Package 'QuantumClone'

November 13, 2017

Title Clustering Mutations using High Throughput Sequencing (HTS) Data

Version 1.0.0.6

Description Using HTS data, clusters mutations in order to recreate putative clones from the data provided. It requires genotype at the location of the variant as well as the depth of coverage and number of reads supporting the mutation. Additional information may be provided, such as the contamination in the tumor sample. This package also provides a function QuantumCat() which simulates data obtained from tumor sequencing.

URL https://github.com/DeveauP/QuantumClone

BugReports https://github.com/DeveauP/QuantumClone/issues

Depends R (>= 3.1.0), compiler, foreach

Imports doParallel, parallel, gridExtra, ggplot2, NbClust, DEoptim, optimx, fpc
Suggests knitr,rmarkdown,testthat
License GPL-2
LazyData true
VignetteBuilder knitr
RoxygenNote 6.0.1
NeedsCompilation no
Author Paul Deveau [aut, cre]
Maintainer Paul Deveau <quantumclone.package@gmail.com>

Repository CRAN

Date/Publication 2017-11-13 10:25:32 UTC

R topics documented:

add_leaf_list					•	 																3
BIC_criterion					•	 															•	3
BIC_criterion_FLASH					•	 															•	4
CellularitiesFromFreq .	•				•	 			•	•				•	•	•	•			•		4

Cellular_preclustering	5
check_leaf	6
check_split	6
Cluster_plot_from_cell	7
Compute NMI	8
Compute objective	8
create priors	9
Create prior cutTree	. 9
e.step	. 10
EM algo	10
EM clustering	11
eval fik m	
evolution plot	12
filter on fik	13
find v position	13
ElechOC	13
	14
FLASH_main	15
From_treq_to_cell	15
FullEM	16
grbase	17
grzero	18
hard.clustering	18
Input_Example	19
is_included	19
list_prod	20
longueur	20
m.step	21
MajorityVote	21
manual_plot_trees	22
multiplot_trees	22
NMI_cutree	23
One_D_plot	23
One step clustering	24
parallelEM	25
Patient schrodinger cellularities	26
phylo tree generation	27
plot cell from Return out	28
plot OC out	28
plot_QO_out	29
Precision Recall	29
Probability to belong to clone	
ProbDistMatrix	
QC_0utput	
QuantumClana	
Succount	
11ay_output	55
1ree	36

add_leaf_list

Tree_generation		•	 •		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	36
update_probs .	•••	·	 •	·	·	·	·	·	·	·	·	·	•	•	•	•	·	·	·	·	·	·	·	•	•	•	•	·	•	·	•	•	•	·	·	·	51
zscore		•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	37
																																					38

Index

add_leaf_list Phylogenetic tree leaf

Description

Adds a leaf to an already built tree. Output is a list of all possibilities.

Usage

```
add_leaf_list(leaf, connexion_list, timepoints, d, selector_position)
```

Arguments

leaf	A vector of cellularities (ranging from 0 to 1)
connexion_list	List containing 1. An interaction matrix concatenated with the cellularity of each cluster (one line per cluster)
timepoints	A numeric vector giving the spatial and/or temporal distribution of the samples
d	The initial number of clusters
<pre>selector_positi</pre>	on
	The row of the studied leaf in the data frame.

BIC_criterion Bayesian Information Criterion

Description

Computes BIC from a list of outputs of EM algorithm, then returns the position with minimal BIC

Usage

```
BIC_criterion(EM_out_list, model.selection)
```

Arguments

EM_out_list list of outputs from EM.algo or FullEM

model.selection

The function to minimize for the model selection: can be "AIC", "BIC", or numeric. In numeric, the BIC function is modified. If variance: returns max(abs(1 - Var(cluster)/expected(Var)))

BIC_criterion_FLASH Compute criterion FLASH

Description

Computes BIC from a list of outputs of EM algorithm, then returns the position with minimal BIC

Usage

BIC_criterion_FLASH(Obj, Mut_num, k, model.selection, s)

Arguments

Obj	Numeric vector with objective function values
Mut_num	Number of mutations to cluster
k	the number of clusters (in the same order as Obj)
model.selection	
	The function to minimize for the model selection: can be "AIC", "BIC", or numeric. In numeric, the function
S	Number of samples

CellularitiesFromFreq Cellularities from allele frequency

Description

Creates all possibilities for one mutation in one sample (given a genotype), then computes the cellularity associated with each possibility and finally the probability of each possibility

Usage

```
CellularitiesFromFreq(chr, position, Alt, Depth, Freec_ratio = NULL,
Genotype = NULL, subclone.genotype = NULL, subclone.cell = NULL,
contamination, restrict.to.AB = FALSE, force.single.copy = FALSE)
```

chr	The chromosome on which is the position (numeric value, not chr1 as in BED files)
position	The genomic position of the mutation
Alt	Number of reads supporting the variation
Depth	Number of reads mapped at the position
Freec_ratio	The FREEC output associated with the sample of interest

Genotype	If the FREEC output is not given, the genotype associated with the locus (for example AAB)
subclone.genoty	/pe
	If existing, the genotype of the subclone. Else NULL
subclone.cell	The cellular prevalence of the subclone which has a different Copy Number at this site
contamination	The fraction of normal cells in the sample
restrict.to.AB	Should the analysis keep only sites located in A and AB sites in all samples?
force.single.co	ру
	Should all mutations in overdiploid regions set to single copy? Default is FALSE

Cellular_preclustering

Preclustering method

Description

This method clusters mutations based on the probability that they are from the same distribution. It first computes the zscore associated with a normalized number of alternative reads and depth. The "normalized" number of reads is the number of alternative reads expected if the mutation was at a single copy in a diploid genome.

Usage

Cellular_preclustering(Schrod_cells)

Arguments

Schrod_cells The classic output from Schrodinger function

Value

returns a list with:

similarityMatrix The matrix of probabilities

distance The dissimilarity matrix

tree The tree obtained by hierachical clustering of the dissimilarity matrix using "ward.D2" method

check_leaf

Description

Checks that created leaf has cellularity >1 existing clone in at least one sample, and that cellularities in all samples are greater than or equal to 0.

Usage

check_leaf(new_leaf, Proportions_mutated)

Arguments

new_leaf A numeric vector to be added

Proportions_mutated

Matrix with samples in columns, clones (carrying mutations) in rows.

check_split Check

Description

Check if node can be split further, i.e. cellularity > 10

Usage

check_split(leaf)

Arguments

leaf Numeric vector

Cluster_plot_from_cell

Cellularity clustering

Description

Clustering cellularities based on the most likely presence of a clone, using the pamk algorithm (fpc package). Clustering can be guided by toggling manual_clustering on and/or giving a range of number of clusters.

Usage

```
Cluster_plot_from_cell(Cell, Sample_names, simulated, save_plot = TRUE,
contamination, clone_priors, prior_weight, nclone_range, Initializations,
preclustering = TRUE, epsilon = 5 * (10^(-3)), ncores = 2,
output_directory = NULL, model.selection = "BIC", optim = "default",
keep.all.models = FALSE)
```

Cell	Output from Return_one_cell_by_mut, list of cellularities (one list-element per sample)
Sample_names	Name of the sample
simulated	Was the data generated by QuantumCat?
save_plot	Should the clustering plots be saved? Default is True
contamination	The fraction of normal cells in the samples
clone_priors	If known a list of priors (cell prevalence) to be used in the clustering
prior_weight	If known a list of priors (fraction of mutations in a clone) to be used in the clustering
nclone_range	Number of clusters to look for
Initialization	S
	Maximal number of independant initial condition tests to be tried
preclustering	The type of preclustering used for priors: "Flash","kmedoid" or NULL. NULL will generate centers using uniform distribution.
epsilon	Stop value: maximal admitted value of the difference in cluster position and weights between two optimization steps.
ncores	Number of CPUs to be used
output_directo	ry
	Directory in which to save results
model.selection	n
	The function to minimize for the model selection: can be "AIC", "BIC", or
	numeric. In numeric, the function uses a variant of the BIC by multiplication of
	the $k*ln(n)$ factor. If >1, it will select models with lower complexity.

optim	use L-BFS-G optimization from R ("default"), or from optimx ("optimx"), or
	Differential Evolution ("DEoptim")
keep.all.models	
	Should the function output the best model (default; FALSE), or all models tested (if set to true)

Compute_NMI

Normalized Mutual Information

Description

Compute the normalized mutual information to assess clustering quality

Usage

```
Compute_NMI(QC_out)
```

Arguments

QC_out output from QuantumClone clustering

Examples

Compute_NMI(QC_output)

Compute_objective Compute value of objective function

Description

Compute the value of clustering based on same principles as QuantumClone EM

Usage

```
Compute_objective(tree, nclus, Schrod, conta)
```

tree	Tree from hierarchical clustering
nclus	Number of clusters used for cutting (numeric of length 1)
Schrod	Output from Schrodinger cellularities
conta	Numeric value of contamination fraction in each sample

create_priors

Description

Semi-random generation of clonal priors

Usage

```
create_priors(nclust, nsample, prior = NULL)
```

Arguments

nclust	Number of clones to look for.
nsample	Number of samples
prior	Possible priors known (the position of each element in a list corresponds to 1 clone)

Create_prior_cutTree Create priors from hierarchical clustering

Description

Creates weights and position priors from the hierachical clustering (tree) given a number of clusters Nclust. The centers of each cluster is found by $Center = \frac{\sum_{m \in cluster} NormalizedAlt_m}{\sum_{m \in cluster} NormalizedAlt_m}$

Usage

Create_prior_cutTree(tree, Schrod_cells, NClus, jitter = FALSE)

Arguments

tree	The tree generated by Cellular_preclustering
Schrod_cells	The classic output from Schrodinger function
NClus	the number of clusters to cut the data
jitter	Should it jitter weights and centers around values found?

Value

returns a list with:

weigths The proportion of mutations in each cluster

centers A list with a numeric vector for each sample, with the cellularity of each cluster

@importFrom stats cutree

e.step

Description

Expectation step calculation

Usage

e.step(Schrod, centers, weights, adj.factor)

Arguments

Schrod	A list of dataframes (one for each sample), generated by the Patient_schrodinger_cellularities() function.
centers	Coordinates of the clones: a list of numeric vectors (1 per sample), with coordinates between 0 and 1.
weights	Proportion of mutation in a clone
adj.factor	Factor to compute the probability: makes transition between the cellularity of the clone and the frequency observed
EM.algo	Expectation Maximization algorithm

Description

Optimization of clone positions and proportion of mutations in each clone.

Usage

```
EM.algo(Schrod, nclust = NULL, prior_center = NULL, prior_weight = NULL,
contamination, epsilon = 10^(-2), optim = "default")
```

Schrod	A list of dataframes (one for each sample), generated by the Patient_schrodinger_cellularities() function.
nclust	Number of clones to look for (mandatory if prior_center or prior_weight are null)
prior_center	Clone coordinates (from another analysis) to be used
prior_weight	Prior on the fraction of mutation in each clone
contamination	Numeric vector with the fraction of normal cells contaminating the sample
epsilon	Stop value: maximal admitted value of the difference in cluster position and weights between two optimization steps. If NULL, will take 1/(median depth).
optim	use L-BFS-G optimization from R ("default"), or from optimx ("optimx")

EM_clustering

Description

Maximization of the likelihood given a mixture of binomial distributions

Usage

```
EM_clustering(Schrod, contamination, prior_weight = NULL,
    clone_priors = NULL, Initializations = 1, nclone_range = 2:5,
    epsilon = 0.01, ncores = 2, model.selection = "BIC",
    optim = "default", keep.all.models = FALSE, FLASH = FALSE)
```

Schrod	List of dataframes, output of the Schrodinger function or the EM algorithm
contamination	The fraction of normal cells in the sample
prior_weight	If known a list of priors (fraction of mutations in a clone) to be used in the clustering
clone_priors	If known a list of priors (cell prevalence) to be used in the clustering
Initializations	3
	Maximal number of independant initial condition tests to be tried
nclone_range	Number of clusters to look for
epsilon	Stop value: maximal admitted value of the difference in cluster position and weights between two optimization steps.
ncores	Number of CPUs to be used
model.selectior	1
	The function to minimize for the model selection: can be "AIC", "BIC", or numeric. In numeric, the function uses a variant of the BIC by multiplication of the $k*ln(n)$ factor. If >1, it will select models with lower complexity.
optim	use L-BFS-G optimization from R ("default"), or from optimx ("optimx"), or Differential Evolution ("DEoptim")
keep.all.models	5
	Should the function output the best model (default; FALSE), or all models tested (if set to true)
FLASH	should it use FLASH algorithm to create priors

eval.fik.m

Description

Eval probability for M step Computes the log directly as log density is faster to compute

Usage

eval.fik.m(Schrod, centers, weights, adj.factor, log = TRUE)

Arguments

Schrod	The shcrodinger list of matrices
centers	centers of the clusters
weights	weight of each cluster
adj.factor	The adjusting factor, taking into account contamination, copy number, number of copies
log	Should it compute the log distribution (TRUE) or probability (FALSE) between two optimization steps. If NULL, will take 1/(median depth).

Description

Plots evolution in time of clones

Usage

```
evolution_plot(QC_out, Sample_names = NULL)
```

Arguments

QC_out	: Output from One_step_clustering
Sample_names	: character vector of the names of each sample (in the same order as the data)

Examples

```
require(ggplot2)
evolution_plot(QC_output)
```

filter_on_fik Data filter

Description

Keep one possibility per position and ajust weight accordingly

Usage

filter_on_fik(Schrod, fik)

Arguments

Schrod	A list of dataframes (one for each sample), generated by the Patient_schrodinger_cellularities.
fik	matrix of probability of each possibility to belong to a clone

find_x_position	Graphic position	
-----------------	------------------	--

Description

Computes the position of a node on the graph, based on the interaction matrix.

Usage

```
find_x_position(matrix, n, d)
```

matrix	The interaction matrix of the tree (1 on the i-th row j-th column means "clone j is the progeny of clone i")
n	Index of the clone of interest in the matrix
d	Initial number of clones

FlashQC

Description

Fast method to find clones without filtering for multiple states

Usage

FlashQC(Cells, conta, Nclus, model.selection = "tree")

Arguments

Cells	Input for QuantumClone with genotype required
conta	vector with contamination fraction in each sample
Nclus	vector with the number of clusters to test (alternatively only min and max values)
model.selection	
	One of "tree", "AIC", "BIC" or numeric. "tree" will use "ccc", "ch" and "gap" methods from NbClust to determine the number of clusters. "BIC", "AIC" or numeric values will use methods from QuantumClone.

See Also

QuantumClone

Examples

```
set.seed(123)
#1: Cluster data
In<-QuantumClone::Input_Example</pre>
FQC < -FlashQC(In, conta = c(0, 0), Nclus = 2:10)
#2: Get order variants by clones:
ord<-order(In[[1]]$Chr)</pre>
#3: Visualize clustering:
image(
1:nrow(In[[1]]),
 1:nrow(In[[1]]),
 FQC$similarity[ord,ord],
 xlab="", ylab="")
#4: add limit of real clusters:
abline(h = cumsum(table(In[[1]]$Chr[ord]))+1)
abline(v = cumsum(table(In[[1]]$Chr[ord]))+1)
#5: alternatively add clusters found:
ord<-order(FQC$cluster)</pre>
image(
1:nrow(In[[1]]),
```

FLASH_main

```
1:nrow(In[[1]]),
FQC$similarity[ord,ord],
xlab="", ylab="")
abline(h = cumsum(table(FQC$cluster[ord]))+1)
abline(v = cumsum(table(FQC$cluster[ord]))+1)
# Show clustering quality:
NMI_cutree( FQC$cluster,chr = In[[1]]$Chr)
```

FLASH_main

Flash core

Description

Returns number of clusters based on model selection

Usage

```
FLASH_main(Schrod_cells, model.selection, conta, Nclus, tree = NULL,
    dissimMatrix = NULL)
```

Arguments

Schrod_cells	Output from Schrodinger cellularities
model.selectior	1
	One of "tree", "AIC", "BIC" or numeric. "tree" will use "ccc", "ch" and "gap" methods from NbClust to determine the number of clusters. "BIC", "AIC" or numeric values will use methods from QuantumClone.
conta	vector with contamination fraction in each sample
Nclus	vector with the number of clusters to test (alternatively only min and max values)
tree	Hierarchical tree from hclust
dissimMatrix	Dissimilarity matrix, required if model selection is "tree"

From_freq_to_cell Wrap-up function

Description

Function that computes the most likely position for each mutation based on the genotype

Usage

```
From_freq_to_cell(SNV_list, FREEC_list = NULL, Sample_names,
Genotype_provided = FALSE, save_plot = TRUE, contamination, ncores = 4,
restrict.to.AB = FALSE, output_directory = NULL,
force.single.copy = FALSE)
```

Arguments

SNV_list	A list of dataframes (one for each sample), with as columns : (for the first col- umn of the first sample the name of the sample), the chromosome "Chr", the position of the mutation "Start", the number of reads supporting the mutation "Alt", the depth of coverage at this locus "Depth", and if the output from FREEC for the samples are not associated, the genotype "Genotype".
FREEC_list	list of dataframes from FREEC for each samples (usually named Sample_ratio.txt), in the same order as SNV_list
Sample_names	Name of the samples
Genotype_provid	led
	If the FREEC_list is provided, then should be FALSE (default), otherwise TRUE
save_plot	Should the plots be saved? Default is TRUE
contamination	Numeric vector describind the contamination in all samples (ranging from 0 to 1). Default is 0. No longer used for clustering.
ncores	Number of cores to be used during EM algorithm
restrict.to.AB	Should the analysis keep only sites located in A and AB sites in all samples?
output_director	у
	Directory in which to save results
<pre>force.single.co</pre>	ру
	Should all mutations in overdiploid regions set to single copy? Default is FALSE

FullEM	Expectation Maximization algorithm
--------	------------------------------------

Description

Optimization of clone positions and proportion of mutations in each clone followed by filtering on most likely possibility for each mutation and a re-optimization.

Usage

```
FullEM(Schrod, nclust, prior_center, prior_weight = NULL, contamination,
epsilon = 5 * 10<sup>(-3)</sup>, optim = "default")
```

Schrod	A list of dataframes (one for each sample), generated by the Patient_schrodinger_cellularities() function.
nclust	Number of clones to look for (mandatory if prior_center or prior_weight are null)
prior_center	Clone coordinates (from another analysis) to be used
prior_weight	Prior on the fraction of mutation in each clone
contamination	Numeric vector with the fraction of normal cells contaminating the sample

grbase

epsilon	Stopping condition for the algorithm: what is the minimal tolerated difference of position or weighted between two steps
optim	use L-BFS-G optimization from R ("default"), or from optimx ("optimx"), or Differential Evolution ("DEoptim")

grbase

Computes gradient of function

Description

Computes gradient of function

Usage

grbase(fik, adj.factor, centers, Alt, Depth)

Arguments

fik	Evaluation of fik for previous iteration
adj.factor	Factor to compute the probability: makes transition between the cellularity of the clone and the frequency observed
centers	vector with cellularity of each clone (numeric vector, ordered by samples)
Alt	Matrix with number of draws in rows for a mutation/possibility, and samples in columns
Depth	Matrix with number of not draws (Depth - Alt) in rows for a mutation/possibility, and samples in columns

Examples

```
fik<-matrix(c(1,0,0,1),nrow = 2)
adj.factor<-matrix(1/2,nrow =2 ,ncol =1)
centers<-c(0.25,0.75)
Alt<-c(125,375)
Depth<-c(1000,1000)
grbase(fik,adj.factor,centers,Alt,Depth)</pre>
```

grzero

Description

Return center values for max if adj.factor has a single value for all variants/possibilities in each samples

Usage

grzero(fik, adj.factor, Alt, Depth)

Arguments

fik	matrix with probability of each possibility to belong to clone k
adj.factor	matrix with coefficient making transition between cellularity and frequency
Alt	matrix with samples in columns and number of alternative reads in rows
Depth	matrix with samples in coluns and depth of coverage in rows

hard.clustering Hard clustering based on EM output

Description

Attributes a mutation to its most likely clone based on the output of the EM algorithm

Usage

hard.clustering(EM_out)

Arguments

EM_out Output from EM.algo or FullEM

Description

A dataset generated by: Input_Example<-QuantumCat(number_of_clones = 4, number_of_mutations = 100, ploidy = "AB",depth = 150, number_of_samples = 2, contamination = c(0,0))

Usage

Input_Example

Format

A list of dataframes

SampleName First column containing the name of the sample

Chr The chromosome either 1 2 ... X Y or chr1 chr2 ... chrY

Start The genomic position of the variant

Alt Number of reads supporting variant allele

Depth Total number of reads (reference + alternative allele) at position

is_included Group theory

Description

Clone2 is included in Clone1 if all values of Clone2 are lower or equal to the ones in Clone1 at the same position. Returns TRUE is Clone2 is included in Clone1.

Usage

```
is_included(Clone1, Clone2)
```

Clone1	Numeric vector, representing the cellularity of Clone1 in different samples
Clone2	Numeric vector, representing the cellularity of Clone2 in different samples

list_prod

Description

Returns the product of all elements in a list, e.g. a vector if the elements of the list are vectors, etc.

Usage

list_prod(L, col = NULL)

Arguments

L	list used
col	If it is a list of matrices, and only one column should be used, name of the column.

Examples

list_prod(list(matrix(1:4,nrow = 2),matrix(1:4,nrow = 2)))

longueur Length	
-----------------	--

Description

Computes the length from the clone on the n-th row of the matrix, to the most ancestral clone

Usage

```
longueur(matrix, n)
```

matrix	The interaction matrix of the tree (1 on the i-th row j-th column means "clone j
	is the progeny of clone i")
n	Index of the clone in the matrix

m.step

Description

Optimization of clone positions and proportion of mutations in each clone, based on the previously calculated expectation

Usage

```
m.step(fik, Schrod, previous.weights, previous.centers, contamination,
    adj.factor, optim = "default")
```

Arguments

fik	Matrix giving the probability of each mutation to belong to a specific clone
Schrod	A list of dataframes (one for each sample), generated by the Patient_schrodinger_cellularities()
	function.
previous.weigh	ts
	Weights from the previous optimization step (used as priors for this step)
previous.cente	rs
	Clone coordinates from previous optimization step (used as priors for this step)
contamination	Numeric vector with the fraction of normal cells contaminating the sample
adj.factor	Factor to compute the probability: makes transition between the cellularity of the clone and the frequency observed
optim	use L-BFS-G optimization from R ("default"), or from optimx ("optimx"), or Differential Evolution ("DEoptim")

```
MajorityVote
```

Description

Extract majority vote from multiple indices

Usage

```
MajorityVote(index)
```

Arguments

index vector with number of clusters selected by indices

Majority vote

Value

Numeric value of the number of clusters to chose

manual_plot_trees Plot tree

Description

Creates a visual output for the phylogeny created by Tree_generation()

Usage

```
manual_plot_trees(connexion_list, d, cex = 0.8, p)
```

Arguments

connexion_list	Data frame of the concatenation of the interaction matrix and the cellularity of each clone at different time points.
d	Number of clusters found by QuantumClone
cex	Coefficient of expansion for the texts in phylogenetic tree plots. Default is 0.8
р	Probability of a tree

Examples

```
# Extract one tree out of the 3 available trees:
Example_tree<-QuantumClone::Tree[[1]]
manual_plot_trees(Example_tree[[1]], d= 4,p = Example_tree[[2]])
```

multiplot_trees Plots multiple trees

Description

Plots all trees created by the function Tree_generation. The red line means that mutations occured.

Usage

```
multiplot_trees(result_list, d, cex = 0.8)
```

Arguments

result_list	List of lists (tree generated and the probability associated with each tree)
d	Number of clusters found by QuantumClone
cex	Coefficient of expansion for the texts in phylogenetic tree plots. Default is 0.8

Examples

multiplot_trees(QuantumClone::Tree, d= 4)

NMI_cutree

Description

Computes the NMI based on the clustering

Usage

```
NMI_cutree(cut_tree, chr)
```

Arguments

cut_tree	a numeric vector of cluster selection
chr	the ground truth for clusters

Value

numeric value of NMI (between 0 and 1)

Examples

set.seed(123)
#1: Cluster data
FQC<-FlashQC(QuantumClone::Input_Example,conta = c(0,0),Nclus = 2:10)</pre>

#2: Compute NMI NMI_cutree(FQC\$cluster,chr = QuantumClone::Input_Example[[1]]\$Chr)

One_D_plot Plots

Description

Creates density plot when only one sample is given

Usage

One_D_plot(EM_out, contamination)

EM_out	output from the EM algorithm
contamination	Numeric vector giving the proportion of normal cells in each samples

One_step_clustering Cellularity clustering

Description

Wrap up function that clusters cellularities. This is based on the most likely possibility for each mutation, give ints frequency and genotype.

Usage

```
One_step_clustering(SNV_list, FREEC_list = NULL, contamination,
    nclone_range = 2:5, clone_priors = NULL, prior_weight = NULL,
    Initializations = 1, preclustering = "FLASH", simulated = FALSE,
    epsilon = NULL, save_plot = TRUE, ncores = 1, restrict.to.AB = FALSE,
    output_directory = NULL, model.selection = "BIC", optim = "default",
    keep.all.models = FALSE, force.single.copy = FALSE)
```

SNV_list	A list of dataframes (one for each sample), with as columns : (for the first col- umn of the first sample the name of the sample), the chromosome "Chr", the po- sition of the mutation "Start", the number of reads supporting variant "Alt", as well as the total number of reads overlapping position "Depth", and if the output from FREEC for the samples are not associated, the genotype "Genotype".
FREEC_list	list of dataframes from FREEC for each samples (usually named Sample_ratio.txt) in the same order as SNV_list
contamination	Numeric vector describind the contamination in all samples (ranging from 0 to 1). Default is 0. No longer used for clustering.
nclone_range	A number or range of clusters that should be used for clustering
clone_priors	List of vectors with the putated position of clones
prior_weight	Numeric with the proportion mutations in each clone
Initializations	
	Number of initial conditions to be tested for the EM algorithm
preclustering	The type of preclustering used for priors: "Flash","kmedoid" or NULL. NULL will generate centers using uniform distribution. WARNING: overrides priors given
simulated	Should be TRUE if the data has been been generated by the QuantumCat algorithm
epsilon	Stop value: maximal admitted value of the difference in cluster position and weights between two optimization steps. If NULL, will take 1/(average depth)
save_plot	Should the plots be saved? Default is TRUE
ncores	Number of cores to be used during EM algorithm
restrict.to.AB	Boolean: Should the analysis keep only sites located in A and AB sites in all samples?

parallelEM

output_directo	ry
	Directory in which to save results
<pre>model.selectio</pre>	n
	The function to minimize for the model selection: can be "AIC", "BIC", or numeric. In numeric, the function uses a variant of the BIC by multiplication of the $k^{n}(n)$ factor. If >1, it will select models with lower complexity.
optim	use L-BFS-G optimization from R ("default"), or from optimx ("optimx"), or Differential Evolution ("DEoptim")
keep.all.model	S
	Should the function output the best model (default; FALSE), or all models tested (if set to true)
force.single.c	ору
	Should all mutations in overdiploid regions set to single copy? Default is FALSE
Examples	
Mutations<-Quant	umClone::Input_Example

```
for(i in 1:2){
    for(i in 1:2){
    Mutations[[i]]<-cbind(rep(paste("Example_",i,sep=""),times=10),Mutations[[i]])
    colnames(Mutations[[i]])[1]<-"Sample"
    }
    print("The data should look like this:")
    print(head(Mutations[[1]]))
cat("Cluster data: will try to cluster between 3 and 4 clones, with 1 maximum search each time,</pre>
```

parallelEM

Expectation Maximization algorithm

Description

Optimization of clone positions and proportion of mutations in each clone followed by filtering on most likely possibility for each mutation and a re-optimization. Then gives out the possibility with maximal likelihood Relies on foreach

Usage

```
parallelEM(Schrod, nclust, epsilon, contamination, prior_center = NULL,
    prior_weight = NULL, Initializations = 1, optim = "default",
    keep.all.models = FALSE)
```

Arguments

nclustNumber of clones to look for (mandatory if prior_center or prior_weight are null)epsilonStopping condition for the algorithm: what is the minimal tolerated difference of position or weighted between two stepscontaminationNumeric vector with the fraction of normal cells contaminating the sampleprior_centerClone coordinates (from another analysis) to be usedprior_weightPrior on the fraction of mutation in each cloneInitializationsMaximal number of independant initial condition tests to be triedoptimuse L-BFS-G optimization from R ("default"), or from optimx ("optimx"), or Differential Evolution ("DEoptim")keep.all.modelsShould the function output the best model (default; FALSE), or all models tested (if set to true)	Schrod	A list of dataframes (one for each sample), generated by the Patient_schrodinger_cellularities() function.
epsilonStopping condition for the algorithm: what is the minimal tolerated difference of position or weighted between two stepscontaminationNumeric vector with the fraction of normal cells contaminating the sampleprior_centerClone coordinates (from another analysis) to be usedprior_weightPrior on the fraction of mutation in each cloneInitializationsMaximal number of independant initial condition tests to be triedoptimuse L-BFS-G optimization from R ("default"), or from optimx ("optimx"), or Differential Evolution ("DEoptim")keep.all.modelsShould the function output the best model (default; FALSE), or all models tested (if set to true)	nclust	Number of clones to look for (mandatory if prior_center or prior_weight are null)
contaminationNumeric vector with the fraction of normal cells contaminating the sampleprior_centerClone coordinates (from another analysis) to be usedprior_weightPrior on the fraction of mutation in each cloneInitializationsMaximal number of independant initial condition tests to be triedoptimuse L-BFS-G optimization from R ("default"), or from optimx ("optimx"), or Differential Evolution ("DEoptim")keep.all.modelsShould the function output the best model (default; FALSE), or all models tested (if set to true)	epsilon	Stopping condition for the algorithm: what is the minimal tolerated difference of position or weighted between two steps
prior_centerClone coordinates (from another analysis) to be usedprior_weightPrior on the fraction of mutation in each cloneInitializationsMaximal number of independant initial condition tests to be triedoptimuse L-BFS-G optimization from R ("default"), or from optimx ("optimx"), or Differential Evolution ("DEoptim")keep.all.modelsShould the function output the best model (default; FALSE), or all models tested (if set to true)	contamination	Numeric vector with the fraction of normal cells contaminating the sample
prior_weightPrior on the fraction of mutation in each cloneInitializationsMaximal number of independant initial condition tests to be triedoptimuse L-BFS-G optimization from R ("default"), or from optimx ("optimx"), or Differential Evolution ("DEoptim")keep.all.modelsShould the function output the best model (default; FALSE), or all models tested (if set to true)	prior_center	Clone coordinates (from another analysis) to be used
Maximal number of independant initial condition tests to be tried optim use L-BFS-G optimization from R ("default"), or from optimx ("optimx"), or Differential Evolution ("DEoptim") keep.all.models Should the function output the best model (default; FALSE), or all models tested (if set to true)	prior_weight Initializations	Prior on the fraction of mutation in each clone
optim use L-BFS-G optimization from R ("default"), or from optimx ("optimx"), or Differential Evolution ("DEoptim") keep.all.models Should the function output the best model (default; FALSE), or all models tested (if set to true)		Maximal number of independant initial condition tests to be tried
keep.all.models Should the function output the best model (default; FALSE), or all models tested (if set to true)	optim	use L-BFS-G optimization from R ("default"), or from optimx ("optimx"), or Differential Evolution ("DEoptim")
	keep.all.models	Should the function output the best model (default; FALSE), or all models tested (if set to true)

Patient_schrodinger_cellularities
Patient Schrodinger Cellularities

Description

Computes all possible cellularities for all mutations across all samples. Calls CellularitiesFromFreq on all mutations to evaluate all possibilities

Usage

```
Patient_schrodinger_cellularities(SNV_list, FREEC_list = NULL,
Genotype_provided = FALSE, contamination, restrict.to.AB = FALSE,
force.single.copy = FALSE)
```

Arguments

SNV_list	A list of dataframes (one for each sample), with as columns : (for the first col- umn of the first sample the name of the sample), the chromosome "Chr", the position of the mutation "Start", the number of reads supporting the mutation "Alt", the depth of coverage at this locus "Depth", and if the output from FREEC for the samples are not associated, the genotype "Genotype".
FREEC_list	list of dataframes from FREEC for each samples (usually named Sample_ratio.txt), in the same order as SNV_list
Genotype_provic	led
	If the FREEC_list is provided, then should be FALSE (default), otherwise TRUE
contamination	Numeric vector describind the contamination in all samples (ranging from 0 to 1). Default is 0. No longer used for clustering.
restrict.to.AB	Should the analysis keep only sites located in A and AB sites in all samples?
force.single.co	ру
	Should all mutations in overdiploid regions set to single copy? Default is FALSE

phylo_tree_generation Data generation

Description

Creates a phylogenetic tree on simple assumptions: 1. There is a common ancestor to all clones 2. Each clone creates a partition of the space. One node will carry mutations, the other will not. A node that is not mutated can be partitioned. 3. Nodes that have less than 2 less than 1 4. Nodes that have less than 10 WARNING: Tree_generation recreates a tree from data while phylo_tree_generation randomly creates a phylogeny

Usage

phylo_tree_generation(number_of_clones, number_of_samples)

Arguments

number_of_clones

The wanted number of observable clones (meaning bearing at least 1 mutation)

number_of_samples

The number of samples on which the data should be simulated

plot_cell_from_Return_out

Plot cellularity

Description

2D plot of cellularity based on the output of the EM

Usage

```
plot_cell_from_Return_out(lis, Sample_names, output_dir = NULL)
```

Arguments

lis	Output from Return_one_cell_by_mut, list of cellularities (one list-element per sample)
Sample_names	Name of the samples.
output_dir	Directory in which to save plots

plot_QC_out

Plot QC_output

Description

This function was implemented to re-plot easily the diagrams of clonality for changes/enhancement. Returns a ggplot object Uses ggplot2 package

Usage

```
plot_QC_out(QClone_Output, Sample_names = NULL, simulated = FALSE,
    sample_selected = 1:2)
```

Arguments

QClone_Output	Output from QuantumClone algorithm
Sample_names	: character vector of the names of each sample (in the same order as the data)
simulated	Was the data generated by QuantumCat?
<pre>sample_selected</pre>	
	: number of the sample to be considered for plot (can be 1 or 2 samples)

Examples

```
require(ggplot2)
message("Using preclustered data:")
QC_out<-QuantumClone::QC_output
plot_QC_out(QC_out,Sample_names = c("Diagnosis","Relapse"))</pre>
```

plot_with_margins_densities

Plot with margin densities

Description

Adapted from http://stackoverflow.com/questions/11883844/inserting-a-table-under-the-legend-in-a-ggplot2-histogram Uses gridExtra package

Usage

plot_with_margins_densities(QClone_Output)

Arguments

QClone_Output Output from QuantumClone algorithm

Examples

```
require(ggplot2)
require(gridExtra)
message("Using preclustered data:")
QC_out<-QuantumClone::QC_output
plot_with_margins_densities(QC_out)</pre>
```

Precision_Recall Precision

Description

Computes the precision based on the clustering

Usage

```
Precision_Recall(hx, Truth)
```

hx	a numeric vector of cluster selection
Truth	the ground truth for clusters

Value

- TP The number of true positive links
- TN The number of true negative links
- **FP** The number of false positive links
- FN The number of false negative links
- **Pr** The precision, defined by $Pr = \frac{TP}{TP+FP}$
- **R** The recall, defined by $R = \frac{TP}{TP+FN}$
- **F1** The F1 index, defined by $F1 = \frac{2 \times P \times R}{P+R}$
- **RI** Rand Index, defined by $RI = \frac{TP+TN}{TP+TN+FP+FN}$

validat Is positives + negatives equal to total number of links - returns absolute difference if false

Examples

Probability.to.belong.to.clone *Probability*

Description

Returns dataframe with all informations about mutation (Number of copies, Cellularity, etc.) and probability to belong to a clone

Usage

Arguments

SNV_list	A list of dataframes (one for each sample), with as columns : (for the first col- umn of the first sample the name of the sample), the chromosome "Chr", the position of the mutation "Start", the number of reads supporting the mutation "Alt", the depth of coverage at this locus "Depth", and if the output from FREEC
	for the samples are not associated, the genotype "Genotype".
clone_prevalen	ce
	List of numeric vectors giving the cellular prevalence of each clone in each sam- ple, not normalized for contamination. This should be stored in 'QC_output\$EM.output\$centers'
contamination	Numeric vector giving the contamination by normal cells
clone_weights	Numeric vector giving the proportion of mutations in each clone

Examples

```
set.seed(123)
SNVs<-QuantumCat(number_of_clones = 2,number_of_mutations = 50,number_of_samples = 1,ploidy = "AB")
Probability.to.belong.to.clone(SNV_list=SNVs,
clone_prevalence=list(c(0.5,1),c(0.5,1)),contamination=c(0,0))</pre>
```

```
ProbDistMatrix Distance
```

Description

Creates a matrix of distance between two points based on the p-value to be from the same distribution

Usage

```
ProbDistMatrix(Schrod_cells)
```

Arguments

Schrod_cells The classic output from Schrodinger function, with the normalized Alt

Value

returns a square numeric matrix

```
QC_output
```

Description

Clustering output generated by: QC_output<-One_step_clustering(SNV_list = Input_Example,contamination = c(0,0), nclone_range = 2:5,maxit = 1, save_plot = FALSE,ncores = 1, epsilon = 0.01) On October, 30th 2015

Usage

QC_output

Format

list of lists

- **EMOutput** Results of Expectation maximization: *fik: probability of a mutation (line) to belong to clone k (column) *weights: proportion of mutations belonging to clone k *centers: cellularity of clone k in sample j *val: value of log-likelihood
- **filtered.data** input data without mutations removed (missing genotype or genotype not AB if filtered on AB)

cluster Result of hard clustering: each mutation is attributed to a single clone

Description

Creates plausible data as would be oserved by genome sequencing

Usage

```
QuantumCat(number_of_clones, number_of_mutations, ploidy = 2, depth = 100,
number_of_samples = 2, Random_clones = F, contamination = NULL,
Subclonal.CNA.fraction = NULL)
```

```
      number_of_clones
      The wanted number of observable clones (meaning bearing at least 1 mutation)

      number_of_mutations
      The total observed number of mutations (across all clones)

      ploidy
      The general ploidy of the tumor. Default is 2. If "disomic" : only AB regions will be generated.
```

QuantumClone

depth	The depth of sequencing (does not account for contamination). Default is 100x
number_of_samp	les
	The number of samples on which the data should be simulated. Default is 2.
Random_clones	Should the number of clones be generated randomly (sample(1:10))
contamination	A numeric vector indicating the fraction of normal cells in each sample.
Subclonal.CNA.	fraction
	Cell fraction of the subclone that has subclonal CNA

Examples

print("Generate small set of mutations from 2 differents clones...")
print("...in 1 sample, contaminated at 10% by normal cells")

QuantumCat(number_of_clones=2,number_of_mutations=50,number_of_samples=1,contamination=0.1)

QuantumClone

One step analysis function

Description

Sequentially calls a function to test all accessible cellularities for all mutations in the samples, then cluster them, and finally draws phylogenetic trees based on the uncovered cellularities

Usage

```
QuantumClone(SNV_list, FREEC_list = NULL, contamination, nclone_range = 2:5,
    clone_priors = NULL, prior_weight = NULL, simulated = FALSE,
    save_plot = TRUE, epsilon = NULL, Initializations = 2,
    preclustering = "FLASH", timepoints = NULL, ncores = 1,
    output_directory = NULL, model.selection = "BIC", optim = "default",
    keep.all.models = FALSE, force.single.copy = FALSE)
```

SNV_list	A list of dataframes (one for each sample), with as columns : (for the first col- umn of the first sample the name of the sample), the chromosome "Chr", the position of the mutation "Start", the number of reads supporting the mutation "Alt", the depth of coverage at this locus "Depth", and if the output from FREEC for the samples are not associated, the genotype "Genotype".
FREEC_list	list of dataframes from FREEC for each samples (usually named Sample_ratio.txt), in the same order as SNV_list
contamination	Numeric vector describind the contamination in all samples (ranging from 0 to 1). Default is 0. No longer used for clustering.
nclone_range	A number or range of clusters that should be used for clustering
clone_priors	List of vectors with the putated position of clones

	prior_weight	Numeric with the proportion mutations in each clone
	simulated	Should be TRUE if the data has been been generated by the QuantumCat algorithm
	save_plot	Should the plots be saved? Default is TRUE
	epsilon	Stop value: maximal admitted value of the difference in cluster position and weights between two optimization steps. If NULL, will take 1/(average depth).
	Initializations	
		Number of initial conditions to be tested for the EM algorithm
	preclustering	The type of preclustering used for priors: "Flash", "kmedoid" or NULL. NULL will generate centers using uniform distribution. WARNING: overrides priors given
	timepoints	a numeric vector indicating if the samples are from different timepoints or tu- mors (e.g. one tumor and metastates) If NULL, all samples are considered from the same tumor.
	ncores	Number of cores to be used during EM algorithm
	output_directory	
		Path to output directory
	model.selection	1
		The function to minimize for the model selection: can be "AIC", "BIC", or numeric. In numeric, the function uses a variant of the BIC by multiplication of the $k*ln(n)$ factor. If >1, it will select models with lower complexity.
	optim	use L-BFS-G optimization from R, with exact gradient, ("default"), or L-BFS-G with numerical gradient computation from optimx ("optimx"), or Differential Evolution ("DEoptim"), or a mixture of EM with exact center computation (if fully diploid), or "optim" if this fails ("compound"). Note that DEoptim is the only one that does not use EM algorithm
	keep.all.models	5
		Should the function output the best model (default; FALSE), or all models tested (if set to true)
	force.single.copy	
		Should all mutations in overdiploid regions set to single copy? Default is FALSE
Exa	mples	
Mutations<-QuantumClone::Input_Example		

```
for(i in 1:2){
  Mutations[[i]]<-cbind(rep(paste("Example_",i,sep=""),times=10),Mutations[[i]])
  colnames(Mutations[[i]])[1]<-"Sample"
  }
  print("The data should look like this:")
  print(head(Mutations[[1]]))
  cat("Cluster data: will try to cluster between 3 and 4 clones, with 1 maximum search each time,
      and will use priors from preclustering.")
  print("The genotype is provided in the list frame, and
      there is no associated data from FREEC to get genotype from.")
  print("The computation will run on a single CPU.")</pre>
```

strcount

```
Clustering_output<-QuantumClone(SNV_list = Mutations,
FREEC_list = NULL,contamination = c(0,0),nclone_range = 3:4,
clone_priors = NULL,prior_weight = NULL ,
Initializations = 1,preclustering = "FLASH", simulated = TRUE,
save_plot = TRUE,ncores=1,output_directory="Example")
print("The data can be accessed by Clustering_output$filtered_data")
print("All plots are now saved in the working directory")
```

strcount

String count

Description

Counting the number of characters for each element of a vector

Usage

strcount(x, pattern = "", split = "")

Arguments

Х	The vector from which elements should be counted
pattern	Pattern to be recognized. Default is "
split	Pattern used to split elements of the vector. Default is "

Tidy_output Tidying output from EM

Description

Tidying input by Chr Start

Usage

```
Tidy_output(r, Genotype_provided, SNV_list)
```

r	output from Cluster_plot_from_cell
Genotype_provid	ed
	If the FREEC_list is provided, then should be FALSE (default), otherwise TRUE \ensuremath{TRUE}
SNV_list	A list of dataframes (one for each sample), with as columns : (for the first column of the first sample the name of the sample),

Tree

Description

Reconstruction of the tumor phylogenetic tree Generated by : Tree<-Tree_generation(cbind(QuantumClone::QC_output\$EM. QuantumClone::QC_output\$EM.output\$centers[[2]]))

Usage

Tree

Format

list of lists

Top level List of all possibilities **dataframe** Table of hierarchical relations **numeric** probability of this tree

Tree_generation Phylogenetic tree

Description

Generates a list of possible trees based on the cellularity of each clone, and the spatial and temporal distribution of the samples. Assumption is made the different clones are on different lines of the matrix

Usage

```
Tree_generation(Clone_cellularities, timepoints = NULL)
```

Clone_cellularities			
	A dataframe with cellularities (ranging from 0 to 1) of each clone (rows) in each sample (columns)		
timepoints	A numeric vector giving the spatial and/or temporal distribution of the samples		

update_probs

Description

Creates vector with probability to be sampled

Usage

```
update_probs(Proportions, can_split)
```

Arguments

Proportions	numeric matrix
can_split	logical vector

zscore

Z-score

Description

Computes the z-score of mutations being from the same distribution

Usage

zscore(Depth, Alt)

Arguments

Depth	a numeric vector of depth of sequencing for each variant
Alt	a numeric vector of the number of reads supporting each variant

Value

returns a square numeric matrix

Index

*Topic Cancer QuantumClone, 33 *Topic Clonal add_leaf_list, 3 CellularitiesFromFreg, 4 Cluster_plot_from_cell, 7 find_x_position, 13 From_freq_to_cell, 15 is_included, 19 longueur, 20 manual_plot_trees, 22 multiplot_trees, 22 One_D_plot, 23 One_step_clustering, 24 Patient_schrodinger_cellularities, 26 plot_cell_from_Return_out, 28 Probability.to.belong.to.clone, 30 QuantumClone, 33 Tree_generation, 36 *Topic Data phylo_tree_generation, 27 QuantumCat, 32 *Topic **Densities** plot_with_margins_densities, 29 *Topic **E-Step** e.step, 10 *Topic EM BIC_criterion, 3 BIC_criterion_FLASH, 4 create_priors, 9 EM.algo, 10 EM_clustering, 11 FullEM, 16 hard.clustering, 18 m.step, 21 parallelEM, 25 *Topic Hard hard.clustering, 18

*Topic List list_prod, 20 *Topic Maximization m.step, 21 *Topic **Plot** plot_QC_out, 28 plot_with_margins_densities, 29 *Topic Text strcount, 35 *Topic clustering BIC_criterion, 3 BIC_criterion_FLASH, 4 EM_clustering, 11 hard.clustering, 18 *Topic creation phylo_tree_generation, 27 *Topic datasets Input_Example, 19 QC_output, 32 Tree, 36 *Topic filter filter_on_fik, 13 *Topic generation QuantumCat, 32 *Topic handling list_prod, 20 strcount, 35 *Topic inference add_leaf_list, 3 CellularitiesFromFreq, 4 Cluster_plot_from_cell, 7 find_x_position, 13 From_freq_to_cell, 15 is_included, 19 longueur, 20 manual_plot_trees, 22 multiplot_trees, 22 One_D_plot, 23 One_step_clustering, 24

INDEX

Patient_schrodinger_cellularities, 26 plot_cell_from_Return_out, 28 Probability.to.belong.to.clone, 30 QuantumClone, 33 Tree_generation, 36 *Topic number BIC_criterion, 3 BIC_criterion_FLASH, 4 EM_clustering, 11 *Topic phylogeny add_leaf_list, 3 find_x_position, 13 is_included, 19 longueur, 20 manual_plot_trees, 22 multiplot_trees, 22 One_D_plot, 23 phylo_tree_generation, 27 Probability.to.belong.to.clone, 30 QuantumCat, 32 QuantumClone, 33 Tree_generation, 36 *Topic **plot** plot_cell_from_Return_out, 28 add_leaf_list, 3 BIC_criterion, 3 BIC_criterion_FLASH, 4 Cellular_preclustering, 5 CellularitiesFromFreq, 4 check_leaf, 6 check_split,6 Cluster_plot_from_cell, 7 Compute_NMI, 8 Compute_objective, 8 Create_prior_cutTree, 9 create_priors, 9 e.step, 10 EM.algo, 10 EM_clustering, 11 eval.fik.m, 12 evolution_plot, 12 filter_on_fik, 13 find_x_position, 13

FLASH_main, 15 FlashQC, 14 From_freq_to_cell, 15 FullEM, 16 grbase, 17 grzero, 18 hard.clustering, 18 Input_Example, 19 is_included, 19 list_prod, 20 longueur, 20m.step, 21 MajorityVote, 21 manual_plot_trees, 22 multiplot_trees, 22 NMI_cutree, 23 One_D_plot, 23 One_step_clustering, 24 parallelEM, 25 Patient_schrodinger_cellularities, 26 phylo_tree_generation, 27 plot_cell_from_Return_out, 28 plot_QC_out, 28 plot_with_margins_densities, 29 Precision_Recall, 29 Probability.to.belong.to.clone, 30 ProbDistMatrix, 31 QC_output, 32 QuantumCat, 32QuantumClone, 33 strcount, 35 Tidy_output, 35 Tree, 36 Tree_generation, 36 update_probs, 37 zscore, 37