
RcmdrPlugin Easy Script Templates 1.0.1

Ewoud De Troyer

Contents

1 Introduction 2

2 R Commander 2

3 Other GUI Creation Packages 3

4 Creating a GUI for Rcmdr 3
4.1 Menu file . 4
4.2 .onAttach . 4
4.3 DESCRIPTION and NAMESPACE File . 5
4.4 Active Data in Rcmdr . 5

5 Script Templates Guide 5
5.1 General Script . 5

5.1.1 General Window Information . 5
5.1.2 Making a Tab . 7

5.2 Frame Scripts . 9
5.3 Example Script - Plaid Biclustering . 16
5.4 Testing your windows . 18
5.5 Advanced Techniques . 18

5.5.1 Using doItAndPrint() and justDoIt() . 18
5.5.2 Window Environments . 19

5.6 Extra Functions . 22
5.6.1 Save Function . 22
5.6.2 Load Function . 22

6 Appendix 24
6.1 .onAttach-function . 24
6.2 General Script . 24
6.3 Frame Scripts . 25
6.4 Example Script . 28
6.5 Window Environment Example . 31

1

1 Introduction

R is a great platform for statisticians to do their analyses and data manipulation. Thanks to the existence of
R packages, new code can be easily distributed and executed by other statisticians.
However for other scientists, the barrier to understand the coding language of R, can sometimes be too difficult
to breach. This is a shame since it means that all of the implemented methodology in R, is inaccessible for
them. One way to bridge this gap is through the use of Graphical User Interfaces (GUI). While the R-code is
still responsible for the analyses in the background, the user does not need to worry about it since the methods
can be accessed through simple point and click.

However making a GUI can take up quite some time. Learning the syntax of creating windows, creating
the actual code, etc. Sometimes there is simply no time left to invest in this exercise. This is where the REST

package (or RcmdrPlugin Easy Script Templates) comes into play. REST contains an easy script template
to create new dialogs in the form of a plug-in for R Commander (Rcmdr). These scripts do not require any
knowledge about tcltk or Rcmdr and are very straightforward to use. They will allow developers to translate
the R-code from their packages into a GUI without too much difficulty.
This means that the REST is not meant to be used independently. It should be imported or depended upon in
your own GUI package.

R Commander was chosen as the starting platform for the GUI’s since it will also show the R code (from
the package the GUI is based on) going on in the background. For example, if the user would click on a plot
button, the original code ‘plot(...)’ would appear in the script window. Users can simply decide to ignore
this or, even better, use it to start learning the syntax of R while using GUI’s.

It should be mentioned that the scripts used in this package are a generalisation of the templates scripts
which were used in the RcmdrPlugin.BiclustGUI package.

2 R Commander

R Commander, Rcmdr(Fox, 2005), is a GUI developed by John Fox from McMaster University, Canada. Origi-
nally it was conceived as a basic-statistics graphical user interface for R, but its capabilities have been extended
substantially since. The Rcmdr package is based on the tcltk package (Dalgaard, 2001b) which provides an
R interface to the Tcl/Tk GUI builder. Since tcltk is available on all the operating systems on which R is
commonly run, the R Commander GUI will also run on all of these platforms.

The GUI is also very easy to start to use for beginners who do not have any or little experience with R. It
will protect beginners from errors as the dialog boxes only have limited options related to the current context.
Further, since the users are exposed to the actual R commands through a script and output window, besides
analyzing and managing the data in R easily, they can also learn how do it in R without a GUI. Another
advantage is that the script will be generated on the fly as the user applies the desired statistics through the
point-and-click GUI. This means it can be easily saved at the end of a session which enables the user afterwards
to recreate the results by running the R script without going through all the dialogs again. Advanced users can
even adapt the created script to do some more detailed analysis. These are the main advantages Rcmdr has over
other available RGUI packages.

Starting with version 1.3-0, Rcmdr also provides the possibility of plug-in packages which can augment the R
Commander menus. These packages are developed, maintained, distributed and installed indepently of Rcmdr
and can provide a wide variety of new dialog boxes and statistical functionality. More information on developing
such a plug-in can be found in Fox (2007).

2

Figure 1: Default R Commander

3 Other GUI Creation Packages

There exist several packages in R to help users create GUI’s. Some examples are Rgtk2 (Lawrence and Lang,
2014) and gWidgets (Verzani, 2014). Especially the latter already operates at a fairly high level to help users
create quick and interactive GUI’s without too much fuss. The REST package differs in that it works on an even
higher level by using a “fill-out” script. This reduces the learning curve even more. The price to pay however
is that it is less flexible than than a package like gWidgets.
Another difference lies in the fact that REST is completely tied to Rcmdr, providing all the benefits R Comman-
ders brings in. This includes things like the fully functional system to load in data from several sources, the
implemented basic statistics and of course the existence of the script window. The latter might be especially
helpfull if you already have an existing package you want to translate into a GUI as it provides a nice teaching
tool to learn to use your original package.
So while you lose power in creating your GUI, a lot of the basic things you need to implement when making a
GUI are already there, gaining you time instead.

At the end of the day, it will always be the developer who needs to decide which of these packages, fits
him/her the most. It will always depend on how much time is availabe and what the end goal is precisely.

4 Creating a GUI for Rcmdr

R Commander is already a fully implemented GUI in which basic statistics can be executed. Creating a plug-in
comes down to adding new menus and submenus at the top of the window which will lead to newly created
dialogs.
Each window you create will simply be an R function. How to create them with the template script will be
explained in the next section, but first let’s take a look at how you can add these extra menu’s.

3

4.1 Menu file

Before compiling your GUI package, a menus.txt file should be added in the yourpackage/inst/etc/ folder.
This text file will contain the information on which and how menu’s should be added. The basics will be
explained here with the help of an easy example, but more detailed information can be found in Fox (2007).

The text file should contain 7 columns: type, menu/item, operation/parent, label, command/menu, activa-
tion and install.

Let’s now go through the example of menus.txt down below which will result in the menu’s in Figure 2.
In the first line, menu was chosen in the first column to define the NEWmenu (second column) menu which
should be a part of the topMenu (third column), meaning it will appear next to the other big menus in R
Commander. In the second line, this new menu will actually be installed by “cascading” the menu under its
parent. This is achieved by having item, topMenu (parent) and cascade in the first 3 columns, followed by
NEWmenu (menu) in the 5th. It is also in this line you can actually give this new menu the label it will have
in the GUI by using the 4th column.
Now after we defined a new menu, we can start adding some items. The following 3 lines are all 3 item’s in
NEWmenu (1st and 2nd column). The first two have command as operation and a certain label which will
appear in the GUI. The 5th column then has the actual command tied to this menu item. These will be your
window functions (between double quotes) you have created with the template scripts. The third item has
separator has the operation. This simply means a line will be added to the menu.
Next, just as we defined a new menu in the topMenu, we can also define and install a new submenu, NEWsub-
menu, in NEWmenu. Afterwards, we can again make some new items in this new submenu. All of this is done
in just the same way as before.
Finally, you can also add an R function between double quotes in the activation column. These should be
functions which give back TRUE or FALSE. If FALSE is given back, the menu item will be grayed out, rendering
the user unable to click on it. For example activeDataSetP() is an Rcmdr function which gives back a boolean
value whether there is an active data set or not. In the Figure 2 you can see there is no active data set, which
results in ‘namewindow4’ being inactive.

#type menu/item operation/parent label command/menu activation install?

DEFINE NEW TOP MENU

menu NEWmenu topMenu "" "" "" ""

item topMenu cascade "Name of New Menu" NEWmenu "" ""

New items

item NEWmenu command "namewindow1" "window1_function" "" ""

item NEWmenu command "namewindow2" "window2_function" "" ""

item NEWmenu separator "" "" "" ""

Submenu

menu NEWsubmenu NEWmenu "" "" "" ""

item NEWmenu cascade "nameofsubmenu" NEWsubmenu "" ""

New items in submenu

item NEWsubmenu command "namewindow3" "window3_function" "" ""

item NEWsubmenu command "namewindow4" "window4_function" "activeDataSetP()" ""

Figure 2: Exame of Menu Creation

4.2 .onAttach

In order for your package to be recognised by Rcmdr as a plug-in, you will need to add the following .onAttach

function to your package (see Appendix).

4

4.3 DESCRIPTION and NAMESPACE File

In order to use templates of the REST package in your own package, you should import both Rcmdr and REST in
the DESCRIPTION and NAMESPACE File.
This comes down to adding Imports: Rcmdr, REST to the former and import(Rcmdr,REST) to the latter.

4.4 Active Data in Rcmdr

There are many ways to load data in R Commander, from the R workspace, from a text file, excel file, SAS,
etc. The important thing to know is that the loaded data will become the active dataset in Rcmdr. This active
dataset will always be of the dataframe class, so it could be possible you will need to transform it to a matrix
if your function requires this.

Figure 3: R Commander - Data Menu

Figure 4: R Commander - Active Dataset

Short Summary:

1. DESCRIPTION and NAMESPACE file

2. Add .onAttach function

3. Create window functions with template scripts

4. Add window functions to menus.txt

5 Script Templates Guide

5.1 General Script

We will now start going through general script.R which can be found in the appendix or the doc folder of
the REST package.

5.1.1 General Window Information

The script starts by making a function which will be called on to create a window. First thing you should do
of course is to rename this function to your own liking. Next, some objects (new.frames, grid.config and
grid.rows) are initialized that will be used to store information about the window that you are about to create.

5

GUI_WINDOW <- function(list.info=list()){

##########################

PREAMBLE/INFORMATION

##########################

dialogtitle <- "This is the title of the window"

usetabs <- TRUE

tabnames <- c("Tab 1","Tab 2","Tab 3")

helppage <- "plot"

Do not change these lines

if(usetabs){ntabs <- length(tabnames)} else {ntabs <- 1}
new.frames <- .initialize.new.frames(ntabs)

grid.config <- .initialize.grid.config(ntabs)

grid.rows <- .initialize.grid.rows(ntabs)

end of "Do not change these lines"

##################

GRID BUTTONS

##################

make.help.button <- TRUE

make.setwd.button <- TRUE

make.resetgws.button <- TRUE

make.seed.button <- TRUE

... continuation of the script down below (these 2 parts are put here)

} # Note: The curly bracket is placed here for syntax reasons.

It should be placed after the call of GUI_template.

The scripts starts by filling in some information about your new window. A clarifying example follows later in
which we make a window of the biclustering plaid method.

• dialogtitle: The title of the window which will be shown on top. (This can not be empty!)

• usetabs: Logical value determining if tabs should be used.

• tabnames: A vector containing names of the tabs if usetabs is TRUE.

• helppage: The name of the helppage the help button should be directed to. (help(helppage)) This is only
relevant if the help button is created in the grid.

After filling in these variables, you also have the possibility to add some grid buttons. These are some standard
buttons which will appear at the bottom of your window or, if you are using multiple tabs, below all the tab
windows (Figure 5). While the exit button will always be there, you can add some additional ones by setting
the following variables to TRUE or FALSE.

• make.help.button: A help button which leads to the help page defined by helppage.

• make.setwd.button: A button with which the user can change its working directory.

• make.resetgws.button: A button with which the user can reset the global working space.

• make.seed.button: Adds an entry field and button to set a certain seed.

6

Figure 5: Optional Grid Buttons

Before going on to the next part of the script, a short explanation about list.info (parameter of GUI_WINDOW
function) might be in order. You do not necessarily have to use this, but it can bring a bit more flexibility to
your windows. This is especially the case when you are calling a window from another window.
For example, let’s say you have created a dialog for a certain graph called graph_window. You have not added
it to the menu, but the function is linked to a button in another window which will call method1_window.
You however know that this graphing might also be interesting for method 2 so you also link it to a button in
method2_window. Your goal now is for the graph window to have a different dialog title, depending from which
window it was called from. You can achieve this by storing this information in list.info.
You could then use dialogtitle <- paste("Graph of ",list.info[[1]],sep="") so that when you call
GRAPH_WINDOW(list(name="Method 1")) from the button in the method 1 window, the title will reflect this
(”Graph of Method 1”).
This is of course a very simplistic example, but you can use this for all of the variables in the script, creating
very different windows depending on which information is stored in list.info (e.g. different frames, different
naming, etc.).

5.1.2 Making a Tab

After providing the information about the window we can finally start making it! You can make as many tabs
as you want, but they are all created in the same three easy steps as shown in Figure 6:

1. Making the frames

2. Configuring the frames into a grid

3. Combining rows into a box

7

Figure 6: Making windows in 3 steps

###########

TAB 1

###########

Tab <- 1

1. ADDING THE FRAMES

Add frames here

2. CONFIGURING THE GRID

grid.config <- .grid.matrix(Tab=Tab,c("frame1","frame2","frame3",NA),

byrow=TRUE,nrow=2,ncol=2,grid.config=grid.config)

3. COMBINING THE ROWS

grid.rows <- .combine.rows(Tab=Tab,rows=c(1,2),title="A nice box: ",

border=TRUE,grid.rows=grid.rows,grid.config=grid.config)

Looking at the script, you can see it starts with putting the Tab to 1. This will make sure everything you are
creating and saving now will be done for the first tab.

Step 1:
As already explained earlier, the first step will be to create the frames in which you want to put your function
arguments. A variety of frames can be created, but these will be explained in more detail in the following
section. To give a quick summary, here is the list of the types of frames which can be generated.

• Check Boxes

• Radio Buttons

• Entry Fields

• Sliders

8

• Spinboxes

• List Box

• Manual Button

In future updates, there is still the possibility to add even more types if required.

Step 2:
During the creation of the frames in the previous step, you will have given each of them a unique name. Using
these framenames, the next step will be to simply order them into a matrix grid, filling in the empty spots
with NA’s. This is achieved with the .grid.matrix function. The function accepts the exact same arguments
as the matrix function apart from two new ones, namely Tab and grid.config. The first is to make sure the
template function knows we are adding frames in the first tab, while second one is there to ensure that the new
information is added to the old grid.config object and that old information is not lost.
Further, it is important to know that the inserted frames will always be pulled towards the north-west as much
as possible. Therefore in a 1-row matrix, something like c(NA,"frame1") or c("frame1",NA) would give ex-
actly the same result.

Step 3:
The final step will enable you to put one or multiple rows in a seperate box which can serve two different
purposes. The first, being the most obvious one, is simply to add some visual distinction between rows with
the help of a title. This can be with or without a border around the row(s).
The second purpose is connected to the way frames are added in this grid. Sometimes if frames have a large
difference in size, other frames might seem to be jumping to the right, trying to fit in one general grid. In
general if you see this happening, putting this row(s) in a box will solve this problem and the frames will again
be pulled towards the left.
Creating these boxes by combining rows is again very easy, one simply needs to use the .combine.rows function
which will save the necessary information in the grid.rows object. The function only has three arguments you
should change: rows which is a vector containing the rows you wish to combine, title to give the box a title
("" means no title) and border to decide if there should be a border.
Note that in contrast to the grid configuration, you can call this function multiple times until the desired result
is obtained.

#############

TAB 2

#############

Tab <- 2

Repeat the 3 steps of tab 1 for as many tabs as you like...

###

USE ALL THE ARGUMENTS IN THE GENERAL GUI_TEMPLATE FUNCTION

###

GUI_template(dialogtitle=dialogtitle,helppage=helppage,make.resetgws.button=

make.resetgws.button,make.setwd.button=make.setwd.button,

make.help.button=make.help.button,make.seed.button=make.seed.button,

usetabs=usetabs,tabnames=tabnames,grid.config=grid.config,grid.rows=grid.rows,

new.frames=new.frames)

Next, you can repeat these 3 steps for as many tabs as you have defined in the beginning. Finally, to end
the GUI_WINDOW function, the GUI_template function is called with all of your defined variables. This is our
automated template function we created in the REST package in order to complete the window creation. This
means that this function will be responsible for actually creating your window.

5.2 Frame Scripts

In this section, the several types of frames which can be used in the general_script will be showcased. The
idea is that these parts of the R-code (which are also in the Appendix) are copy-pasted into the general_script
and are adjusted as deemed necessary.
All the frame types have the title and border option in common. The results of these options can be seen in

9

Figure 7. Also note that for each frametype the information is saved in one object, namely new.frames. Just
as the grid and row configuration earlier, new information will keep on getting added to this object, now with
the help of the .add.frame function. Lastly, at the start of each frame script, a type variable will be set to
determine the type of frame for this previous mentioned .add.frame function.

Figure 7: A.Title and No Border B.Title and Border C.No Title and Border

Entry Fields
The first type of frame is the entry fields frame. It can be used for both numerical arguments and character
arguments of your function tied to a button. Multiple entries can be added in one frame which will be placed
below each other.

Figure 8: Entry Fields: Code + Example

Entry Fields Variables:

• frame.name: The unique name of this frame. (Which is used in the grid matrix)

• argument.names: The argument names how they will appear in the window.

• argument.types: A vector defining if the argument is "num" or "char". This basically just means if there
should be a ' ' around the value when filling it in in the function. (e.g. In Figure 8 the arguments would
be filled in as ,arg1=1,arg2=2,arg3='a')

• arguments: The actual argument names, used for the function. Note it is not necessary for these to be unique
between multiple frames.

• initial.values: A vector containing the initial values in the entry fields.

• title: Optional title for the frame ("" means no title)

• border: Logical value determining the presence of a border.

• entry.width: A vector containing the width of the entry fields (1 width = 1 number/character).

10

Check Boxes
The second type of frame is the check boxes frame which is used for TRUE/FALSE arguments. Just like for entry
fields, multiple check boxes can be added below each other.

Figure 9: Check Boxes: Code + Example

Check Boxes Variables:

• frame.name: The unique name of this frame. (Which is used in the grid matrix)

• argument.names: The argument names how they will appear in the window.

• arguments: The actual argument names, used for the function. Note it is not necessary for these to be unique
between multiple frames.

• initial.values: A vector containing the initial values in the entry fields. (0 for FALSE, 1 for TRUE)

• title: Optional title for the frame ("" means no title)

• border: Logical value determining the presence of a border.

Radio Buttons
The next type is radio buttons, which is used for only one argument with a finite number of values.

Figure 10: Radio Buttons: Code + Example

Radio Buttons Variables:

• frame.name: The unique name of this frame. (Which is used in the grid matrix)

• argument.names: The names of the buttons how they will appear in the window.

11

• arguments: The actual argument name, used for the function. Note it is not necessary for these to be unique
between multiple frames. (Only 1 argument!)

• argument.types: Just as for the entry fields, this will determine of the values are filled in with or without
' '. The two options are again "num" and "char", but in contrast with the entry fields it is now only
one value and not a vector.

• argument.values: The actual values of the radio buttons that correspond to the values passed to the function.

• initial.values: The initial value of the radio buttons. It will determine which button is selected on opening
the window.

• title: Optional title for the frame ("" means no title)

• border: Logical value determining the presence of a border.

Value Sliders
The following type will create value sliders which can only be used for numerical values. Again multiple sliders
can be placed under each other. The current value of the slider will always appear on top of it.

Figure 11: Value Slider: Code + Example

Value Sliders Variables:

• frame.name: The unique name of this frame. (Which is used in the grid matrix)

• argument.names: The argument names how they will appear in the window.

• arguments: The actual argument names, used for the function. Note it is not necessary for these to be unique
between multiple frames.

• initial.values: Vector of initial values of the sliders. Depending on the possible values the slider can take,
this value will shift towards it (e.g. Slider 3: 10 as initial value but it was shifted to 0 since this is the
closest value the slider represent).

• from: Vector of starting points of the slider (note: depending on the length, to and by parameter, this ‘from’
value could change slightly. It will choose the closest and most fitting value to display the slider properly.
e.g. Slider 3 starts from 0 instead of 1).

• to: Vector of ending points of the sliders.

• by: Vector with the values determining how one movement of the sliders will change the current value.

• length: Vector containing the lengths of the sliders.

• title: Optional title for the frame ("" means no title)

• border: Logical value determining the presence of a border.

12

Spin Boxes
This type will create spin boxes which are again solely used for numerical values. Just as for sliders, multiple
spin boxes can be placed below each other.

Figure 12: Spin Boxes: Code + Example

Spin Boxes Variables:

• frame.name: The unique name of this frame. (Which is used in the grid matrix)

• argument.names: The argument names how they will appear in the window.

• arguments: The actual argument names, used for the function. Note it is not necessary for these to be unique
between multiple frames.

• initial.values: Vector of initial values of the spin boxes.

• from: Vector of starting points of the spin boxes.

• to: Vector of ending points of the spin boxes.

• by: Vector with the values determining how much one click will change the current value.

• entry.width: Width of all the spinboxes (one value which applies to all of them)

• title: Optional title for the frame ("" means no title)

• border: Logical value determining the presence of a border.

List Box
The next type is called a list box. This box corresponds with 1 argument for which several values are available.
With the list box it is possible to select one or multiple from the box, putting them in a vector.

13

Figure 13: List Box: Code + Example

List Box Variables:

• frame.name: The unique name of this frame. (Which is used in the grid matrix)

• arguments: The actual argument name, used for the function. Note it is not necessary for these to be unique
between multiple frames. (Only 1 argument!)

• argument.names: The labels of the items how they will appear in the box.

• argument.values: The actual values of the list items that correspond to the values passed to the function.

• argument.types: Just as for the entry fields, this will determine of the values are filled in with or without
' '. The two options are again "num" and "char", but in contrast with the entry fields it is now only
one value and not a vector. (Same as for radio buttons)

• initial.values: The initial value of the list box. It will determine which list item is selected on opening
the window.

• length: A value corresponding with the height of the box. (If no value or c() is given, the length of the
argument.names will be used)

• select.multiple: A logical value determining if it should be possible selecting only 1 or multiple list items.
For example if the argument.types would be "char" and select.multiple would be FALSE, then an
example would be simply 'value1'. If the latter would have been TRUE, the result would look like
c('value1','value3'). (In the case those were selected)

• title: Optional title for the frame ("" means no title)

• border: Logical value determining the presence of a border.

Manual Buttons
The last type of frame which can be utilized, is making manual buttons. There are two primary uses for these
buttons. The first use is to simple execute a function, based on the arguments of other frames in the window.
The second application is to tie the button to another window function to open up more options.

14

Figure 14: Manual Button: Code + Example

Manual Button Variables:

• frame.name: The unique name of this frame. (Which is used in the grid matrix)

• button.name: The text which will appear on the button.

• button.function: A string of the name of the function which should be tied to this button. Another useful
practice is to actually make an entire new function for this manual button. This new function could
then for example contain a series of functions which would then be carried out all at the same time when
clicking on this button.

• button.data: The name of the data argument the button function. The data which is loaded in R Commander
will then be pasted after this argument. (Simply put "" when this is not necessary)

• button.object: If it is chosen to save what is returned by button.function, it will saved in an object with
the name given here.

• button.width: Character containing the width of the button. (Default = "12")

• button.data.transf: Character determining if the data for button.data should be transformed. (Only
"matrix" is possible at this time)

• button.otherarg: A string containing extra arguments you do not want the user to change. For example
if a button was tied to the sum function, but you want to always remove the NA’s without the user
interference. Then button.otherarg should be equal to ",na.rm=TRUE". This means that for this button
this part of the arguments will always be added. (Since these are extra arguments being added, note that
a comma should always be used in the beginning. Of course you are also not limited to adding only 1
extra arguments, you can add as many as necessary. (",arg1=1 ,arg2=10") Simply add them here as
you would add them inside the function itself.)

• arg.frames: A vector containing the names of those frames from which this button function should pull its
arguments.

• save: Logical value determining if the result of the button function should be saved. For example for a
plotting function this is mosty likely not necessary, however for a diagnostic result it is. The difference
between a TRUE and FALSE option is shown in figure 15.

• show.save: Logical value determining if the saved result should be printed afterwards as well. (See Figure
15)

15

• show: Logical value determining if the button function should be shown in R Commander. It is good practice
to do this for the plotting and diagnostics functions however if is a function to create a new window, it is
probably not necessary to show it. (See Section 5.5.1 for another use.)

Figure 15: Manual Buttons - save option

5.3 Example Script - Plaid Biclustering

In this small section, we will demonstrate some parts of window creation in an example. The example which
was chosen was to implement a biclustering method, namely the Plaid method. (The full code can be found in
the Appendix)

plaid_WINDOW <- function(list.info=list()){

##########################

PREAMBLE/INFORMATION

##########################

dialogtitle <- "Plaid Biclustering"

usetabs <- TRUE

tabnames <- c("Biclustering","Plot & Diagnostics")

if(usetabs){ntabs <- length(tabnames)} else {ntabs <- 1}
new.frames <- .initialize.new.frames(ntabs)

grid.config <- .initialize.grid.config(ntabs)

grid.rows <- .initialize.grid.rows(ntabs)

helppage <- "BCPlaid"

##################

GRID BUTTONS

##################

make.help.button <- TRUE

make.setwd.button <- FALSE

make.resetgws.button <- FALSE

make.seed.button <- TRUE

#... followed by tabs, frames,...

}

First of all the general information is filled out in the script above. This dialog contains two tabs with a help
and seed grid button. The code for the second tab has been omitted in the Appendix.
Next in Figure 16, some of the frames are highlighted with their corresponding code. Note also the use of the
buttons and how frames are chosen to give the arguments to the function tied to the button (red arrows).
The function used to execute the plaid algorithm is called biclust with the argument method=BCPlaid(). The
latter you can see coming back in the button.otherarg. This means the end result would look something like

PlaidResult <- biclust(x=data,method=BCPlaid(),background=TRUE,

shuffle=3,back.fit=0,max.layers=20,...)

with of course the extra addition of the other parameters of other frames (the frames defined in arg.frames).

16

Figure 16: Building the Plaid Window

Following the rest of the frame creations is of course the grid configuring and the row combining of the first tab.
In this extract of the script, one can see the frames from Figure 16 being placed in the last three of the four rows
of the matrix after which the second and third row are made into a box with border and Layer Specifications
title.

2. CONFIGURING THE GRID

grid.config <- .grid.matrix(Tab=Tab,c("toclusterframe","modelframe","backgroundcheckframe"

,NA,"backgroundentryframe1","backgroundentryframe2","plaidbutton",NA),

byrow=TRUE,nrow=4,ncol=2,grid.config=grid.config)

3. COMBINING THE ROWS

grid.rows <- .combine.rows(Tab=Tab,rows=c(1),title="Plaid Specifications",border=TRUE,

grid.rows=grid.rows,grid.config=grid.config)

grid.rows <- .combine.rows(Tab=Tab,rows=c(2,3),title="Layer Specifications",border=TRUE,

grid.rows=grid.rows,grid.config=grid.config)

Plot & Diagnostics Tab has been omitted

###

USE ALL THE ARGUMENTS IN THE GENERAL GUI_TEMPLATE FUNCTION

###

GUI_template(dialogtitle=dialogtitle,helppage=helppage,make.resetgws.button=

make.resetgws.button,make.setwd.button=make.setwd.button,make.help.button=

make.help.button,make.seed.button=make.seed.button,usetabs=usetabs,tabnames=

17

tabnames,grid.config=grid.config,grid.rows=grid.rows,new.frames=new.frames)

Finally, the GUI_template function is used to combine all the gathered information and create the actual
window.

5.4 Testing your windows

To test your created window function, first load in the REST package which will launch the basic R Commander
interface. Now open up an empty script and paste your window script there. Going back to the example in the
previous section, this would simply mean pasting the entire plaid_WINDOW function here. Now run this function
in R and your new window will appear on top of the R Commander Interface.
If necessary, load in some data first before you start testing out the buttons and checking if the right functions
are appearing in the R Commander window.

5.5 Advanced Techniques

5.5.1 Using doItAndPrint() and justDoIt()

We have seen before that for manual buttons, there is a variable called show which will prevent the function
from being printed in R Commander. This is helpfull if this function is simply to open up a new window. There
is however another way you can use this option (show==FALSE) in combination with save==FALSE.
In this case, nothing is shown and nothing is saved when you click the button. The function tied to the button
is simply being executed. What will be shown now is how to let several functions appear in the R-Commander
screen instead of only one.
This is done through the help of the following two Rcmdr functions. In these functions the command argument
is simply an R-expression in character format. (e.g. "a <- 10+9" or "b <- mean(c(1,2,3,4))" or "a+b")

• doItAndPrint(command): This function will print the command to the script window and execute.

• justDoIt(command): This fucntion will only execute the command in the output window, but not print it in
the script window.

So for example what you could do is make a function containing these doItAndPrint and/or justDoIt, and
then link it to a button. Like this you can send multiple commands (containing functions, expressions,...) to
the R Commander windows by clicking only a single button in your GUI.

Tips:

1. Use paste() or paste0() for the creation of your commands. By using these functions you can let your
commands be created by the arguments of the function linked to the button.

2. If you need to use characters in a command, use ' ' or \" \".
(e.g. command <- paste0("names <- c('one','two')")

or command <- paste0("names <- c(\"one\",\"two\")"))

3. ActiveDataSet() will give back the name of the current active dataset in R Commander.

Example:
In this example CenterColumns is linked to a button and will compute either the medians or the means of
the columns of the active dataset (which is a data frame) and then plot these. Note that the function has an
argument which it will receive to either use the median or mean.

CenterColumns <- function(type=c("mean","median")){
command <- paste0("center.vector <- apply(",ActiveDataSet(),

",MARGIN=2,FUN=",type,")")

doItAndPrint(command)

doItAndPrint("center.vector")

doItAndPrint(paste0("plot(center.vector,main='Column Centers',xlab='Columns',

ylab='Value')"))

}

18

Clicking this button with mean as an argument would then result in Figure 17, accompanied by the plot in a
graphics device.

Figure 17: Example - CenterColumns

5.5.2 Window Environments

When a window is being created, all the variables (such as new.frames) are being saved in a certain environ-
ment. You could see this as a box in which all the parameters and variables connected with this window reside.
By using the GetWindowsENVIR() function, you will get back a list object of which each element corresponds
to a window which has been used. The name of such a list element is the dialogtitle and the element itself
is the created environment. Also remember that each time you reopen a window, the environment will change
to a new one and if you call the list object again, this change will be visible here too.
Now you might wonder why knowing this environment could be useful. By having access to these variables of
another window, you can change these at any time, giving your GUI even more flexibility.
An easy example could be that you have a button called ‘Presets’ on your main window. Pressing this button
would then open up a new window in which the user can select with a radio button which one of the presets it
would like (Preset 1, Preset 2,...). In this new window the user could then click on an OK button. The function
tied to this button would then, with the above described process, change all the inputs in the main window (to
this preset) before closing down the second window.
While this can be done manually, to facilitate this process, some functions were created for the most used ap-
plication, namely changing what the user can enter in the GUI. Also an example will be given for clarification.

Functions

ChangeWindow(dialogtitle, tab=1, framename, argument, new.value)

Description:
This function will change the value the user can choose/enter in the frames. The behaviour is a bit different for
the types of frames. See new.value for more details.

• dialogtitle: The title of window which is going to be altered. This should be the same as dialogtitle in
your window script.

• tab: The number of the tab in which you want something changed (if no tabs are used, choose number 1).

• framename: The name of the frame in which something is going to be changed (same name as in the window
script).

• argument: The name of the argument in which something should be changed (same as in the window script).

19

• new.value: The new value which should be entered for this argument in this particular frame. new.value

should almost always be a character (string), unless you are using it to change something in a list box.

. Entry Fields: new.value should be a character/string (can be anything) which will then be pasted in
entry field of the chosen argument. (e.g. "5", "c(1,2,3)" or "c('one','two')")

. Check Boxes: new.value should be either "0" or "1" which corresponds with unchecked and checked.

. Radio Buttons: new.values should be that one of the argument.values you wish to be selected

. Value Sliders: new.values should be a character containing the numerical value you want the slider to
be on (e.g. "10"). Note that this value will be rounded to the closest possible position on the slider.

. Spin Boxes: new.values should be a character containing the numerical value you want to spinbox to
have (e.g. "5"). Note that this value will be rounded to one of the possible values the spin box can
take.

. List Box: Instead of simply changing which items are selected in the box, new.values will instead
change the items which should be available in the box. In this case, new.values should be a data
frame consisting out of 2 columns. The first column should contain the new argument.names and
the second the new argument.values.

CancelWindow(dialogtitle)

Description:
This function will close down the chosen window.

• dialogtitle: The title of the window which should be destroyed. This should be the same dialogtitle as
in the window script.

Example

In this example (Figure 18) we have a main window called ‘Example’ which has initially an empty entry
field after ‘Values?’. Clicking the Choose button opens up a new window called ‘Choosing’. In this new window
the user can select one or multiple values in a list box and after pressing OK, they will appear in vector format
in the earlier mentioned empty entry field before the new Choosing window closes down.
The code for the relevant frames is given in Figure 18 together with the function tied to the OK button. Note
that to save some space, the .add.frame line was omitted in these frame scripts.

First, you can already see that the function tied to the Choose button is simply the choose_WINDOW func-
tion without any arguments (arg.frames <- c()). The function tied to the OK button, setentry_example,
has 1 argument (values) which comes from "listboxframe1". This is again defined by the arg.frames for
the OK button.
The first thing setentry_example does is converting values to a character format in new.value. For example
in this example c("value1","value3") becomes "c('value1','value3')". Next, this new.value is entered
in the entry field by using the ChangeWindow function on the "Example" window, first tab, "entryframe1"
frame and "arg1" argument.
Lastly the ‘Choosing’ window is closed down by using the CancelWindow function.

20

Figure 18: Window Environments - Example (Code + Window)

21

5.6 Extra Functions

In this section, you will be able to find some extra functions meant to be linked to a button or to be used inside
functions described in Section 5.5.1.

5.6.1 Save Function

SaveGUI(object.names, init.name="result")

This function will open up a Save window (Figure 19), saving the chosen object.names (vector of the names
of the objects to be saved) in an .RData file. The init.name variable simply decide the standard save name
which should appear in the save window.

Figure 19: Save Window

5.6.2 Load Function

LoadGUI()

This function opens up a Load window (Figure 20) in which saved .RData objects can be loaded.

Figure 20: Load Window

22

References

Dalgaard, P. (2001a), “A Primer on the R-Tcl/Tk Package,” R-News, 1, 27–31.

— (2001b), “The R-Tcl/Tk interface,” in DSC 2001 Proceedings of the 2nd International Workshop on Dis-
tributed Statistical Computing, Vienna, Austria.

— (2002), “Changes to the R-Tcl/Tk package,” R-News, 2, 25–27.

Fox, J. (2005), “The R Commander: A basic-statistics graphical user interface to R,” Journal of Statistical, 14,
1–42.

— (2007), “Extending the R Commander by ”Plug-in” Packages,” R-News, 7, 46–52.

Fox, J. and Bouchet-Valat, M. (2013), Getting Started With the R Commander.

Lawrence, M. and Lang, D. T. (2014), Package ‘RGtk2’ : R bindings for Gtk 2.8.0 and above, package Version
2.20.31.

R Core Team (2014), R: A Language and Environment for Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria.

Verzani, J. (2014), Package ‘gWidgets’: gWidgets API for building toolkit-independent, interactive GUIs, pack-
age Version 0.0-54.

23

6 Appendix

All the code in the appendix can also be found in R scripts, located in the doc folder of the package.

6.1 .onAttach-function

.onAttach <- function(libname, pkgname){

if (!interactive()) return()

putRcmdr("slider.env", new.env())

Rcmdr <- options()$Rcmdr

plugins <- Rcmdr$plugins

if (!pkgname %in% plugins) {

Rcmdr$plugins <- c(plugins, pkgname)

options(Rcmdr=Rcmdr)

if("package:Rcmdr" %in% search()) {

if(!getRcmdr("autoRestart")) {

closeCommander(ask=FALSE, ask.save=TRUE)

Commander()

}

}

else {

Commander()

}

}

}

6.2 General Script

GUI_WINDOW <- function(list.info=list()){

##########################

PREAMBLE/INFORMATION

##########################

dialogtitle <- "This is the title of the window"

usetabs <- TRUE

tabnames <- c("Tab 1","Tab 2","Tab 3")

helppage <- "plot"

Do not change these lines

if(usetabs){ntabs <- length(tabnames)} else {ntabs <- 1}

new.frames <- .initialize.new.frames(ntabs)

grid.config <- .initialize.grid.config(ntabs)

grid.rows <- .initialize.grid.rows(ntabs)

###

##################

GRID BUTTONS

##################

make.help.button <- TRUE

make.setwd.button <- TRUE

make.resetgws.button <- TRUE

make.seed.button <- TRUE

###########

TAB 1

###########

Tab <- 1

24

1. ADDING THE FRAMES

Add frames here

2. CONFIGURING THE GRID

grid.config <- .grid.matrix(Tab = Tab, c("frame1","frame2","frame3",NA),

byrow=TRUE, nrow=2, ncol=2, grid.config=grid.config)

3. COMBINING THE ROWS

grid.rows <- .combine.rows(Tab = Tab, rows = c(1,2),title = "A nice box: ",

border = TRUE, grid.rows=grid.rows, grid.config = grid.config)

#############

TAB 2

#############

Tab <- 2

Repeat what you did for tab 1 for as many tabs as you like...

##

USE ALL THE ARGUMENTS IN THE GENERAL GUI_TEMPLATE FUNCTION

##

GUI_template(dialogtitle = dialogtitle, helppage = helppage, make.resetgws.button =

make.resetgws.button, make.setwd.button = make.setwd.button,

make.help.button = make.help.button, make.seed.button = make.seed.button,

usetabs = usetabs, tabnames = tabnames, grid.config = grid.config, grid.rows =

grid.rows, new.frames = new.frames)

}

6.3 Frame Scripts

ENTRY FIELDS FRAME

type <- "entryfields"

Change variables accordingly:

frame.name <- "entryframe1"

argument.names <- c("Argument 1","Argument 2","Argument 3")

argument.types <- c("num","num","char")

arguments <- c("arg1","arg2","arg3")

initial.values <- c(1,2,"a")

title <- "A Title"

border <- FALSE

entry.width <- c("2","2","6")

Do not change this line:

new.frames <- .add.frame(Tab=Tab,type=type

,frame.name=frame.name,argument.names=argument.names

,arguments=arguments,initial.values=initial.values

,title=title,border=border,entry.width=entry.width

,argument.types=argument.types ,new.frames=new.frames)

RADIO BUTTONS FRAME

25

type <- "radiobuttons"

Change variables accordingly:

frame.name <- "radioframe1"

argument.names <- c("Button 1","Button 2","Button 3")

arguments <- c("buttonarg")

argument.types <- "char"

argument.values <- c("b1","b2","b3")

initial.values <- "b3"

title <- "Button Options"

border <- TRUE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(Tab=Tab,type=type

,frame.name=frame.name,argument.names=argument.names

,arguments=arguments,argument.values=argument.values

,initial.values=initial.values,title=title,border=border

,new.frames=new.frames,argument.types=argument.types)

CHECK BOXES FRAME

type <- "checkboxes"

Change variables accordingly:

frame.name <- "checkboxframe1"

argument.names <- c("Check 1","Check 2","Check 3")

arguments <- c("checkarg1","checkarg2","checkarg3")

initial.values <- c(0,1,1)

title <- "title"

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(Tab=Tab,type=type

,frame.name=frame.name,argument.names=argument.names

,arguments=arguments,initial.values=initial.values

,title=title,border=border,new.frames=new.frames)

VALUE SLIDER FRAME

type <- "valuesliders"

Change variables accordingly:

frame.name <- "sliderframe1"

argument.names <- c("Slider 1 ","Slider 2 ","Slider 3 ")

arguments <- c("sliderarg1","sliderarg2","sliderarg3")

initial.values <- c(1,5,10)

from <- c(1,1,1)

to <- c(5,50,500)

by <- c(1,10,50)

length <- c(50,100,150)

title <- "Title"

border <- TRUE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(Tab=Tab,type=type,

title=title,border=border,frame.name=frame.name,

argument.names=argument.names,arguments=arguments,

initial.values=initial.values,from=from,to=to,by=by,

26

length=length,new.frames=new.frames)

SPIN BOX FRAME

type <- "spinboxes"

Change variables accordingly:

frame.name <- "spinboxframe1"

argument.names <- c("Spin Box 1: ","Spin Box 2: ","Spin Box 3: ")

arguments <- c("spinarg1","spingarg2","spingarg3")

initial.values <- c(5,10,20)

from <- c(1,5,10)

to <- c(10,20,30)

by <- c(1,1,1)

entry.width <- "2"

title <- "Spin Box !"

border <- TRUE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(Tab=Tab,type=type,

frame.name=frame.name,argument.names=argument.names,

arguments=arguments,initial.values=initial.values,

from=from,to=to,by=by,entry.width=entry.width,

title=title,border=border,new.frames=new.frames)

LIST BOX FRAME

type <- "listbox"

Change variables accordingly:

frame.name <- "listboxframe1"

arguments <- "listboxarg"

argument.names <- c("Value 1","Value 2","Value 3")

argument.values <- c("value1","value2","value3")

argument.types <- "char"

initial.values <- c("value3")

length <- 4

select.multiple <- FALSE

title <- "A list box:"

border <- TRUE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(Tab=Tab,type=type,

frame.name=frame.name,argument.names=argument.names,

arguments=arguments,argument.values=argument.values,

argument.types=argument.types, initial.values=initial.values,

length=length,select.multiple=select.multiple,

title=title,border=border,new.frames=new.frames)

MANUAL BUTTONS FRAME

type <- "buttons"

Change variables accordingly:

frame.name <- "buttonframe1"

button.name <- "Button 1"

button.function <- "buttonfunction"

button.data <- "d"

button.object <- "saveobject"

27

button.width <- "12"

button.data.transf <- "matrix" # only matrix available here !

arg.frames <- c("frame1","frame2")

save <- TRUE

show.save <- TRUE

show <- TRUE

button.otherarg <- "" # always start with a ,

Do not change this line:

new.frames <- .add.frame(Tab=Tab,frame.name=frame.name,

type=type,button.name=button.name,button.width=button.width,

button.data.transf=button.data.transf,

button.function=button.function,button.data=button.data,

button.object=button.object,button.otherarg=button.otherarg,

arg.frames=arg.frames,save=save,show=show,show.save=show.save,

new.frames=new.frames)

6.4 Example Script

plaid_WINDOW <- function(list.info=list()){

##########################

PREAMBLE/INFORMATION

##########################

dialogtitle <- "Plaid Biclustering"

usetabs <- TRUE

tabnames <- c("Biclustering","Plot & Diagnostics")

if(usetabs){ntabs <- length(tabnames)} else {ntabs <- 1}

new.frames <- .initialize.new.frames(ntabs)

grid.config <- .initialize.grid.config(ntabs)

grid.rows <- .initialize.grid.rows(ntabs)

helppage <- "BCPlaid"

##################

GRID BUTTONS

##################

make.help.button <- TRUE

make.setwd.button <- FALSE

make.resetgws.button <- FALSE

make.seed.button <- TRUE

###########

TAB 1

###########

Tab <- 1

1. ADDING THE FRAMES

RADIO BUTTONS FRAME

28

#

type <- "radiobuttons"

Change variables accordingly:

frame.name <- "toclusterframe"

argument.names <- c("Rows","Columns","Rows & Columns")

arguments <- c("cluster")

argument.values <- c("r","c","b")

argument.types <- "char"

initial.values <- "b"

title <- "To Cluster"

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(Tab=Tab,type=type,frame.name=frame.name,

argument.names=argument.names,arguments=arguments,argument.values=

argument.values,initial.values=initial.values,title=title,border=border,

new.frames=new.frames,argument.types=argument.types)

ENTRY FIELDS FRAME

#

type <- "entryfields"

Change variables accordingly:

frame.name <- "modelframe"

argument.names <- c("Model Formula")

argument.types <- c("num")

arguments <- c("fit.model")

initial.values <- c("y ~ m+a+b")

title <- "Model"

border <- FALSE

entry.width <- c("10")

Do not change this line:

new.frames <- .add.frame(Tab=Tab,type=type,frame.name=frame.name,argument.names=

argument.names,arguments=arguments,initial.values=initial.values,title=title,

border=border,entry.width=entry.width,argument.types=argument.types

,new.frames=new.frames)

CHECK BOXES FRAME

#

type <- "checkboxes"

Change variables accordingly:

frame.name <- "backgroundcheckframe"

argument.names <- c("Background Layer?")

arguments <- c("background")

initial.values <- c(1)

title <- ""

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(Tab=Tab,type=type,frame.name=frame.name,argument.names=

argument.names,arguments=arguments,initial.values=initial.values,title=title,

border=border,new.frames=new.frames)

29

ENTRY FIELDS FRAME

#

type <- "entryfields"

Change variables accordingly:

frame.name <- "backgroundentryframe1"

argument.names <- c("Shuffle","Back Fit","Max Layes")

argument.types <- c("num","num","num")

arguments <- c("shuffle","back.fit","max.layers")

initial.values <- c(3,0,20)

title <- ""

border <- FALSE

entry.width <- c("3","3","3")

Do not change this line:

new.frames <- .add.frame(Tab=Tab,type=type,frame.name=frame.name,argument.names=

argument.names,arguments=arguments,initial.values=initial.values,title=title,

border=border,entry.width=entry.width,argument.types=argument.types

,new.frames=new.frames)

ENTRY FIELDS FRAME

#

type <- "entryfields"

Change variables accordingly:

frame.name <- "backgroundentryframe2"

argument.names <- c("Iteration Startup","Iteration Layer")

argument.types <- c("num","num")

arguments <- c("iter.startup","iter.layer")

initial.values <- c(5,10)

title <- ""

border <- FALSE

entry.width <- c("3","3")

Do not change this line:

new.frames <- .add.frame(Tab=Tab,type=type,frame.name=frame.name,

argument.names=argument.names,arguments=arguments,initial.values=

initial.values,title=title,border=border,entry.width=entry.width,

argument.types=argument.types ,new.frames=new.frames)

MANUAL BUTTONS FRAME

type <- "buttons"

Change variables accordingly:

frame.name <- "plaidbutton"

button.name <- "Plaid"

button.function <- "biclust"

button.data <- "x"

button.object <- "PlaidResult"

button.width <- "12"

button.data.transf <- "matrix" # only matrix available here !

arg.frames <- c("toclusterframe","modelframe","backgroundcheckframe",

"backgroundentryframe1","backgroundentryframe2")

save <- TRUE

show <- TRUE

30

show.save <- TRUE

button.otherarg <- ",method=BCPlaid()"

Do not change this line:

new.frames <- .add.frame(Tab=Tab,frame.name=frame.name,

type=type,button.name=button.name,button.width=button.width,

button.data.transf=button.data.transf,

button.function=button.function,button.data=button.data,

button.object=button.object,button.otherarg=button.otherarg,

arg.frames=arg.frames,save=save,show=show,new.frames=new.frames,

show.save=show.save)

2. CONFIGURING THE GRID

grid.config <- .grid.matrix(Tab=Tab,c("toclusterframe","modelframe",

"backgroundcheckframe",NA,"backgroundentryframe1","backgroundentryframe2",

"plaidbutton",NA),byrow=TRUE,nrow=4,ncol=2,grid.config=grid.config)

3. COMBINING THE ROWS

grid.rows <- .combine.rows(Tab=Tab,rows=c(1),title="Plaid Specifications",

border=TRUE,grid.rows=grid.rows,grid.config=grid.config)

grid.rows <- .combine.rows(Tab=Tab,rows=c(2,3),title="Layer Specifications",

border=TRUE,grid.rows=grid.rows,grid.config=grid.config)

#############

TAB 2

#############

Tab <- 2

Repeat what you did for tab 1 for as many tabs as you like...

###

USE ALL THE ARGUMENTS IN THE GENERAL GUI_TEMPLATE FUNCTION

###

GUI_template(dialogtitle=dialogtitle,helppage=helppage,make.resetgws.button=

make.resetgws.button,make.setwd.button=make.setwd.button,make.help.button=

make.help.button,make.seed.button=make.seed.button,usetabs=usetabs,tabnames=

tabnames,grid.config=grid.config,grid.rows=grid.rows,new.frames=new.frames)

}

6.5 Window Environment Example

main_WINDOW <- function(list.info=list()){

##########################

PREAMBLE/INFORMATION

##########################

dialogtitle <- "Example"

usetabs <- FALSE

tabnames <- c("Biclustering","Plot & Diagnostics")

if(usetabs){ntabs <- length(tabnames)} else {ntabs <- 1}

new.frames <- .initialize.new.frames(ntabs)

grid.config <- .initialize.grid.config(ntabs)

grid.rows <- .initialize.grid.rows(ntabs)

31

helppage <- ""

##################

GRID BUTTONS

##################

make.help.button <- FALSE

make.setwd.button <- FALSE

make.resetgws.button <- FALSE

make.seed.button <- FALSE

###########

TAB 1

###########

Tab <- 1

1. ADDING THE FRAMES

ENTRY FIELDS FRAME

type <- "entryfields"

Change variables accordingly:

frame.name <- "entryframe1"

argument.names <- c("Values?")

argument.types <- c("num")

arguments <- c("arg1")

initial.values <- c("")

title <- ""

border <- FALSE

entry.width <- c("25")

Do not change this line:

new.frames <- .add.frame(Tab=Tab,type=type

,frame.name=frame.name,argument.names=argument.names

,arguments=arguments,initial.values=initial.values

,title=title,border=border,entry.width=entry.width

,argument.types=argument.types ,new.frames=new.frames)

MANUAL BUTTONS FRAME

type <- "buttons"

Change variables accordingly:

frame.name <- "buttonframe1"

button.name <- "Choose"

button.function <- "choose_WINDOW"

button.data <- ""

button.object <- "saveobject"

button.width <- "12"

button.data.transf <- "matrix"

arg.frames <- c()

save <- FALSE

show.save <- FALSE

show <- FALSE

button.otherarg <- "" # always start with a ,

Do not change this line:

32

new.frames <- .add.frame(Tab=Tab,frame.name=frame.name,

type=type,button.name=button.name,button.width=button.width,

button.data.transf=button.data.transf,

button.function=button.function,button.data=button.data,

button.object=button.object,button.otherarg=button.otherarg,

arg.frames=arg.frames,save=save,show=show,show.save=show.save,

new.frames=new.frames)

2. CONFIGURING THE GRID

grid.config <- .grid.matrix(Tab=Tab,c("entryframe1","buttonframe1"),

byrow=TRUE,nrow=1,ncol=2,grid.config=grid.config)

3. COMBINING THE ROWS

###

USE ALL THE ARGUMENTS IN THE GENERAL GUI_TEMPLATE FUNCTION

###

GUI_template(dialogtitle=dialogtitle,helppage=helppage,make.resetgws.button=

make.resetgws.button,make.setwd.button=make.setwd.button,make.help.button=

make.help.button,make.seed.button=make.seed.button,usetabs=usetabs,tabnames=

tabnames,grid.config=grid.config,grid.rows=grid.rows,new.frames=new.frames)

}

choose_WINDOW <- function(){

##########################

PREAMBLE/INFORMATION

##########################

dialogtitle <- "Choosing"

usetabs <- FALSE

tabnames <- c("Biclustering","Plot & Diagnostics")

if(usetabs){ntabs <- length(tabnames)} else {ntabs <- 1}

new.frames <- .initialize.new.frames(ntabs)

grid.config <- .initialize.grid.config(ntabs)

grid.rows <- .initialize.grid.rows(ntabs)

helppage <- ""

##################

GRID BUTTONS

##################

make.help.button <- FALSE

make.setwd.button <- FALSE

make.resetgws.button <- FALSE

make.seed.button <- FALSE

###########

TAB 1

###########

Tab <- 1

1. ADDING THE FRAMES

LIST BOX FRAME

33

type <- "listbox"

Change variables accordingly:

frame.name <- "listboxframe1"

arguments <- "values" # should only be 1

argument.names <- c("Value 1","Value 2","Value 3")

argument.values <- c("value1","value2","value3")

argument.types <- "char" # should be only 1

initial.values <- c("value3") # Can be 1 or multiple

length <- 4 #no character , if not given, will take length of names

select.multiple <- TRUE

title <- "Possible Values:"

border <- TRUE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(Tab=Tab,type=type,

frame.name=frame.name,argument.names=argument.names,

arguments=arguments,argument.values=argument.values,

argument.types=argument.types, initial.values=initial.values,

length=length,select.multiple=select.multiple,

title=title,border=border,new.frames=new.frames)

MANUAL BUTTONS FRAME

type <- "buttons"

Change variables accordingly:

frame.name <- "buttonframe1"

button.name <- "Ok"

button.function <- "setentry_example"

button.data <- ""

button.object <- "saveobject"

button.width <- "12"

button.data.transf <- "matrix"

arg.frames <- c("listboxframe1")

save <- FALSE

show.save <- FALSE

show <- FALSE

button.otherarg <- "" # always start with a ,

Do not change this line:

new.frames <- .add.frame(Tab=Tab,frame.name=frame.name,

type=type,button.name=button.name,button.width=button.width,

button.data.transf=button.data.transf,

button.function=button.function,button.data=button.data,

button.object=button.object,button.otherarg=button.otherarg,

arg.frames=arg.frames,save=save,show=show,show.save=show.save,

new.frames=new.frames)

2. CONFIGURING THE GRID

grid.config <- .grid.matrix(Tab=Tab,c("listboxframe1","buttonframe1"),

byrow=TRUE,nrow=2,ncol=1,grid.config=grid.config)

3. COMBINING THE ROWS

##

USE ALL THE ARGUMENTS IN THE GENERAL GUI_TEMPLATE FUNCTION

34

##

GUI_template(dialogtitle=dialogtitle,helppage=helppage,make.resetgws.button=

make.resetgws.button,make.setwd.button=make.setwd.button,make.help.button=

make.help.button,make.seed.button=make.seed.button,usetabs=usetabs,tabnames=

tabnames,grid.config=grid.config,grid.rows=grid.rows,new.frames=new.frames)

}

setentry_example <- function(values){

new.value <- "c("

for(i in 1:length(values)){

new.value <- paste0(new.value,"'",values[i],"'")

if(i!=length(values)){new.value <- paste0(new.value,",")}

}

new.value <- paste0(new.value,")")

ChangeWindow("Example",tab=1,"entryframe1","arg1",new.value)

CancelWindow("Choosing")

}

35

	Introduction
	R Commander
	Other GUI Creation Packages
	Creating a GUI for Rcmdr
	Menu file
	.onAttach
	DESCRIPTION and NAMESPACE File
	Active Data in Rcmdr

	Script Templates Guide
	General Script
	General Window Information
	Making a Tab

	Frame Scripts
	Example Script - Plaid Biclustering
	Testing your windows
	Advanced Techniques
	Using doItAndPrint() and justDoIt()
	Window Environments

	Extra Functions
	Save Function
	Load Function

	Appendix
	.onAttach-function
	General Script
	Frame Scripts
	Example Script
	Window Environment Example

