RBF: Robust Backfitting

A robust backfitting algorithm for additive models based on (robust) local polynomial kernel smoothers. It includes both bounded and re-descending (kernel) M-estimators, and it computes predictions for points outside the training set if desired. See Boente, Martinez and Salibian-Barrera (2017) <doi:10.1080/10485252.2017.1369077> for details.

Version: 2.0.1
Imports: stats, graphics
Published: 2020-07-30
Author: Matias Salibian-Barrera [aut, cre], Alejandra Martinez [aut]
Maintainer: Matias Salibian-Barrera <matias at stat.ubc.ca>
License: GPL (≥ 3.0)
NeedsCompilation: yes
CRAN checks: RBF results

Downloads:

Reference manual: RBF.pdf
Package source: RBF_2.0.1.tar.gz
Windows binaries: r-devel: RBF_2.0.1.zip, r-release: RBF_2.0.1.zip, r-oldrel: RBF_2.0.1.zip
macOS binaries: r-release: RBF_2.0.1.tgz, r-oldrel: RBF_2.0.1.tgz
Old sources: RBF archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=RBF to link to this page.