each DZ twin. The "ADOPTED" column
must be a dummy variable for adoptive status, i.e. with value 1 for adoptees
and value 0 otherwise (NA’s are treated as 0). The "INDEP" column must be a
dummy variable for whether the individual should be treated as an "independent
observation" (family-type 6), with 1 for "yes" and 0 for "no" (NA’s are treated as
0).

phen.dat A phenotype file, as a data frame with named columns. At the bare minimum,
it must contain a column of unique individual IDs, named "ID". The value re-
turned by FSV.frompedi is this same data frame, with columns named "FTYPE"
and "INDIV" appended thereto, unless columns with those names were already
present, in which case their contents will be overwritten with new values. Any
other named columns in ‘phen.dat’ are ignored.

Details

RFGLS recognizes six recognized family types, which are distinguished primarily by how the off-
spring in the family are related to one another:

• FTYPE=1, containing MZ twins;

• FTYPE=2, containing DZ twins;

• FTYPE=3, containing adoptees;

• FTYPE=4, containing non-twin full siblings;

10 FSV.frompedi

• FTYPE=5, "mixed" families containing one biological offspring and one adoptee;

• FTYPE=6, containing "independent observations" who do not fit into a four-person nuclear
family.

It is assumed that all offspring except adoptees are biological children of the parents in the family.
The four individual codes are:

• INDIV=1 is for "Offspring #1;"

• INDIV=2 is for "Offspring #2;"

• INDIV=3 is for mothers;

• INDIV=4 is for fathers.

The distinction between "Offspring #1" and "#2" is mostly arbitrary, except that in "mixed" fami-
lies(FTYPE=5), the biological offspring MUST have INDIV=1, and the adopted offspring, INDIV=2.

The way that FSV.frompedi() assigns family-types and individual codes to participants depends
upon the presence/absence of eight named columns in ‘pedi.dat’: "ID", "FAMID", "PID", "MID",
"SEX", "ZYGOSITY", "ADOPTED", "INDEP". If any of the first five of these are absent, all participants
are assigned FTYPE=6 and INDIV=1, with a warning. Assuming that those first five columns are
present, what FSV.frompedi() does depends upon the presence/absence of the other three columns,
as follows.

If "INDEP" is present, then FSV.frompedi() assigns FTYPE=6, INDIV=1 to participants with INDEP=1.
These participants are then disregarded for the rest of the job. Like the other functions in this pack-
age, FSV.frompedi() treats participants with FTYPE=6 as the sole members of their own family
units, and not as part of the family corresponding to their family ID.

If "ZYGOSITY" and "ADOPTED" are both absent, then (after first checking for "INDEP", as above), all
participants are assigned FTYPE=4. Non-founders are identified as offspring, and participants whose
IDs appear in "MID" or "PID" are assigned INDIV=3 or INDIV=4, respectively. Offspring individual
codes are adjusted so that each family has only one instance each of INDIV=1 and INDIV=2. If more
than two offspring are identified in a family, or if more than one mother or more than one father are
identified in family, these participants are forced to FTYPE=6, INDIV=1. Also, any participant not
otherwise assigned an individual code is given FTYPE=6, INDIV=1.

If "ZYGOSITY" is present but "ADOPTED" is absent, then FSV.frompedi() behaves similarly, ex-
cept that (after first checking for "INDEP", as above) known twins are identified as offspring, and
participants belonging to a family containing at least one twin are assigned FTYPE=1 (for MZ) or
FTYPE=2 (for DZ), as the case may be. Member of families with no twins are assigned FTYPE=4.
The program then proceeds as described in the immediately preceding paragraph.

If "ADOPTED" is present, FSV.frompedi() first makes some simple family-type assignments: if
"ZYGOSITY" is present, to FTYPE=1 and FTYPE=2 as appropriate (see above), and then if "INDEP"
is present, to FTYPE=6, INDIV=1 as appropriate (see above). Then, within each family, the program
resolves each member in order of ID, from least to greatest. The first non-founder is assigned
INDIV=1, the second, INDIV=2, and any thereafter, FTYPE=6, INDIV=1. The first adoptee is assigned
INDIV=2, the second, INDIV=1, and any thereafter, FTYPE=6, INDIV=1. The first female non-adoptee
non-founder is assigned INDIV=3, and any others are assigned FTYPE=6, INDIV=1. The first male
non-adoptee non-founder is assigned INDIV=4, and any others are assigned FTYPE=6, INDIV=1. If
family-type has not yet been assigned, then it is resolved as FTYPE=3 if there are two adoptees,
FTYPE=5 if there is one adoptee and one biological offspring, and as FTYPE=4 otherwise.

Function FSV.frompedi() produces a warning whenever it forces a non-founder to FTYPE=6, INDIV=1.

FSV.frompedi 11

Note that there is definitely a degree of arbitrariness in how ambiguous cases are resolved, in that
FSV.frompedi() scans through the pedigree file from top to bottom after it has sorted the file by
family ID, and by ID within the same family. So for example, if two participants in the same family
are both provisionally assigned INDIV=3, then the apparent mother with the smaller ID retains
INDIV=3, and the other is forced to FTYPE=6, INDIV=1.

Value

A data frame, containing the same columns as ‘phen.dat’, with the addition of "FTYPE" and
"INDIV". Usually, this data frame will simply be ‘phen.dat’ with "FTYPE" and "INDIV" appended
thereto. However, if ‘phen.dat’ contained columns named "FTYPE" or "INDIV", the values in these
columns will be overwritten with the new values produced by FSV.frompedi().

Author(s)

Robert M. Kirkpatrick <kirk0191@umn.edu>.

See Also

gls.batch, gls.batch.get

Examples

data(pheno)
data(pedigree)
table(pheno$FTYPE) ##<--Frequencies of correct family types.

fsvtest1 <- FSV.frompedi(pedi.dat=pedigree,
phen.dat=data.frame(ID=pheno[,2])) ##<--Bare minimum phenotype file.

table(fsvtest1$FTYPE) ##<--Not correct, because pedigree file
##doesn't have enough additional info
##to recover the actual family-types
##and individual codes.

#Create "ZYGOSITY" column:
pedigree$ZYGOSITY <- NA
pedigree$ZYGOSITY[pheno$FTYPE==1 & pheno$INDIV<3] <- 1
pedigree$ZYGOSITY[pheno$FTYPE==2 & pheno$INDIV<3] <- 2

fsvtest2 <- FSV.frompedi(pedi.dat=pedigree,phen.dat=data.frame(ID=pheno[,2]))
table(fsvtest2$FTYPE) ##<--Still not right, because pedigree file

##lacks info about adoptees.

#Create "ADOPTED" column:
pedigree$ADOPTED <- 0
pedigree$ADOPTED[pheno$FTYPE==3 & pheno$INDIV<3] <- 1
pedigree$ADOPTED[pheno$FTYPE==5 & pheno$INDIV==2] <- 1
fsvtest3 <- FSV.frompedi(pedi.dat=pedigree,phen.dat=data.frame(ID=pheno[,2]))
table(fsvtest3$FTYPE) ##<--Almost there.

#Create "INDEP" column:

12 geno

pedigree$INDEP <- 0
pedigree$INDEP[pheno$FTYPE==6] <- 1
fsvtest4 <- FSV.frompedi(pedi.dat=pedigree,phen.dat=data.frame(ID=pheno[,2]))
table(fsvtest4$FTYPE) ##<--Correct family types have been recovered.
table(pheno$FTYPE) ##<--Compare.
all(pheno$FTYPE==fsvtest4$FTYPE) ##<--TRUE.

geno Simulated genotypic dataset

Description

A dataset of simulated genotypes on 10 arbitrary SNPs, for the same simulees in datasets pheno and
pedigree.

Usage

data(geno)

Format

A data frame containing only integers, with 1 row per SNP, and 1 column per subject. The row and
column names are rs numbers and individual IDs, respectively.

Details

The genotypes are coded as counts of each SNPs reference allele on the HapMap (http://hapmap.
ncbi.nlm.nih.gov/) positive strand. First, 10 SNPs, one each from the first 10 human chromo-
somes, were selected arbitrarily. Then, genotypes were generated for founders (parents, adoptees,
and "independent observations"), under Hardy-Weinberg equilibrium, using the allele frequencies
from HapMap’s CEU reference data (representing Caucasians of European Ancestry). After that,
genes were "dropped" from parents to offspring. Subjects’ genotypes on the arbitrarily chosen ef-
fect locus, rs7681769, were conditioned upon to simulate quantitative phenotype scores (Zscore
in dataset pheno). The true effect size in the data-generating distribution is approximately 0.5% of
phenotypic variance.

Dataset geno has both row and column names, which is acceptable for a data frame to be provided
as argument ‘genfile’ to gls.batch(). However, a genotype file to be read from disk should have
NEITHER an extra column of row labels nor an extra row of column headers.

Details about each SNP may be found in dataset map.

Examples

data(geno)
str(data.frame(t(geno)))
round(cor(t(geno)),3) ##<--SNPs are on different chromosomes, so no LD.
##Also see examples for functions fgls(), gls.batch(), and gls.batch.get().

http://hapmap.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/

gls.batch 13

gls.batch Generalized least-squares batch analysis.

Description

Fits a generalized least-squares regression model to test association between a quantitative pheno-
type and all SNPs in a genotype file, one at a time, via Rapid Feasible Generalized Least Squares.
For each SNP, genotype is treated as a fixed effect, and the residual variance-covariance matrix
is also estimated. In each trait-SNP association test, the fgls() function is used for parameter
estimation.

The arguments to gls.batch() may be regarded as belonging to four groups:

1. those concerning how to load the input (‘phenfile’, ‘genfile’, ‘pedifile’, ‘covmtxfile.in’,
‘theta’, ‘snp.names’, ‘input.mode’, ‘pediheader’, ‘pedicolname’, ‘sep.phe’, ‘sep.gen’,
‘sep.ped’);

2. those concerning what to do with the input, that is, the actual analysis (‘phen’, ‘covars’,
‘med’);

3. those concerning how to provide the output (‘outfile’, ‘col.names’, ‘return.value’, ‘covmtxfile.out’,
‘covmtxparams.out’);

4. and those that merely trigger optional checks on the input (‘sizeLab’, ‘Mz’, ‘Bo’, ‘Ad’, ‘Mix’,
‘indobs’).

Usage

gls.batch(phenfile,genfile,pedifile,covmtxfile.in=NULL,theta=NULL,
snp.names=NULL,input.mode=c(1,2,3),pediheader=FALSE,
pedicolname=c("FAMID","ID","PID","MID","SEX"),
sep.phe=" ",sep.gen=" ",sep.ped=" ",
phen,covars=NULL,med=c("UN","VC"),
outfile,col.names=TRUE,return.value=FALSE,
covmtxfile.out=NULL,
covmtxparams.out=NULL,
sizeLab=NULL,Mz=NULL,Bo=NULL,Ad=NULL,Mix=NULL,indobs=NULL)

Arguments

phenfile This can be either (1) a character string specifying a phenotype file on disk which
includes the phenotypes and other covariates, or (2) a data frame object contain-
ing the same data. In either case, the data must be appropriately structured. See
below under "Details."

genfile This can be NULL, in which case no SNPs are analyzed, and gls.batch() con-
ducts a single fgls() regression of the phenotype onto an intercept and co-
variates (if any). Otherwise, this argument can be either (1) a character string
specifying a genotype file of genotype scores (such as 0,1,2, for the additive ge-
netic model) to be read from disk, or (2) a data frame object containing them.
In such a file, each row must represent a SNP, each column must represent a

14 gls.batch

subject, and there should NOT be column headers or row numbers. In such
a data frame, the reverse holds: each row must represent a subject, and each
column, a SNP (e.g. geno). If the data frame–say, geno–need be transposed,
then use genfile=data.frame(t(geno)). Using a matrix instead of a data
frame is not recommended, because it makes the process of merging data very
memory-intensive, and will likely overflow R’s workspace unless the sample
size or number of SNPs is quite small.
Note that genotype scores need not be integers; they can also be numeric. So,
gls.batch() can be used to analyze imputed dosages, etc.

pedifile This can be either (1) a character string specifying the pedigree file correspond-
ing to ‘genfile’, to be read from disk, or (2) a data frame object containing this
pedigree information. At minimum, ‘pedifile’ must have a column of sub-
ject IDs, named "ID", ordered in the same order as subjects’ genotypic data in
‘genfile’. Every row in ‘pedifile’ is matched to a participant in ‘genfile’.
That is, if reading files from disk (which is recommended), each row i of the
pedigree file, which has n rows, matches column i of the genotype file, which
has n columns. This is how the program matches subjects in the phenotype file
to their genotypic data.
The pedigree file or data frame can also include other columns of pedigree in-
formation, like father’s ID, mother’s ID, etc. Argument ‘pediheader’ (see be-
low) is an indicator of whether the pedigree file on disk has a header or not,
with default as FALSE. Argument ‘pedicolnames’ (see below) gives the names
that gls.batch() will assign to the columns of ‘pedifile’, and the default,
c("FAMID","ID","PID","MID","SEX"), is the familiar "pedigree table" for-
mat. In any event, the user’s input must somehow provide the program with a
column of IDs, labeled as "ID".

covmtxfile.in Optional; can be either (1) a character string specifying a file on disk from which
the residual variance-covariance matrix is to be read, or (2) the matrix itself. If
NULL, then gls.batch() will estimate this matrix. The file to be read in must
be a single column, with a header, containing the contents of the ’blocks’ of an
object of class bdsmatrix; no other file structures are presently compatible. If
‘covmtxfile.in’ is an actual matrix object, then using one of class bdsmatrix
is a virtual requirement. See below under "Details" for more information.

theta An optional vector of previously estimated (or known) residual-covariance pa-
rameters. Defaults to NULL, in which case it is ignored. Otherwise, it must be a
numerical vector of of either length 12 if med="UN", or of length 3 if med="VC".
Each vector element provides the value for the parameter corresponding to its
index (serial position). Values of NA are accepted for extraneous parameters.
See fgls(), under "Details," for which parameters correspond to which indices.
Note that at least one of ‘covmtxfile.in’ and ‘theta’ must be NULL.

snp.names An optional character vector with length equal to the number of markers in
‘genfile’, providing names for those markers. Defaults to NULL, in which case
generic SNP names are used. Ignored if ‘genfile’ is NULL.

input.mode Either 1 (default), 2, or 3, which tells gls.batch() where to look for the family-
structure variables "FTYPE" and "INDIV" (see below, under "Details"). By de-
fault, gls.batch() first looks in the phenotype file, and if the variables are
not found there, then looks in the pedigree file, and if the variables are not

gls.batch 15

there, attempts to create them from information available in the pedigree file,
via FSV.frompedi(). If input.mode=2, then gls.batch() skips looking in the
phenotype file, and begins by looking in the pedigree file. If input.mode=3,
then gls.batch() skips looking in the phenotype file and pedigree file, and
goes straight to FSV.frompedi().

pediheader A logical indicator specifying whether the pedigree file to be read from disk
has a header row, to ensure it is read in correctly. Even if TRUE, gls.batch()
assigns the values in ‘pedicolname’ to the column names after the pedigree file
has been read in. Defaults to FALSE. Also see ‘pedifile’ above, and under
"Details" below.

pedicolname A vector of character strings giving the column names that gls.batch() will
assign to the columns of the pedigree file (starting with the first column and
moving left to right). The default,
c("FAMID","ID","PID","MID","SEX"), is the familiar "pedigree table" for-
mat. The two criteria this vector must have are that it must (1) assign the name
"ID" to the column of subject IDs in the pedigree file, and (2) its length must not
exceed the number of columns of the pedigree file. If its length is less than the
number of columns, columns to which it does not assign a name are discarded.
Also see ‘pedifile’ above, and under "Details" below.

sep.phe Separator character of the phenotype file to be read from disk. Defaults to a
single space.

sep.gen Separator character of the genotype file to be read from disk. Defaults to a single
space.

sep.ped Separator character of the pedigree file. Defaults to a single space.

phen A character string specifying the phenotype (column name) in the phenotype file
to be analyzed.

covars A character string or character vector that holds the (column) names of the co-
variates, in the phenotype file, to be used in the regression model. Defaults to
NULL, in which case no covariates are included.

med A character string, either "UN" or "VC", which are the two RFGLS methods
described by Li et al. (2011). If "UN" (default), which stands for "unstruc-
tured," the residual covariance matrix will be constructed from, at most, 12 pa-
rameters (8 correlations and 4 variances). If "VC", which stands for "variance
components," the residual covariance matrix will be constructed from, at most,
3 variance components (additive-genetic, shared-environmental, and unshared-
environmental). For more information, see fgls().

outfile Either a character string specifying the path and filename for the output file to
be written, or NULL, in which case no output file is written. The output file con-
tains the SNP analysis results, so argument ‘outfile’ is ignored if ‘genfile’
is NULL. Note that gls.batch() will not simultaneously accept outfile=NULL
and return.value=FALSE.
Users are warned that if a file with the same path and filename already exists,
gls.batch() will overwrite it!

col.names A logical indicator specifying whether to write column names in the output file
to be written to disk. Defaults to TRUE.

16 gls.batch

return.value A logical indicator specifying whether function gls.batch() should actually
return a value. Defaults to FALSE, in which case the function merely returns
NULL. If TRUE and non-NULL value was supplied to ‘genfile’, the function re-
turns a data frame containing the results of the SNP analyses(i.e., the output file
as a data frame). If TRUE and genfile=NULL, the function returns the fgls()
output from a regression of the phenotype onto an intercept and covariates (if
any). Note that gls.batch() will not simultaneously accept outfile=NULL
and return.value=FALSE.

covmtxfile.out An optional character string specifying the filename and path to which the resid-
ual covariance matrix, if it is to be constructed (i.e., if covmtxfile.in=NULL),
will be written. The default is NULL, in which case no such file is written to disk.
See below under "Details" for more information.
Users are warned that if a file with the same path and filename already exists,
gls.batch() will overwrite it!

covmtxparams.out

An optional character string specifying the filename and path to which the vector
of residual-covariance parameters, if they are to be estimated (i.e., if ‘covmtxfile.in’
and ‘theta’ are both NULL), will be written. The default is NULL, in which case
no such file is written to disk. See below under "Details" for more information.
Users are warned that if a file with the same path and filename already exists,
gls.batch() will overwrite it!

sizeLab This is an optional argument, and may be eliminated in future versions of this
package. Defaults to NULL; otherwise, must be a character string, and if the
number of characters in the string is not equal to the size of the largest family in
the data, gls.batch() will produce a warning.

Mz, Bo, Ad, Mix

These are optional logical indicators that specify whether families containing
MZ twins (‘MZ’; family-type 1), DZ twins or full siblings (‘Bo’; family-types
2 and 4), two adoptees (‘Ad’; family-type 3), or 1 biological offspring and 1
adoptee (‘Mix’; family-type 5) are present in the data. The values of each are
checked against the actual family types present, after loading and merging the
data and trimming out incomplete cases, and a warning is generated for each
mismatch. If any of these four arguments is NULL (which is the default), the
check corresponding to that family type is skipped.

indobs An optional logical indicator of whether there are "independent observations"
who do not fit into a four-person nuclear family present in the data. After loading
and merging the data and trimming out incomplete cases, the value of ‘indobs’
is checked against whether such individuals are actually present, and a warning
is generated in case of a mismatch. If indobs=NULL, which is the default, this
check is skipped.

Details

Reference is frequently made throughout this documentation to the "phenotype file," the "genotype
file," and so forth, because gls.batch() was intended to be used with potentially large datafiles
to be read from disk. This should be evident from the presence of the word "file" in the names of
many of this function’s arguments, and the fact that all of those arguments may be character strings

gls.batch 17

providing a filename and path. However, it can also accept the data if the file has already been
loaded into R’s workspace as a data frame object, in which case "the [whatever] file" should be
taken to refer to such a data frame. For details specific to each argument, see above.

The function gls.batch() first reads in the files and merges them into a data frame with columns
of family-structure information, phenotype, covariates, and genotypes. Then, it creates a ‘tlist’
vector and a ‘sizelist’ vector, which comprise the family labels and family sizes in the data.
Finally, it carries out single-SNP association analyses for all the SNPs in the genotype file.

At the bare minimum, the phenotype file must contain columns named "ID", "FAMID", and whatever
character string is supplied to ‘phen’. These columns respectively contain individual IDs, family
IDs, and phenotype scores; individual IDs must be unique.

At the bare minimum, the pedigree file need only contain a column consisting of unique individual
IDs, corresponding to the label "ID" in ‘pedicolname’. The number of participants in the pedigree
file must equal the number of participants in the genotype file, with participants ordered the same
way in both files. However, the default value for argument ‘pedicolname’ (see above) assumes five
columns, in the familiar "pedigree table" format.

The phenotype file or pedigree file may also contain the two key family-structure variables, "FTYPE"
(family-type) and "INDIV" (individual code). If both contain these variables, then by default, they
are read from the phenotype file (but see argument ‘input.mode’ above). There are six recognized
family types, which are distinguished primarily by how the offspring in the family are related to one
another:

• FTYPE=1, containing MZ twins;

• FTYPE=2, containing DZ twins;

• FTYPE=3, containing adoptees;

• FTYPE=4, containing non-twin full siblings;

• FTYPE=5, "mixed" families containing one biological offspring and one adoptee;

• FTYPE=6, containing "independent observations" who do not fit into a four-person nuclear
family.

It is assumed that all offspring except adoptees are biological children of the parents in the family.
The four individual codes are:

• INDIV=1 is for "Offspring #1;"

• INDIV=2 is for "Offspring #2;"

• INDIV=3 is for mothers;

• INDIV=4 is for fathers.

The distinction between "Offspring #1" and "#2" is mostly arbitrary, except that in "mixed" fami-
lies(FTYPE=5), the biological offspring MUST have INDIV=1, and the adopted offspring, INDIV=2.
If the phenotype file contains variables "FTYPE" and "INDIV", it should be ordered by family ID
("FAMID"), and by individual code "INDIV" within family ID. Note that gls.batch() treats partic-
ipants with FTYPE=6 as the sole members of their own family units, and not as part of the family
corresponding to their family ID.

If neither the phenotype nor pedigree file contain "FTYPE" and "INDIV", gls.batch() will con-
struct them via FSV.frompedi().

18 gls.batch

When one is conducting parallel analyses on a computing array, judicious use of arguments ‘covmtxfile.in’,
‘theta’, ‘covmtxparams.out’, and ‘covmtxfile.out’ can save time. For example, suppose one
is analyzing different SNP sets in parallel but using a common phenotype file for all. In this case,
one could calculate the residual covariance matrix ahead of time and write it to a file. Then, use
the same filename and path for argument ‘covmtxfile.in’, for all jobs running in parallel. The
matrix can be calculated by using gls.batch.get() and then fgls(). One could similarly obtain
the residual-covariance parameters ahead of time, and supply them as a vector to ‘theta’ in all jobs
running in parallel.

Value

If return.value=FALSE, then gls.batch() simply returns NULL. If return.value=TRUE and genfile=NULL,
then gls.batch() returns the fgls() output from a regression of the phenotype onto an intercept
and covariates (if any). If return.value=TRUE and ‘genfile’ is non-NULL, then gls.batch() re-
turns a data frame containing the results of the single-SNP analyses, 1 row per SNP. Specifically,
this data frame includes the following named columns:

• snp (character): the names of the SNPs; equal to ‘snp.names’ if any were supplied.

• coef (numeric): the regression coefficients of the SNPs.

• se (numeric): estimated standard errors of SNPs’ regression coefficients.

• t.stat (numeric): t-statistics, i.e. regression coefficients divided by their estimated standard
errors.

• df (integer): degrees-of-freedom (see df.residual, from fgls() output).

• pval (numeric): two-tailed p-values, from corresponding t-statistics and degrees-of-freedom.

Function gls.batch() also has optional side effects of writing as many as three files to disk, de-
pending on arguments ‘outfile’, ‘covmtxfile.out’, and ‘covmtxparams.out’. Note that if a file
is written for ‘outfile’, that file will contain the single-SNP analysis results described above.

Author(s)

Xiang Li <lixxx554@umn.edu>, Robert M. Kirkpatrick <kirk0191@umn.edu>, and Saonli Basu
<saonli@umn.edu> .

References

Li X, Basu S, Miller MB, Iacono WG, McGue M: A Rapid Generalized Least Squares Model for a
Genome-Wide Quantitative Trait Association Analysis in Families. Human Heredity 2011;71:67-82
(DOI: 10.1159/000324839)

See Also

fgls, pheno

gls.batch.get 19

Examples

data(pheno)
data(geno)
data(map)
data(pedigree)
data(rescovmtx)
minigwas <- gls.batch(

phenfile=pheno,genfile=data.frame(t(geno)),pedifile=pedigree,
covmtxfile.in=rescovmtx, #<--Precomputed, to save time.
theta=NULL,snp.names=map[,2],input.mode=c(1,2,3),pediheader=FALSE,
pedicolname=c("FAMID","ID","PID","MID","SEX"),
sep.phe=" ",sep.gen=" ",sep.ped=" ",
phen="Zscore",covars="IsFemale",med=c("UN","VC"),
outfile=NULL,col.names=TRUE,return.value=TRUE,
covmtxfile.out=NULL,covmtxparams.out=NULL,
sizeLab=NULL,Mz=NULL,Bo=NULL,Ad=NULL,Mix=NULL,indobs=NULL)

minigwas

gls.batch.get Data restructuring for fgls().

Description

Carries out the data restructuring performed by gls.batch(). Useful if calling fgls() directly.

Several arguments to gls.batch.get() are accepted only for the sake of parallelism with gls.batch(),
and are ignored: ‘covmtxfile.in’, ‘theta’, ‘outfile’, ‘col.names’, ‘return.value’, ‘covmtxfile.out’,
and ‘covmtxparams.out’.

Usage

gls.batch.get(phenfile,genfile,pedifile,covmtxfile.in=NULL,theta=NULL,
snp.names=NULL,input.mode=c(1,2,3),pediheader=FALSE,
pedicolname=c("FAMID","ID","PID","MID","SEX"),
sep.phe=" ",sep.gen=" ",sep.ped=" ",
phen,covars=NULL,med=c("UN","VC"),
outfile,col.names=TRUE,return.value=FALSE,
covmtxfile.out=NULL,
covmtxparams.out=NULL,
sizeLab=NULL,Mz=NULL,Bo=NULL,Ad=NULL,Mix=NULL,indobs=NULL)

Arguments

phenfile This can be either (1) a character string specifying a phenotype file on disk which
includes the phenotypes and other covariates, or (2) a data frame object contain-
ing the same data. In either case, the data must be appropriately structured. See
below under "Details."

20 gls.batch.get

genfile This can be NULL, in which case no SNP data are loaded. Otherwise, this argu-
ment can be either (1) a character string specifying a genotype file of genotype
scores (such as 0,1,2, for the additive genetic model) to be read from disk, or (2)
a data frame object containing them. In such a file, each row must represent a
SNP, each column must represent a subject, and there should NOT be column
headers or row numbers. In such a data frame, the reverse holds: each row must
represent a subject, and each column, a SNP (e.g. geno). If the data frame–say,
geno–need be transposed, then use genfile=data.frame(t(geno)). Using a
matrix instead of a data frame is not recommended, because it makes the process
of merging data very memory-intensive, and will likely overflow R’s workspace
unless the sample size or number of SNPs is quite small.
Note that genotype scores need not be integers; they can also be numeric. So,
gls.batch() can be used to analyze imputed dosages, etc.

pedifile This can be either (1) a character string specifying the pedigree file correspond-
ing to ‘genfile’, to be read from disk, or (2) a data frame object containing this
pedigree information. At minimum, ‘pedifile’ must have a column of sub-
ject IDs, named 'ID', ordered in the same order as subjects’ genotypic data in
‘genfile’. Every row in ‘pedifile’ is matched to a participant in ‘genfile’.
That is, if reading files from disk (which is recommended), each row i of the
pedigree file, which has n rows, matches column i of the genotype file, which
has n columns. This is how the program matches subjects in the phenotype file
to their genotypic data.
The pedigree file or data frame can also include other columns of pedigree infor-
mation, like father’s ID, mother’s ID, etc. Argument ‘pediheader’ (see below)
is an indicator of whether the pedigree file on disk has a header or not, with
default as FALSE. Argument ‘pedicolnames’ (see below) gives the names that
gls.batch.get() will assign to the columns of ‘pedifile’, and the default,
c("FAMID","ID","PID","MID","SEX"), is the familiar "pedigree table" for-
mat. In any event, the user’s input must somehow provide the program with a
column of IDs, labeled as "ID".

covmtxfile.in Accepted but not used.

theta Accepted but not used.

snp.names An optional character vector with length equal to the number of markers in
‘genfile’, providing names for those markers. Defaults to NULL, in which case
generic SNP names are used. Ignored if ‘genfile’ is NULL.

input.mode Either 1 (default), 2, or 3, which tells gls.batch.get() where to look for the
family-structure variables "FTYPE" and "INDIV" (see below, under "Details").
By default, gls.batch.get() first looks in the phenotype file, and if the vari-
ables are not found there, then looks in the pedigree file, and if the variables
are not there, attempts to create them from information available in the pedi-
gree file, via FSV.frompedi(). If input.mode=2, then gls.batch.get() skips
looking in the phenotype file, and begins by looking in the pedigree file. If
input.mode=3, then gls.batch.get() skips looking in the phenotype file and
pedigree file, and goes straight to FSV.frompedi().

pediheader A logical indicator specifying whether the pedigree file to be read from disk
has a header row, to ensure it is read in correctly. Even if TRUE, gls.batch()

gls.batch.get 21

assigns the values in ‘pedicolname’ to the columns after it has been read in.
Defaults to FALSE. Also see ‘pedifile’ above and under "Details" below.

pedicolname A vector of character strings giving the column names that gls.batch.get()
will assign to the columns of the pedigree file (starting with the first column and
moving left to right). The default, c("FAMID","ID","PID","MID","SEX"), is
the familiar "pedigree table" format. The two criteria this vector must have are
that it must (1) assign the name "ID" to the column of subject IDs in the pedigree
file, and (2) its length must not exceed the number of columns of the pedigree
file. If its length is less than the number of columns, columns to which it does not
assign a name are discarded. Also see ‘pedifile’ above, and under "Details"
below.

sep.phe Separator character of the phenotype file to be read from disk. Defaults to a
single space.

sep.gen Separator character of the genotype file to be read from disk. Defaults to a single
space.

sep.ped Separator character of the pedigree file. Defaults to a single space.

phen A character string specifying the phenotype (column name) in the phenotype file
to be analyzed.

covars A character string or character vector that holds the (column) names of the co-
variates, in the phenotype file, to be used in the regression model. Defaults to
NULL, in which case no covariates are included.

med A character string, either "UN" or "VC", which are the two RFGLS methods
described by Li et al. (2011). If "UN" (default), which stands for "unstruc-
tured," the residual covariance matrix will be constructed from, at most, 12 pa-
rameters (8 correlations and 4 variances). If "VC", which stands for "variance
components," the residual covariance matrix will be constructed from, at most,
3 variance components (additive-genetic, shared-environmental, and unshared-
environmental).

outfile Accepted but not used.

col.names Accepted but not used.

return.value Accepted but not used.

covmtxfile.out Accepted but not used.
covmtxparams.out

Accepted but not used.

sizeLab This is an optional argument, and may be eliminated in future versions of this
package. Defaults to NULL; otherwise, must be a character string. If the number
of characters in the string is not equal to the size of the largest family in the data,
gls.batch.get() will produce a warning.

Mz, Bo, Ad, Mix

These are optional logical indicators that specify whether families containing
MZ twins (‘MZ’; family-type 1), DZ twins or full siblings (‘Bo’; family-types
2 and 4), two adoptees (‘Ad’; family-type 3), or 1 biological offspring and 1
adoptee (‘Mix’; family-type 5) are present in the data. The values of each are
checked against the actual family types present, after loading and merging the
data and trimming out incomplete cases, and a warning is generated for each

22 gls.batch.get

mismatch. If any of these four arguments is NULL (which is the default), the
check corresponding to that family type is skipped.

indobs An optional logical indicator of whether there are "independent observations"
who do not fit into a four-person nuclear family present in the data. After loading
and merging the data and trimming out incomplete cases, the value of ‘indobs’
is checked against whether such individuals are actually present, and a warning
is generated in case of a mismatch. If indobs=NULL, which is the default, this
check is skipped.

Details

Though originally used for debugging purposes, gls.batch.get() was included because it facili-
tates directly invoking fgls() when the need arises. This function first reads in the files and merges
the files into a data frame with columns of family-structure information, phenotype, covariates, and
genotypes. It then creates a ‘tlist’ vector and a ‘sizelist’ vector, which comprise the family la-
bels and family sizes in the data. It returns a list containing the merged data frame, and the ‘tlist’
and ‘sizelist’ vectors.

At the bare minimum, the phenotype file must contain columns named "ID", "FAMID", and whatever
character string is supplied to ‘phen’. These columns respectively contain individual IDs, family
IDs, and phenotype scores; individual IDs must be unique.

At the bare minimum, the pedigree file need only contain a column consisting of unique individual
IDs, corresponding to the label "ID" in ‘pedicolname’. The number of participants in the pedigree
file must equal the number of participants in the genotype file, with participants ordered the same
way in both files. However, the default value for argument ‘pedicolname’ (see above) assumes five
columns, in the familiar "pedigree table" format.

The phenotype file or pedigree file may also contain the two key family-structure variables, "FTYPE"
(family-type) and "INDIV" (individual code). If both contain these variables, then by default, they
are read from the phenotype file (but see argument ‘input.mode’ above). There are six recognized
family types, which are distinguished primarily by how the offspring in the family are related to one
another:

• FTYPE=1, containing MZ twins;

• FTYPE=2, containing DZ twins;

• FTYPE=3, containing adoptees;

• FTYPE=4, containing non-twin full siblings;

• FTYPE=5, "mixed" families containing one biological offspring and one adoptee;

• FTYPE=6, containing "independent observations" who do not fit into a four-person nuclear
family.

It is assumed that all offspring except adoptees are biological children of the parents in the family.
The four individual codes are:

• INDIV=1 is for "Offspring #1;"

• INDIV=2 is for "Offspring #2;"

• INDIV=3 is for mothers;

• INDIV=4 is for fathers.

gls.batch.get 23

The distinction between "Offspring #1" and "#2" is mostly arbitrary, except that in "mixed" fami-
lies(FTYPE=5), the biological offspring MUST have INDIV=1, and the adopted offspring, INDIV=2.
If the phenotype file contains variables "FTYPE" and "INDIV", it should be ordered by family ID
("FAMID"), and by individual code "INDIV" within family ID. Note that gls.batch.get() treats
participants with FTYPE=6 as the sole members of their own family units, and not as part of the
family corresponding to their family ID.

If neither the phenotype nor pedigree file contain "FTYPE" and "INDIV", gls.batch() will con-
struct them via FSV.frompedi().

Value

A list with these three components:

test.dat The merged data frame of family-structure variables, phenotype, covariates, and
genotypes. Participants of family-type 6 will be moved to the end of the data
frame. There will also be three additional columns:

• famsize (integer): The size of the family to which each participant belongs.
• unisid (character): Single-character representation of each participants’
"FTYPE" and "INDIV". Adoptees have "a", MZ twins have "c", non-MZ-
twin biological offspring have "b", mothers have "m", fathers have "f", and
members of family-type 6 have NA.

• famlab (character): "Family labels;" the unisid’s of the members of each
participant’s family, pasted together in order of "INDIV".

tlist A character vector of family labels, with length equal to the number of families
in the data (each participant of family-type 6 is treated as a separate family). The
names of its components are the family IDs.

sizelist A vector of family sizes, with length equal to the number of families in the data
(each participant of family-type 6 is treated as a separate family). The names of
its components are the family IDs.

Author(s)

Xiang Li <lixxx554@umn.edu>, Robert M. Kirkpatrick <kirk0191@umn.edu>, and Saonli Basu
<saonli@umn.edu> .

See Also

fgls, gls.batch

Examples

data(pheno)
data(geno)
data(map)
data(pedigree)
foo <- gls.batch.get(

phenfile=pheno,genfile=data.frame(t(geno)),pedifile=pedigree,
covmtxfile.in=NULL,theta=NULL,snp.names=map[,2],input.mode=c(1,2,3),
pediheader=FALSE,pedicolname=c("FAMID","ID","PID","MID","SEX"),

24 map

sep.phe=" ",sep.gen=" ",sep.ped=" ",
phen="Zscore",covars="IsFemale",med=c("UN","VC"),
outfile,col.names=TRUE,return.value=FALSE,
covmtxfile.out=NULL,
covmtxparams.out=NULL,
sizeLab=NULL,Mz=NULL,Bo=NULL,Ad=NULL,Mix=NULL,indobs=NULL)

olsmod <- lm(##<--OLS regression could be applied to the merged dataset...
Zscore ~ rs3934834 + IsFemale, data=foo$test.dat)

summary(olsmod) ##<--...but the standard errors and t-statistics will not be valid.

##The 'tlist' vector can be useful for figuring out if any residual-covariance
##parameters are poorly identified in the data:
pheno2 <- subset(pheno, (pheno$INDIV<3 & pheno$FAMID>20) |

(pheno$ID %in% c(11,12,13,21,22,23)))
foo2 <- gls.batch.get(

phenfile=pheno2,
genfile=data.frame(t(geno)),pedifile=pedigree,
covmtxfile.in=NULL,theta=NULL,snp.names=map[,2],input.mode=c(1,2,3),
pediheader=FALSE,pedicolname=c("FAMID","ID","PID","MID","SEX"),
sep.phe=" ",sep.gen=" ",sep.ped=" ",
phen="Zscore",covars="IsFemale",med=c("UN","VC"),
outfile,col.names=TRUE,return.value=FALSE,
covmtxfile.out=NULL,
covmtxparams.out=NULL,
sizeLab=NULL,Mz=NULL,Bo=NULL,Ad=NULL,Mix=NULL,indobs=NULL)

table(foo2$tlist)
##Only two families have the label 'ccm', that is, only two have
##a mother. So, if calling fgls()
##with med="UN", it would probably be a good idea to drop the
##mother variance [drop=10], or the biological mother-offspring
##correlation [drop=2], or both [drop=c(2,10)].

map SNP "map" file

Description

A table of information about the 10 SNPs in dataset geno, in a format reminiscent of a PLINK
binary map (.bim) file.

Usage

data(map)

Format

A data frame with 10 rows, 1 per SNP. There are 6 labeled columns, for the following variables:

chr Chromosome numbers

SNP A vector of SNP rs numbers, as character strings.

pedigree 25

position SNP position, in base-pairs, from HapMap Build 36.

Ref_Allele Vector of reference alleles, as character strings, from the HapMap positive strand.
Genotypes on each SNP in dataset geno are counts of its reference allele.

Other_Allele The "other allele." Also a vector of character strings.

Freq_Ref_Allele The relative frequency of the reference allele, in HapMap CEU reference data.

Details

See documentation for dataset geno for details on how the genotypic data on these SNPs was sim-
ulated. See documentation for dataset pheno for details on how the effect locus, rs7681769, was
used to simulate phenotypic data.

Examples

data(map)
str(map)
map

pedigree Pedigree table

Description

A pedigree table for the same simulees as in dataset pheno.

Usage

data(pedigree)

Format

A data frame with 4050 observations on the following 6 integer-valued variables:

FAMID "Family ID." Each family in the dataset is uniquely identified by a value of FAMID, which
are all multiples of 10.

ID Individual ID. Each subject in the dataset is uniquely identified by a value of ID.

PID "Paternal ID." Coded 0 for founders (parents, adoptees, and "independent observations.")

MID "Maternal ID." Coded 0 for founders (parents, adoptees, and "independent observations.")

SEX Coded 1 for male and 2 for female.

Details

Merely a pedigree table in a commonly used format. Note that its column names are the default
names that gls.batch() or gls.batch.get() assign to the pedigree file. However, the only col-
umn that those two functions strictly require is ID; see examples below.

26 pheno

Examples

data(pedigree)
data(pheno)
data(geno)
data(map)

foo <- gls.batch.get(
phenfile=pheno,genfile=data.frame(t(geno)),pedifile=pedigree,
covmtxfile.in=NULL,theta=NULL,snp.names=map[,2],
input.mode=1,
pediheader=FALSE,pedicolname=c("FAMID","ID","PID","MID","SEX"),
sep.phe=" ",sep.gen=" ",sep.ped=" ",
phen="Zscore",covars="IsFemale",med=c("UN","VC"),
outfile,col.names=TRUE,return.value=FALSE,
covmtxfile.out=NULL,
covmtxparams.out=NULL,
sizeLab=NULL,Mz=NULL,Bo=NULL,Ad=NULL,Mix=NULL,indobs=NULL)

str(foo)

##Also works, since phenfile provides 'FTYPE' and 'INDIV',
##and input.mode=1:
pedigree2 <- pedigree
pedigree2[,-2] <- NA ##<--Change all but column 'ID' to NA.
foo2 <- gls.batch.get(

phenfile=pheno,genfile=data.frame(t(geno)),
pedifile=pedigree2, ##<--Note change.
covmtxfile.in=NULL,theta=NULL,snp.names=map[,2],
input.mode=1, ##<-- =2 or =3 would need more pedifile columns
pediheader=FALSE,pedicolname=c("FAMID","ID","PID","MID","SEX"),
sep.phe=" ",sep.gen=" ",sep.ped=" ",
phen="Zscore",covars="IsFemale",med=c("UN","VC"),
outfile,col.names=TRUE,return.value=FALSE,
covmtxfile.out=NULL,
covmtxparams.out=NULL,
sizeLab=NULL,Mz=NULL,Bo=NULL,Ad=NULL,Mix=NULL,indobs=NULL)

str(foo2)

pheno Simulated quantitative-trait dataset

Description

A dataset of observations on a normally distributed phenotype, generated with means conditional
on genotype at the effect locus. All six family-types recognized in package RFGLS are represented.

Usage

data(pheno)

pheno 27

Format

A data frame with 4050 observations on the following 6 variables:

FAMID "Family ID." Each family in the dataset is uniquely identified by a value of FAMID, which
are all multiples of 10.

ID Individual ID. Each subject in the dataset is uniquely identified by a value of ID, which is equal
to his/her INDIV plus his/her FAMID.

FTYPE "Family-type." RFGLS recognizes six different family-types, five of which are, at largest,
four-person nuclear families (two parents, two offspring), distinguished by how the two off-
spring are related to one another:

1. MZ-twin families,

2. DZ-twin families,

3. Adoptive-offspring families,

4. Non-twin bio-offspring families,

5. "Mixed" families with one bio and one adopted offspring, and

6. "Independent observations," who do not fit into a four-person nuclear family.

INDIV "Individual code," which represents how a subject fits into his/her family: INDIV=1 is for
"Offspring #1," INDIV=2 is for "Offspring 2," INDIV=3 is for the mother, and INDIV=4 is for
the father. In families of FTYPE=5, the biological offspring has INDIV=1, and the adopted
offspring, INDIV=2. All "independent observations" (i.e., FTYPE=6) have INDIV=1. Note that
individuals in a given family are ordered by their INDIV.

Zscore The phenotype score.

IsFemale Binary indicator; a value of 1 indicates female sex. All offspring in families of type #2
(DZ twins) happen to be same-sex, but this is not a requirement.

Details

Each family’s phenotype scores were generated from a multivariate normal distribution (mvrnorm
in package mvtnorm) with a centroid defined conditional upon the family members’ genotypes
on the effect locus (rs7681769 in dataset geno), and a variance matrix with 1s on its diagonal
and covariances (really, correlations) consistent with an additive heritability of 0.5 and a shared-
environmentality of 0.2, but zero assortative mating.

Examples

data(pheno)
str(pheno)
qqnorm(pheno$Zscore[pheno$INDIV==1]) ##<--Normally distributed phenotype.
qqline(pheno$Zscore[pheno$INDIV==1])
##Also see examples for functions fgls(), gls.batch(), and gls.batch.get().

28 rescovmtx

rescovmtx Residual variance-covariance matrix.

Description

The residual covariance matrix used in package examples. In the previous package version, its name
was "resVCmtx".

Usage

data(rescovmtx)

Format

An object of class bdsmatrix (from package bdsmatrix). It is a 4050-by-4050 block-diagonal
sparse matrix, with off-diagonal elements of 0. It has six slots, the descriptions of which may be
found in the documentation for bdsmatrix-class.

Details

It is perhaps most instructive to see the syntax by which rescovmtx can be reproduced from datasets
pheno, geno, and pedigree:

data(pheno)
data(geno)
data(pedigree)
foo <- gls.batch.get(
phenfile=pheno,genfile=data.frame(t(geno)),pedifile=pedigree,
covmtxfile.in=NULL,theta=NULL,snp.names=NULL,input.mode=c(1,2,3),
pediheader=FALSE,pedicolname=c("FAMID","ID","PID","MID","SEX"),
sep.phe=" ",sep.gen=" ",sep.ped=" ",
phen="Zscore",covars="IsFemale",med=c("UN","VC"),
outfile,col.names=TRUE,return.value=FALSE,
covmtxfile.out=NULL,
covmtxparams.out=NULL,
sizeLab=NULL,Mz=NULL,Bo=NULL,Ad=NULL,Mix=NULL,indobs=NULL)

bar <- fgls(
Zscore ~ IsFemale, data=foo$test.dat, tlist=foo$tlist,
sizelist=foo$sizelist,med=c("UN","VC"),
vmat=NULL,
start=NULL, theta=NULL, drop=NULL, get.hessian=FALSE,
optim.method="BFGS", control=list(), weights=NULL,
sizeLab=NULL,Mz=NULL,Bo=NULL,Ad=NULL,Mix=NULL,indobs=NULL)

Then, bar$sigma is identical to rescovmtx.

rescovmtx 29

Examples

data(rescovmtx)
str(rescovmtx)
##Also see examples for functions fgls() and gls.batch().

Index

∗Topic datasets
geno, 12
map, 24
pedigree, 25
pheno, 26
rescovmtx, 28

∗Topic package
RFGLS-package, 2

as.data.frame(), 3

bdsmatrix, 3, 4, 14, 28

fgls, 2, 3, 13–16, 18, 19, 22, 23
FSV.frompedi, 2, 9, 15, 17, 20, 23

geno, 12, 14, 20, 24, 25, 27
gls.batch, 2, 3, 5, 7–9, 11, 12, 13, 19, 23, 25
gls.batch.get, 2, 3, 5, 9, 11, 18, 19, 25

lm, 6, 7

map, 12, 24

nearPD, 5

optim, 3–5, 7

pedigree, 12, 25
pheno, 12, 18, 25, 26

rescovmtx, 28
resVCmtx (rescovmtx), 28
RFGLS (RFGLS-package), 2
RFGLS-package, 2

summary.lm, 6

30

	RFGLS-package
	fgls
	FSV.frompedi
	geno
	gls.batch
	gls.batch.get
	map
	pedigree
	pheno
	rescovmtx
	Index

