Package 'ProjectManagement'

May 14, 2020

Type Package

Title Management of Deterministic and Stochastic Projects
Date 2020-05-14
Version 1.3.3
Maintainer Juan Carlos Gonçalves Dosantos juan.carlos.goncalves@udc.es
Description Management problems of deterministic and stochastic projects. It obtains the dura-
tion of a project and the appropriate slack for each activity in a deterministic context. In addition it obtains a schedule of activities' time (Castro, Gómez \& Tejada (2007) doi:10.1016/j.orl.2007.01.003). It also allows the management of resources. When the project is done, and the actual duration for each activ-
ity is known, then it can know how long the project is delayed and make a fair delivery of the delay between each activity (Bergantiños, Valencia-Toledo \& VidalPuga (2018) doi:10.1016/j.dam.2017.08.012). In a stochastic context it can estimate the average duration of the project and plot the density of this duration, as well as, the density of the early and last times of the chosen activities. As in the deterministic case, it can make a distribution of the delay generated by observing the project already carried out.

Depends R (>= 3.5.0), plotly
Imports GameTheory, lpSolveAPI, triangle, kappalab, igraph
License GPL (>=2)
Encoding UTF-8
LazyData true
Author Juan Carlos Gonçalves Dosantos [aut, cre], Ignacio García Jurado [aut], Julián Costa Bouzas [aut]

RoxygenNote 7.1.0
NeedsCompilation no
Repository CRAN
Date/Publication 2020-05-14 16:20:06 UTC

R topics documented:

ProjectManagement-package 2
dag.plot 3
delay.pert 4
delay.stochastic.pert 6
early.time 8
last.time 9
levelling.resources 10
mce 11
organize 12
rebuild 13
resource.allocation 14
schedule.pert 15
stochastic.pert 16
Index 19
ProjectManagement-package
Management of Deterministic and Stochastic Projects

Description

Management of Deterministic and Stochastic Projects

Details

Management problems of deterministic and stochastic projects. It obtains the duration of a project and the appropriate slack for each activity in a deterministic context. In addition it obtains a schedule of activities' time (Castro, Gómez \& Tejada (2007) doi:10.1016/j.orl.2007.01.003). It also allows the management of resources. When the project is done, and the actual duration for each activity is known, then it can know how long the project is delayed and make a fair delivery of the delay between each activity (Bergantiños, Valencia-Toledo \& Vidal-Puga (2018) doi:10.1016/j.dam.2017.08.012). In a stochastic context it can estimate the average duration of the project and plot the density of this duration, as well as, the density of the early and last times of the chosen activities. As in the deterministic case, it can make a distribution of the delay generated by observing the project already carried out.

```
dag.plot DAG plot
```


Description

This function plots a directed acyclic graph (DAG).

Usage

```
dag.plot(
    prec1and2 = matrix(0),
    prec3and4 = matrix(0),
    critical.activities = NULL
)
```


Arguments

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities (Default=matrix (0)). If value $(i, j)=1$ then activity i precedes type 1 to j, and if $(i, j)=2$ then activity i precedes type 2 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.
prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities (Default=matrix(0)). If value $(i, j)=3$ then activity i precedes type 3 to j, and if $(i, j)=4$ then activity i precedes type 4 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.
critical.activities
A vector indicating the critical activities to represent them in a different color (Default=NULL) .

Value

A plot.

Examples

```
prec1and2<-matrix(c(0,1,0,2,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0),nrow=5,ncol=5, byrow=TRUE)
prec3and4<-matrix(0,nrow=5,ncol=5)
prec3and4[3,1]<-3
dag.plot(prec1and2,prec3and4)
```

```
delay.pert Problems of distribution of delay in deterministic projects
```


Description

This function calculates the delay of a project once it has been completed. In addition, it also calculates the distribution of the delay between the different activities with the proportional, truncated proportional and Shapley rule.

Usage

delay.pert(duration, prec1and2 = matrix(0), prec3and4 = matrix(0), observed.duration, delta = NULL, cost.function $=$ NULL
)

Arguments

duration Vector with the expected duration for each activity.
prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities (Default=matrix(0)). If value $(i, j)=1$ then activity i precedes type 1 to j, and if $(i, j)=2$ then activity i precedes type 2 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.
prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities (Default=matrix(0)). If value $(i, j)=3$ then activity i precedes type 3 to j, and if $(i, j)=4$ then activity i precedes type 4 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.
observed.duration
Vector with the observed duration for each activity.
delta Value to indicate the maximun time that the project can take without delay. If this is not added, the function will use as delta the expected project time. This value is only used if the function uses the default cost function.
cost.function Delay costs function. If this value is not added, a default cost function will be used.

Details

Given a problem of sharing delays in a project $\left(N, \prec,\left\{\bar{X}_{i}\right\}_{i \in N},\left\{x_{i}\right\}_{i \in N}\right)$, such that $\left\{\bar{X}_{i}\right\}_{i \in N}$ is the expected value of activities’ duration and $\left\{x_{i}\right\}_{i \in N}$ the observed value. If $D\left(N, \prec,\left\{X_{i}\right\}_{i \in N}\right)$ is the expected project time and $D\left(N, \prec,\left\{x_{i}\right\}_{i \in N}\right)$ is the observed project time, it has to $d=D(N, \prec$, $\left.\left\{\bar{X}_{i}\right\}_{i \in N}\right)-\delta$ is the delay, where δ can be any arbitrary value greater than zero. The following rules distribute the delay costs among the different activities.

The proportional rule, from Brânzei et al. (2002), distributes the delay, d, proportionally. So that each activity receives a payment of:

$$
\phi_{i}=\frac{x_{i}-\bar{X}_{i}}{\sum_{j \in N} \max \left\{x_{j}-\bar{X}_{j}, 0\right\}} \cdot C\left(D\left(N, \prec,\left\{\bar{X}_{i}\right\}_{i \in N}\right)\right)
$$

The truncated proportional rule, from Brânzei et al. (2002), distributes the delay, d, proportionally, where the individual delay of each player is reduced to d if if is larger. So that each activity receives a payment of:

$$
\bar{\phi}_{i}=\frac{\min \left\{x_{i}-\bar{X}_{i}, C\left(D\left(N, \prec,\left\{\bar{X}_{i}\right\}_{i \in N}\right)\right)\right\}}{\sum_{j \in N} \max \left\{\min \left\{x_{j}-\bar{X}_{j}, C\left(D\left(N, \prec,\left\{\bar{X}_{i}\right\}_{i \in N}\right)\right)\right\}, 0\right\}} \cdot C\left(D\left(N, \prec,\left\{\bar{X}_{i}\right\}_{i \in N}\right)\right)
$$

These values are only well defined when the sum of the individual delays is different from zero.
Shapley rule distributes the delay, d, based on the Shapley value for TU games, see Bergantiños et al. (2018). Given a project problem with delays $\left(N, \prec,\left\{\bar{X}_{i}\right\}_{i \in N},\left\{x_{i}\right\}_{i \in N}\right)$, its associated TU game, (N, v), is $v(S)=C\left(D\left(N, \prec,\left(\left\{\bar{X}_{i}\right\}_{i \in N \backslash S},\left\{x_{i}\right\}_{i \in S}\right)\right)\right)$ for all $S \subseteq N$, where C is the costs function (by default $C(D(N, \prec, y))=D(N, \prec, y)-\delta$. If the number of activities is greater than ten, the Shapley value, of the game (N, v), is estimated using a unique sampling process for all players, see Castro et al. (2009).

Value

The delay value and a solution matrix.

References

Bergantiños, G., Valencia-Toledo, A., \& Vidal-Puga, J. (2018). Hart and Mas-Colell consistency in PERT problems. Discrete Applied Mathematics, 243, 11-20.

Brânzei, R., Ferrari, G., Fragnelli, V., \& Tijs, S. (2002). Two approaches to the problem of sharing delay costs in joint projects. Annals of Operations Research, 109(1-4), 359-374.
Castro, J., Gómez, D., \& Tejada, J. (2009). Polynomial calculation of the Shapley value based on sampling. Computers \& Operations Research, 36(5), 1726-1730.

Examples

```
prec1and2<-matrix(c(0,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0),nrow=5, ncol=5, byrow=TRUE)
duration<-c(2,1,1,4,2)
observed.duration<-c(2.5,1.25, 2, 4.5,3)
delta<-6
delay.pert(duration,prec1and2=prec1and2,observed.duration=observed.duration,
delta=delta,cost.function=NULL)
```


Description

This function calculates the delay of a stochastic project, once it has been carried out. In addition, it also calculates the distribution of the delay on the different activities with the Stochastic Shapley rule.

Usage

delay.stochastic.pert(
prec1and2 = matrix(0),
prec3and4 = matrix(0),
distribution,
values,
observed.duration,
percentile = NULL,
delta = NULL,
cost.function $=$ NULL,
compilations $=1000$
)

Arguments

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities (Default=matrix(0)). If value $(i, j)=1$ then activity i precedes type 1 to j, and if $(i, j)=2$ then activity i precedes type 2 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.
prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities (Default=matrix(0)). If value $(i, j)=3$ then activity i precedes type 3 to j, and if $(i, j)=4$ then activity i precedes type 4 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.
distribution Type of distribution that each activities' duration has. It can be NORMAL, TRIANGLE, EXPONENTIAL, UNIFORM, T-STUDENT, FDISTRIBUTION, CHI-SQUARED, GAMMA, WEIBULL, BINOMIAL, POISSON, GEOMETRIC, HYPERGEOMETRIC and EMPIRICAL.
values Matrix with the parameters corresponding to the distribution associated with the duration for each activity. Considering i as an activity we have the following cases. If the distribution is TRIANGLE, then ($\mathrm{i}, 1$) it is the minimum value, (i , 2) the maximum value and $(i, 3)$ the mode. If the distribution is NORMAL, (i, 1) is the mean and $(\mathrm{i}, 2)$ the variance. If the distribution is EXPONENTIAL, then $(i, 1)$ is the λ parameter. If the distribution is UNIFORM, $(i, 1)$ it is the minimum value and ($\mathrm{i}, 2$) the maximum value. If the distribution is T-STUDENT, ($\mathrm{i}, 1$) degrees of freedom and (i,2) non-centrality parameter delta. In FDISTRIBUTION, $(i, 1)$ and ($i, 2$) degrees of freedom and ($i, 3$) non-centrality parameter. In

CHI-SQUARED, (i, 1) degrees of freedom and (i, 2) non-centrality parameter (non-negative). In GAMMA, $(i, 1)$ and $(i, 3)$ shape and scale parameters and (i, 2) an alternative way to specify the scale. In WEIBULL, (i, 1) and (i, 2) shape and scale parameters. In BINOMIAL, ($\mathrm{i}, 1$) number of trials (zero or more) and (i, 2) probability of success on each trial. In POISSON, (i, 1) non-negative mean. In GEOMETRIC, $(i, 1)$ probability of success in each trial, between 0 and 1. In HYPERGEOMETRIC, ($\mathrm{i}, 1$) number of white balls in the urn, $(\mathrm{i}, 2)$ number of black balls in the urn and (i,3) numer of balls drawn from the urn. Finally, if the distribution is EMPIRICAL, then (i,j), for all $j \in\{1, \ldots, M\}$ such that $M>0$, is the sample.
observed.duration
Vector with the observed duration for each activity.
percentile Percentile used to calculate the maximum time allowed for the duration of the project (Default=NULL). Only percentile or delta is necessary. This value is only used if the function uses the default cost function.
delta Maximum time allowed for the duration of the project (Default=NULL). Only delta or pencetile is necessary. This value is only used if the function uses the default cost function.
cost.function Delay costs function. If this value is not added, a default cost function will be used.
compilations Number of compilations that the function will use for average calculations (Default=1000).

Details

Given a problem of sharing delays in a stochastic project $\left(N, \prec,\left\{X_{i}\right\}_{i \in N},\left\{x_{i}\right\}_{i \in N}\right)$, such that $\left\{X_{i}\right\}_{i \in N}$ is the random variable of activities' durations and $\left\{x_{i}\right\}_{i \in N}$ the observed value. It is defined as $E\left(D\left(N, \prec,\left\{X_{i}\right\}_{i \in N}\right)\right)$ the expected project time, where E is the mathematical expectation, and $D\left(N, \prec,\left\{x_{i}\right\}_{i \in N}\right)$ the observed project time, then $d=D\left(N, \prec,\left\{X_{i}\right\}_{i \in N}\right)-\delta$, with $\delta>0$, normally $\delta>E\left(D\left(N, \prec,\left\{X_{i}\right\}_{i \in N}\right)\right)$, is the delay. The proportional and truncated proportional rule, see delay.pert function, can be adapted to this context by using the mean of the random variables.

The Stochastic Shapley rule is based on the Shapley value for the TU game (N, v) where $v(S)=$ $E\left(C\left(D\left(N, \prec,\left(\left\{X_{i}\right\}_{i \in N \backslash S},\left\{x_{i}\right\}_{i \in S}\right)\right)\right)\right.$, for all $S \subseteq N$, where C is the costs function (by default $C(y)=D(N, \prec, y)-\delta)$. If the number of activities is greater than ten, the Shapley value, of the game (N, v), is estimated using a unique sampling process for all players, see Castro et al. (2009).

The Stochastic Shapley rule 2 is based on the sum of the Shapley values for the TU games (N, v) and (N, w) where $v(S)=E\left(C\left(D\left(N, \prec,\left(\left\{X_{i}\right\}_{i \in N \backslash S},\left\{x_{i}\right\}_{i \in S}\right)\right)\right)\right)-E\left(C\left(D\left(N, \prec,\left(\left\{X_{i}\right\}_{i \in N}\right)\right)\right)\right)$ and $w(S)=E\left(C\left(D\left(N, \prec,\left(\left\{0_{i}\right\}_{i \in N \backslash S},\left\{X_{i}\right\}_{i \in S}\right)\right)\right)\right)$, for all $S \subseteq N, 0_{N}$ denotes the vector in R^{N} whose components are equal to zero and where C is the costs function (by default $C(y)=D(N, \prec$, $y)-\delta$).

Value

A delay value and solution vector.

References

Castro, J., Gómez, D., \& Tejada, J. (2009). Polynomial calculation of the Shapley value based on sampling. Computers \& Operations Research, 36(5), 1726-1730.
Gonçalves-Dosantos, J.C., García-Jurado, I., Costa, J. (2018) Sharing delay costs in Stochastic projects.

Examples

prec1and2<-matrix $(\mathrm{c}(0,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)$, nrow=5, ncol=5, byrow=TRUE) distribution<-c("TRIANGLE", "TRIANGLE", "TRIANGLE", "TRIANGLE", "EXPONENTIAL")
values<-matrix(c $(1,3,2,1 / 2,3 / 2,1,1 / 4,9 / 4,1 / 2,3,5,4,1 / 2,0,0)$, nrow=5, byrow=TRUE)
observed.duration<-c $(2.5,1.25,2,4.5,3)$
percentile<-NULL
delta<-6.5
delay.stochastic. pert(prec1and2=prec1and2, distribution=distribution, values=values, observed.duration=observed.duration, percentile=percentile, delta=delta, cost. function=NULL, compilations=1000)
early.time Early time for a deterministic projects

Description

This function calculates the early time for one project.

Usage

early.time(prec1and2 = matrix(0), prec3and4 $=$ matrix(0), duration)

Arguments

prec1and2	A matrix indicating the order of precedence type 1 and 2 between the activities (Default=matrix(0)). If value $(i, j)=1$ then activity i precedes type 1 to j, and if $(i, j)=2$ then activity i precedes type 2 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.
prec3and4	A matrix indicating the order of precedence type 3 and 4 between the activities (Default=matrix(0)). If value $(i, j)=3$ then activity i precedes type 3 to j, and if $(i, j)=4$ then activity i precedes type 4 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.
duration	vector with the duración for each activities.

Value

Early time vector.

References

Burke, R. (2013). Project management: planning and control techniques. New Jersey, USA.

Examples

prec 1 and $2<-\operatorname{matrix}(\mathrm{c}(0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0)$, nrow=5, ncol=5, byrow=TRUE)
duration<-c(3,2,1,1.5,4.2)
early.time(prec1and2, duration=duration)

```
last.time Last time for a deterministic projects
```


Description

This function calculates the last time for one project.

Usage

last.time(prec1and2 $=$ matrix(0), prec3and4 $=$ matrix(0), duration, early.times)

Arguments

$$
\begin{array}{ll}
\text { prec1and } 2 & \begin{array}{l}
\text { A matrix indicating the order of precedence type } 1 \text { and } 2 \text { between the activities } \\
\text { (Default=matrix }(0) \text {). If value }(i, j)=1 \text { then activity } i \text { precedes type } 1 \text { to } j, \text { and } \\
\text { if }(i, j)=2 \text { then activity } i \text { precedes type } 2 \text { to } j . ~ C y c l e s ~ c a n n o t ~ e x i s t ~ i n ~ a ~ p r o j e c t, ~
\end{array} \\
\text { i.e. if an activity } i \text { precedes } j \text { then } j \text { cannot precede } i \text {. } \\
\text { prec3and } 4 & \begin{array}{l}
\text { A matrix indicating the order of precedence type } 3 \text { and } 4 \text { between the activities } \\
\text { (Default=matrix }(0)) \text {. If value }(i, j)=3 \text { then activity } i \text { precedes type } 3 \text { to } j, \text { and } \\
\\
\text { if }(i, j)=4 \text { then activity } i \text { precedes type } 4 \text { to } j . \text { Cycles cannot exist in a project, } \\
\text { i.e. if an activity } i \text { precedes } j \text { then } j \text { cannot precede } i .
\end{array} \\
\text { duration } & \text { Vector with the duración for each activity. } \\
\text { early.times } & \text { Vector with the early times for each activities. }
\end{array}
$$

Value

Last time vector.

References

Burke, R. (2013). Project management: planning and control techniques. New Jersey, USA.

Examples

prec 1 and $2<-$ matrix $(c(0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0)$, nrow $=5$, ncol=5, byrow=TRUE) duration<-c $(3,2,1,1.5,4.2)$
early.times $<-c(0,0,3.5,2,0)$
last.time(prec1and2, duration=duration, early.times=early.times)

Description

This function calculates the schedule of the project so that the consumption of resources is as uniform as possible.

Usage

levelling. resources(
duration, prec1and2 = matrix(0), prec3and4 $=$ matrix(0), resources,
int $=1$
)

Arguments

duration	Vector with the duration for each activity.
prec1and2	A matrix indicating the order of precedence type 1 and 2 between the activities (Default=matrix $(0))$. If value $(i, j)=1$ then activity i precedes type 1 to j, and
if $(i, j)=2$ then activity i precedes type 2 to j. Cycles cannot exist in a project,	
i.e. if an activity i precedes j then j cannot precede i.	

Details

The problem of leveling resources takes into account that in order for activities to be carried out in the estimated time, a certain level of resources must be used. The problem is to find a schedule that allows to execute the project in the estimated time so that the temporary consumption of resources is as level as possible.

Value

A solution matrices.

References

Hegazy, T. (1999). Optimization of resource allocation and leveling using genetic algorithms. Journal of construction engineering and management, 125(3), 167-175.

Examples

```
    duration<-c(3,4, 2, 1)
    resources<-c(4,1,3,3)
    prec1and2<-matrix(c(0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0),nrow=4,ncol=4,byrow=TRUE)
    levelling.resources(duration,prec1and2,prec3and4=matrix(0),resources,int=1)
```

```
mce Build a precedence matrix
```


Description

This function calculates the costs per activity to accelerate the project.

Usage

```
mce(
    duration,
    minimum.durations,
    prec1and2 = matrix(0),
    prec3and4 = matrix(0),
    activities.costs,
    duration.project = NULL
)
```


Arguments

duration Vector with the duration for each activity.
 minimum.durations

Vector with the Minimum duration allowed for each activity.
prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities (Default=matrix(0)). If value $(i, j)=1$ then activity i precedes type 1 to j, and if $(i, j)=2$ then activity i precedes type 2 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.
prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities (Default=matrix(0)). If value $(i, j)=3$ then activity i precedes type 3 to j, and if $(i, j)=4$ then activity i precedes type 4 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.
activities.costs
Vector indicating the cost of accelerating a unit of time the duration of each activity.
duration.project
numerical value indicating the minimum time sought in the project (Default=NULL).

Details

The MCE method (Minimal Cost Expediting) tries to speed up the project at minimum cost. It considers that the duration of some project activities could be reduced by increasing the resources allocated to them (and thus increasing their implementation costs).

Value

A solution matrices.

References

Kelley Jr, J. E. (1961). Critical-path planning and scheduling: Mathematical basis. Operations research, 9(3), 296-320.

Examples

```
duration<-c(5,4,5, 2, 2)
minimum.durations<-c (3,2,3,1,1)
activities.costs<-c(1,1,1,1,1)
prec1and2<-matrix(c(0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0), nrow=5,ncol=5,byrow=TRUE)
duration.project<-6
mce(duration,minimum.durations,prec1and2,prec3and4=matrix(0),activities.costs,duration.project)
```

```
organize Organize project activities
```


Description

This function organizes the activities of a project, in such a way that if i precedes j then i is less strict than j .

Usage

organize(prec1and2 = matrix(0), prec3and4 = matrix(0))

Arguments

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities (Default=matrix(0)). If value $(i, j)=1$ then activity i precedes type 1 to j, and if $(i, j)=2$ then activity i precedes type 2 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.
prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities (Default=matrix(0)). If value $(i, j)=3$ then activity i precedes type 3 to j, and if $(i, j)=4$ then activity i precedes type 4 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.

Value

A list containing:

- Precedence: ordered precedence matrix.
- Order: new activities values.

Examples

prec1and2<-matrix $(c(0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0)$, nrow=5, ncol=5, byrow=TRUE) organize(prec1and2)

rebuild Build a precedence matrix

Description

This function builds a unique type 1 precedence matrix given any kind of precedence.

Usage
 rebuild(prec1and2 $=$ matrix(0), prec3and4 $=$ matrix(0))

Arguments

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities (Default=matrix(0)). If value $(i, j)=1$ then activity i precedes type 1 to j, and if $(i, j)=2$ then activity i precedes type 2 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.
prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities (Default=matrix(0)). If value $(i, j)=3$ then activity i precedes type 3 to j, and if $(i, j)=4$ then activity i precedes type 4 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.

Details

There are four types of precedence between two activities i, j : Type 1 : the activity j cannot start until activity i has finished. Type 2: the activity j cannot start until activity i has started. Type 3 : the activity j cannot end until activity i has ended. Type 4 : the activity j cannot end until activity i has started.

All these precedences can be written only as type 1 . It should be noted that precedence type 1 implies type 2 , and type 2 implies type 4 . On the other hand, precedence type 1 implies type 3 , and type 3 implies type 4.

Value

A list containing:

- Precedence: precedence matrix.
- Type 2: activities related to type 2 precedence.
- Type 3: activities related to type 3 precedence.
- Type 4: activities related to type 4 precedence.

Examples

```
prec1and2<-matrix(c(0,1,0,2,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0), nrow=5,ncol=5,byrow=TRUE)
prec3and4<-matrix(0,nrow=5,ncol=5)
prec3and4[3,1]<-3
rebuild(prec1and2,prec3and4)
```

```
resource.allocation Project resource allocation
```


Description

This function calculates the project schedule so that resource consumption does not exceed the maximum available per time period..

Usage

```
resource.allocation(
    duration,
    prec1and2,
    prec3and4 = matrix(0),
    resources,
    max.resources,
    int = 1
)
```


Arguments

duration Vector with the duration for each activity.
prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities (Default=matrix (0)). If value $(i, j)=1$ then activity i precedes type 1 to j, and if $(i, j)=2$ then activity i precedes type 2 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.
prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities (Default=matrix(0)). If value $(i, j)=3$ then activity i precedes type 3 to j, and if $(i, j)=4$ then activity i precedes type 4 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.

resources	Vector indicating the necessary resources for each activity per period of time.
max. resources	Numerical value indicating the maximum number of resources that can be used in each period.
int	Numerical value indicating the duration of each period of time (Default=1).

Details

The problem of resource allocation takes into account that in order for activities to be carried out in the estimated time, a certain level of resources must be used. The problem is that the level of resources available in each period is limited. The aim is to obtain the minimum time and a schedule for the execution of the project taking into account this new restriction.

Value

A solution matrices.

References

Hegazy, T. (1999). Optimization of resource allocation and leveling using genetic algorithms. Journal of construction engineering and management, 125(3), 167-175.

Examples

```
duration<-c(3,4, 2, 1)
prec1and2<-matrix(c(0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0),nrow=4,ncol=4,byrow=TRUE)
resources<-c(4,1,3,3)
max.resources<-4
resource.allocation(duration,prec1and2,prec3and4=matrix(0),resources,max.resources,int=1)
```

Schedule for deterministic projects

Description

This function calculates the duration of the project, the slacks for each activity, as well as the schedule of each activity.

Usage

schedule.pert(duration, prec1and2 = matrix(0), prec3and4 = matrix(0), PRINT = TRUE
)

Arguments

$$
\begin{array}{ll}
\text { duration } \\
\text { prec1and2 } & \begin{array}{l}
\text { Vector with the duration for each activity. } \\
\text { A matrix indicating the order of precedence type } 1 \text { and } 2 \text { between the activities } \\
\text { (Default=matrix(0)). If value }(i, j)=1 \text { then activity } i \text { precedes type } 1 \text { to } j, \text { and } \\
\text { if }(i, j)=2 \text { then activity } i \text { precedes type } 2 \text { to } j \text {. Cycles cannot exist in a project, } \\
\text { i.e. if an activity } i \text { precedes } j \text { then } j \text { cannot precede } i \text {. }
\end{array} \\
\text { prec3and } 4 & \begin{array}{l}
\text { A matrix indicating the order of precedence type } 3 \text { and } 4 \text { between the activities } \\
\text { (Default=matrix }(0) \text {). If value }(i, j)=3 \text { then activity } i \text { precedes type } 3 \text { to } j, \text { and } \\
\text { if }(i, j)=4 \text { then activity } i \text { precedes type } 4 \text { to } j \text {. Cycles cannot exist in a project, } \\
\text { i.e. if an activity } i \text { precedes } j \text { then } j \text { cannot precede } i .
\end{array} \\
\text { PRINT } & \text { Logical indicator to show the schedule represented in a graph (Default=TRUE) }
\end{array}
$$

Value

A list of a project schedule and if PRINT=TRUE a plot of schedule.

References

Burke, R. (2013). Project management: planning and control techniques. New Jersey, USA.

Examples

prec1and2<-matrix(c($0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0)$, nrow=5, ncol=5, byrow=TRUE)
duration<-c (3, 2, 1, 1.5,4.2)
schedule.pert(duration,prec1and2)

Description

This function calculates the average duration time for a stochastic project and the activities criticality index. It also plots the estimate density of the project duration, as well as the estimate density of the early and last times.

Usage

stochastic.pert(
prec1and2 = matrix(0),
prec3and4 $=$ matrix(0),
distribution,
values,
percentile = 0.95,
plot.activities.times $=$ NULL,
compilations $=1000$
)

Arguments

prec1and2	A matrix indicating the order of precedence type 1 and 2 between the activities (Default=matrix(0)). If value $(i, j)=1$ then activity i precedes type 1 to j, and if $(i, j)=2$ then activity i precedes type 2 to j. Cycles cannot exist in a project, i.e. if an activity i precedes j then j cannot precede i.
prec3and4	A matrix indicating the order of precedence type 3 and 4 between the activities
(Default=matrix(0)). If value $(i, j)=3$ then activity i precedes type 3 to j, and	
if $(i, j)=4$ then activity i precedes type 4 to j. Cycles cannot exist in a project,	
i.e. if an activity i precedes j then j cannot precede i.	
distribution	Type of distribution that each activities, duration has. It can be NORMAL,
TRIANGLE, EXPONENTIAL, UNIFORM, T-STUDENT, FDISTRIBUTION,	
CHI-SQUARED, GAMMA, WEIBULL, BINOMIAL, POISSON, GEOMET-	

Value

Two values, average duration time and the maximum time allowed, a critically index vector and a durations histogram.

Examples

prec1and2<-matrix $(c(0,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)$, nrow=5, ncol=5, byrow=TRUE) distribution<-c("TRIANGLE", "TRIANGLE", "TRIANGLE", "TRIANGLE", "EXPONENTIAL")
values<-matrix $(c(1,3,2,1 / 2,3 / 2,1,1 / 4,9 / 4,1 / 2,3,5,4,1 / 2,0,0)$, nrow=5, byrow=TRUE)
percentile<-0.95
plot.activities.times<-c (1,4)
stochastic. pert(prec1and2=prec1and2, distribution=distribution, values=values, percentile=percentile,plot.activities.times=plot.activities.times)

Index

```
dag.plot,3
delay.pert,4
delay.stochastic.pert,6
early.time, 8
last.time, }
levelling.resources, 10
mce, 11
organize,12
ProjectManagement
    (ProjectManagement-package), 2
ProjectManagement-package, 2
rebuild, 13
resource.allocation,14
schedule.pert,15
stochastic.pert,16
```

