Package 'PurBayes'

February 19, 2015

Type Package
Title Bayesian Estimation of Tumor Purity and Clonality
Version 1.3
Date 2013-05-13
Author Nicholas B. Larson
Maintainer Nicholas B. Larson <larson.nicholas@mayo.edu></larson.nicholas@mayo.edu>
Depends rjags
Description PurBayes is an MCMC-based algorithm that uses next-generation sequencing data to estimate tumor purity and clonality for paired tumor-normal data.
License GPL-2
NeedsCompilation no
Repository CRAN

Date/Publication 2013-05-16 17:20:31

R topics documented:

Index

PurBayes-package	2
plot.PurBayes	2
print.summary.PurBayes	3
PurBayes	4
summary.PurBayes	6
	7

PurBayes-package

Description

PurBayes is an MCMC-based mixture-model algorithm that uses next-generation sequencing data to estimate tumor purity and clonality for paired tumor-normal data.

NOTE: Requires JAGS to be installed.

Details

Package:	PurBayes
Type:	Package
Version:	1.3
Date:	2013-05-13
License:	GPL-2

Author(s)

Nicholas B. Larson

Maintainer: Nicholas B. Larson <larson.nicholas@mayo.edu>

plot.PurBayes

Plotting Function for PurBayes

Description

Generates plot of somatic mutation data and model fit

Usage

```
## S3 method for class 'PurBayes'
plot(x,...)
```

Arguments

Х	Output object from PurBayes
	Other arguments passed to or from other methods

print.summary.PurBayes

Value

Produces a graphical representation of the somatic mutation data and estimated purity (and subclonal cellularities, if detected). These are presented as linear relations against the read data, along with 95% credible intervals.

Author(s)

Nicholas B. Larson

See Also

PurBayes

print.summary.PurBayes

Print Summary of PurBayes Analysis

Description

S3 method for printing summary of PurBayes output

Usage

```
## S3 method for class 'summary.PurBayes'
print(x,...)
```

Arguments

Х	Object of class summary.PurBayes
	Other arguments passed to or from other methods

Details

Prints out summary information from the PurBayes model fit

Value

Prints the following information:

Purity Estimate

```
Posterior distribution summary of tumor purity, given as the posteior median
and 2.5% and 97.5% quantiles.
Number of Populations
```

Value of $J,\,{\rm number}$ of discrete populations of mutations detected by PurBayes Model Posterior Distributions

 $\label{eq:Quantiles} Quantiles \mbox{ of all of the parameter posterior distributions in the final model} \\ \mbox{Penalized Deviance Results}$

Matrix of penalized deviance results used in determining the final model fit

Author(s)

Nicholas B. Larson

See Also

PurBayes, summary. PurBayes

PurBayes

Bayesian Estimation of Tumor Purity and Clonality

Description

PurBayes is an iterative Bayesian algorithm which simultaneously estimates tumor purity and clonality using finite mixture models, using the MCMC software JAGS to obtain posterior samples for inference. Using a penalized deviance criterion, PurBayes iteratively fits models increasing in variant population count until an optimal fit is achieved.

Usage

PurBayes(N, Y, M=NULL, Z=NULL, pop.max=5, prior=NULL, burn.in=50000, n.post = 10000, fn.jags = "PB.jags", plot = FALSE)

Arguments

Ν	numeric vector of total reads for each somatic mutation from the tumor tissue NGS data
Y	numeric vector of mutant allele supporting read counts for each somatic muta- tion from the tumor tissue NGS data
Μ	optional numeric vector of total reads for germline heterogyous variants. Pur- Bayes uses these to estimate non-reference allele mapping rate to account for mapping bias
Z	optional numeric vector of alternate allele reads for germline heterozygous variants, corresponding to ${\tt M}$
pop.max	Maximum number of variant populations allowed in the iterative modeling procedure. Defaults to 5.
prior	Optional prior distribution for λ_J under the homogenenous tumor model. If NULL, defaults to Uniform(0,1). WARNING: This must be provided as a character string written within the JAGS modeling language.
burn.in	Number of MCMC draws that are excluded as a burn-in. Defaults to 50000.
n.post	Number of MCMC draws that are sampled for posterior inference. Defaults to 10000.
fn.jags	File location and name to which write.PB generates the appropriate JAGS model file. Defaults to 'PB.jags' in the current working directory.
plot	If plot=TRUE, then plot.PurBayes is called to generate a visual representation of the data along with the model fit by PurBayes. Defaults to FALSE.

PurBayes

Details

For a given tumor purity level λ PurBayes assumes a binomial-binomial mixture model for the tumor sequence reads which support the alternate allele, $Y_i^t \sim Bin(N_i, \lambda/2)$. This model is fit to the data under the assumption of tumor homogeneity. PurBayes also supports the possibility of intra-tumor heterogeneity, whereby the tumor tissue is comprised of additional subclonal variant populations, each with its own 'purity', $\lambda_j < \lambda$, for j = 1, ..., J - 1 and $\lambda_J \equiv \lambda$.

The probability that a given variant corresponds to the j^{th} population is given by κ_j , and $\kappa = (\kappa_1, \ldots, \kappa_J)$ follows a dirichlet prior such that $\pi(\kappa) \sim Dirichlet(\alpha_1, \ldots, \alpha_J)$ for a given variant population quantity J. PurBayes applies a diffuse prior on κ , such that $\alpha_1 = \ldots = \alpha_J = 1$. While the user may specify a particular prior for λ under a homogeneous tumor, PurBayes defaults to $\pi(\lambda_j) \sim Uniform(0, 1)$ for all j, and uses a sort function to avoid label switching.

The optimality criterion used for model selection with regard to size of J is based upon the penalized expected deviance (Plummer, 2008) In instances where the optimism cannot be determined, it is approximated by twice the pD value (along with a warning this approximation is being used).

Value

List object of designated class PurBayes, which includes data inputs N,Y,M,Z, as well as:

n.pop	Numeric scalar corresponding to number of variant populations detected by Pur- Bayes
PB.post	mcmc.list object corresponding to posterior samples of PurBayes model parameters. This necessarily includes <i>pur</i> , the tumor purity. If n.pop>1, posterior samples of κ_j and λ_j for $j = 1,, J$ are also included.
dev.mat	a matrix of the penalized expected deviance results from the model selection procedure. This includes the penalized expected deviance, the difference in PED with the reference model, and the standard error of that difference.
which.ref	indicates which fitted model is the reference model in the penalized expected deviance analysis. This will either be the fitted model with the minimal PED.
jag.fits	List of learned JAGS models (object class jags) fit in the model selection process

Author(s)

Nicholas B. Larson

References

Plummer, M. (2008) Penalized loss functions for Bayesian model comparison. *Biostatistics* doi: 10.1093/biostatistics/kxm049

Examples

```
#Homogeneous tumor example
N.var<-20
N<-round(runif(N.var,20,200))
lambda<-0.75
Y<-rbinom(N.var,N,lambda/2)</pre>
```

```
## Not run: PB.hom<-PurBayes(N,Y)
#Heterogeneous tumor example - 1 subclonal population
N.var<-20
N<-round(runif(N.var,20,200))
lambda.1<-0.75
lambda.2<-0.25
lambda<-c(rep(lambda.1,10),rep(lambda.2,10))
Y<-rbinom(N.var,N,lambda/2)
## Not run: PB.het<-PurBayes(N,Y)</pre>
```

summary.PurBayes Analysis summary from PurBayes

Description

Provides summary analysis of model fitting from PurBayes

Usage

```
## S3 method for class 'PurBayes'
summary(object,...)
```

Arguments

object	Output from PurBayes
	Other arguments passed to or from other methods

Value

Returns a list with object class summary.PurBayes:

purity	Posterior distribution summary of tumor purity
post.dist	Posterior distribution summary of all model parameters
n.pop	Number of mutation populations detected by PurBayes
dev.out	Penalized expected deviance results from model selection procedure

Author(s)

Nicholas B. Larson

See Also

PurBayes,print.summary.PurBayes

6

Index

plot.PurBayes, 2, 4
print.summary.PurBayes, 3, 6
PurBayes, 3, 4, 4, 6
PurBayes-package, 2

summary.PurBayes, 4, 6