
R2DGC

Contents
1 Introduction 1

1.1 Overview . 1
1.2 Basic workflow . 2

2 Detailed Workflow 3
2.1 Installation . 3
2.2 Formatting input data . 4
2.3 Ion filtering with FindProblemIons . 5

2.3.1 FindProblemIons overview . 5
2.4 Intra-sample peak compression with PrecompressFiles . 6

2.4.1 PrecompressFiles overview . 6
2.4.2 Computing peak similarity scores . 7
2.4.3 Handling different quant masses . 7

2.5 Generating a metabolite standard library with MakeReference 8
2.5.1 MakeReference overview . 8
2.5.2 Finding the pre-formatted standard library that comes with the package 9
2.5.3 Computing and using retention time indexes . 9

2.6 Multi-sample alignment and metabolite identification with ConsensusAlign 10
2.6.1 ConsensusAlign overview . 10
2.6.2 Computing the optimal similarity score threshold . 13

3 Examples use cases 13
3.1 Use case #1. Align peaks from multiple samples without retention time standards 13
3.2 Use case #2. Align peaks from multiple samples with retention time standards 14
3.3 Use case #3. Align peaks from multiple samples and identify metabolites from a standard library 14
3.4 Use case #4. Find problem ions, compress peaks, align peaks from multiple samples with

retention time standards, and identify metabolites from a standard library 14
3.5 Use case #5. Align peaks from multiple samples with retention time standards with multiple

seed files . 15

1 Introduction

1.1 Overview

This is supplementary text designed to expand upon methods implemented in the R2DGC package. It is not
intended to be a comprehensive resource describing all possible flags or outputs for each function, rather this
document seeks to provide an overview of the functionality of the package. Please refer to each individual
function’s help page using the ?[function name] command in R after installation. For clarity, function names
are bolded and function arguments or flags are italicized.

This package is designed to allow users to align 2D-GCMS metabolite peaks common to multiple samples
from exported peak files generated by Chromatof and identify metabolites based on a standard reference
library. Metabolomics data processing can be roughly binned into three parts (Figure 1).

1

Metabolomics Data Processing
Raw Signal Filtering

and Peak Calling
(ChromaTOF)

Multi−sample Peak
Alignment and

Metabolite Identification
(R2DGC)

Data Normalization
and Statistical

Inference
(Metaboanalyst)

Group A

Group B

Figure 1: Overview of metabolomics data processing

The first is base level filtering of intensity signals via signal-to-noise thresholds and subsequent peak
localization, deconvolution and integration. The second is alignment of peaks common to multiple sample
files and identification of the metabolites from which each peak was likely derived. The final component
of data processing is missing value imputation, normalization and statistical comparison of metabolite
levels between groups of samples. The first step is usually handled by vendor software such as Chromatof
(http://www.leco.com/products/separation-science/software-accessories/chromatof-software) that is installed
with an institution’s 2D-GCMS equipment. Well-polished solutions, such as Metaboanalyst (http://www.
metaboanalyst.ca) also exist for the third data processing step. This package is focused on providing an easy
to use tool for conducting the second step of the data processing pipeline.

1.2 Basic workflow

The basic workflow for metabolite alignment consists of two optional pre-processing functions and a function
for performing the final alignment (Figure 2).

2

http://www.leco.com/products/separation-science/software-accessories/chromatof-software
http://www.metaboanalyst.ca
http://www.metaboanalyst.ca

Input Sample
Chromatof File Paths

Optional: Ion Filtering
(FindProblemIons)

Optional: Intra−Sample
Peak Compression
(PrecompressFiles)

Multi−Sample Peak
Alignment and

Metabolite Identification
(ConsensusAlign)

Standard Library
Creation

(MakeReference)

Input Metabolite
Standard

Chromatof File Paths

Output List

Peak Alignment Table Peak Info Table Incongruent Quant
Mass List

Figure 2: Basic Workflow. Functions shown in parenthesis

Paths to raw Chromatof peak lists for each sample are provided as input. To improve the speed and accuracy
of alignment, mass spectral ions that are absent from all peaks or are common to all peaks (derivatization
artifacts) can be identified with the FindProblemIons function. Next, peaks that were unnecessarily split
by Chromatof and likely represent the same analyte, which we have found to cause problematic splitting in
downstream alignments, can be combined with the PrecompressFiles function. Admittedly, parameters
within the peak calling software can be optimized to improve peak calling as well, but given the time
consuming nature of this step, we found it beneificial to add this functionality as post-peak calling. Lastly,
the ConsensusAlign function will perform the final alignment of peaks across samples, identify likely
metabolites represented by each peak, if a metabolite standard reference library is provided, and output: (1)
a peak alignment table with the intensities for aligned peaks in each sample, (2) a peak information table
(containing peak retention times, mass spectral and standard library hits) and, (3) depending on the peak
quantification method used, a list of peaks that were aligned, but did not have matching quant or apexing
masses. Another optional function, MakeReference, is used to generate metabolite standard reference
libraries for use in the ConsensusAlign function.

2 Detailed Workflow

2.1 Installation

There are multiple ways to install this package. The package can be installed after downloading the binary
source file from github (https://github.com/rramaker/R2DGC) and installing the package manually:
install.packages("/PathToDownloadedFile/R2DGC_1.0.1.tgz")

The development version package can be directly installed from github with the devtools package
library(devtools)
install_github("rramaker/R2DGC")

3

https://github.com/rramaker/R2DGC

Once installed the functions from R2DGC can be made available in your current working environment with
the library() command:
library(R2DGC)

2.2 Formatting input data

The basic R2DGC input is a list of file paths to tab delimited sample files containing retention time, peak
area, mass spectra, and peak quantification method information for each peak as shown below:

Name Retention Times Area Quant Mass/Apexing Masses Spectra
Alanine 540 , 2.810 1798077 T 116:44973 73:387722 . . .
FAME_8 560 , 3.220 33713901 T 74:522236 87:195537 . . .
Valine 700 , 2.830 1050266 T 73:26438 144:18832 . . .

As shown above, the five required columns (the order shown is required) are the peak name, retention time
(outputted by Chromatof as first retention time, second retention time), peak area, quant mass, and mass
spectra (cutoff after the first two masses to save space). All of these columns can be specified as output in
the data processing method used by the Chromatof software and do not need to be altered post-output. The
fourth column is the only column that can change depending on the data processing method used. Chromatof
allows for three different methods for quantifying peak areas. The simplest is the total ion chromatogram
(TIC), which uses all ions to compute the peak area. This method has no unique quant mass, thus Chromatof
outputs “T” for the quant mass as shown above. The second is the unique mass method, which uses an ion
relatively unique to a peak to compute the area for a peak in an effort to improve resolution of overlapping
peaks. Chromatof will output the unique mass used to compute peak area in the quant mass column if this
method is selected as shown below:

Name Retention Times Area Quant Mass/Apexing Masses Spectra
Alanine 540 , 2.810 1798077 116 116:44973 73:387722 . . .
FAME_8 560 , 3.220 33713901 74 74:522236 87:195537 . . .
Valine 700 , 2.830 1050266 73 73:26438 144:18832 . . .

The final method, apexing masses, is a compromise of the first two. This approach uses several ions that
apex at similar retention times to compute the peak area. If this method is use “Apexing Masses” should
be outputed as the fourth column instead of “Quant Mass”. Chromatof will output each appexing mass
separated by a plus sign as shown below:

Name Retention Times Area Quant Mass/Apexing Masses Spectra
Alanine 540 , 2.810 1798077 116+73 116:44973 73:387722 . . .
FAME_8 560 , 3.220 33713901 74+87+75+101 74:522236 87:195537 . . .
Valine 700 , 2.830 1050266 73+144+75 73:26438 144:18832 . . .

Sample input files for all R2DGC functions should look identical to the SampleA.txt or SampleB.txt example
files provided with the package in the inst/extdata/ folder with the exception of the quant method used as
described above. Chromatof allows for several other output columns that are not required for R2DGC. We
recommend against including these in the input files to reduce memory usage during alignment. The example
files have also been reduced to just 13 amino acids and 9 (Fatty Acid Methyl Esters) FAME standards for
simplicity, however peak files with several hundred peaks are acceptable. Notice a consistent naming scheme
was used for each of the FAME standards. This is required if the user wishes to use these peaks for retention

4

time indexing in downstream processing. Other than retention time index standards the peak names are
irrelevant and not used in downstream processing.

2.3 Ion filtering with FindProblemIons

2.3.1 FindProblemIons overview

This is an optional step allowing the user to identify ions across all peak spectras to exclude in downstream
processing steps. There are at least two potential reasons to exclude ions. The first is that ions may be absent
or present at such a low level in all peaks such that removing it does not affect peak alignment quality, but
improves alignment efficiency. By Chromatof includes ion information over a continuous range of masses (we
export 70-600) and we’ve found that at least half of these are present at such low levels (< 1% of all spectras)
that they can be excluded from downstream processing without a significant effect. The second reason
to exclude an ion is because it may be so ubiquitious that does not contribute to distinguishing different
peak spectras. This is common for masses that are derived from the derivitization process used in sample
preparation (e.g. m/z 73 for TMS). The FindProblemIons function will identify ions that fall into both of
these categories. Typically a representative input file is provided for this function and the output is used in
downstream processing for all files. Below is an example calling this function on one of the example files:
ProblemIons<-FindProblemIons(inputFile=system.file("extdata", "SampleA.txt",

package="R2DGC"))

100 150 200 250 300

−
4

−
2

0
1

2
3

Ion

S
um

 5
0

(S
td

. D
ev

.)

73

Figure 3: Problem ion scores

As shown in Figure 3, this function outputs (unless plotData=FALSE) a plot showing each ion on the X-axis
and a score for each ion on the Y-axis. We have defined this score as “Sum50” or the number of peak spectras
within a file that have a dot product similarity score greater than 50 after removing a given ion from each
spectra. The dot product similarity score is calculated as follows:

First, A and B are each defined as two peaks with spectra that can be represented as vectors A =
[a70, a71, ..., a600] and B = [b70, b71, ..., b600] with each element representing an ion intensity. Than the
similarity of two spectras, S, can be assessed as the inner product of the two vectors divided by the product
of the length of each vector:

S = ((A •B)/(||A|| × ||B||))× 100

5

Thus, ions that show a low “Sum50” should likely be excluded from downstream processing because our
ability to resolve peaks within each sample or the degree to which each peak has a unique spectra is inhibited
by including these ions. This function plots a z-scored Sum50 score for each ion specified by possibleIons.
We have found that ions with Sum50 scores greater than 2 standard deviations below the mean should be
excluded from downstream processing. This threshold can be changed using the commonIonThreshold flag.
Any ion with a Sum50 score below the specified threshold will be labeled in red on the plot.

This function also outputs a data frame containing information on each ion that should be excluded and
whether it was classified as an “absent” or “common” ion:
head(ProblemIons)

Ions Status
4 73 Common
9 78 Absent
11 80 Absent
13 82 Absent
20 89 Absent
21 90 Absent

The first column of this output is the ion and the second is the reason each ion was outputted. By default
absent ions are those that represent less than 1% of the total ion intensity of each peak within the sample.
This threshold can also be modified with the absentIonThreshold flag. This function defaults to using 1 core
for processing, but we recommend increasing this by setting the numCores flag to as many cores as available.
Increasing the number of cores used exponentially increases processing time. This goes for all functions in
the R2DGC package except for the MakeReference function, which is less computationally intensive. The
number of cores available can be determined using the parallel package’s detectCores function:
library(parallel)
detectCores()

[1] 8

2.4 Intra-sample peak compression with PrecompressFiles

2.4.1 PrecompressFiles overview

This is another optional function that allows users to input a list of sample peak files and combine peaks that
were that were determined during peak calling to be multiple peaks, but likely represent the same analyte.
We have found that a small number of peaks in each sample are split for a variety of reasons including
saturation of large peaks. This causes problems in downstream alignments because peaks will semi-randomly
be assigned to each of the split peaks resulting in gaps in the final alignment table. This can be avoided by
scanning each sample file for peaks that should be combined prior to alignment. An example of this command
is shown below with a sample file that has had its Alanine peak split:
#Read in file containing split peak
SampleC<-system.file("extdata", "SampleC.txt", package="R2DGC")

CompressionInfo<-PrecompressFiles(inputFileList=SampleC)

This function returns a 15 column data frame (5 original columns + 2 parsed retention times from each peak
and the sample file path) listing all peak pairs that were combined for each sample.

6

2.4.2 Computing peak similarity scores

This function uses peak retention times and the dot product of the peak spectra to assess peak similarity as
described above (Section 2.3). If we assume A and B are two peaks with spectra that can be represented
as vectors A = [a70, a71, ..., a600] and B = [b70, b71, ..., b600] with each element representing an ion intensity.
Than the similarity of two spectras, S, can be assessed as the dot product of the two vectors divided by the
product of the length of each vector to normalize comparisons of all peaks such that:

S = ((A •B)/(||A|| × ||B||))× 100

To calculate the final peak similarity, we subtract absolute value of the retention time differences multiplied
by their specified penalty weights (P1 and P2). Thus, if A and B each have two retention times Ap, Aq and
Bp, Bq, the final similarity score between the two peaks can be computed as:

S = (((A •B)/(||A|| × ||B||))× 100)− (|Ap −Bp| × P1)− (|Aq −Bq| × P2)

This results in a range of possible peak similarity scores, S, from a perfect score of 100 to −∞. The retention
time penalties are set with the RT1Penalty and RT2Penalty flags and default to 1 and 10 respectively. The
second retention receives a higher penalty by default because it is typically a shorter column, thus smaller
retention time differences are more important. However, the user should adjust these based on the stability
of each retention time. In other words, if the second retention time is highly variable, reduce RT2Penalty
relative to RT1Penalty. The absolute values of RT1Penalty and RT2Penalty will dictate the overall retention
time penalty relative to the spectra similarity. We recommend using a relatively stringent spectra similarity
threshold (similarityCutoff defaults to 95) as only peaks that are exceptionally similar should be combined.
A pairwise comparison of all peaks for each sample is made in this step. Problem ions previously identified
by the FindProblemIons function (section 2.3) can be filtered prior to performing pair wise comparisons
by setting commonIons flag to the first column of the FindProblemIons output dataframe:
CompressionInfo<-PrecompressFiles(inputFileList=SampleC, commonIons = ProblemIons[,1])

If the outputFiles flag is set to TRUE, this function will peform a putative summation of peaks to be combined
and write new sample files to the input file path with “_Processed.txt" appended to the end of the file path.
It is almost always preferable to go back and combine peaks with the primary peak calling software to ensure
proper peak area integration, however these putatively combined peaks can be used for preliminary analysis.

2.4.3 Handling different quant masses

One important thing to note is that the quantMethod flag should be set to the quant method used in the
Chromatof data processing used to generate the sample files. If TIC or apexing masses are used (quantMethod
= “T” or “A”) then peaks that are nominated for combining will simply be summed together. However, if
the unique mass method is used (quantMethod=“U”) and peaks nominated have different unique masses,
proportional conversion will be performed to convert the peak masses to what they would be if they had the
same unique mass. In other words, if a peak area, A, is computed with a unique mass of 73 and a second
peak area B, is computed with a unique mass of 74, B is converted to roughly what the mass would have
been if its unique mass would have been 73 by multiplying it by the ratio of its ion intensities b73/b74. Thus,
in this scenario with differing unique masses the final combined peak area, C, would be computed as follows:

C = A + (B × b73/b74)

We have found this proportional conversion to be servicable when the unique mass ion intensities are relatively
comprable, however, this relationship does break down the more disparate the intensities. This should be a
relatively rare occurance because samples with vastly differing unique masses are unlikely to meet the peak
similarity threshold for compression or alignment. The spectra of the peak with the larger area is retained for
the final output.

7

2.5 Generating a metabolite standard library with MakeReference

2.5.1 MakeReference overview

The third and final optional function in the package is used to generate metabolite standard libraries for
reference in the ConsensusAlign function for identifying metabolites from which peaks are observed. A list
of file paths to Chromatof files derived from metabolite standards are used as inputs and the output is a
dataframe that can be used as input for the standardLibrary flag in the ConsensusAlign function. I’ve
provided two example metabolite standard Chromatof files so users can be sure their formatting is correct in
the inst/extdata package folder.

These are tab separated files generated by running standards locally with a series of FAME standards as
retention indices. There is a header describing each column as is standard output from Chromatof software.
Notice these files only require 3 columns and do not need the peak area or quant mass/apexing mass column
used for sample files. Below is a table showing the first three lines of the first standard file to demonstrate
each of the 3 required columns in the input file:

Name Retention Times Spectra
Alanine 545 , 2.880 73:55154 116:51493
FAME_8 565 , 3.310 74:425579 87:225021
FAME_10 845 , 3.240 74:453713 87:208511

As shown above, the only three columns that should be present in the metabolite standard files are the peak
name, the retention times and the mass spectra. The rows consist of the metabolite standard peak of interest
(Alanine) and 9 FAME standards. Standards that result in multiple peaks should be split up into separate
metabolite standard input files. This is the first instance in which we have encountered using retention time
standards. We highly recommend using retention time standards such as FAMEs to index your standards.
This is recommended because retention times naturally drift as GC columns age or are replaced and retention
time standards provides a form of universal retention indexing such that any sample that also has similar
retention time standards spiked into it can be compared. It is important to note that a standard naming
scheme is applied to the FAME standards in the example. This is required for the aligner to identify the
standards in each sample. To make use of retention indexing, be sure each retention time standard is named
consistantly across all standards and sample files. Once metabolite standard files are formatted correctly, the
standard reference library can be generated easily:
Standard1<-system.file("extdata", "Alanine_150226_1.txt", package="R2DGC")
Standard2<-system.file("extdata", "Serine_022715_1.txt", package="R2DGC")
StandardLibrary<-MakeReference(inputFileList = c(Standard1, Standard2),

RT1_Standards=paste0("FAME_", seq(8,24,2)))

Notice, in addition to providing the file paths to the standards we provided a vector with the names of each of
the FAME standards in the RT1_Standards flag. A separate set of standards can be provided for use indexing
the second retention time with the RT2_Standards flag as well. It is important to note, that retention time
standards are only helpful if they span a large portion of possible retention times. The FAME standards
indicated (C:8, C:10, C:12, C:14, C:16, C:18, C:20, C:22, C:24) are distributed across the first retention time,
but have similar second retention times so we have only used them to index the first retention time.

The output is a data frame with two rows representing the two metabolite standards we ran the function on.
The first three columns are the original peak name, retention time, and spectra columns from the input files.
The following columns represent the two retention times followed by the first retention time relative to each
FAME standard to allow for retention time indexing while performing alignments with the ConsensusAlign
function (see section 2.5.3 below for more details). Though recommended, retention time standards are not
required for alignment or standard library construction. If retention time standards are not desired, the user
should just submit a metabolite standard Chromatof file formatted identically to the examples above except

8

with only one row describing the metabolite standard of interest.

2.5.2 Finding the pre-formatted standard library that comes with the package

We have provided a pre-formatted standard library with ~300 peaks with rentention indexes calculated with 9
FAME standards (C:8, C:10, C:12, C:14, C:16, C:18, C:20, C:22, C:24). We have used the naming convention
described above (Section 2.2), FAME_[number of carbons]. Any user can use this library regardless of
whether they have FAME standards spiked into their samples if they perform a retention time standard-free
alignment (see section 2.6 below). Users who have spiked these FAME standards into their samples and
named the FAME peaks according to the convention described can take advantage of retention indexing. If
only a subset of the FAME standards have been used with a user’s samples, this library can still be used if
the columns corresponding to the missing FAME peaks are deleted from the standard library data frame.
The standard library can be accessed easily with the data() command:
data("StandardLibrary_030117")

This creates a new variable named “StandardLibrary_030117” in your R environment, which can be used as
input for the standardLibrary flag in the ConsensusAlign function (section 2.6).

2.5.3 Computing and using retention time indexes

The R2DGC package uses a very simple approach to incorporating retention time standards for universal
retention time indexing. The maximum amount of retention time the user’s retention time standards cover is
computed as a total RT length L. Next, the difference between a peak’s retention time and each retention
time standard is computed as a vector of differences, D = [d1, d2, ..., dn], where d representes the difference in
retention time between a peak and a given retention time standard and n is the total number of retention
time standards used. Next each element in D is divided by L resulting in a retention index vector, R, with
each retention time standard voting on the location of a peak relative to total retention time covered by all
retention standards (Figure 4).

R = D/L = [r1, r2, ..., rn]

Std1 Analyte Std2 Std3Std1

0 2 4 6 8 10

Retention Time

L=7

d1= −2.5

d2= 1.5

d3= 4.5

Figure 4: Computing retention index values

Retention index vectors can be compared similarly to simple retention times as described in section 2.4.2
above when computing similarity scores. Thus, retention index vectors R can be relatively easily substituted
for retention times. As described in 2.4.2, if two peaks are represented as A and B, then instead of having a
primary retention time Ap and Bp, the peaks can have retention index vectors AR and BR. The retention

9

difference, W , is then computed as the sum of the absolute value difference between each element of the two
peaks respective retention indices:

W =
∑n

i=1 |AR −BR|

Where n represents the total number of retention standards used. Substituting W into our original similarity
score, S, equation gives us:

S = (((A •B)/(||A|| × ||B||))× 100)− (W × P1)− (|Aq −Bq| × P2)

The accuracy of this approach increases with the number of retention time standards used as increasing
the number of retention time standards provides a finer representation of retention time shifts. Second,
the accuracy of this approach breaks down with peaks that occur outside the range of the retention time
standards, so the user should use retention time standards that cover the range of retention times of the
metabolite peaks of interest. The advantages of this approach include its simplicity, speed of computation,
and ability to scale to multiple columns.

2.6 Multi-sample alignment and metabolite identification with ConsensusAlign

2.6.1 ConsensusAlign overview

This is the final and only mandatory function included in the package. It takes a list of input sample
Chromatof file paths formatted as described in section 2.2 above as well as an optional metabolite standard
library as described in section 2.5 and will align common peaks across the samples and identifies metabolites
from which each aligned peak is likely derived from if a standard library is provided. Figure 5 diagrams the
basic processed involved in the ConsensusAlign function:

10

Read in sample files

Optional: Compute retention indices

Compute pairwise sample−seed
peak similarity scores

Optional: compute optimal
peak similarity threshold

Find best peak pairs above
peak similarity threshold

Optional: Relaxed threshold search
for high likelihood missing peaks

Optional: Identify aligned
peaks with reference library

Optional: repeat
alignment with
multiple seeds

Peak Alignment Table Peak Info Table Incongruent Quant
Mass List

Outputs

Figure 5: Overview of ConsensusAlign function

As described above, sample files are read in from file paths provided by the inputFilePaths flag. If retention
time standards are specified with the RT1_Standards or RT2_Standards flags, retention indexes are computed
for each peak in each sample file as described in section 2.5.2 above. Next, pairwise peak similarity scores
are computed for each peak in each sample file and a designated seed file. The seed file defaults to the first
file in the inputFilePaths argument, however this can be changed with the seedFile argument. Similarity
scores are computed as described in section 2.4.2 above. Next, the best peak matches (between each sample
file and the seed file) that are above the specified similarity score threshold are added to a final alignment
table. The similarity score threshold dictates the stringency of the alignment and can be adjusted with
the similarityCutoff flag - acceptable values usually range from 0 to 95 with higher values resulting in
more missing values, but higher confidence alignments. By setting autoTuneMatchStringency to TRUE, the
function will ignore the user inputted similarityCutoff and attempt to compute an optimal similarity score
threshold (see section 2.6.2. below). Peaks that are present in sample files, but not present in the seed
file, will be iteratively added to the alignment table if they have a similarity score less than the specified
dissimilarityCutoff flag (defaults 90 less than the similarityCutoff) for all other peaks already present in the
alignment table. It’s important that the dissimilarityCutoff is significantly less than the similarityCutoff so
the same peaks are not split over multiple rows in the alignment table. We have found this is a major source
of missing data in other aligners.

After all alignments are complete, the alignment table will be trimmed to only peaks that were successfulled
found in a greater or equal fraction of the samples than that specified by the missingValueLimit flag (defaults
to 0.75). If the missingPeakFinderSimilarityLax flag is less than 1 (typical range 0.75-1), the function will
perform a second pass alignment on the missingValueLimit trimmed alignment table looking for the missing
peaks in samples at a relaxed fraction of the initial similarityCutoff. These peaks are usually not truly
missing, rather they simply had a similarity score that fell just below the initial similarityCutoff threshold.

11

Specifying a seed file to which we compare all other sample files greatly reduces the number of pairwise
comparisons necessary for alignment, allowing us to conduct threshold free alignments instead of specifying
retention time or spectral match thresholds like many other aligners. However, a disadvantage to this approach
is that alignments have the potential to be biased based on the specified seed file. To address this, the user
can provide multiple seed files to the seedFile flag as a vector (3 is usually sufficient depending on the number
of total sample files). If more than one seed file is provided, the alignment will be performed with each
seed file and only aligned peaks with greater 50% of peaks consistent across all alignments will be returned.
Variable sample values are assigned a median value from all alignments.

After the alignment(s) are complete, if the user provides a metabolite standard library data frame to the
standardLibrary flag as described in section 2.5 above, the function will compute similarity scores between
each peak in the final alignment table and each metabolite standard in the library. The top three hits in
the library and their respective similarity scores are reported in the peak information table. For peaks not
present in the standard library, the similarity scores will be very low (<0) and these matches can probably
ignored. Based on our experience, similarity scores greater than 50 warrant attention as a likely hit.

The last thing to note about this function is that it is compatible with all three Chromatof quant methods,
so the user should specify the method used for data processing with the quantMethod flag. If the unique
mass method is used (quantMethod=“U”), any peaks that are aligned, but have different quant masses than
the seed file will have their peak area proportionally converted as described in section 2.4.3 above and will
be outputted in the incongruent quant mass list. If the apexing mass method is used (quantMethod=“A”),
if a sample peak has less than 50% apexing masses in common with the seed file and is aligned, the peak
and sample will be returned in the incrongruent quant mass list. These occurences should be rare in peaks
that pass similarity score thresholds, however, we recommend examing the incongruent quant mass list if
using the unique mass or apexing mass quant methods, manually changing the quant mass of the peaks, and
reprocessing for final analyses.

Here’s a brief example to examine the outputs using the sample input files described in section 2.2, the
standard library generated in section 2.5, and filtering problem ions identified in section 2.3 above:
#Find sample input file paths
SampleA<-system.file("extdata", "SampleA.txt", package="R2DGC")
SampleB<-system.file("extdata", "SampleB.txt", package="R2DGC")

#Perform alignment
Alignment<-ConsensusAlign(c(SampleA,SampleB), standardLibrary = StandardLibrary,

commonIons = ProblemIons)

seed is 1

Computing peak similarity threshold

Searching for missing peaks

Matching peaks to standard library

The output consists of a list of three objects. The first is the alignment matrix. This matrix contains all
aligned peak areas with the same number of rows as aligned peaks and columns as number of samples.
colnames(Alignment$Alignment_Matrix)<-gsub("^.+/","",colnames(Alignment$Alignment_Matrix))
head(Alignment$Alignment_Matrix, n=3)

SampleA.txt SampleB.txt
Alanine_Standard 1798077 2041511
FAME_8 33713901 42451556
Valine_Standard 1050266 1045578

The next output is the peak info table. This is a dataframe that contains the same number of rows as aligned
peaks and at least 7 columns containing information describing each peak. If a standard library is used, as
we did above, the first three columns are the top three library hits provided as [standard name]_[similarity

12

score]. The next 7 columns are the core columns always exported and consist of the peak name, retention
time, area, spectra quant mass (from seed file) and parsed retention times as they appear in the first seed file
or the first sample file a peak was observed in. The final columns are the retention indexes for each peak
with the same number of columns returned as retention time standards specified.

The last object returned is the Unmatched_Quant_Masses dataframe. If unique mass or apexing mass quant
methods are used, this contains information on peaks that were aligned, but had incongruent quant masses
as described above. It contains 12 columns, the original 5 columns from the Chromatof file for each of the
two aligned peaks and the file path of each sample file similar to the output described in section 2.4 above.
In this example we have used the default TIC quant method so we do not have an UnmatchedQuantMasses
dataframe.
Alignment$Unmatched_Quant_Masses

NULL

2.6.2 Computing the optimal similarity score threshold

As described above, the user has the option of manually providing a similarity score threshold for identifying a
successful alignment via the similarityCutoff flag of in the ConsensusAlign function, however, user imposed
thresholds are often arbitrary and can be difficult to optimize. Thus, we havve provided the option of allowing
the function to find a semi-optimized threshold by setting the autoTuneMatchStringency flag to TRUE. We
have emprically developed an approach to do this that tests a range of potential similarity score thresholds to
maximize the number peaks with at least one successful match, but minimize the total number of successful
matches for each peak. More specifically, this approach can be defined as:

∀i ∈ [1, 2, 3, ..., 100], argmax(Yi/
√

Zi)

where i is the putative similarity score threshold, Yi is the number of sample file peaks with at least one
successful match to a seed file peak, and Zi is the total number of sample file peaks with a successful match
to a seed file peak at a give threshold, i. A successful match is defined as a seed file peak and sample file
peak with a similarity score, S, greater than the putative similarity score threshold, i. After testing several
data sets we’ve found this approach typically converges at a maximum similarity score threshold, i, between
1 and 100.

3 Examples use cases

3.1 Use case #1. Align peaks from multiple samples without retention time
standards

#Find sample input file paths
SampleA<-system.file("extdata", "SampleA.txt", package="R2DGC")
SampleB<-system.file("extdata", "SampleB.txt", package="R2DGC")

#Perform alignment
Alignment<-ConsensusAlign(inputFileList = c(SampleA,SampleB),

RT1_Standards = c(), numCores = 4)

13

3.2 Use case #2. Align peaks from multiple samples with retention time stan-
dards

#Find sample input file paths
SampleA<-system.file("extdata", "SampleA.txt", package="R2DGC")
SampleB<-system.file("extdata", "SampleB.txt", package="R2DGC")

#Perform alignment
Alignment<-ConsensusAlign(inputFileList = c(SampleA,SampleB),

RT1_Standards = paste0("FAME_", seq(8,24,2)),
numCores = 4)

3.3 Use case #3. Align peaks from multiple samples and identify metabolites
from a standard library

#Find reference example standards
Standard1<-system.file("extdata", "Alanine_150226_1.txt", package="R2DGC")
Standard2<-system.file("extdata", "Serine_022715_1.txt", package="R2DGC")

#Make standard library
StandardLibrary<-MakeReference(inputFileList = c(Standard1, Standard2),

RT1_Standards=paste0("FAME_", seq(8,24,2)))

#Find sample input file paths
SampleA<-system.file("extdata", "SampleA.txt", package="R2DGC")
SampleB<-system.file("extdata", "SampleB.txt", package="R2DGC")

#Perform alignment
Alignment<-ConsensusAlign(inputFileList = c(SampleA,SampleB),

RT1_Standards = paste("FAME_", seq(8,24,2)),
standardLibrary = standardLibrary, numCores = 4)

3.4 Use case #4. Find problem ions, compress peaks, align peaks from multiple
samples with retention time standards, and identify metabolites from a
standard library

#Find problem ions
ProblemIons<-FindProblemIons(

inputFile=system.file("extdata", "SampleA.txt", package="R2DGC"),
possibleIons = 70:78, numCores = 4)

#Find sample input file paths
SampleA<-system.file("extdata", "SampleA.txt", package="R2DGC")
SampleB<-system.file("extdata", "SampleB.txt", package="R2DGC")
SampleC<-system.file("extdata", "SampleC.txt", package="R2DGC")

#Compress sample peaks (files outputted with _Processed.txt extention)
PrecompressFiles(inputFileList = c(SampleA,SampleB,SampleC),

outputFiles = T, commonIons = ProblemIons, numCores = 4)

14

#Find reference example standards
Standard1<-system.file("extdata", "Alanine_150226_1.txt", package="R2DGC")
Standard2<-system.file("extdata", "Serine_022715_1.txt", package="R2DGC")

#Make standard library
StandardLibrary<-MakeReference(inputFileList = c(Standard1, Standard2),

RT1_Standards=paste0("FAME_", seq(8,24,2)))

#Perform alignment
Alignment<-ConsensusAlign(

inputFileList = paste0(c(SampleA,SampleB,SampleC),"_Processed.txt"),
RT1_Standards = paste("FAME_", seq(8,24,2)), standardLibrary = StandardLibrary,
commonIons = ProblemIons, numCores = 4)

3.5 Use case #5. Align peaks from multiple samples with retention time stan-
dards with multiple seed files

#Find sample input file paths
SampleA<-system.file("extdata", "SampleA.txt", package="R2DGC")
SampleB<-system.file("extdata", "SampleB.txt", package="R2DGC")
SampleC<-system.file("extdata", "SampleC.txt", package="R2DGC")

#Perform alignment
Alignment<-ConsensusAlign(inputFileList = c(SampleA,SampleB),

RT1_Standards = paste("FAME_", seq(8,24,2)),
numCores = 4, seedFile = c(1,2,3))

15

	Introduction
	Overview
	Basic workflow

	Detailed Workflow
	Installation
	Formatting input data
	Ion filtering with FindProblemIons
	FindProblemIons overview

	Intra-sample peak compression with PrecompressFiles
	PrecompressFiles overview
	Computing peak similarity scores
	Handling different quant masses

	Generating a metabolite standard library with MakeReference
	MakeReference overview
	Finding the pre-formatted standard library that comes with the package
	Computing and using retention time indexes

	Multi-sample alignment and metabolite identification with ConsensusAlign
	ConsensusAlign overview
	Computing the optimal similarity score threshold

	Examples use cases
	Use case #1. Align peaks from multiple samples without retention time standards
	Use case #2. Align peaks from multiple samples with retention time standards
	Use case #3. Align peaks from multiple samples and identify metabolites from a standard library
	Use case #4. Find problem ions, compress peaks, align peaks from multiple samples with retention time standards, and identify metabolites from a standard library
	Use case #5. Align peaks from multiple samples with retention time standards with multiple seed files

