
Package ‘ProFit’
November 11, 2019

Type Package

Title Fit Projected 2D Profiles to Galaxy Images

Version 1.3.3

Date 2019-10-22

Maintainer Aaron Robotham <aaron.robotham@uwa.edu.au>

Description Get data / Define model / ??? / Profit! 'ProFit' is a Bayesian galaxy fit-
ting tool that uses a fast 'C++' image generation library and a flexible interface to a large num-
ber of likelihood samplers.

License LGPL-3

URL https://github.com/ICRAR/ProFit

BugReports https://github.com/ICRAR/ProFit/issues

Depends R (>= 3.0), FITSio, magicaxis (>= 2.0.3)

Imports cubature, RColorBrewer, LaplacesDemon, methods, celestial (>=
1.4.1), checkmate

Suggests fftw, knitr, rmarkdown, ProFound, sn

VignetteBuilder knitr

NeedsCompilation yes

Author Aaron Robotham [aut, cre] (<https://orcid.org/0000-0003-0429-3579>),
Dan Taranu [aut] (<https://orcid.org/0000-0001-6268-1882>),
Rodrigo Tobar [aut] (<https://orcid.org/0000-0002-1052-0611>)

Repository CRAN

Date/Publication 2019-11-11 09:20:02 UTC

R topics documented:
ProFit-package . 3
ExampleInit . 7
profitAddMats . 8
profitAvailableConvolvers . 9
profitAvailableIntegrators . 10

1

https://github.com/ICRAR/ProFit
https://github.com/ICRAR/ProFit/issues

2 R topics documented:

profitBenchmark . 11
profitBenchmarkConv . 13
profitBenchmarkResultBest . 17
profitBenchmarkResultStripPointers . 18
profitBrokenExp . 19
profitBruteConv . 21
profitCheckIsPositiveInteger . 23
profitClearCache . 23
profitConvolve . 24
profitConvolvePSF . 25
profitCoreSersic . 27
profitDataBenchmark . 29
profitDataSetOptionsFromBenchmarks . 34
profitDeprojectImageEllipse . 37
profitEllipse . 38
profitEllipsePlot . 41
profitFerrer . 45
profitFlux2Mag . 47
profitGetOpenCLEnvs . 48
profitHasOpen . 49
profitInterp2d . 50
profitKing . 51
profitLikeModel . 53
profitMag2Mu . 56
profitMakeConvolver . 58
profitMakeGaussianPSF . 60
profitMakeModel . 62
profitMakePlots . 69
profitMakePointSource . 71
profitMakePriors . 73
profitMoffat . 75
profitOpenCLEnv . 77
profitOpenCLEnvInfo . 79
profitParseLikefunc . 80
profitPoissonMonteCarlo . 81
profitRemakeModellist . 82
profitsample . 83
profitSersic . 84
profitSetupData . 87

Index 100

ProFit-package 3

ProFit-package Fit Projected 2D Profiles to Galaxy Images

Description

Get data / Define model / ??? / Profit! ’ProFit’ is a Bayesian galaxy fitting tool that uses a fast
’C++’ image generation library and a flexible interface to a large number of likelihood samplers.

Details

Package: ProFit
Type: Package
Version: 1.3.3
Date: 2019-10-22
License: LGPL-3
Depends: R (>= 3.0), FITSio, magicaxis (>= 2.0.3)
Imports: cubature, RColorBrewer, LaplacesDemon, methods, celestial (>= 1.4.1), checkmate
Suggests: fftw, knitr, rmarkdown, ProFound, sn

Author(s)

NA

Maintainer: Aaron Robotham <aaron.robotham@uwa.edu.au>

References

Robotham A.S.G., et al., 2017, MNRAS, 466, 1513

Examples

modellist = list(
sersic = list(

xcen = c(180, 60),
ycen = c(90, 10),
mag = c(15, 13),
re = c(14, 5),
nser = c(3, 10),
ang = c(46, 80),
axrat = c(0.4, 0.6),
box = c(0.5,-0.5)

),
pointsource = list(

xcen = c(34,10,150),
ycen = c(74,120,130),

4 ProFit-package

mag = c(10,13,16)
),
sky = list(

bg = 3e-12
)

)

Without a PSF provided only the extended sources are shown, with no convolution:

magimage(profitMakeModel(modellist=modellist, dim=c(200,200)))

With a PSF provided the PSFs are displayed and the extended sources are convolved with
the PSF:

magimage(profitMakeModel(modellist=modellist, psf=profitMakePointSource(), dim=c(200,200)))

############### Full L-BFGS-B fit example ##############

Not run:

Load ProFit example data

There are 2 data source options: KiDS or SDSS (the galaxies are the same)

datasource='KiDS'

Now we can extract out the example files we have available for fitting by checking the
contents of the directory containing the example FITS files:

data('ExampleInit')
ExampleFiles=list.files(system.file("extdata",datasource,package="ProFit"))
ExampleIDs=unlist(strsplit(ExampleFiles[grep('fitim',ExampleFiles)],'fitim.fits'))
print(ExampleIDs)

There are 10 example galaxies included. Here we run example 1:

useID=ExampleIDs[1]

image = readFITS(system.file("extdata", paste(datasource,'/',useID,'fitim.fits',sep=''),
package="ProFit"))$imDat
sigma = readFITS(system.file("extdata", paste(datasource,'/',useID,'sigma.fits',sep=''),
package="ProFit"))$imDat
segim = readFITS(system.file("extdata", paste(datasource,'/',useID,'segim.fits',sep=''),
package="ProFit"))$imDat
psf = readFITS(system.file("extdata", paste(datasource,'/',useID,'psfim.fits',sep=''),
package="ProFit"))$imDat

Very rough model (not meant to look too good yet):

useIDnum=as.integer(strsplit(useID,'G')[[1]][2])
useloc=which(ExampleInit$CATAID==useIDnum)

For our initial model we treat component 1 as the putitive bulge and componet 2 as

ProFit-package 5

the putitive disk. We are going to attempt a fit where the disk is forced to have
nser=1 and the bulge has an axial ratio of 1.

modellist=list(
sersic=list(
xcen= c(dim(image)[1]/2, dim(image)[1]/2),
ycen= c(dim(image)[2]/2, dim(image)[2]/2),
mag= c(ExampleInit$sersic.mag1[useloc], ExampleInit$sersic.mag2[useloc]),
re= c(ExampleInit$sersic.re1[useloc], ExampleInit$sersic.re2[useloc])*

if(datasource=='KiDS'){1}else{0.2/0.339},
nser= c(ExampleInit$sersic.nser1[useloc], 1), #Disk is initially nser=1
ang= c(ExampleInit$sersic.ang2[useloc], ExampleInit$sersic.ang2[useloc]),
axrat= c(1, ExampleInit$sersic.axrat2[useloc]), #Bulge is initially axrat=1
box=c(0, 0)

)
)

The pure model (no PSF):
magimage(profitMakeModel(modellist,dim=dim(image)))

The original image:
magimage(image)

The convolved model (with PSF):
magimage(profitMakeModel(modellist,dim=dim(image),psf=psf))

What should we be fitting:

tofit=list(
sersic=list(

xcen= c(TRUE,NA), #We fit for xcen and tie the two togther
ycen= c(TRUE,NA), #We fit for ycen and tie the two togther
mag= c(TRUE,TRUE), #Fit for both
re= c(TRUE,TRUE), #Fit for both
nser= c(TRUE,FALSE), #Fit for bulge
ang= c(FALSE,TRUE), #Fit for disk
axrat= c(FALSE,TRUE), #Fit for disk
box= c(FALSE,FALSE) #Fit for neither

)
)

What parameters should be fitted in log space:

tolog=list(
sersic=list(

xcen= c(FALSE,FALSE),
ycen= c(FALSE,FALSE),
mag= c(FALSE,FALSE),
re= c(TRUE,TRUE), #re is best fit in log space
nser= c(TRUE,TRUE), #nser is best fit in log space
ang= c(FALSE,FALSE),
axrat= c(TRUE,TRUE), #axrat is best fit in log space
box= c(FALSE,FALSE)

6 ProFit-package

)
)

The hard interval limits to use when fitting. This is not strictly required, but without
this we cannot ensure the sampler does not enter unallowed values like negative sizes,
Sersic indices and axial ratios etc:

intervals=list(
sersic=list(

xcen=list(lim=c(0,300),lim=c(0,300)),
ycen=list(lim=c(0,300),lim=c(0,300)),
mag=list(lim=c(10,30),lim=c(10,30)),
re=list(lim=c(1,100),lim=c(1,100)),
nser=list(lim=c(0.5,20),lim=c(0.5,20)),
ang=list(lim=c(-180,360),lim=c(-180,360)),
axrat=list(lim=c(0.1,1),lim=c(0.1,1)),
box=list(lim=c(-1,1),lim=c(-1,1))

)
)

Setup the minimal data structure we need for optimisation. See vignettes for
more complex examples using priors, and constraints:

Data=profitSetupData(image=image, sigma=sigma, segim=segim,psf=psf,
modellist=modellist, tofit=tofit, tolog=tolog, intervals=intervals, magzero=0,
algo.func='optim', verbose=TRUE)

This produces a fairly complex R object, but with all the bits we need for fitting,
e.g. (notice the tolog parameteres are now logged):

Data$init

These are the parameters we wish to fit for, and we take the initial guesses from the
model list we provided before.

We can test how things currently look (we get an output because we set verbose=TRUE
earlier):

profitLikeModel(parm=Data$init, Data=Data, makeplots=TRUE)

Let us try optim BFGS:

optimfit=optim(Data$init, profitLikeModel, method='BFGS', Data=Data,
control=list(fnscale=-1))

The best optim BFGS fit is given by:

optimfit$par

Check it out:

profitLikeModel(optimfit$par,Data,makeplots=TRUE,whichcomponents=list(sersic=1))
profitLikeModel(optimfit$par,Data,makeplots=TRUE,whichcomponents=list(sersic=2))

ExampleInit 7

profitLikeModel(optimfit$par,Data,makeplots=TRUE,whichcomponents=list(sersic='all'))

modeloptim=profitRemakeModellist(optimfit$par,Data$modellist,Data$tofit,Data$tolog)$modellist
profitEllipsePlot(Data,modeloptim,pixscale=0.2,FWHM=0.5,SBlim=26)

End(Not run)

ExampleInit Initial 2D Sersic Model Image Parameters

Description

Rough initial 2 component 2D Sersic model parameters for the provided model images.

Usage

data("ExampleInit")

Format

A data frame with 39 observations on the following 10 variables.

CATAID GAMA CATAID reference
sersic.xcen1 x centres of the 2D Sersic profiles
sersic.ycen1 y centres of the 2D Sersic profiles
sersic.mag1 Total magnitudes of the 2D Sersic bulge profiles
sersic.mag2 Total magnitudes of the 2D Sersic disk profiles
sersic.re1 Effective radii of the 2D Sersic bulge profiles
sersic.re2 Effective radii of the 2D Sersic disk profiles
sersic.nser1 Sersic indices of the 2D Sersic bulge profiles
sersic.ang2 Orientation of the major axis of the disk profile in degrees
sersic.axrat2 Axial ratios of Sersic disk profiles defined as minor-axis/major-axis

Details

These rough initial guesses of the galaxy models were derived from single Sersic fits taken from
Lange et al 2015.

References

Lange R., et al, 2015, MNRAS, 447, 2603

Examples

data(ExampleInit)
ExampleInit[1:5,]

8 profitAddMats

profitAddMats Add together image matrices

Description

A simple function to add together two matrices. The base matrix must be equal in size or larger
than the matrix being added, and some pixels of the added matrix must fall inside the base matrix.

Usage

profitAddMats(matbase, matadd, addloc = c(1, 1), plot = FALSE, ...)

Arguments

matbase The base matrix to be added onto (the output will be the same size as the base
matrix).

matadd The matrix to be added (this cannot be larger than the base matrix).

addloc The reference ID of the corner pixel to use when adding ‘matadd’. This will be
the position at which matadd[1,1] is added, i.e. the default c(1,1) means the two
matrices are lined up on the bottom-left pixel when plotted as an image. This
can be negative or larger than dim(matbase), which means only a subset of the
‘matadd’ matrix is added to ‘matbase’.

plot Logical; should a magimage plot of the output be generated?

... Further arguments to be passed to magimage. Only relevant is ‘plot’=TRUE.

Details

In practice this function is a convenient low level routine that us used by profitMakePointSource.
It is unlikely the user will use it directly.

By ProFit convention the bottom-left part of the bottom-left pixel when plotting the image matrix
is c(0,0) and the top-right part of the bottom-left pixel is c(1,1), i.e. the mid-point of pixels are half
integer values in x and y.

To confuse things a bit, when R plots an image of a matrix it is transposed and re-ordered vertically
to how it appears if you print the matrix directly to screen, i.e. compare print(matrix(1:4,2,2))
and image(matrix(1:4,2,2)). The lowest value (1) is top-left when printed but bottom-left when
displayed using image (the red pixel). Both are "correct": the issue is whether you consider the first
element of a matrix to be the Cartesian x position (movement in x) or a row element (movement in
y). Matrices in maths are always written top-left first where the first argument refers to row number,
but images by convention are accessed in a Cartesian sense. Hence [3,4] in a maths matrix means 3
down and 4 right from the top-left, but 3 right and 4 up from the bottom-left in an image.

Value

Matrix; a matrix the same size as matbase, with a region of it added to by the values in matadd.

profitAvailableConvolvers 9

Author(s)

Aaron Robotham

See Also

profitMakePointSource

Examples

model = list(
sersic = list(
xcen = c(180, 60),
ycen = c(90, 10),
mag = c(15, 13),
re = c(14, 5),
nser = c(3, 10),
ang = c(46, 80),
axrat = c(0.4, 0.6),
box = c(0.5,-0.5)
)
)

We can add a PSF to an image of two Sersic profiles:

magimage(profitAddMats(matbase=profitMakeModel(model, dim=c(200,200))$z,
matadd=profitMakePointSource(), addloc=c(50,150)))

profitAvailableConvolvers

Returns supported convolver types

Description

Simple utility to query the supported convolver types.

Usage

profitAvailableConvolvers()

Value

The output is a vector of strings with all the supported convolver type names. These values can be
passed to profitMakeConvolver to create different types of convolvers.

Depending on how ProFit was compiled, it will support more or less underlying convolvers.

Author(s)

Rodrigo Tobar

10 profitAvailableIntegrators

See Also

profitMakeConvolver, profitHasOpenCL, profitHasFFTW,

Examples

profitAvailableConvolvers()

profitAvailableIntegrators

Returns supported profile integration methods

Description

Simple utility to query the supported profile integration methods.

Usage

profitAvailableIntegrators()

Value

The output is a vector of strings with all the supported integration method names. Currently, these
are "brute" and "opencl", for consistency with profitAvailableConvolvers. These values are not
yet passed directly to profitMakeModel, but indirectly via OpenCL environment variables.

Author(s)

Dan Taranu

See Also

profitMakeConvolver, profitHasOpenCL, profitHasFFTW,

Examples

profitAvailableConvolvers()

profitBenchmark 11

profitBenchmark Benchmark profile integration and image convolution using libprofit.

Description

This function will benchmark integration of surface brightness profiles and/or convolution of an
image with a kernel (usually a point spread function) using libprofit. It returns a data frame with
available integration/convolution methods, the most efficient method(s), and (optionally) more de-
tailed results including convolution accuracy. It is called by profitSetupData by default and the
convolver is used in profitMakeModel.

Usage

profitBenchmark(image, methods=NULL, psf=NULL,
modellist=NULL, finesample=1L, calcregion=NULL, nbench=1,
benchconvolution=is.matrix(psf),
precisions=c("double"), omp_threads=1,
openclenvs = profitGetOpenCLEnvs(make.envs = TRUE),
reference = "brute", reusepsffft = TRUE, fft_effort=0,
returnimages = FALSE)

Arguments

image A matrix containing the image to benchmark convolution for. It should already
be padded by half of the PSF width on either side to ensure that the convolved
model can be cropped to the same size as the data. If no ‘image’ is supplied, the
user must supply ‘imagedim’.

methods List of strings specifying which methods to test. Methods must be amongst
those returned by profitAvailableConvolvers.

psf A matrix containing the PSF image to convolve the model image with. If no
PSF is supplied, the user must supply ‘psfdim’.

modellist A valid ProFit modellist for profile integration; see profitMakeModel.

finesample Integer; the factor to oversample the image by. The default of one does no
oversampling.

calcregion A logical matrix specifying regions of the image to avoid computing convolution
for. Can make brute force convolution more efficient if it is not sparse.

nbench Integer; the number of times to benchmark each method. Repeated convolu-
tions can vary in running time for all kinds of reasons, so ‘nbench’ = 10 is rec-
ommended unless using brute force convolution with very large images and/or
kernels.

benchconvolution

Logical; whether to benchmark convolution. Requires a PSF.

precisions Character; the numerical precision(s) to benchmark. Must be one of "single" or
"double".

12 profitBenchmark

omp_threads Integer; the number of OpenMP threads to use for integration/convolution.

openclenvs A data.frame with information on available OpenCL environments, such as that
returned from profitGetOpenCLEnvs.

reference String; the method to use as the reference result for comparing the accuracy of
all other methods. This comparison is not done if reference is not contain in
‘methods’.

reusepsffft Logical specifying whether to re-do the PSF FFT every iteration, which would
be necessary if one is fitting the PSF.

fft_effort The effort level to compute the FFTW plan. FFTW plans can take a very long
time to set up, so consider carefully before increasing beyond 0 - particularly if
your padded image only has a few large prime factors.

returnimages Logical; whether to return the convolved image for every method.

Details

The function is mainly used to determine the most efficient method for convoling the ‘image’ with
the ‘psf’. In situations where the ‘psf’ has much smaller dimensions than ‘image’ this will pretty
much always be Brute force convolution, but when the ‘psf’ becomes comparable in size to the
‘image’ then FFTW is usually faster. In the provided example all three are similar speed. Bench-
marks are more difficult to predict when using multiple cores and/or devices.

Value

List containing:

result The benchmarking results in a data.frame; see profitGetOpenCLEnvs for more information
on the format.

images List of resulting images for each method.

Notes

TBD.

Author(s)

Dan Taranu & Aaron Robotham

See Also

profitAvailableConvolvers, profitMakeModel, profitSetupData

Examples

Not run:
model = list(
sersic = list(
xcen = c(180, 60),
ycen = c(90, 10),
mag = c(15, 13),

profitBenchmarkConv 13

re = c(14, 5),
nser = c(3, 10),
ang = c(46, 80),
axrat = c(0.4, 0.6),
box = c(0.5,-0.5)
)
)

psffwhm=3

Use OpenCL if available
Makes a list of available OpenCL environments optionally with double precision if all
devices support it

openclenvs = profitGetOpenCLEnvs(make.envs=TRUE)
nbench=1L

Try up to 5L if you're adventurous and don't mind waiting up to a minute for
single-threaded brute

for(finesample in c(1L:3L))
{
model.image=profitMakeModel(model=model, dim=rep(200,2), finesample=finesample, returnfine=TRUE)$z
psf=profitMakeGaussianPSF(fwhm=3*finesample,dim=rep(25*finesample + 1 - mod(finesample,2),2))

Benchmark model integration:
bench=profitBenchmark(model.image, modellist=model, nbench=nbench, openclenvs=openclenvs,

methods=profitAvailableIntegrators())

#Print relevant results
print(profitBenchmarkResultStripPointers(bench$result)[
c("name","env_name","version","dev_name",paste0("tinms.mean_",c("single","double")))])

Benchmark convolution:
bench=profitBenchmark(model.image, psf=psf, nbench=nbench, openclenvs=openclenvs,

methods=profitAvailableConvolvers())

#Print relevant results
print(profitBenchmarkResultStripPointers(bench$result)[
c("name","env_name","version","dev_name",paste0("tinms.mean_",c("single","double")))])

The old benchmarking method, for reference
temp=profitBenchmarkConv(model.image, psf = psf, nbench=nbench)

}

End(Not run)

profitBenchmarkConv Benchmark convolution of an image with a point spread function
(PSF).

14 profitBenchmarkConv

Description

This function will benchmark convolution of an image with a point spread function (PSF), returning
results as well as a list of data stored by profitSetupData for optimising calls to profitConvolvePSF.

Usage

profitBenchmarkConv(image=NULL, psf=NULL, calcregion=NULL, nbench=10,
methods = c("Bruteconv","FFTconv","FFTWconv"), imagedim=NULL, psfdim=NULL,
refftpsf=FALSE, fftwplan=NULL, maxfftwplaneffort=0)

Arguments

image A matrix containing the image to benchmark convolution for. It should already
be padded by half of the PSF width on either side to ensure that the convolved
model can be cropped to the same size as the data. If no ‘image’ is supplied, the
user must supply ‘imagedim’.

psf A matrix containing the PSF image to convolve the model image with. If no
PSF is supplied, the user must supply ‘psfdim.’

calcregion A logical matrix specifying regions of the image to avoid computing convolution
for. See profitBruteConv and profitConvolvePSF for more details.

nbench Integer; the number of times to benchmark each method. Repeated convolu-
tions can vary in running time for all kinds of reasons, so ‘nbench’ >= 10 is
recommended.

methods List of strings specifying which methods to test. Valid methods are Bruteconv",
"FFTconv", and "FFTWconv". FFTconv is rarely fastest.

imagedim Vector of dimensions of the image to create, if ‘image’ is not provided.

psfdim Vector of dimensions of the PSF to create, if ‘psf’ is not provided.

refftpsf Logical specifying whether to re-do the PSF FFT every iteration, which would
be necessary if one is fitting the PSF.

fftwplan A pre-computed plan for FFTW to decompose the FFT, as returned by "fftw-
plan" (can this be linked?). It must have been computed for a transform of an
image with the same dimensions as the product of all image and PSF dimen-
sions.

maxfftwplaneffort

The maximum effort level to compute the FFTW plan. FFTW plans can take
a very long time to set up, so consider carefully before increasing beyond 0 -
particularly if your padded image only has a few large prime factors.

Details

This function does two important things. Firstly it determines which of three different convolution
options will work fastest given the provided combination of ‘iamge’ and ‘psf’. In situations where
the ‘psf’ has much smaller dimensions than ‘image’ this will pretty much always be Brute force
convolution, but when the ‘psf’ becomes comparable in size to the ‘image’ then one of the two
FFT routines will often be faster. In the provided example all three are similar speed.

profitBenchmarkConv 15

The second important output of this function is preparing all the structures needed for FFT convolu-
tion if using profitConvolvePSF and selecting wither FFT or FFTW. The Examples show a clear
example of how you use this output ‘fft’ list in practice.

Value

List; complex structure containing:

result A character string summarizing the benchmark results.

times A vector of average time in ms for each method.

best A list containing:

name The name of the fastest method.
time The average time in ms for the fastest method.

method A character string containing the name of the best method (one of Bruteconv, FFTconv,
FFTWconv), which defaults to best[[’name’]]. ‘method’ can be directly parsed into profitConvolvePSF
‘options’.

fft A list of useful items for FFT. ‘fft’ can be directly parsed into profitConvolvePSF ‘options’.,
including:

fftwplan The FFTW plan.
paddim The dimensions of the zero-padded image, usually twice the input image dimensions

and necessary to avoid periodicity artefacts.
padimagex The x coordinates to place the original image in; by default the bottom-left corner

of the padded image.
padimagey The y coordinates to place the original image in; by default the bottom-left corner

of the padded image.
cropx The x coordinates of the convolved image within the padded output image; usually in

the centre.
cropy The y coordinates of the convolved image within the padded output image; usually in

the centre.
fft A list of useful items relating to the PSF, including:

r The R FFT of the PSF.
w The FFTW of the PSF. Should be nearly identical to r.
x The x coordinates to place the PSF in; by default the centre of the bottom-left quadrant

of the padded image.
y The y coordinates to place the PSF in; by default the centre of the bottom-left quadrant

of the padded image.

Notes

profitBruteConv is usually the fastest method, except for very large image/PSF combinations.
Similarly, FFTW is almost always faster than R’s built-in FFT.

Author(s)

Dan Taranu & Aaron Robotham

16 profitBenchmarkConv

See Also

profitBruteConv, profitConvolvePSF, profitMakeModel, profitSetupData

Examples

Not run:
model = list(
sersic = list(
xcen = c(180, 60),
ycen = c(90, 10),
mag = c(15, 13),
re = c(14, 5),
nser = c(3, 10),
ang = c(46, 80),
axrat = c(0.4, 0.6),
box = c(0.5,-0.5)
)
)

model.image=profitMakeModel(model=model, dim=c(200,200))$z

psf=profitMakeGaussianPSF()

#Do some benchmarking:

temp=profitBenchmarkConv(model.image, psf=psf, nbench=1)

#Check the best:

temp$best

#And we can use all three:

magimage(profitConvolvePSF(model.image, psf, options=list(method='Bruteconv')))
magimage(profitConvolvePSF(model.image, psf, options=list(method='FFTconv', fft=temp$fft)))
magimage(profitConvolvePSF(model.image, psf, options=list(method='FFTWconv', fft=temp$fft)))

#Some benchmarking for different size PSFs:

profitBenchmarkConv(imagedim=c(200,200), psfdim=c(11,11), nbench=1)
profitBenchmarkConv(imagedim=c(200,200), psfdim=c(21,21), nbench=1)
profitBenchmarkConv(imagedim=c(200,200), psfdim=c(31,31), nbench=1)

#Note they are all very similar in speed when psfdim=21. The time for FFT and FFTW
#pretty much scales with the number of pixels in the image (regardless of PSF).

#Because of how they scale, there are some rough rules-of-thumb you can use:

#Brute force is usually faster when psfdim<=21:

profitBenchmarkConv(imagedim=c(200,200), psfdim=c(15,15), nbench=1)

profitBenchmarkResultBest 17

#FFT is usually faster when imagedim<400 & psfdim>21 & psfdim<100:

profitBenchmarkConv(imagedim=c(200,200), psfdim=c(51,51), nbench=1)

#FFTW is usually faster when imagedim>400 & psfdim>21

profitBenchmarkConv(imagedim=c(400,400), psfdim=c(25,25), nbench=1)

End(Not run)

profitBenchmarkResultBest

Return best integration/convolution method from a profitBenchmark
result.

Description

This function will return the best method from a benchmark result returned by profitBenchmark.

Usage

profitBenchmarkResultBest(result, precision="double")

Arguments

result A benchmarking result returned from profitBenchmark.

precision The desired floating-point precision; either "single" or "double" (the default).

Value

List; complex structure containing:

convolver Pointer to the best profitConvolver; see profitMakeConvolver.

dev_name The name of the best device.

name The name of the best method and/or OpenCL environment.

openclenv Pointer to the best OpenCL environment; see profitOpenCLEnv.

precision The floating point precision (from ‘precision’).

time The time per operation for the best method in ms.

usecalcregion Logical; whether the optimal method uses the calcregion matrix or not; see profitSetupData.

Author(s)

Dan Taranu

See Also

profitBenchmark, profitSetupData

18 profitBenchmarkResultStripPointers

Examples

Not run:
img = profitMakeGaussianPSF()
bench=profitBenchmark(img, psf=img, nbench=1L, methods=profitAvailableConvolvers())
print(profitBenchmarkResultStripPointers(bench$result)[
c("name","env_name","version","dev_name",paste0("tinms.mean_",c("single","double")))])

best = profitBenchmarkResultBest(bench$result)
print(paste('Name:',best$name,'time:',best$time))

End(Not run)

profitBenchmarkResultStripPointers

Return a copy of a data.frame with pointers converted to strings for
easy printing

Description

This function will take a data.frame with external pointers (like a result from profitBenchmark)
and convert the pointers to strings so that the can be printed without errors.

Usage

profitBenchmarkResultStripPointers(dataframe, colnames=as.vector(
outer(c("env","convolver"),c("single","double"),paste,sep="_")))

Arguments

dataframe A data.frame with external pointers, such as a benchmarking result returned
from profitBenchmark.

colnames Character or nunmeric vector of the names or indices of columns to convert.

Value

The same data.frame given in ‘dataframe’ with external pointers converted to strings.

Author(s)

Dan Taranu

See Also

profitBenchmark, profitGetOpenCLEnvs

profitBrokenExp 19

Examples

Not run:
openclenvs = profitGetOpenCLEnvs(make.envs=TRUE)
print(profitBenchmarkResultStripPointers(openclenvs))
img = profitMakeGaussianPSF()
bench=profitBenchmark(img, psf=img, nbench=1L, methods=profitAvailableConvolvers())
print(profitBenchmarkResultStripPointers(bench$result)[
c("name","env_name","version","dev_name",paste0("tinms.mean_",c("single","double")))])

End(Not run)

profitBrokenExp Broken-Exponential Profile Specific Functions

Description

Useful functions related to the broken-exponential profile. profitCubaSersic computes the exact
2D pixel integrals for a given broken-exponential model image. This is very slow compared to
profitMakeModel, but it is useful for checking model creation tuning (i.e. the degree to which
speed can be increased without overly harming accuracy). Tests with this function were used to
tune profitMakeModel. profitRadialSersic computes the 1D radial flux intensity of the broken-
exponential profile along the major axis of the profile.

Usage

profitCubaBrokenExp(xcen = dim[1]/2, ycen = dim[2]/2, mag = 15, h1 = 1, h2 = h1, rb = h1,
a = 1, ang = 0, axrat = 1, box = 0, dim = c(25, 25), rel.tol = 0.001, abs.tol = 1e-10,
plot = FALSE, ...)
profitRadialBrokenExp(r = 1, mag = 15, h1 = 1, h2 = h1, rb = h1, a = 1, ang = 0,
axrat = 1, box = 0)

Arguments

xcen Scalar; x centre of the 2D broken-exponential profile (can be fractional pixel
positions).

ycen Scalar; y centre of the 2D broken-exponential profile (can be fractional pixel
positions).

r Vector; the radius along the major axis at which to evaluate the flux intensity.

mag Scalar; total magnitude of the 2D broken-exponential profile. Converted to flux
using flux=10^(-0.4*(mag-magzero)).

h1 Scalar; scale length of the inner broken-exponential profile.

h2 Scalar; scale length of the outer broken-exponential profile.

rb Scalar; break (or truncation) radius of the broken-exponential profile.

a Scalar; strength of transition from inner core to outer broken-exponential. Larger
+ve means sharper.

20 profitBrokenExp

ang Scalar; the orientation of the major axis of the Sersic profile in degrees. When
plotted as an R image the angle (theta) has the convention that 0= | (vertical),
45= \, 90= - (horizontal), 135= /, 180= | (vertical). Values outside the range 0
<= ang <= 180 are allowed, but these get recomputed as ang = ang.

axrat Scalar; axial ratio of the Sersic profile defined as minor-axis/major-axis, i.e. 1 is
a circle and 0 is a line.

box Scalar; the boxiness of the Sersic profile that traces contours of iso-flux, defined
such that r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When box=0 the iso-
flux contours will be normal ellipses, but modifications between -1<box<1 will
produce visually boxy distortions. Negative values have a pin-cushion effect,
whereas positive values have a barrel effect (the major and minor axes staying
fixed in all cases).

dim Scalar; the dimensions of the image to be generated. Typically this should be
c(Nx,Ny). If length 1 then the value will be replicated for both dimensions.

rel.tol Scalar; the requested relative accuracy. Default, 0.001.

abs.tol Scalar; the requested absolute accuracy. The algorithm stops when either the
relative or the absolute accuracies are met. Default, near 1e-10.

plot Logical; should a magimage plot of the output be generated?

... Further arguments to be passed to magimage. Only relevant is ‘plot’=TRUE.

Details

This function uses the Cuba package to make an accurate (but expensive) cubature integral. This
function was written to test the accuracy of ProFit Core-Sersic models generated by profitMakeModel.

By ProFit convention the bottom-left part of the bottom-left pixel when plotting the image matrix
is c(0,0) and the top-right part of the bottom-left pixel is c(1,1), i.e. the mid-point of pixels are half
integer values in x and y.

To confuse things a bit, when R plots an image of a matrix it is transposed and re-ordered vertically
to how it appears if you print the matrix directly to screen, i.e. compare print(matrix(1:4,2,2))
and image(matrix(1:4,2,2)). The lowest value (1) is top-left when printed but bottom-left when
displayed using image (the red pixel). Both are "correct": the issue is whether you consider the first
element of a matrix to be the Cartesian x position (movement in x) or a row element (movement in
y). Matrices in maths are always written top-left first where the first argument refers to row number,
but images by convention are accessed in a Cartesian sense. Hence [3,4] in a maths matrix means 3
down and 4 right from the top-left, but 3 right and 4 up from the bottom-left in an image.

Value

profitCubaBrokenExp: Matrix; contains the flux values of the specified model image. Dimensions
‘dim’.

profitRadialBrokenExp: Vector; same length as input ‘r’, specifying the flux intensity of the
profile along the major axis.

Author(s)

Aaron Robotham

profitBruteConv 21

References

Erwin, P., Pohlen, M., & Beckman, J. E. 2008, AJ, 135, 20

See Also

profitMakeModel, profitSersic, profitMoffat, profitFerrer, profitKing

Examples

Not run:
magimage(profitCubaBrokenExp(axrat=0.7, ang=30, h1=6, h2=3, rb=4, a=1))

End(Not run)

profitBruteConv Low level brute force image convolution

Description

A low level direct C++ implementation of brute force convolution that takes a user supplied image
and point spread function (PSF) as inputs. In most situations users should make convolutions using
the higher level profitConvolvePSF provided.

Usage

profitBruteConv(image, psf, calcregion=matrix(1,1,1), docalcregion=FALSE,
plot = FALSE, ...)

Arguments

image The image matrix to be convolved by the point spread function (PSF).

psf The point spread function (PSF) image matrix that ProFit will use to convolve
the image (should have odd size in both dimensions to prevent the image be-
coming offset.

calcregion Matrix; logical image matrix the same size as the input ‘image’ matrix. If
‘docalcregion’=TRUE, then pixels in ‘calcregion’ that are TRUE (or 1) will
have the convolution calculated, pixels with FALSE (or 0) values will be set to 0.
This is included to increase computation speed in situations where only a small
region of the full image contains the galaxy of interest for fitting. In this case
pixels a long way from the segmentation region for the galaxy will not need to be
convolved in order to calculate the correct likelihood within the segmentation.

docalcregion Logical; should the ‘calcregion’ logical matrix be used to define a subset of
pixels to be convolved.

plot Logical; should a magimage plot of the output be generated?

... Further arguments to be passed to magimage. Only relevant is ‘plot’=TRUE.

22 profitBruteConv

Details

In the regime where one image is significantly (a factor of a few) smaller than the other image, this
tends to be faster than FFT based convolution due to the lack of image padding and other overheads.
PSF images tend to be only dozens of pixels and images 100s, so brute force convolution is the
default convolution algorithm in ProFit. For this low level function the PSF supplied must have
odd size in both dimensions or the image will become offset. To alleviate this issue a higher level
function profitConvolvePSF is provided, that will re-interpolate the image to force the required
odd sizes.

Value

Matrix; image matrix the same size as the input ‘image’ matrix.

Author(s)

Aaron Robotham & Dan Taranu

See Also

profitConvolvePSF, profitMakePointSource, profitMakeModel

Examples

model = list(
sersic = list(
xcen = c(180, 60),
ycen = c(90, 10),
mag = c(15, 13),
re = c(14, 5),
nser = c(3, 10),
ang = c(46, 80),
axrat = c(0.4, 0.6),
box = c(0.5,-0.5)
)
)

model.image=profitMakeModel(model=model, dim=c(200,200))$z

Without convolution:

magimage(model.image)

With convolution:

magimage(profitBruteConv(image=model.image, psf=profitMakePointSource()))

profitCheckIsPositiveInteger 23

profitCheckIsPositiveInteger

Check if a value is a positive integer

Description

A simple convenience function to check if a value is a positive integer, which several arguments to
functions need to be.

Usage

profitCheckIsPositiveInteger(x)

Arguments

x Hopefully a positive integer.

Value

Returns nothing. Stops process if condition is not met.

Author(s)

Dan Taranu

Examples

Not run:
profitCheckIsPositiveInteger(3L)
profitCheckIsPositiveInteger(3.1)

End(Not run)

profitClearCache Clears the internal cache used by libprofit/ProFit

Description

Usually unknown to the user, ProFit (via libprofit) caches a few objects to speed up loading times
in future executions. Rarely users might need to clear this cache, specially if the package is failing
to load because of some cache problem.

In particular, FFTW wisdom and OpenCL compiled kernels are cached by libprofit.

Usage

profitClearCache()

24 profitConvolve

Author(s)

Rodrigo Tobar

Examples

profitClearCache()

profitConvolve Performs a convolution using the give convolver object

Description

Given a convover and two images (the source and the kernel), this method performs a convolution
of the two images and returns the result. Convolution is performed using the give convolver, which
must be created using profitMakeConvolver.

Usage

profitConvolve(convolver, image, kernel, mask = NULL)

Arguments

convolver The convolver object that will perform the convolution. It must be created using
profitMakeConvolver.

image The source image to convolve.

kernel The kernel user to convolve the image with.

mask Logical; If not NULL, it has the same size of the source image, and indicates the
pixels of the resulting image that should be part of the output (if TRUE), or left
as 0 (if FALSE).

Details

...

Value

The output is the result of the convolution of the image and the kernel.

Author(s)

Rodrigo Tobar

See Also

profitBruteConv, profitMakeConvolver, profitHasFFTW

profitConvolvePSF 25

Examples

Initial images
image = matrix(1, 100, 100)
psf = matrix(1:10000, 100, 100)

Check for FFTW support and create a convolver
type = "brute"
if (profitHasFFTW()) {
type = "fft"
}
convolver = profitMakeConvolver(type, c(100, 100), psf, fft_effort=0,

omp_threads=2)

Perform convolution
image = profitConvolve(convolver, image, psf)

profitConvolvePSF High level image convolution

Description

A high level interface to fast convolution that takes a user supplied image and point spread function
(PSF) as inputs. This routine calls lower level functions like profitBruteConv and also implements
FFT-based convolution using either R’s built-in FFT or the ‘fftw‘ interface to the FFTW library (the
latter is usually significantly faster).

Usage

profitConvolvePSF(image, psf, calcregion, docalcregion=FALSE,
options=list(method="Bruteconv"), sky = 0, plot = FALSE, ...)

Arguments

image The image matrix to be convolved by the point spread function (PSF).

psf The point spread function (PSF) image matrix that ProFit will use to convolve
the image. This can have odd sizes in each dimension. If the dimension has an
even size then the function will internally interpolate it onto an odd sized grid
1 element larger. The PSF will be automatically rescaled so it sums to 1 before
convolution to ensure flux conservation in the model.

options Additional options for model convolution parsed as a list. option$method inputs
allowed are Bruteconv (brute force convolution), FFTconv (FFT convolution
using the R fft function) and FFTWconv (FFT using the FFTW library). If
using FFTconv or FFTWconv you will also need to supply a fft list. In practice
this is one of the list outputs of profitBenchmarkConv (see Examples).

calcregion Logical matrix; logical image matrix the same size as the input ‘image’ matrix.
If ‘docalcregion’=TRUE, then pixels in ‘calcregion’ that are TRUE (or 1)
will have the convolution calculated, pixels with FALSE (or 0) values will be

26 profitConvolvePSF

set to 0. This is included to increase computation speed in situations where only
a small region of the full image contains the galaxy of interest for fitting. In
this case pixels a long way from the segmentation region for the galaxy will
not need to be convolved in order to calculate the correct likelihood within the
segmentation.

docalcregion Logical; should the ‘calcregion’ logical matrix be used to define a subset of
pixels to be convolved.

sky Numeric scalar; the sky level of the image. This is important to ensure the
convolution works well at the edges, since the padded regions outside the image
bounds will be effectively set to the ‘sky’ value. If this is much higher of lower
than the true sky then you may see artefacts.

plot Logical; should a magimage plot of the output be generated?

... Further arguments to be passed to magimage. Only relevant is ‘plot’=TRUE.

Details

In the regime where one image is significantly (a factor of a few) smaller than the other image,
this tends to be faster than FFT based convolution due to the lack of image padding and other
overheads. PSF images tend to be only dozens of pixels and images 100s, so brute force convolution
is the standard approach used in ProFit. This function offers a convenient high level interface to
link{profitBruteConv}, which can only accept odd size dimensions for the PSF.

Value

Matrix; convolved image matrix the same size as the input ‘image’ matrix.

Author(s)

Aaron Robotham & Dan Taranu

See Also

profitBruteConv, profitMakePointSource, profitBenchmarkConv

Examples

model = list(
sersic = list(
xcen = c(180, 60),
ycen = c(90, 10),
mag = c(15, 13),
re = c(14, 5),
nser = c(3, 10),
ang = c(46, 80),
axrat = c(0.4, 0.6),
box = c(0.5,-0.5)
)
)

model.image=profitMakeModel(model=model, dim=c(200,200))$z

profitCoreSersic 27

psf=profitMakeGaussianPSF()

#Do some benchmarking:

temp=profitBenchmarkConv(model.image, psf=psf)

#Check the best:

temp$best

#And we can use all three:

magimage(profitConvolvePSF(model.image, psf, options=list(method='Bruteconv')))
magimage(profitConvolvePSF(model.image, psf, options=list(method='FFTconv', fft=temp$fft)))
magimage(profitConvolvePSF(model.image, psf, options=list(method='FFTWconv', fft=temp$fft)))

profitCoreSersic Core-Sersic Profile Specific Functions

Description

Useful functions related to the Core-Sersic profile. profitCubaCoreSersic computes the exact 2D
pixel integrals for a given Core-Sersic model image. This is very slow compared to profitMakeModel,
but it is useful for checking model creation tuning (i.e. the degree to which speed can be increased
without overly harming accuracy). Tests with this function were used to tune profitMakeModel.
profitRadialCoreSersic computes the 1D radial flux intensity of the Core-Sersic profile along
the major axis of the profile.

Usage

profitCubaCoreSersic(xcen = dim[1]/2, ycen = dim[2]/2, mag = 15, re = 1, rb = 1,
nser = 4,a = 1, b = 1, ang = 0, axrat = 1, box = 0, dim = c(25, 25), rel.tol = 0.001,
abs.tol = 1e-10, plot = FALSE, ...)
profitRadialCoreSersic(r = 1, mag = 15, re = 1, rb = 1, nser = 4, a = 1, b = 1, ang = 0,
axrat = 1, box = 0)

Arguments

xcen Scalar; x centre of the 2D Core-Sersic profile (can be fractional pixel positions).

ycen Scalar; y centre of the 2D Core-Sersic profile (can be fractional pixel positions).

r Vector; the radius along the major axis at which to evaluate the flux intensity.

mag Scalar; total magnitude of the 2D Core-Sersic profile. Converted to flux using
flux=10^(-0.4*(mag-magzero)).

re Scalar; effective radius of the Sersic component of the Core-Sersic profile.

rb Scalar; transition radius of the Core-Sersic profile (from inner power-law to
outer Sersic).

28 profitCoreSersic

nser Scalar; Sersic index of the Core-Sersic profile.
a Scalar; strength of transition from inner core to outer Sersic. Larger +ve means

sharper.
b Scalar; the inner power-law of the Core-Sersic profile. Less than 1 is an increas-

ingly flat core.
ang Scalar; the orientation of the major axis of the Sersic profile in degrees. When

plotted as an R image the angle (theta) has the convention that 0= | (vertical),
45= \, 90= - (horizontal), 135= /, 180= | (vertical). Values outside the range 0
<= ang <= 180 are allowed, but these get recomputed as ang = ang.

axrat Scalar; axial ratio of the Sersic profile defined as minor-axis/major-axis, i.e. 1 is
a circle and 0 is a line.

box Scalar; the boxiness of the Sersic profile that traces contours of iso-flux, defined
such that r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When box=0 the iso-
flux contours will be normal ellipses, but modifications between -1<box<1 will
produce visually boxy distortions. Negative values have a pin-cushion effect,
whereas positive values have a barrel effect (the major and minor axes staying
fixed in all cases).

dim Scalar; the dimensions of the image to be generated. Typically this should be
c(Nx,Ny). If length 1 then the value will be replicated for both dimensions.

rel.tol Scalar; the requested relative accuracy. Default, 0.001.
abs.tol Scalar; the requested absolute accuracy. The algorithm stops when either the

relative or the absolute accuracies are met. Default, near 1e-10.
plot Logical; should a magimage plot of the output be generated?
... Further arguments to be passed to magimage. Only relevant is ‘plot’=TRUE.

Details

This function uses the Cuba package to make an accurate (but expensive) cubature integral. This
function was written to test the accuracy of ProFit Core-Sersic models generated by profitMakeModel.
By ProFit convention the bottom-left part of the bottom-left pixel when plotting the image matrix
is c(0,0) and the top-right part of the bottom-left pixel is c(1,1), i.e. the mid-point of pixels are half
integer values in x and y.
To confuse things a bit, when R plots an image of a matrix it is transposed and re-ordered vertically
to how it appears if you print the matrix directly to screen, i.e. compare print(matrix(1:4,2,2))
and image(matrix(1:4,2,2)). The lowest value (1) is top-left when printed but bottom-left when
displayed using image (the red pixel). Both are "correct": the issue is whether you consider the first
element of a matrix to be the Cartesian x position (movement in x) or a row element (movement in
y). Matrices in maths are always written top-left first where the first argument refers to row number,
but images by convention are accessed in a Cartesian sense. Hence [3,4] in a maths matrix means 3
down and 4 right from the top-left, but 3 right and 4 up from the bottom-left in an image.

Value

profitCubaCoreSersic: Matrix; contains the flux values of the specified model image. Dimen-
sions ‘dim’.
profitRadialCoreSersic: Vector; same length as input ‘r’, specifying the flux intensity of the
profile along the major axis.

profitDataBenchmark 29

Author(s)

Aaron Robotham

References

Graham A. W., Erwin P., Trujillo I., Asensio Ramos A., 2003, AJ, 125, 2951

See Also

profitMakeModel, profitSersic, profitMoffat, profitFerrer, profitKing

Examples

Not run:
magimage(profitCubaCoreSersic(axrat=0.7, ang=30))

End(Not run)

profitDataBenchmark Setup ProFit Data Benchmarks

Description

This is a utility function to setup benchmarks for an object of class profit.data previously set up by
profitSetupData. This is called internally by profitSetupData. but may be called again in order to
re-do benchmarking.

Usage

profitDataBenchmark(modellist, calcregion, imgdim,
finesample=1L, psf=NULL, fitpsf=FALSE, omp_threads=NULL, openclenv=NULL,
openclenv_int=openclenv, openclenv_conv=openclenv,
nbenchmark=0L, nbenchint=nbenchmark, nbenchconv=nbenchmark,
benchintmethods=c("brute"), benchconvmethods = c("brute","fftw"),
benchprecisions="double", benchconvprecisions=benchprecisions,
benchintprecisions=benchprecisions,
benchopenclenvs = profitGetOpenCLEnvs(make.envs = TRUE),
printbenchmark=FALSE, printbenchint=printbenchmark, printbenchconv=printbenchmark)

Arguments

modellist List; required, the initial model list that describes the analytic model to be cre-
ated. Can contain an analytical PSF model as well. See Details.

calcregion Logical matrix; optional, specifying the parts of the image to be used for fitting.
If provided this matrix *must* be the same dimensions as ‘imgdim’. Can be
integer 1/0 or boolean TRUE/FALSE type logic.

30 profitDataBenchmark

imgdim Numeric; the dimensions of the image to create using the ‘modellist’. These
dimensions will be padded by the dimensions of the ‘psf’ (if any).

finesample An integer factor to determine how much finer of a grid the model image and
PSF should be evaluated on. Because the PSF is discretized, convolution in-
troduces additional discretization of the model, diminishing the accuracy of the
convolved model. If this parameter is set to an integer greater than one, the
model and PSF (but see ‘psffinesampled’) will be upsampled prior to convo-
lution, and then downsampled after convolution. The fine sampling factor must
be an integer to avoid non-integral re-binning artefacts when downsampling.
Large finesample factors will significantly increase convolution time and accu-
racy, while moderately increasing model generation time and accuracy, so it is
recommended to set ‘nbenchmark’ to at least a few when using this option.

psf Matrix; optional. An empirical point spread function (PSF) image matrix that
ProFit will use to convolve the image, as an alternative to defining an analytical
PSF in ‘modellist’. During any convolution ProFit will force the sum of the
pixels to equal 1 to ensure flux conservation during convolution of the model
image.

fitpsf Logical; will the profit.data object be used to fit a PSF at the same time as
extended sources? If so, the FFT convolution and benchmarking thereof will
not reuse the FFT of the PSF (see profitMakeConvolver).

omp_threads An integer indicating the number of threads to use to evaluate radial profiles. If
not given only one thread is used. ‘openclenv’ has precedence over this option,
so if both are given then OpenCL evaluation takes place.

openclenv If NULL (default) then the CPU is used to compute the profile. If ‘openclenv’
is a legal pointer to a graphics card of class externalptr then that card will
be used to make a GPU based model. This object can be obtained from the
profitGetOpenCLEnvs function with the make.envs option set to TRUE. If
‘openclenv’=’get’ then the OpenCL environment is obtained from running profitOpenCLEnv
with default values (which are usually reasonable).

openclenv_int The OpenCL environment to use for integrating profiles. Defaults to the value
specified in ‘openclenv’.

openclenv_conv The OpenCL environment to use for PSF convolution. Defaults to the value
specified in ‘openclenv’.

nbenchmark Integer; the number of times to benchmark the speed of the available convolution
and integration methods. The results of this benchmarking are saved, along with
the optimal method.

nbenchint Integer; the number of times to benchmark the speed of the available profile
integration methods. The results of this benchmarking are saved, along with the
optimal benchmarking method. Defaults to the value specified in ‘nbenchmark’.

nbenchconv Integer; the number of times to benchmark the speed of the available convo-
lution methods. The results of this benchmarking are saved, along with the
optimal method and any additional data required for efficient convolution (such
as the FFT of the PSF, if it is not variable). Defaults to the value specified in
‘nbenchmark’.

benchintmethods

List of strings specifying which profile integration methods to benchmark. See
profitBenchmark for details.

profitDataBenchmark 31

benchconvmethods

List of strings specifying which convolution methods to benchmark. See profitBenchmark
for details.

benchprecisions

List of floating point precisions to benchmark. Available options are "single"
and "double". Defaults to "double", which should be used unless you are certain
that single-precision roundoff errors are not important.

benchintprecisions

List of floating point precisions to benchmark profile integration with. Available
options are "single" and "double". Defaults to ‘benchprecisions’.

benchconvprecisions

List of floating point precisions to benchmark convolution with. Available op-
tions are "single" and "double". Defaults to ‘benchprecisions’.

benchopenclenvs

List of OpenCL environments to benchmark. Defaults to all available environ-
ments. The optimal environment will then be used for ‘openclenvint’ and
‘openclenvconv’, overriding any values set there.

printbenchmark Logical; flag to output a summary of benchmarking results. Default false.

printbenchint Logical; flag to output a summary of profile integration benchmarking results.
Defaults to ‘printbenchmark’.

printbenchconv Logical; flag to output a summary of convolution benchmarking results. De-
faults to ‘printbenchmark’.

Details

Besides being called by profitSetupData when benchmarking is requested, users may want to
call this function to re-do benchmarks for an existing profit.data object, either when loading a saved
profit.data from disk or simply to change any of the benchmark arguments.

Many of the arguments to this function are shared with profitSetupData for obvious reasons; the
documentation for these arguments are reproduced here for convenience.

Author(s)

Dan Taranu

See Also

profitSetupData, profitDataSetOptionsFromBenchmarks, profitBenchmark, profitMakeConvolver

Examples

Not run:
Load ProFit example data

There are 2 data source options: KiDS or SDSS (the galaxies are the same)

datasource='KiDS'

32 profitDataBenchmark

Now we can extract out the example files we have available for fitting by checking the
contents of the directory containing the example FITS files:

data('ExampleInit')
ExampleFiles=list.files(system.file("extdata",datasource,package="ProFit"))
ExampleIDs=unlist(strsplit(ExampleFiles[grep('fitim',ExampleFiles)],'fitim.fits'))
print(ExampleIDs)

There are 10 example galaxies included. Here we run example 1:

useID=ExampleIDs[1]

box = c(160,160)
image = magcutout(readFITS(system.file("extdata", paste(datasource,'/',useID,'fitim.fits',sep=''),
package="ProFit"))$imDat, box = box)$image
sigma = magcutout(readFITS(system.file("extdata", paste(datasource,'/',useID,'sigma.fits',sep=''),
package="ProFit"))$imDat, box = box)$image
segim = magcutout(readFITS(system.file("extdata", paste(datasource,'/',useID,'segim.fits',sep=''),
package="ProFit"))$imDat, box = box)$image
psf = magcutout(readFITS(system.file("extdata", paste(datasource,'/',useID,'psfim.fits',sep=''),
package="ProFit"))$imDat, box = c(21,21))$image

Very rough model (not meant to look too good yet):

useIDnum=as.integer(strsplit(useID,'G')[[1]][2])
useloc=which(ExampleInit$CATAID==useIDnum)

For our initial model we treat component 1 as the putitive bulge and componet 2 as
the putitive disk. We are going to attempt a fit where the disk is forced to have
nser=1 and the bulge has an axial ratio of 1.

modellist=list(
sersic=list(

xcen= c(dim(image)[1]/2, dim(image)[1]/2),
ycen= c(dim(image)[2]/2, dim(image)[2]/2),
mag= c(ExampleInit$sersic.mag1[useloc], ExampleInit$sersic.mag2[useloc]),
re= c(ExampleInit$sersic.re1[useloc], ExampleInit$sersic.re2[useloc])*

if(datasource=='KiDS'){1}else{0.2/0.339},
nser= c(ExampleInit$sersic.nser1[useloc], 1), #Disk is initially nser=1
ang= c(ExampleInit$sersic.ang2[useloc], ExampleInit$sersic.ang2[useloc]),
axrat= c(1, ExampleInit$sersic.axrat2[useloc]), #Bulge is initially axrat=1
box=c(0, 0)

)
)

The pure model (no PSF):
magimage(profitMakeModel(modellist,dim=dim(image)))

The original image:
magimage(image)

The convolved model (with PSF):
magimage(profitMakeModel(modellist,dim=dim(image),psf=psf))

profitDataBenchmark 33

What should we be fitting:

tofit=list(
sersic=list(
xcen= c(TRUE,NA), #We fit for xcen and tie the two together
ycen= c(TRUE,NA), #We fit for ycen and tie the two together
mag= c(TRUE,TRUE), #Fit for both
re= c(TRUE,TRUE), #Fit for both
nser= c(TRUE,FALSE), #Fit for bulge
ang= c(FALSE,TRUE), #Fit for disk
axrat= c(FALSE,TRUE), #Fit for disk
box= c(FALSE,FALSE) #Fit for neither

)
)

What parameters should be fitted in log space:

tolog=list(
sersic=list(

xcen= c(FALSE,FALSE),
ycen= c(FALSE,FALSE),
mag= c(FALSE,FALSE),
re= c(TRUE,TRUE), #re is best fit in log space
nser= c(TRUE,TRUE), #nser is best fit in log space
ang= c(FALSE,FALSE),
axrat= c(TRUE,TRUE), #axrat is best fit in log space
box= c(FALSE,FALSE)

)
)

Setup the profit.data

openclenvs = data.frame()

Data=profitSetupData(image=image, sigma=sigma, segim=segim, psf=psf,
modellist=modellist, tofit=tofit, tolog=tolog, magzero=0, algo.func='optim', verbose=TRUE,
nbenchmark = 1L, benchconvmethods = "brute",
benchintmethods = "brute", benchopenclenvs = openclenvs,
finesample=4L, printbenchmark = TRUE)

system.time(profitLikeModel(parm=Data$init, Data=Data))

benchmarks = profitDataBenchmark(modellist = Data$modellist, calcregion = Data$calcregion,
imgdim = dim(Data$image), finesample = Data$finesample, psf = Data$psf, fitpsf = Data$fitpsf,
nbenchmark = 1L, benchconvmethods = profitAvailableConvolvers(),
benchintmethods = profitAvailableIntegrators(), benchopenclenvs = openclenvs,
printbenchmark = TRUE)

Data = profitDataSetOptionsFromBenchmarks(Data, benchmarks)

system.time(profitLikeModel(parm=Data$init, Data=Data))

34 profitDataSetOptionsFromBenchmarks

End(Not run)

profitDataSetOptionsFromBenchmarks

Setup ProFit Data Options from Benchmarks

Description

This is a utility function to set integration and convolution options for a profit.data previously set up
by profitSetupData based on the results from a profit.benchmark generated by profitDataBenchmark.

Usage

profitDataSetOptionsFromBenchmarks(Data, benchmarks)

Arguments

Data List; required, a object (list) of class profit.data as generated by profitSetupData.

benchmarks List; required, a object (list) of class profit.data.benchmark as generated by
profitDataBenchmark.

Details

Besides being called by profitSetupData when benchmarking is requested, users may want to
call this function to re-do benchmarks for an existing profit.data object, either when loading a saved
profit.data from disk or simply to change any of the benchmark arguments. This function does not
perform benchmarking.

Value

List of class profit.data, with integration and convolution results set to the best-performing methods
from ‘benchmarks’; all other options are unchanged from the original ‘Data’.

Author(s)

Dan Taranu

See Also

profitSetupData, profitDataBenchmark, profitBenchmark

profitDataSetOptionsFromBenchmarks 35

Examples

Not run:
Load ProFit example data

There are 2 data source options: KiDS or SDSS (the galaxies are the same)

datasource='KiDS'

Now we can extract out the example files we have available for fitting by checking the
contents of the directory containing the example FITS files:

data('ExampleInit')
ExampleFiles=list.files(system.file("extdata",datasource,package="ProFit"))
ExampleIDs=unlist(strsplit(ExampleFiles[grep('fitim',ExampleFiles)],'fitim.fits'))
print(ExampleIDs)

There are 10 example galaxies included. Here we run example 1:

useID=ExampleIDs[1]

box = c(160,160)
image = magcutout(readFITS(system.file("extdata", paste(datasource,'/',useID,'fitim.fits',sep=''),
package="ProFit"))$imDat, box = box)$image
sigma = magcutout(readFITS(system.file("extdata", paste(datasource,'/',useID,'sigma.fits',sep=''),
package="ProFit"))$imDat, box = box)$image
segim = magcutout(readFITS(system.file("extdata", paste(datasource,'/',useID,'segim.fits',sep=''),
package="ProFit"))$imDat, box = box)$image
psf = magcutout(readFITS(system.file("extdata", paste(datasource,'/',useID,'psfim.fits',sep=''),
package="ProFit"))$imDat, box = c(21,21))$image

Very rough model (not meant to look too good yet):

useIDnum=as.integer(strsplit(useID,'G')[[1]][2])
useloc=which(ExampleInit$CATAID==useIDnum)

For our initial model we treat component 1 as the putitive bulge and componet 2 as
the putitive disk. We are going to attempt a fit where the disk is forced to have
nser=1 and the bulge has an axial ratio of 1.

modellist=list(
sersic=list(

xcen= c(dim(image)[1]/2, dim(image)[1]/2),
ycen= c(dim(image)[2]/2, dim(image)[2]/2),
mag= c(ExampleInit$sersic.mag1[useloc], ExampleInit$sersic.mag2[useloc]),
re= c(ExampleInit$sersic.re1[useloc], ExampleInit$sersic.re2[useloc])*

if(datasource=='KiDS'){1}else{0.2/0.339},
nser= c(ExampleInit$sersic.nser1[useloc], 1), #Disk is initially nser=1
ang= c(ExampleInit$sersic.ang2[useloc], ExampleInit$sersic.ang2[useloc]),
axrat= c(1, ExampleInit$sersic.axrat2[useloc]), #Bulge is initially axrat=1
box=c(0, 0)

)
)

36 profitDataSetOptionsFromBenchmarks

The pure model (no PSF):
magimage(profitMakeModel(modellist,dim=dim(image)))

The original image:
magimage(image)

The convolved model (with PSF):
magimage(profitMakeModel(modellist,dim=dim(image),psf=psf))

What should we be fitting:

tofit=list(
sersic=list(
xcen= c(TRUE,NA), #We fit for xcen and tie the two together
ycen= c(TRUE,NA), #We fit for ycen and tie the two together
mag= c(TRUE,TRUE), #Fit for both
re= c(TRUE,TRUE), #Fit for both
nser= c(TRUE,FALSE), #Fit for bulge
ang= c(FALSE,TRUE), #Fit for disk
axrat= c(FALSE,TRUE), #Fit for disk
box= c(FALSE,FALSE) #Fit for neither

)
)

What parameters should be fitted in log space:

tolog=list(
sersic=list(

xcen= c(FALSE,FALSE),
ycen= c(FALSE,FALSE),
mag= c(FALSE,FALSE),
re= c(TRUE,TRUE), #re is best fit in log space
nser= c(TRUE,TRUE), #nser is best fit in log space
ang= c(FALSE,FALSE),
axrat= c(TRUE,TRUE), #axrat is best fit in log space
box= c(FALSE,FALSE)

)
)

Setup the profit.data

openclenvs = data.frame()

Data=profitSetupData(image=image, sigma=sigma, segim=segim, psf=psf,
modellist=modellist, tofit=tofit, tolog=tolog, magzero=0, algo.func='optim', verbose=TRUE,
nbenchmark = 1L, benchconvmethods = "brute",
benchintmethods = "brute", benchopenclenvs = openclenvs,
finesample=4L, printbenchmark = TRUE)

system.time(profitLikeModel(parm=Data$init, Data=Data))

benchmarks = profitDataBenchmark(modellist = Data$modellist, calcregion = Data$calcregion,

profitDeprojectImageEllipse 37

imgdim = dim(Data$image), finesample = Data$finesample, psf = Data$psf, fitpsf = Data$fitpsf,
nbenchmark = 1L, benchconvmethods = profitAvailableConvolvers(),
benchintmethods = profitAvailableIntegrators(), benchopenclenvs = openclenvs,
printbenchmark = TRUE)

Data = profitDataSetOptionsFromBenchmarks(Data, benchmarks)

system.time(profitLikeModel(parm=Data$init, Data=Data))

End(Not run)

profitDeprojectImageEllipse

Deproject an image along an ellipse’s minor axis

Description

A utility function to deproject an image with a projected circular source such as a thin disk

Usage

profitDeprojectImageEllipse(image, xcen, ycen, axrat, ang, upsample=5L)

Arguments

image List or numeric; required. An image matrix or a list of image matrices, each
of which will be deprojected. Every image must have the same dimensions as
the first image, or have both dimensions be ‘upsample’ times larger (e.g. for a
finely sampled model).

xcen Numeric; required. The x-coordinate in pixels of the ellipse centre in the images.

ycen Numeric; required. The y-coordinate in pixels of the ellipse centre in the images.

axrat Numeric; required. The axis ratio of the ellipse.

ang Numeric; required. The position angle of the ellipse in degrees, following
profitMakeModel convention of up=0.

upsample Integer; optional. The factor by which to upsample each image. Must be posi-
tive.

Details

This function deprojects images, assuming that the object forms an ellipse in the image plane be-
cause it is a projection of a thin disk. Each provided image is oversampled and then resampled by
stretching by 1/axrat along the ellipse minor axis. The value in each oversampled subpixel is as-
signed to whichever new pixel the centre of the subpixel happens to fall in, so discreteness artefacts
will appear (especially for small values of ‘upsample’). It can be used on images, masks and/or
binary segmentation maps, and is useful for visual inspection of disk galaxy features like spiral
arms.

38 profitEllipse

Value

List; deprojected versions of all of the images provided in the original list (‘image’).

Author(s)

Dan Taranu

See Also

profitMakeModel

Examples

Not run:
disk = profitMakeModel(modellist=list(sersic=list(xcen=50,ycen=50,mag=15,re=5,nser=1,
axrat=0.5,ang=125,box=0)))
magimage(log10(disk$z), zlim=c(-15,-7.5),magmap=FALSE)

deproj = profitDeprojectImageEllipse(disk$z, xcen=50, ycen=50, axrat=0.5, ang=125,
upsample = 9L)
magimage(log10(deproj$img), zlim=c(-15,-7.5),magmap=FALSE)

End(Not run)

profitEllipse Measure Isophotal Flux for Pseudo-Ellipses

Description

In the world of galaxy fitting, projected 1D flux intensity (or surface brightness) plots are popular.
This function implements the low level functionality of deprojecting image pixels given a set of
geometrical parameters. In simple terms this means ellipses are expanded back up to circles. We
use the term pseudo-ellipse since we can also account for boxiness distortion (if desired).

Usage

profitEllipse(x, y, flux, xcen = 0, ycen = 0, ang = 0, axrat = 1, box = 0)

Arguments

x Either a vector of image pixel midpoints (given in the usual ProFit standard,
where pixel mid-points are half-integer), or an image matrix, which is then used
for ‘x’, ‘y’ and ‘flux’.

y Vector; image pixel midpoints (given in the usual ProFit standard, where pixel
mid-points are half-integer). Not required if an image matrix is being parsed to
‘x’.

flux Vector; image pixel fluxes. Not required if an image matrix is being parsed to
‘x’.

profitEllipse 39

xcen Scalar; x centre of the 2D Sersic profile (can be fractional pixel positions).

ycen Scalar; y centre of the 2D Sersic profile (can be fractional pixel positions).

ang Scalar; the orientation of the major axis of the Sersic profile in degrees. When
plotted as an R image the angle (theta) has the convention that 0= | (vertical),
45= \, 90= - (horizontal), 135= /, 180= | (vertical). Values outside the range 0
<= ang <= 180 are allowed, but these get recomputed as ang = ang.

axrat Scalar; axial ratio of the Sersic profile defined as minor-axis/major-axis, i.e. 1 is
a circle and 0 is a line.

box Scalar; the boxiness of the Sersic profile that traces contours of iso-flux, defined
such that r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When box=0 the iso-
flux contours will be normal ellipses, but modifications between -1<box<1 will
produce visually boxy distortions. Negative values have a pin-cushion effect,
whereas positive values have a barrel effect (the major and minor axes staying
fixed in all cases).

Details

This function mostly exists for usage by the higher level profitEllipsePlot function. However,
the outputs might well of interest if users want to create their own bespoke 1D plotting outputs.

Value

A two column matrix containing columns rad (the effective projected major axis radius for the pixel)
and flux (the un-corrected flux for this pixel).

Note

Projecting data back to 1D profiles is a knowingly imperfect process, but it can be useful when
exploring the data and for producing explanatory plots. In most use cases the data error and sys-
tematics will probably dominate the process, but be cautious in overly relying on these outputs- the
2D fit residuals from profitMakePlots contains more information. Where the 1D and 2D plots
appear to be in conflict re the quality of the fit, the latter should always take precedence.

Author(s)

Aaron Robotham

References

As noted above, the pixel flux is not corrected for distortion. This is rarely an issue, but for highly
elliptical galaxies where the gradient changes radically through the pixel along the minor versus
major axis the isophotal contour will be biased. In practice this bias will be the same as for the
model, so pixel to pixel comparisons are still fairly valid. If this level of inconsistency annoys you,
then you almost certainly should not be attempting to make deprojected 1D plots of PSF convolved
bulge-disk systems. This is because once a pure elliptical disk has been convolved with a PSF it is
not strictly possible to project this to circular annuli (i.e. the pseudo major-axis output we desire)
using elliptical isophotes. C’est la vie.

40 profitEllipse

By ProFit convention the bottom-left part of the bottom-left pixel when plotting the image matrix
is c(0,0) and the top-right part of the bottom-left pixel is c(1,1), i.e. the mid-point of pixels are half
integer values in x and y.

To confuse things a bit, when R plots an image of a matrix it is transposed and re-ordered vertically
to how it appears if you print the matrix directly to screen, i.e. compare print(matrix(1:4,2,2))
and image(matrix(1:4,2,2)). The lowest value (1) is top-left when printed but bottom-left when
displayed using image (the red pixel). Both are "correct": the issue is whether you consider the first
element of a matrix to be the Cartesian x position (movement in x) or a row element (movement in
y). Matrices in maths are always written top-left first where the first argument refers to row number,
but images by convention are accessed in a Cartesian sense. Hence [3,4] in a maths matrix means 3
down and 4 right from the top-left, but 3 right and 4 up from the bottom-left in an image.

See Also

profitEllipsePlot, profitRemakeModellist

Examples

#The rough best fit model for G266033 (KiDS)

model=list(
sersic=list(
xcen = c(65.60642, 65.60642),
ycen = c(78.6091, 78.6091),
mag = c(18.49816, 16.97754),
re = c(1.69112, 14.75940),
nser = c(1.053961, 1),
ang = c(39.53360, 35.02479),
axrat = c(1, 0.5990869),
box = c(0,0)

)
)

data('ExampleInit')
image = readFITS(system.file("extdata", 'KiDS/G266033fitim.fits',package="ProFit"))$imDat

temp=profitEllipse(x=image, xcen=model$sersic$xcen[2], ycen=model$sersic$ycen[2], ang=
model$sersic$ang[2], axrat=model$sersic$axrat[2], box=model$sersic$box[2])

#A rough deprojected ellipse plot:

magplot(temp, type='l', log='y', xlim=c(0,50), ylim=c(1e-12,2e-9), xlab='Pixels',
ylab='Pixel Flux')

#Notice in the example that the core looks noisier, this is because we are deprojecting
#the bulge using the disk parameters. We can do the same using the bulge:

temp2=profitEllipse(x=image, xcen=model$sersic$xcen[1], ycen=model$sersic$ycen[1], ang=
model$sersic$ang[1], axrat=model$sersic$axrat[1], box=model$sersic$box[1])

profitEllipsePlot 41

magplot(temp2, type='l', log='y', xlim=c(0,50), ylim=c(1e-12,2e-9), xlab='Pixels',
ylab='Pixel Flux')

#The inner region (<5 pixels) is better deprojected using the bulge parameters.

#There is no simple way to meaningfully deproject such systems, sincew there will always
#be regions that are an even mix of bulge and disk flux, and these require different
#deprojection parameters. This is even true with IRAF Ellipse style ring fitting. The
#collapsing of data in this manner is an inherently lossy process!

profitEllipsePlot Plot Isophotal Surface Brightness for Pseudo-Ellipses

Description

In the world of galaxy fitting, projected 1D flux intensity (or surface brightness) plots are popular.
This function implements the high level functionality of deprojecting image pixels given a set of
geometrical parameters and making a 1D surface brightness plot. In simple terms this means ellipses
are expanded back up to circles. We use the term pseudo-ellipse since we can also account for
boxiness distortion (if desired).

Usage

profitEllipsePlot(Data, modellist, bulgeloc = 1, diskloc = 2, pixscale = 1, FWHM = 1,
SBlim = 26, df = 100, raw = FALSE)

Arguments

Data Data of class profit.data. This must be generated by the profitSetupData func-
tion.

modellist Model list (see profitMakeModel for details). To aid interpreting the results
of fits the user can access profitRemakeModellist, where an initial model is
adjusted to include new parameter values and is remade into a new model.

bulgeloc Location ID of bulge component in the Sersic list provided in ‘modellist’.

diskloc Location ID of disk component in the Sersic list provided in ‘modellist’.

pixscale The pixel scale, where pixscale=asec/pix (e.g. 0.4 for SDSS). If set to 1, then
the plot is output in terms of pixels, otherwise it is rescaled to be in arcseconds.

FWHM The full width half max of the PSF in units of arc seconds. A vertical line is
drawn at half this number (since we are plotting radius). The fits inside of the
region is inherently hard because it is well within the PSF convolution kernel.

SBlim 5 sigma surface brightness limit of the data. The data will plot to ‘SBlim’+1.
This should be provided in terms of how the ‘pixscale’ is defined, e.g. it should
either be per asec^2 (when ‘pixscale’!=1) or per pix^2 (when ‘pixscale’=1).

df Degrees of freedom to use for spline fitting. Lower if the lines look too wavy.

42 profitEllipsePlot

raw Logical; if FALSE (the default) then a smooth spline is used to represent the
data and model 1D profiles. This smooths out deprojection noise caused by the
PSF often being non-smooth. If TRUE then the raw pixel surface brightness
values are shown. These will show much more scatter, but the trends ought to
be very similar. If the raw and smooth 1D plots differ significantly then the ‘df’
flag probably needs to be changed to improve the smoothing. Notice that when
the raw pixel values are plotted the shaded error polygon is very hard to see (it is
usually subdominant compared to the pixel scatter created during deprojection
that has both the Normal pixel error and the PSF induced deprojection error).

Details

A word of warning: 1D surface brightness plots hide many sins, and interpreting is dark and non-
rigorous art. The manner of the lossy information compression the data and model undergo is such
that you should not draw strong conclusions about features in the residuals.

The pixel flux is not corrected for distortion. This is rarely an issue, but for highly elliptical galax-
ies where the gradient changes radically through the pixel along the minor versus major axis the
isophotal contour will be biased. In practice this bias will be the same as for the model, so pixel to
pixel comparisons are still fairly valid. If this level of inconsistency annoys you, then you almost
certainly should not be attempting to make deprojected 1D plots of PSF convolved bulge-disk sys-
tems. This is because once a pure elliptical disk has been convolved with a PSF it is not strictly
possible to project this to circular annuli (i.e. the pseudo major-axis output we desire) using ellipti-
cal isophotes. C’est la vie.

Value

Run for the side effect of making a nice surface brightness and surface brightness residual plot.
Most of the plot features are automatic.

For reference, a scaled version of the PSF profile is plotted in purple.

Vertical dashed lines are drawn at the HWHM of the PSF and at the point where the model profile
crosses the ‘SBlim’ value provided. Also, a horizontal dashed line is drawn at the ‘SBlim’ value
provided.

Note

Projecting data back to 1D profiles is a knowingly imperfect process, but it can be useful when
exploring the data and for producing explanatory plots. In most use cases the data error and sys-
tematics will probably dominate the process, but be cautious in overly relying on these outputs- the
2D fit residuals from profitMakePlots contains more information. Where the 1D and 2D plots
appear to be in conflict re the quality of the fit, the latter should always take precedence.

Author(s)

Aaron Robotham

See Also

profitEllipse, profitRemakeModellist

profitEllipsePlot 43

Examples

Here we use galaxy G266033:

image = readFITS(system.file("extdata", 'KiDS/G266033fitim.fits',package="ProFit"))$imDat
sigma = readFITS(system.file("extdata", 'KiDS/G266033sigma.fits',package="ProFit"))$imDat
segim = readFITS(system.file("extdata", 'KiDS/G266033segim.fits',package="ProFit"))$imDat
psf = readFITS(system.file("extdata", 'KiDS/G266033psfim.fits',package="ProFit"))$imDat

#The rough best-fit model for G266033 (KiDS)

modellist=list(
sersic=list(

xcen = c(65.60642, 65.60642),
ycen = c(78.6091, 78.6091),
mag = c(18.49816, 16.97754),
re = c(1.69112, 14.75940),
nser = c(1.053961, 1),
ang = c(39.53360, 35.02479),
axrat = c(1, 0.5990869),
box = c(0,0)

)
)

What should we be fitting:

tofit=list(
sersic=list(

xcen= c(TRUE,NA), #We fit for xcen and tie the two togther
ycen= c(TRUE,NA), #We fit for ycen and tie the two togther
mag= c(TRUE,TRUE), #Fit for both
re= c(TRUE,TRUE), #Fit for both
nser= c(TRUE,FALSE), #Fit for bulge
ang= c(FALSE,TRUE), #Fit for disk
axrat= c(FALSE,TRUE), #Fit for disk
box= c(FALSE,FALSE) #Fit for neither

)
)

What parameters should be fitted in log space:

tolog=list(
sersic=list(

xcen= c(FALSE,FALSE),
ycen= c(FALSE,FALSE),
mag= c(FALSE,FALSE),
re= c(TRUE,TRUE), #re is best fit in log space
nser= c(TRUE,TRUE), #nser is best fit in log space
ang= c(FALSE,FALSE),
axrat= c(TRUE,TRUE), #axrat is best fit in log space
box= c(FALSE,FALSE)

)
)

44 profitEllipsePlot

The priors. If the parameters are to be sampled in log space (above) then the priors
will refer to dex not linear standard deviations. Priors should be specified in their
unlogged state- the logging is done internally.

sigmas=c(2,2,2,2,5,5,1,1,1,1,30,30,0.3,0.3,0.3,0.3)

priors=list(
sersic=list(
xcen=list(function(x){dnorm(x,0,sigmas[1],log=TRUE)},function(x){dnorm(x,0,sigmas[2],
log=TRUE)}), # should have tight constraints on x and y

ycen=list(function(x){dnorm(x,0,sigmas[3],log=TRUE)},function(x){dnorm(x,0,sigmas[4],
log=TRUE)}), # should have tight constraints on x and y
mag=list(function(x){dnorm(x,0,sigmas[5],log=TRUE)},function(x){dnorm(x,0,sigmas[6],
log=TRUE)}), # 5 mag SD
re=list(function(x){dnorm(x,0,sigmas[7],log=TRUE)},function(x){dnorm(x,0,sigmas[8],
log=TRUE)}), # i.e. 1 dex in re is the SD

nser=list(function(x){dnorm(x,0,sigmas[9],log=TRUE)},function(x){dnorm(x,0,sigmas[10],
log=TRUE)}), # i.e. 1 dex in nser is the SD

ang=list(function(x){dnorm(x,0,sigmas[11],log=TRUE)},function(x){dnorm(x,0,sigmas[12],
log=TRUE)}), # very broad 30 deg ang SD

axrat=list(function(x){dnorm(x,0,sigmas[13],log=TRUE)},function(x){dnorm(x,0,sigmas[14],
log=TRUE)}), # i.e. 1 dex in axrat is the SD

box=list(function(x){dnorm(x,0,sigmas[15],log=TRUE)},function(x){dnorm(x,0,sigmas[16],
log=TRUE)})

)
)

#the hard intervals should also be specified in log space if relevant:

lowers=c(0,0,0,0,10,10,0,0,-1,-1,-180,-180,-1,-1,-1,-1)
uppers=c(1e3,1e3,1e3,1e3,30,30,2,2,1.3,1.3,360,360,0,0,1,1)

intervals=list(
sersic=list(

xcen=list(function(x){interval(x,lowers[1],uppers[1],reflect=FALSE)},
function(x){interval(x,lowers[2],uppers[2],reflect=FALSE)}),
ycen=list(function(x){interval(x,lowers[3],uppers[3],reflect=FALSE)},
function(x){interval(x,lowers[4],uppers[4],reflect=FALSE)}),
mag=list(function(x){interval(x,lowers[5],uppers[5],reflect=FALSE)},
function(x){interval(x,lowers[6],uppers[6],reflect=FALSE)}),
re=list(function(x){interval(x,lowers[7],uppers[7],reflect=FALSE)},
function(x){interval(x,lowers[8],uppers[8],reflect=FALSE)}),
nser=list(function(x){interval(x,lowers[9],uppers[9],reflect=FALSE)},
function(x){interval(x,lowers[10],uppers[10],reflect=FALSE)}),
ang=list(function(x){interval(x,lowers[11],uppers[11],reflect=FALSE)},
function(x){interval(x,lowers[12],uppers[12],reflect=FALSE)}),
axrat=list(function(x){interval(x,lowers[13],uppers[13],reflect=FALSE)},
function(x){interval(x,lowers[14],uppers[14],reflect=FALSE)}),
box=list(function(x){interval(x,lowers[15],uppers[15],reflect=FALSE)},
function(x){interval(x,lowers[16],uppers[16],reflect=FALSE)})

)
)

profitFerrer 45

Setup the data structure we need for optimisation:

Data=profitSetupData(image=image, sigma=sigma, segim=segim, psf=psf,
modellist=modellist, tofit=tofit, tolog=tolog, priors=priors, intervals=intervals,
magzero=0, algo.func='optim', verbose=TRUE)

modelimage=profitMakeModel(Data$mode,dim=Data$imagedim)
profitMakePlots(Data$image, modelimage$z, Data$region, Data$sigma)

#The pixel scale of VST/KiDS is 0.2 asec/pix and the SBlim=26 mag/asec^2 in r-band.

profitEllipsePlot(Data, Data$modellist, pixscale=0.2, SBlim=26)

#So to get things into pixel space and pixel surface brightness:

profitEllipsePlot(Data, Data$modellist, pixscale=1, SBlim=26-5*log10(0.2))

profitFerrer Ferrer Profile Specific Functions

Description

This function computes the exact 2D pixel integrals for a given Ferrer model image. This is very
slow compared to profitMakeModel, but it is useful for checking model creation tuning (i.e. the
degree to which speed can be increased without overly harming accuracy). Tests with this function
were used to tune profitMakeModel. profitRadialFerrer computes the 1D radial flux intensity
of the Ferrer profile along the major axis of the profile.

Usage

profitCubaFerrer(xcen = dim[1]/2, ycen = dim[2]/2, mag = 15, rout = 3, a = 1, b = 1,
ang = 0, axrat = 1, box = 0, dim = c(25, 25), rel.tol = 0.001, abs.tol = 1e-10,
plot = FALSE, ...)
profitRadialFerrer(r = 1, mag = 15, rout = 3, a = 1, b = 1, ang = 0, axrat = 1, box = 0)

Arguments

xcen Scalar; x centre of the 2D Sersic profile (can be fractional pixel positions).

ycen Scalar; y centre of the 2D Sersic profile (can be fractional pixel positions).

r Vector; the radius along the major axis at which to evaluate the flux intensity.

mag Scalar; total magnitude of the 2D Ferrer profile. Converted to flux using flux=10^(-
0.4*(mag-magzero)).

rout Scalar; the outer limit of the Ferrer profile. Beyond this radius the profile is
evaluated as zero.

a Scalar; the global profile power-law slope. 0 would mean a flat top, and +ve
increases in intensity towards the centre.

46 profitFerrer

b Scalar; the strength of the profile truncation as it approaches ‘rout’. Must be
less than 2. ‘b’=2 is a soft truncation, and ‘b’<2 (including -ve) is increasingly
sharp.

ang Scalar; the orientation of the major axis of the Sersic profile in degrees. When
plotted as an R image the angle (theta) has the convention that 0= | (vertical),
45= \, 90= - (horizontal), 135= /, 180= | (vertical). Values outside the range 0
<= ang <= 180 are allowed, but these get recomputed as ang = ang.

axrat Scalar; axial ratio of the Sersic profile defined as minor-axis/major-axis, i.e. 1 is
a circle and 0 is a line.

box Scalar; the boxiness of the Sersic profile that traces contours of iso-flux, defined
such that r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When box=0 the iso-
flux contours will be normal ellipses, but modifications between -1<box<1 will
produce visually boxy distortions. Negative values have a pin-cushion effect,
whereas positive values have a barrel effect (the major and minor axes staying
fixed in all cases).

dim Vector; the dimensions of the image to be generated. Typically this should be
c(Nx,Ny). If length 1 then the value will be replicated for both dimensions.

rel.tol Scalar; the requested relative accuracy. Default, 0.001.

abs.tol Scalar; the requested absolute accuracy. The algorithm stops when either the
relative or the absolute accuracies are met. Default, near 1e-10.

plot Logical; should a magimage plot of the output be generated?

... Further arguments to be passed to magimage. Only relevant is ‘plot’=TRUE.

Details

This function uses the Cuba package to make an accurate (but expensive) cubature integral. This
function was written to test the accuracy of Ferrer models generated by profitMakeModel.

By ProFit convention the bottom-left part of the bottom-left pixel when plotting the image matrix
is c(0,0) and the top-right part of the bottom-left pixel is c(1,1), i.e. the mid-point of pixels are half
integer values in x and y.

To confuse things a bit, when R plots an image of a matrix it is transposed and re-ordered vertically
to how it appears if you print the matrix directly to screen, i.e. compare print(matrix(1:4,2,2))
and image(matrix(1:4,2,2)). The lowest value (1) is top-left when printed but bottom-left when
displayed using image (the red pixel). Both are "correct": the issue is whether you consider the first
element of a matrix to be the Cartesian x position (movement in x) or a row element (movement in
y). Matrices in maths are always written top-left first where the first argument refers to row number,
but images by convention are accessed in a Cartesian sense. Hence [3,4] in a maths matrix means 3
down and 4 right from the top-left, but 3 right and 4 up from the bottom-left in an image.

Value

profitCubaFerrer: Matrix; contains the flux values of the specified model image. Dimensions
‘dim’.

profitRadialFerrer: Vector; same length as input ‘r’, specifying the flux intensity of the profile
along the major axis.

profitFlux2Mag 47

Author(s)

Aaron Robotham

References

Laurikainen E., Salo H., & Buta R., 2005, 362, 1319

See Also

profitMakeModel, profitSersic, profitMoffat, profitCoreSersic, profitKing

Examples

Not run:
magimage(profitCubaFerrer(axrat=0.7, ang=30))

End(Not run)

profitFlux2Mag Convert between fluxes and magnitudes.

Description

Simple functions to concert between magnitudes and flux given a certain magnitude zero-point.

Usage

profitFlux2Mag(flux = 1, magzero = 0)
profitMag2Flux(mag = 0, magzero = 0)
profitFlux2SB(flux = 1, magzero = 0, pixscale = 1)
profitSB2Flux(SB = 0, magzero = 0, pixscale = 1)

Arguments

flux Numeric scalar/vector; flux in ADUs given the ‘magzero’.

mag Numeric scalar/vector; magnitude given the ‘magzero’.

magzero Numeric scalar/vector; magnitude zero point. What this implies depends on the
magnitude system being used (e.g. AB or Vega).

SB Numeric scalar/vector; surface brightness in mag/asec^2.

pixscale Numeric scalar/vector; the pixel scale, where pixscale=asec/pix (e.g. 0.4 for
SDSS). If set to 1, then the output is in terms of pixels, otherwise it is in arcsec-
onds.

Details

These functions are here to prevent silly mistakes, but the conversion is almost trivial.

48 profitGetOpenCLEnvs

Value

profitFlux2Mag Returns the magnitude, where ‘mag’ = -2.5 * log10(‘flux’) + ‘magzero’)

profitMag2Flux Returns the flux, where ‘flux’ = 10^(-0.4 * (‘mag’ - ‘magzero’))

HERE!!!

Author(s)

Aaron Robotham

Examples

profitFlux2Mag(1e5, 30)
profitMag2Flux(17.5, 30)

profitGetOpenCLEnvs Get available OpenCL environments

Description

This function returns a data.frame with information on available OpenCL environments, which
can be used to integrate profiles and/or convolve images with CPUs and GPUs and passed on to
profitBenchmark.

Usage

profitGetOpenCLEnvs(name = "opencl", make.envs = FALSE)

Arguments

name String; the name to give all of the environments. The name can be passed as the
method to functions like profitMakeConvolver.

make.envs Logical; whether to actually initialize all of the environments or simply list them.

Value

The output is a data.frame with information on every device for each available environment.

Note, if the sub-list returned by profitOpenCLEnvInfo has NULL devices then that openCL device
will be skipped when compiling this data.frame.

Author(s)

Dan Taranu

See Also

profitBenchmark, profitMakeConvolver, profitOpenCLEnv

profitHasOpen 49

Examples

envs = profitGetOpenCLEnvs(make.envs=FALSE)
print(envs)
str(envs)

profitHasOpen Check for presence of OpenMP, OpenCL and FFTW

Description

Simple utilities that check whether package has compile-time OpenMP, OpenCL or FFTW support.

Usage

profitHasOpenMP()
profitHasOpenCL()
profitHasFFTW()

Value

Logical; states whether package has been installed with OpenMP, OpenCL or FFTW support, re-
spectively.

Author(s)

Rodrigo Tobar & Aaron Robotham

See Also

profitOpenCLEnv, profitOpenCLEnvInfo

Examples

profitHasOpenMP()
profitHasOpenCL()
profitHasFFTW()

50 profitInterp2d

profitInterp2d 2D image interpolation

Description

A low level routine to interpolate a 2D image matrix at an arbitrary x/y pixel location. This function
is unlikely to be used by the user, but it used internally to ensure that point sources defined by
empirical point spread functions (PSFs) are accurately generated on an image.

Usage

profitInterp2d(x, y, image)

Arguments

x The x position at which to make the interpolation with respect to the x centre of
‘image’.

y The x position at which to make the interpolation with respect to the x centre of
‘image’.

image The image matrix to be used for the interpolation.

Details

In practice this is a low level routine unlikely to be used by the user. profitMakePointSource
should be used to generate point sources and PSFs.

For this function (and really, it is for user ease when interpolating a PSF) [0,0] is always the R
image centre of the input ‘image’. This means it would be at the usual [1.5,2] position of a 3x4
image matrix.

Value

Matrix; a three column matrix where column 1 is the requested x interpolation locations, column 2
is the requested y interpolation locations and column 3 is the interpolated values.

Author(s)

Aaron Robotham

See Also

profitConvolvePSF, profitMakePointSource

profitKing 51

Examples

PSFeven=profitMakePointSource(image = matrix(0,24,24))
magimage(PSFeven)
xrange=floor(-dim(PSFeven)[1]/2):ceiling(dim(PSFeven)[1]/2)
yrange=floor(-dim(PSFeven)[2]/2):ceiling(dim(PSFeven)[2]/2)
regrid=expand.grid(xrange,yrange)
PSFodd=matrix(profitInterp2d(x=regrid[,1], y=regrid[,2], image=PSFeven)[,3],
length(xrange),length(yrange))
magimage(PSFodd)

profitKing King Profile Specific Functions

Description

This function computes the exact 2D pixel integrals for a given King model image. This is very
slow compared to profitMakeModel, but it is useful for checking model creation tuning (i.e. the
degree to which speed can be increased without overly harming accuracy). Tests with this function
were used to tune profitMakeModel. profitRadialKing computes the 1D radial flux intensity of
the King profile along the major axis of the profile.

Usage

profitCubaKing(xcen = dim[1]/2, ycen = dim[2]/2, mag = 15, rc = 1, rt = 3, a = 2,
ang = 0, axrat = 1, box = 0, dim = c(25, 25), rel.tol = 0.001, abs.tol = 1e-10,
plot = FALSE, ...)
profitRadialKing(r=1, mag=15, rc=1, rt=3, a=2, ang=0, axrat=1, box=0)

Arguments

xcen Scalar; x centre of the 2D Sersic profile (can be fractional pixel positions).

ycen Scalar; y centre of the 2D Sersic profile (can be fractional pixel positions).

r Vector; the radius along the major axis at which to evaluate the flux intensity.

mag Scalar; total magnitude of the 2D King profile. Converted to flux using flux=10^(-
0.4*(mag-magzero)).

rc Scalar; the core radius of the King profile.

rt Scalar; the truncation radius of the King profile. Beyond this radius the profile
is evaluated as zero.

a Scalar, the power-law of the King profile.

ang Scalar; the orientation of the major axis of the Sersic profile in degrees. When
plotted as an R image the angle (theta) has the convention that 0= | (vertical),
45= \, 90= - (horizontal), 135= /, 180= | (vertical). Values outside the range 0
<= ang <= 180 are allowed, but these get recomputed as ang = ang.

axrat Scalar; axial ratio of the Sersic profile defined as minor-axis/major-axis, i.e. 1 is
a circle and 0 is a line.

52 profitKing

box Scalar; the boxiness of the Sersic profile that traces contours of iso-flux, defined
such that r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When box=0 the iso-
flux contours will be normal ellipses, but modifications between -1<box<1 will
produce visually boxy distortions. Negative values have a pin-cushion effect,
whereas positive values have a barrel effect (the major and minor axes staying
fixed in all cases).

dim Vector; the dimensions of the image to be generated. Typically this should be
c(Nx,Ny). If length 1 then the value will be replicated for both dimensions.

rel.tol Scalar; the requested relative accuracy. Default, 0.001.

abs.tol Scalar; the requested absolute accuracy. The algorithm stops when either the
relative or the absolute accuracies are met. Default, near 1e-10.

plot Logical; should a magimage plot of the output be generated?

... Further arguments to be passed to magimage. Only relevant is ‘plot’=TRUE.

Details

This function uses the Cuba package to make an accurate (but expensive) cubature integral. This
function was written to test the accuracy of Ferrer models generated by profitMakeModel.

By ProFit convention the bottom-left part of the bottom-left pixel when plotting the image matrix
is c(0,0) and the top-right part of the bottom-left pixel is c(1,1), i.e. the mid-point of pixels are half
integer values in x and y.

To confuse things a bit, when R plots an image of a matrix it is transposed and re-ordered vertically
to how it appears if you print the matrix directly to screen, i.e. compare print(matrix(1:4,2,2))
and image(matrix(1:4,2,2)). The lowest value (1) is top-left when printed but bottom-left when
displayed using image (the red pixel). Both are "correct": the issue is whether you consider the first
element of a matrix to be the Cartesian x position (movement in x) or a row element (movement in
y). Matrices in maths are always written top-left first where the first argument refers to row number,
but images by convention are accessed in a Cartesian sense. Hence [3,4] in a maths matrix means 3
down and 4 right from the top-left, but 3 right and 4 up from the bottom-left in an image.

Value

profitCubaKing: Matrix; contains the flux values of the specified model image. Dimensions ‘dim’.

profitRadialKing: Vector; same length as input ‘r’, specifying the flux intensity of the profile
along the major axis.

Author(s)

Aaron Robotham

References

King I., AJ, 1962, 71, 64

See Also

profitMakeModel, profitCubaSersic, profitCubaMoffat, profitCubaCoreSersic, profitCubaFerrer

profitLikeModel 53

Examples

Not run:
magimage(profitCubaKing(axrat=0.7, ang=30))

End(Not run)

profitLikeModel Calculate the log likelihood of a model given the input data

Description

This is the work-horse log-likelihood that we can use to assess the current fit. This function becomes
the input for generic R fitting codes like optim (or any that user wants to use).

Usage

profitLikeModel(parm, Data, makeplots = FALSE,
whichcomponents=list(sersic="all",moffat="all",ferrer="all",pointsource="all"),
rough = FALSE, cmap = rev(colorRampPalette(brewer.pal(9,"RdYlBu"))(100)),
errcmap = cmap, plotchisq = FALSE, maxsigma = 5,
model=NULL, image=Data$image, sigma=Data$sigma, region=Data$region,
like.func=Data$like.func, algo.func=Data$algo.func, verbose=Data$verbose)

Arguments

parm A vector of values for the parameters being fit. These must be in the expected
order for the provided model. See profitSetupData for details.

Data Data of class profit.data. This must be generated by the profitSetupData func-
tion.

makeplots Logical; should an image be made showing the Data, model, and residuals; see
profitMakePlots for details.

whichcomponents

A list specifying which component of each profile type should be used to create
the model image. This is useful if you want to visualise the appearance of e.g.
Sersic components 1 and 2 separately. The default entry list=(profilename1="all",...)
will show the total model with all components added. If a given profile has no
entry in the list, the default is "all", i.e. one must explicitly exclude components
rather than including them, and an empty list will exclude nothing; the default
value just lists available profile names explicitly.

rough Logical; should an approximate model image be created. If TRUE only one
evaluation of the Sersic model is made at the centre of each pixel. If FALSE
then accurate upsampling is used to create more precise pixel values. It is often
useful to use rough=TRUE when you are a long way from a viable solution
and you are searching for a reasonable global minimum. Once near the global
minimum then rough should be set to FALSE and more precise evaluations of
the fit should be made. Rough fits are often pretty good and similar to the much
more expensive accurate fits, except for very steep profiles.

54 profitLikeModel

cmap The colour map to use for images if ‘makeplots’ is TRUE; see profitMakePlots
for details.

errcmap The colour map to use for chi-square residual images if ‘makeplots’ is TRUE;
see profitMakePlots for details.

plotchisq Logical flag to determine if the function should plot a map and a histogram of
chi squared = (((image-‘model’)/‘error’)[/‘region’])^2.

maxsigma The maximum range of sigma deviations displayed. Only relevant if ‘makeplots’=TRUE.

model Matrix, optional; a model image. This will compute the likelihood for the sup-
plied model image instead of generating a model from ‘parm’ and ‘Data’, al-
though the prior (if any) will still be computed using ‘parm’.

image Matrix; the image data to compare to. Defaults to ‘Data’$image but can be
overridden.

sigma Matrix; the error map. Defaults to ‘Data’$sigma but can be overridden.

region Matrix; a map of good pixels to evaluate likelihoods for. Defaults to ‘Data’$region
but can be overridden.

like.func Characters; the name of the likelihood function. Defaults to ‘Data’$like.func
but can be overridden.

algo.func Characters; the name of the optimization function used (if any). Defaults to
‘Data’$algo.func but can be overridden. This changes the return values of the
function.

verbose Logical; verbosity setting for output from other ProFit functions. Defaults to
‘Data’$verbose but can be overridden.

Details

While this function is designed to produce the required outputs for different optimisation schemes
(optim, LaplaceApproximation, LaplacesDemon and CMA have been used successfully) the side
effect of producing the model image is quite useful for prototyping.

Value

Option dependent output, either a Scalar or a List.

profitLikeModel uses the value of Data$algo.func to determine the type of output generated (see
profitSetupData for details). If this flag is set to either "optim" or "CMA" then it will output the
log-likelihood as a single scalar value. If set to "LA" or "LD" then a more complex list structure
as expected by LaplaceApproximation and LaplacesDemon (see details for these functions). In
practice the simple log-likelihood scalar output as given by setting to "optim" or "CMA" is useful
for a large number of maximisation algorithms available within R. If an empty string is given, the
function will simply return the model and PSF image.

Author(s)

Aaron Robotham & Dan Taranu

See Also

profitSetupData, profitMakePlots, LaplaceApproximation, LaplacesDemon

profitLikeModel 55

Examples

Load ProFit example data

There are 2 data source options: KiDS or SDSS (the galaxies are the same)

datasource='KiDS'

Now we can extract out the example files we have available for fitting by checking the
contents of the directory containing the example FITS files:

data('ExampleInit')
ExampleFiles=list.files(system.file("extdata",datasource,package="ProFit"))
ExampleIDs=unlist(strsplit(ExampleFiles[grep('fitim',ExampleFiles)],'fitim.fits'))
print(ExampleIDs)

There are 10 example galaxies included. Here we run example 1:

useID=ExampleIDs[1]

image = readFITS(system.file("extdata", paste(datasource,'/',useID,'fitim.fits',sep=''),
package="ProFit"))$imDat
sigma = readFITS(system.file("extdata", paste(datasource,'/',useID,'sigma.fits',sep=''),
package="ProFit"))$imDat
segim = readFITS(system.file("extdata", paste(datasource,'/',useID,'segim.fits',sep=''),
package="ProFit"))$imDat
psf = readFITS(system.file("extdata", paste(datasource,'/',useID,'psfim.fits',sep=''),
package="ProFit"))$imDat

Very rough model (not meant to look too good yet):

useIDnum=as.integer(strsplit(useID,'G')[[1]][2])
useloc=which(ExampleInit$CATAID==useIDnum)

For our initial model we treat component 1 as the putitive bulge and componet 2 as
the putitive disk. We are going to attempt a fit where the disk is forced to have
nser=1 and the bulge has an axial ratio of 1.

modellist=list(
sersic=list(
xcen= c(dim(image)[1]/2, dim(image)[1]/2),
ycen= c(dim(image)[2]/2, dim(image)[2]/2),
mag= c(ExampleInit$sersic.mag1[useloc], ExampleInit$sersic.mag2[useloc]),
re= c(ExampleInit$sersic.re1[useloc], ExampleInit$sersic.re2[useloc])*

if(datasource=='KiDS'){1}else{0.2/0.339},
nser= c(ExampleInit$sersic.nser1[useloc], 1), #Disk is initially nser=1
ang= c(ExampleInit$sersic.ang2[useloc], ExampleInit$sersic.ang2[useloc]),
axrat= c(1, ExampleInit$sersic.axrat2[useloc]), #Bulge is initially axrat=1
box=c(0, 0)

)
)

The pure model (no PSF):

56 profitMag2Mu

magimage(profitMakeModel(modellist,dim=dim(image)))

The original image:
magimage(image)

The convolved model (with PSF):
magimage(profitMakeModel(modellist,dim=dim(image),psf=psf))

What should we be fitting:

tofit=list(
sersic=list(
xcen= c(TRUE,NA), #We fit for xcen and tie the two togther
ycen= c(TRUE,NA), #We fit for ycen and tie the two togther
mag= c(TRUE,TRUE), #Fit for both
re= c(TRUE,TRUE), #Fit for both
nser= c(TRUE,FALSE), #Fit for bulge
ang= c(FALSE,TRUE), #Fit for disk
axrat= c(FALSE,TRUE), #Fit for disk
box= c(FALSE,FALSE) #Fit for neither

)
)

What parameters should be fitted in log space:

tolog=list(
sersic=list(

xcen= c(FALSE,FALSE),
ycen= c(FALSE,FALSE),
mag= c(FALSE,FALSE),
re= c(TRUE,TRUE), #re is best fit in log space
nser= c(TRUE,TRUE), #nser is best fit in log space
ang= c(FALSE,FALSE),
axrat= c(TRUE,TRUE), #axrat is best fit in log space
box= c(FALSE,FALSE)

)
)

Setup the minimal data structure we need for likelihood.

Data=profitSetupData(image=image, sigma=sigma, segim=segim, psf=psf,
modellist=modellist, tofit=tofit, tolog=tolog, magzero=0, algo.func='optim', verbose=TRUE)

Finally, calculate the likelihood and make a plot:

profitLikeModel(parm=Data$init, Data=Data, makeplots=TRUE)

profitMag2Mu Magnitude to Surface Brightness Conversions

profitMag2Mu 57

Description

Functions to convert total magnitudes to surface brightness and vica-versa. These are provided to
allow models to be either specified by total magnitude or mean surface brightness within Re. The
latter is a useful way of specifying a disk model since surface brightness does not span a huge range.

Usage

profitMag2Mu(mag = 15, re = 1, axrat = 1, pixscale = 1)
profitMu2Mag(mu = 17, re = 1, axrat = 1, pixscale = 1)

Arguments

mag Total magnitude of the 2D Sersic profile.

mu Mean surface brightness within Re of the 2D Sersic profile.

re Effective radii of the 2D Sersic profile.

axrat Axial ratio of Sersic profile defined as minor-axis/major-axis, i.e. 1 is a circle
and 0 is a line.

pixscale The pixel scale, where pixscale=asec/pix (e.g. 0.4 for SDSS). If set to 1, then
the surface brightness is interpreted in terms of pixels, otherwise it is interpreted
in terms of arcseconds^2.

Value

profitMag2Mu returns the mean surface brightness within Re of the 2D Sersic profile.

profitMag2Mu returns total magnitude of the 2D Sersic profile.

Author(s)

Aaron Robotham

See Also

profitMakeModel

Examples

profitMag2Mu(mag=22, re=10, axrat=0.5)
profitMu2Mag(mu=28, re=10, axrat=0.5)

58 profitMakeConvolver

profitMakeConvolver Creates a Convolver object.

Description

Creates a Convolver object that can be used to perform convolution of images. Convolution can be
carried out direcly via profitConvolve or when creating Model images with profitMakeModel.

This function allows users to create specific convolvers instead of letting profitMakeModel create
a default one.

Usage

profitMakeConvolver(type, image_dimensions, psf,
reuse_psf_fft = TRUE, fft_effort = 0, omp_threads = NULL, openclenv = NULL)

Arguments

type The type of convolver to create. It should be one of the strings returned by
profitAvailableConvolvers

image_dimensions

Dimensions of the images that will be convolved by this convolver.

psf The point spread function (PSF) image matrix that will be used by this Con-
volver.

reuse_psf_fft Logical; whether the FFT-ed version of the PSF used by the Convolver should
be re-used across executions of the convolution. This is useful if the convolver
will be re-used to convolve different images (of the same size) with the same
PSF. Used only if ‘type’ is "fft" and ProFit has FFTW support.

fft_effort Amount of effort to spend creating the FFTW plans used by this Convolver.
Accepted values range from 0 to 3, and map to the ESTIMATE, MEASURE,
PATIENT and EXHAUSTIVE FFTW efforts, respectively. Used only if ‘type’
is "fft" and ProFit has FFTW support.

omp_threads Specifies the number of OpenMP threads to use to execute the underlying FFTW
plans. Used only if ‘type’ is "fft" and ProFit has FFTW support, OpenMP
support, and the underlying FFTW library has OpenMP support.

openclenv A valid pointer to an OpenCL environment (obtained from the profitOpenCLEnv).
Used only if ‘type’ is "opencl" or "opencl-local" and ProFit has OpenCL
support.

Details

A convolver object can be used to perform one or more image convolutions. Depending on the
convolver’s requested configuration, it could be expensive to create them. Users should thus try to
keep a hold on these objects.

profitMakeConvolver 59

Value

The output is an external pointer of class ’externalptr’ to be passed to profitMakeModel via its
convopt list option, or to be used to convolve images directly via profitConvolve

Author(s)

Rodrigo Tobar

See Also

profitAvailableConvolvers, profitConvolve, profitBruteConv, profitMakePointSource,
profitBenchmarkConv, profitHasFFTW profitOpenCLEnv

Examples

Not run:
psf = profitMakeGaussianPSF(dim=c(100,100))

has_openCL=profitHasOpenCL()
has_fft = profitHasFFTW()
has_openMP=profitHasOpenMP()

convolver_brute = profitMakeConvolver("brute", c(400, 400), psf)

if(has_openCL){
convolver_bruteCL = profitMakeConvolver("opencl", c(400, 400), psf,
openclenv=profitOpenCLEnv())

}

if(has_fft){
convolver_fft = profitMakeConvolver("fft", c(400, 400), psf, fft_effort=1,
omp_threads=1)
}

if(has_fft & has_openMP){
convolver_fftMP = profitMakeConvolver("fft", c(400, 400), psf, fft_effort=1,
omp_threads=4)
}

model = list(
sersic = list(
xcen = c(80, 210),
ycen = c(190, 50),
mag = c(15, 13),
re = c(14, 5),
nser = c(3, 10),
ang = c(46, 80),
axrat = c(0.4, 0.6),
box = c(0.5,-0.5)

)
)

60 profitMakeGaussianPSF

system.time(for(i in 1:10){image_brute=profitMakeModel(model=model, dim=c(300,300), psf=psf,
convopt=list(convolver=convolver_brute))$z})

if(has_openCL){
system.time(for(i in 1:10){image_bruteCL=profitMakeModel(model=model, dim=c(300,300), psf=psf,

convopt=list(convolver=convolver_bruteCL))$z})
}

if(has_fft){
system.time(for(i in 1:10){image_fft=profitMakeModel(model=model, dim=c(300,300), psf=psf,

convopt=list(convolver=convolver_fft))$z})
}

if(has_fft & has_openMP){
system.time(for(i in 1:10){image_fftMP=profitMakeModel(model=model, dim=c(300,300), psf=psf,

convopt=list(convolver=convolver_fftMP))$z})
}

magimage(image_brute)

if(has_openCL){
magimage(image_bruteCL)
magimage(image_brute-image_bruteCL)

}

if(has_fft){
magimage(image_fft)
magimage(image_brute-image_fft)

}

if(has_fft & has_openMP){
magimage(image_fftMP)
magimage(image_brute-image_fftMP)

}

End(Not run)

profitMakeGaussianPSF Make a 2D Gaussian PSF (point source profile or point spread func-
tion)

Description

Creates an analytic 2D Gaussian PSF with a given full-width at half-maximum.

Usage

profitMakeGaussianPSF(fwhm = 3, dim = c(25,25), trim = 1 - pi/4, plot = FALSE, ...)

profitMakeGaussianPSF 61

Arguments

fwhm Numeric scalar; the full width half max (FWHM) of the desired PSF. This is in-
ternally converted to a Gaussian standard deviation (sigma) using sigma=FWHM/(2*sqrt(2*log(2)))~FWHM/2.355.

dim Integer vector; the dimensions of the image to be generated. Typically this
should be c(Nx,Ny). If length 1 then the value will be replicated for both di-
mensions.

trim Numeric scalar; fraction of pixels to keep. This is done by using quantile to find
the pixel value and setting pixels below this to zero. This is done to obtain a
more circular kernel (often handy), where the defaults will approximately fill a
square image with a circle of diameter ‘dim’.

plot Logical; should a magimage plot of the output be generated?

... Further arguments to be passed to magimage. Only relevant is ‘plot’=TRUE.

Details

This is a simple function to create a Gaussian PSF for prototyping image convolution/fits in cases
where PSF has not been estimated. In general this should *not* be used for final fitting, since it is
rare to have an exact, circular Gaussian profile PSFs in real astronomical images. Better options
would be a double winged Gaussian, a Moffat (which is similar to a 2D Student-T distribution with
no correlation), or an empirical PSF.

Value

Numeric matrix; the 2D image of the specified PSF with dimensions c(npix,npix).

Author(s)

Aaron Robotham & Dan Taranu

See Also

profitMakePointSource, profitConvolvePSF

Examples

#Various FWHM:

magimage(profitMakeGaussianPSF(fwhm=1), stretch='lin')
magimage(profitMakeGaussianPSF(fwhm=3), stretch='lin')
magimage(profitMakeGaussianPSF(fwhm=5), stretch='lin')

62 profitMakeModel

profitMakeModel High-Level 2D Galaxy and Point Source Image Creation

Description

Create an astronomical image containing model galaxies or point sources, with or without convolu-
tion with the PSF. This is achieved by providing a model list (‘modellist’) that contains the main
parameters that define the model.

Usage

profitMakeModel(modellist, magzero = 0, psf=NULL, dim = c(100, 100),
whichcomponents=list(sersic = "all", moffat = "all", ferrer = "all", ferrers = "all",
coresersic = "all", king = "all", brokenexp = "all", pointsource = "all"), rough = FALSE,
acc = 0.1, finesample=1L, returnfine=FALSE, returncrop=TRUE, calcregion,
docalcregion=FALSE, adjust_calcregion = TRUE, magmu=FALSE, remax, rescaleflux = FALSE,
convopt=NULL, psfdim = c(25, 25), openclenv = NULL,
omp_threads = NULL, plot = FALSE, ...)

Arguments

modellist The model list that describes the analytic model to be created. See Details.

magzero The magnitude zero point, where values become scaled by the standard scale=10^(-
0.4*(mag-magzero)).

psf The PSF matrix to use for the model. This will both be used to convolve the
radial profile models and to model point sources (i.e. stars). If this is left as
NULL and a psf model is included in the ‘modellist’, then this analytic PSF
will be used instead.

dim The desired dimensions of the 2D image matrix. This should be a two ele-
ment vector which specifies c(width,height) in the plotted image. This becomes
c(rows,columns) in the matrix itself (see Details below).

whichcomponents

A list specifying which component of each profile type should be used to create
the model image. This is useful if you want to visualise the appearance of e.g.
Sersic components 1 and 2 separately. The default entry list=(profilename1="all",...)
will show the total model with all components added. If a given profile has no
entry in the list, the default is "all", i.e. one must explicitly exclude components
rather than including them, and an empty list will exclude nothing; the default
value just lists available profile names explicitly.

rough Logical; should an approximate model image be created. If TRUE only one
evaluation of the Sersic model is made at the centre of each pixel. If FALSE
then accurate upsampling is used to create more precise pixel values. It is often
useful to use rough=TRUE when you are a long way from a viable solution
and you are searching for a reasonable global minimum. Once near the global
minimum then rough should be set to FALSE and more precise evaluations of

profitMakeModel 63

the fit should be made. Rough fits are often pretty good and similar to the much
more expensive accurate fits, except for very steep profiles.

acc Desired minimum per pixel accuracy within the upscaling region defined by
‘RESWITCH’. ‘ACC’ specifies the allowed fractional difference from adjacent pix-
els before recursion is triggered. Smaller (i.e. 0.01) means more accurate inte-
gration, but increased computation time.

finesample Integer specifying the number of times to subdivide the model image and there-
fore finely sample it (compared to the dimensions specified in ‘dim’), for more
accurate PSF convolution. Must be one or higher. Note that the ‘psf’ image
and ‘modellist’ PSF are not automatically fine sampled; this is only done by
profitSetupData.

returnfine Logical flag to return the finely-sampled model instead of downsampling to the
specified ‘dim’.

returncrop Logical flag to return the appropriately PSF-padded ‘modellist’ instead of
cropping to the specified ‘dim’.

calcregion Matrix; logical image matrix the same size as the input ‘image’ matrix. If
‘docalcregion’=TRUE, then pixels in ‘calcregion’ that are TRUE (or 1) will
have the convolution calculated, pixels with FALSE (or 0) values will be set to 0.
This is included to increase computation speed in situations where only a small
region of the full image contains the galaxy of interest for fitting. In this case
pixels a long way from the segmentation region for the galaxy will not need to be
convolved in order to calculate the correct likelihood within the segmentation.

docalcregion Logical; should the ‘calcregion’ logical matrix be used to define a subset of
pixels to be convolved.

adjust_calcregion

Logical; indicates if the given calcregion needs to be internally adjusted (or not)
in order to correctly consider the flux going outside of the image and captured
by the convolution process. By default this is TRUE, but during profile fitting this
option is set to TRUE because the profitSetupData procedure pre-calculates
these adjustments.

magmu Logical vector. If TRUE then the mag parameter in the input ‘modellist’ list
is interpreted as the mean surface brightness within Re in units of mag/pix^2. If
this is of length 1 then all mag values will be interpreted in the same sense, other-
wise it should be the same length as the number of components being generated.
If FALSE mag is taken to mean total magnitude of the integrated profile. Using
this flag might be useful for disk components since they occupy and relatively
narrow range in surface brightness, but can have essentially any total magnitude.

remax If provided the profile is computed out to this many times Re, after this point the
values in the image are set to zero. If missing the profile is calculated out to the
radius at which 99.99% of flux is contained within the elliptical isocontour.

rescaleflux Logical; where the profile has been truncated via ‘remax’ this specifies whether
the profile should be rescaled since the total integrated flux will be less than
without truncation. In practice this means image values are increases by 1/0.9999
for the default case (where the profile is truncated at the point where 99.99% of
flux is contained).

64 profitMakeModel

convopt A list specifying options for convolution. Currently the only named item used is
convolver (which can be obtained via profitMakeConvolver; if specified, it is
used to perform the convolution of the model (if convolution is required).

psfdim The size of the PSF image to be constructed if a psf modellist is being provided
to construct an analytic PSF model.

openclenv If NULL (default) then the CPU is used to compute the profile. If ‘openclenv’
is a legal pointer to a graphics card of class externalptr then that card will
be used to make a GPU based model. This object can be obtained from the
profitOpenCLEnv function directly. If ‘openclenv’=’get’ then the OpenCL
environment is obtained from running profitOpenCLEnv with default values
(which are usually reasonable).

omp_threads An integer indicating the number of threads to use to evaluate radial profiles. If
not given only one thread is used. ‘openclenv’ has precedence over this option,
so if both are given then OpenCL evaluation takes place.

plot Logical; should a magimage plot of the output be generated?

... Further arguments to be passed to magimage. Only relevant is ‘plot’=TRUE.

Details

A legal model list (‘modellist’) has the structure of list(sersic, coresersic, moffat, ferrer, king,
brokenexp, pointsource, sky). At least one of sersic, coresersic, moffat, ferrer, king, brokenexp,
pointsource, psf or sky should be present. Each of these is itself a list which contain vectors for each
relevant parameter. All these vectors should be the same length for each type of model structure.

The parameters that must be specified for ‘sersic’ are:

xcen Vector; x centres of the 2D Sersic profiles (can be fractional pixel positions).

ycen Vector; y centres of the 2D Sersic profiles (can be fractional pixel positions).

mag Vector; total magnitudes of the 2D Sersic profiles. Converted to flux using 10^(-0.4*(‘mag’-
‘magzero’)).

re Vector; effective radii of the 2D Sersic profiles

nser Vector; the Sersic indices of the 2D Sersic profiles

ang Vector; the orientation of the major axis of the profile in degrees. When plotted as an R image
the angle (theta) has the convention that 0= | (vertical), 45= \, 90= - (horizontal), 135= /, 180=
| (vertical). Values outside the range 0 <= ang <= 180 are allowed, but these get recomputed
as ang = ang %% 180.

axrat Vector; axial ratios of Sersic profiles defined as minor-axis/major-axis, i.e. 1 is a circle and
0 is a line.

box Vector; the boxiness of the Sersic profiles that trace contours of iso-flux, defined such that
r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When ‘box’=0 the iso-flux contours will be
normal ellipses, but modifications between -1<box<1 will produce visually boxy distortions.
Negative values have a pin-cushion effect, whereas positive values have a barrel effect (the
major and minor axes staying fixed in all cases).

The parameters that must be specified for ‘coresersic’ are:

xcen Vector; x centres of the 2D Core-Sersic profiles (can be fractional pixel positions).

profitMakeModel 65

ycen Vector; y centres of the 2D Core-Sersic profiles (can be fractional pixel positions).

mag Vector; total magnitudes of the 2D Core-Sersic profiles. Converted to flux using 10^(-0.4*(‘mag’-
‘magzero’)).

re Vector; effective radius of the Sersic components of the Core-Sersic profiles.

rb Vector; transition radius of the Core-Sersic profiles (from inner power-law to outer Sersic).

nser Vector; Sersic indices of the Core-Sersic profiles.

a Vector; strength of transitions from inner cores to outer Sersics. Larger +ve means sharper.

b Vector; the inner power-law of the Core-Sersic profiles. Less than 1 is an increasingly flat core.

ang Vector; the orientation of the major axis of the profile in degrees. When plotted as an R image
the angle (theta) has the convention that 0= | (vertical), 45= \, 90= - (horizontal), 135= /, 180=
| (vertical). Values outside the range 0 <= ang <= 180 are allowed, but these get recomputed
as ang = ang %% 180.

axrat Vector; axial ratios of Core-Sersic profiles defined as minor-axis/major-axis, i.e. 1 is a circle
and 0 is a line.

box Vector; the boxiness of the Core-Sersic profiles that trace contours of iso-flux, defined such
that r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When ‘box’=0 the iso-flux contours will be
normal ellipses, but modifications between -1<box<1 will produce visually boxy distortions.
Negative values have a pin-cushion effect, whereas positive values have a barrel effect (the
major and minor axes staying fixed in all cases).

The parameters that must be specified for ‘moffat’ are:

xcen Vector; x centres of the 2D Moffat profiles (can be fractional pixel positions).

ycen Vector; y centres of the 2D Moffat profiles (can be fractional pixel positions).

mag Vector; total magnitudes of the 2D Moffat profiles. Converted to flux using 10^(-0.4*(‘mag’-
‘magzero’)).

fwhm Vector; full width half max of the Moffat function.

con Vector; concentration parameter for Moffat functions. Must be larger than 1.

ang Vector; the orientation of the major axis of the profile in degrees. When plotted as an R image
the angle (theta) has the convention that 0= | (vertical), 45= \, 90= - (horizontal), 135= /, 180=
| (vertical). Values outside the range 0 <= ang <= 180 are allowed, but these get recomputed
as ang = ang %% 180.

axrat Vector; axial ratios of Moffat profiles defined as minor-axis/major-axis, i.e. 1 is a circle and
0 is a line.

box Vector; the boxiness of the Moffat profiles that trace contours of iso-flux, defined such that
r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When ‘box’=0 the iso-flux contours will be
normal ellipses, but modifications between -1<box<1 will produce visually boxy distortions.
Negative values have a pin-cushion effect, whereas positive values have a barrel effect (the
major and minor axes staying fixed in all cases).

The parameters that must be specified for ‘ferrer’ or ‘ferrers’ (either allowed) are:

xcen Vector; x centres of the 2D Ferrer profiles (can be fractional pixel positions).

ycen Vector; y centres of the 2D Ferrer profiles (can be fractional pixel positions).

66 profitMakeModel

mag Vector; total magnitudes of the 2D Ferrer profiles. Converted to flux using 10^(-0.4*(‘mag’-
‘magzero’)).

rout Vector; the outer limit of the Ferrer profile. Beyond this radius the profile is evaluated as zero.

a Vector; the global profile power-law slope. 0 would mean a flat top, and +ve increases in intensity
towards the centre.

b Vector; the strength of the profile truncation as it approaches ‘rout’.

ang Vector; the orientation of the major axis of the profile in degrees. When plotted as an R image
the angle (theta) has the convention that 0= | (vertical), 45= \, 90= - (horizontal), 135= /, 180=
| (vertical). Values outside the range 0 <= ang <= 180 are allowed, but these get recomputed
as ang = ang %% 180.

axrat Vector; axial ratios of Ferrer profiles defined as minor-axis/major-axis, i.e. 1 is a circle and
0 is a line.

box Vector; the boxiness of the Ferrer profiles that trace contours of iso-flux, defined such that
r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When ‘box’=0 the iso-flux contours will be
normal ellipses, but modifications between -1<box<1 will produce visually boxy distortions.
Negative values have a pin-cushion effect, whereas positive values have a barrel effect (the
major and minor axes staying fixed in all cases).

The parameters that must be specified for ‘king’ are:

xcen Vector; x centres of the 2D King profiles (can be fractional pixel positions).

ycen Vector; y centres of the 2D King profiles (can be fractional pixel positions).

mag Vector; total magnitudes of the 2D King profiles. Converted to flux using 10^(-0.4*(‘mag’-
‘magzero’)).

rc Vector; the core radius of the King profile.

rt Vector; the truncation radius of the King profile. Beyond this radius the profile is evaluated as
zero.

a Vector; the power-law of the King profile.

ang Vector; the orientation of the major axis of the profile in degrees. When plotted as an R image
the angle (theta) has the convention that 0= | (vertical), 45= \, 90= - (horizontal), 135= /, 180=
| (vertical). Values outside the range 0 <= ang <= 180 are allowed, but these get recomputed
as ang = ang %% 180.

axrat Vector; axial ratios of King profiles defined as minor-axis/major-axis, i.e. 1 is a circle and 0
is a line.

box Vector; the boxiness of the King profiles that trace contours of iso-flux, defined such that
r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When ‘box’=0 the iso-flux contours will be
normal ellipses, but modifications between -1<box<1 will produce visually boxy distortions.
Negative values have a pin-cushion effect, whereas positive values have a barrel effect (the
major and minor axes staying fixed in all cases).

The parameters that must be specified for ‘brokenexp’ are:

xcen Vector; x centres of the 2D Broken-Exponential profiles (can be fractional pixel positions).

ycen Vector; y centres of the 2D Broken-Exponential profiles (can be fractional pixel positions).

profitMakeModel 67

mag Vector; total magnitudes of the 2D Ferrer profiles. Converted to flux using 10^(-0.4*(‘mag’-
‘magzero’)).

h1 Vector; scale length of the inner Broken-Exponential profile.

h2 Vector; scale length of the outer Broken-Exponential profile.

rb Vector; break (or truncation) radius of the Broken-Exponential profile.

a Vector; strength of transition from inner core to outer Broken-Exponential. Larger +ve means
sharper.

ang Vector; the orientation of the major axis of the profile in degrees. When plotted as an R image
the angle (theta) has the convention that 0= | (vertical), 45= \, 90= - (horizontal), 135= /, 180=
| (vertical). Values outside the range 0 <= ang <= 180 are allowed, but these get recomputed
as ang = ang %% 180.

axrat Vector; axial ratios of Broken-Exponential profiles defined as minor-axis/major-axis, i.e. 1
is a circle and 0 is a line.

box Vector; the boxiness of the Broken-Exponential profiles that trace contours of iso-flux, defined
such that r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When ‘box’=0 the iso-flux contours
will be normal ellipses, but modifications between -1<box<1 will produce visually boxy dis-
tortions. Negative values have a pin-cushion effect, whereas positive values have a barrel
effect (the major and minor axes staying fixed in all cases).

The parameters that must be specified for ‘pointsource’ (see profitMakePointSource for de-
tails) are:

xcen Vector of x centres of the PSFs (can be fractional pixel positions).

ycen Vectors of y centres of the PSFs (can be fractional pixel positions).

mag Vectors of total magnitudes of the PSFs. Converted to flux using 10^(-0.4*(‘mag’-‘magzero’)).

The parameters that may be specified for the ‘psf’ must be a valid model themselves. Using this
option allows users to specify an analytic (e.g. Moffat) PSF.

The parameter that must be specified for ‘sky’ is:

bg Value per pixel for the background. This should be the value as measured in the original image,
i.e. there is no need to worry about the effect of ‘magzero’.

An example of a legal model structure is:

modellist = list(
sersic = list(
xcen = c(180.5, 50),
ycen = c(90, 50),
mag = c(15, 13),
re = c(140, 50),
nser = c(10, 4),
ang = c(60, 135),
axrat = c(0.5, 0.3),
box = c(0.5,-0.3)
),
pointsource = list(

68 profitMakeModel

xcen = c(34,10,150),
ycen = c(74,120,130),
mag = c(10,13,16)
),
sky = list(
bg = 3e-12
)
)

By ProFit convention the bottom-left part of the bottom-left pixel when plotting the image matrix
is c(0,0) and the top-right part of the bottom-left pixel is c(1,1), i.e. the mid-point of pixels are half
integer values in x and y.

To confuse things a bit, when R plots an image of a matrix it is transposed and re-ordered vertically
to how it appears if you print the matrix directly to screen, i.e. compare print(matrix(1:4,2,2))
and image(matrix(1:4,2,2)). The lowest value (1) is top-left when printed but bottom-left when
displayed using image (the red pixel). Both are "correct": the issue is whether you consider the first
element of a matrix to be the Cartesian x position (movement in x) or a row element (movement in
y). Matrices in maths are always written top-left first where the first argument refers to row number,
but images by convention are accessed in a Cartesian sense. Hence [3,4] in a maths matrix means 3
down and 4 right from the top-left, but 3 right and 4 up from the bottom-left in an image.

Value

List; structure containing the specified model:

x Vector with elements 0:dim[1]

y Vector with elements 0:dim[2]

z Matrix; contains the flux values of the specified model image. Dimensions ‘dim’

Author(s)

Aaron Robotham & Dan Taranu

See Also

profitMakeConvolver, profitCubaSersic, profitCubaCoreSersic profitCubaMoffat, profitCubaFerrer,
profitCubaKing, profitCubaBrokenExp, profitRemakeModellist

Examples

modellist = list(
sersic = list(
xcen = c(180, 60),
ycen = c(90, 10),
mag = c(15, 13),
re = c(14, 5),
nser = c(3, 10),
ang = c(46, 80),
axrat = c(0.4, 0.6),

profitMakePlots 69

box = c(0.5,-0.5)
),
pointsource = list(

xcen = c(34,10,150),
ycen = c(74,120,130),
mag = c(10,13,16)

),
sky = list(

bg = 3e-12
)

)

Without a PSF provided only the extended sources are shown, with no convolution:

profitMakeModel(modellist=modellist, dim=c(200,200), plot=TRUE)

With a PSF provided the PSFs are displayed and the extended sources are convolved with
the PSF:

profitMakeModel(modellist=modellist, psf=profitMakePointSource(),
dim=c(200,200), plot=TRUE)

Using a GPU to create the image:
Not run:
tempCL=profitOpenCLEnv()
profitMakeModel(modellist=modellist, dim=c(200,200), openclenv=tempCL, plot=TRUE)

The time elapsed is the key thing to check. The system time tends to be higher for
OpenCL due to the large number of system calls made to the GPU.

system.time(for(i in 1:100){profitMakeModel(modellist=modellist, dim=c(200,200))})
system.time(for(i in 1:100){profitMakeModel(modellist=modellist, dim=c(200,200),
openclenv=tempCL)})

End(Not run)

Using OpenMP to create the image:
Not run:
system.time(for(i in 1:100){profitMakeModel(modellist=modellist, dim=c(200,200))})
system.time(for(i in 1:100){profitMakeModel(modellist=modellist, dim=c(200,200), omp_threads=4)})

End(Not run)

profitMakePlots Plot Image, Model and Residuals

Description

Plots appropriately scaled data and model images, along with a residual (data-model) image, and
histograms of the residuals.

70 profitMakePlots

Usage

profitMakePlots(image, modelimage, region, sigma, errischisq = FALSE, maxsigma = 5,
cmap = rev(colorRampPalette(brewer.pal(9, "RdYlBu"))(100)),
errcmap = rev(c("#B00000",colorRampPalette(brewer.pal(9,'RdYlBu'))(100)[2:99],"#0000B0")),
plotchisq = FALSE, dofs, skewtparm=NULL)

Arguments

image Numeric matrix; containing an image to plot (usually the data).

modelimage Numeric matrix; containing another image to plot and compare to (usually the
model).

region Logical matrix; defining the region of the data that the model was actually fit to.

sigma Numeric matrix; containing errors on the data (assumed to be the Gaussian
sigma).

errischisq Logical flag; to be set if ‘error’ specifies the chi-squared statistic in each pixel
rather than sigma.

maxsigma The maximum range of sigma deviations displayed.

cmap Optional vector; colour map to use for plots of the ‘image’, ‘model’, and ‘error’.

errcmap Optional vector; colour map to use for plots of the chi-squared residuals (see
‘errischisq’).

plotchisq Logical flag; to determine if the function should plot a map and a histogram of
chi^2, where chi = ((‘image’-‘model’)/‘error’)[‘region’]. If specified, it will
also plot a color bar and a histogram of chi.

dofs Numeric vector; of degrees-of-freedom (up to length 2), used only if ‘plotchisq’
is set.

skewtparm Numeric vector (length 4); parameters of a skewed t-distribution to plot on the
residual histogram. Used only if ‘plotchisq’ is set and calls the sn package’s
sn::dst function.

Details

This function makes useful diagnostic plots to judge how well a model fits the data. The ‘plotchisq’
option is particlarly useful for judging how well the residuals (and their squares) are described by a
normal (or chi-square) distribution, and whether there is any spatial structure in the residuals.

Value

No return value; the function only generates plots.

Author(s)

Aaron Robotham & Dan Taranu

See Also

profitLikeModel, profitMakeModel

profitMakePointSource 71

Examples

Load ProFit example data

There are 2 data source options: KiDS or SDSS (the galaxies are the same)

datasource='KiDS'

Now we can extract out the example files we have available for fitting by checking the
contents of the directory containing the example FITS files:

data('ExampleInit')
ExampleFiles=list.files(system.file("extdata",datasource,package="ProFit"))
ExampleIDs=unlist(strsplit(ExampleFiles[grep('fitim',ExampleFiles)],'fitim.fits'))
print(ExampleIDs)

There are 10 example galaxies included. Here we run example 1:

useID=ExampleIDs[1]

image = readFITS(system.file("extdata", paste(datasource,'/',useID,'fitim.fits',sep=''),
package="ProFit"))$imDat
sigma = readFITS(system.file("extdata", paste(datasource,'/',useID,'sigma.fits',sep=''),
package="ProFit"))$imDat
segim = readFITS(system.file("extdata", paste(datasource,'/',useID,'segim.fits',sep=''),
package="ProFit"))$imDat

noise = sigma
set.seed(666)
noise[] = rnorm(length(noise),mean=0,sd=noise)
region = segim == segim[dim(segim)[1]/2,dim(segim)[2]/2]

profitMakePlots(image = image, modelimage = image+noise, region = region, sigma = sigma,
errischisq = FALSE, plotchisq = TRUE, dofs = c(2))

profitMakePointSource Create an image of a point source (PS) with an analytical or empirical
point spread function (PSF).

Description

Create an image of a point source at an arbitrary location (can be fractional pixels) based on a user-
defined point spread function (PSF) model, or by interpolating a user-defined empirical PSF image.
Defaults to creating an empirical image of a Gaussian PSF.

Usage

profitMakePointSource(xcen, ycen, mag = 0, magzero = 0,
modellist = list(sersic = list(mag = 0, re = 1, nser = 0.5, axrat=1, ang=0)),
psf=NULL, image=matrix(0, 25, 25), finesample=1L, add=FALSE, plot = FALSE,
returnfine=FALSE, ...)

72 profitMakePointSource

Arguments

xcen The x-axis centre of the point source in image coordinates. If missing it will be
the mid-x location on the specified ‘image’.

ycen The y-axis centre of the point source in image coordinates. If missing it will be
the mid-y location on the specified ‘image’.

modellist An optional list containing a valid model as described in profitMakeModel,
which must be defined such that the integral of the model is unity (mag=0). One
of ‘modellist’ or ‘psf’ (but not both) must be supplied.

mag The magnitude of the point source, defined such that (mag-magzero)=-2.5(log10(flux)).

magzero The magnitude zero point, where values become scaled by the standard scale=10^(-
0.4*(mag-magzero)).

psf An optional image matrix containing an empirical PSF to be interpolated and
rescaled. One of ‘model’ or ‘psf’ (but not both) must be supplied.

image An optional image matrix defining the dimensions of the output image, and
optionally containing some data to be added to if ‘add’ is TRUE.

finesample An integer factor (>=1L) to oversample the model grid by; see profitMakeModel.

add Logical flag to determine if the output should return the sum of this pointsource
and the data in ‘image’.

plot Logical; should a magimage plot of the output be generated?

returnfine Logical; should an oversampled imaged be returned? Relevant only if ‘finesample’>1L.

... Further arguments to be passed to magimage. Only relevant is ‘plot’=TRUE.

Details

By ProFit convention the bottom-left part of the bottom-left pixel when plotting the image matrix
is c(0,0) and the top-right part of the bottom-left pixel is c(1,1), i.e. the mid-point of pixels are half
integer values in x and y.

To confuse things a bit, when R plots an image of a matrix it is transposed and re-ordered vertically
to how it appears if you print the matrix directly to screen, i.e. compare print(matrix(1:4,2,2))
and image(matrix(1:4,2,2)). The lowest value (1) is top-left when printed but bottom-left when
displayed using image (the red pixel). Both are "correct": the issue is whether you consider the first
element of a matrix to be the Cartesian x position (movement in x) or a row element (movement in
y). Matrices in maths are always written top-left first where the first argument refers to row number,
but images by convention are accessed in a Cartesian sense. Hence [3,4] in a maths matrix means 3
down and 4 right from the top-left, but 3 right and 4 up from the bottom-left in an image.

Value

Matrix; image containing the PS as specified above.

Author(s)

Aaron Robotham & Dan Taranu

profitMakePriors 73

See Also

profitConvolvePSF, profitMakeModel

Examples

Create a PSF with a suitable width:
profitMakePointSource(plot=TRUE)

We can create a point source in a larger image:
psf = profitMakePointSource(xcen=100,ycen=50,mag=15,modellist=list(

sersic=list(re=2,nser=0.5,mag=0,axrat=0.2, ang=0.5)),
magzero=0,image=matrix(0,200,200), finesample=1L)

magimage(psf)

Note that Gaussian PSFs are very accurate but subject to roundoff errors below ~1e-30.
Try rotating an elliptical PSF:
angles = seq(0,180,by=90/4)
par(mfrow=c(3,3))
for(ang in angles) {

psf = round(profitMakePointSource(mag=0,modellist=list(
sersic=list(re=2,nser=0.5,mag=0,axrat=0.5,ang=ang)),
image=matrix(0,15,15)),20)

print(max(psf))
magimage(psf)

}
par(mfrow=c(1,1))

Now interpolate the last empirical PSF (less accurate than creating it from scratch):

profitMakePointSource(xcen=7,ycen=7,mag=0,psf=psf,image=image,modellist=NULL, plot=TRUE)

profitMakePriors Make a Priors Function

Description

A utility function to construct a legal ProFit prior function that can be input to profitSetupData

Usage

profitMakePriors(modellist, sigmas, tolog, means=NULL, tofit=NULL, allowflat=FALSE)

Arguments

modellist List; required. A valid ProFit modellist. Used to verify input arguments and
check that the constructed prior function returns a finite value. The values of all
parameters must be finite.

74 profitMakePriors

sigmas Numeric list; required. The standard deviation of the prior distribution for each
parameter. Must have the same length as modellist. All must be >0 or >=0 if
‘allowflat’ is TRUE.

tolog Logical list; required. Logicals indicating whether the parameter is fit in log
space, in which case it must be logged in the prior function since it is always
passed linear parameters. Must have the same length as modellist.

means Numeric list; optional. The mean of the prior distribution for each parameter;
these must be logged if ‘tolog’ is TRUE for this parameter. Must have the same
length as modellist. If the means are not specified, the prior function will follow
default behaviour, which is to assume that the values in Data$modellist specify
the prior means.

tofit Logical list; optional. Logicals indicating whether the parameter is to be fit. If
specified, only the parameters to be fit will have priors computed; otherwise, the
default is for all priors to be evaluated (including for fixed parameters). Must
have the same length as modellist.

allowflat Logical; optional. Allows for flat priors by setting ‘sigmas’ to Inf; in this case,
the log-likelihood is computed as zero rather than -Inf.

Details

This function returns a valid ProFit prior function that can be input to profitSetupData. The
function illustrates the use of R’s formals function to set the default values of function arguments
after a function is defined. This is necessary to store the values of prior distributions rather than a
reference to the name of the variable storing those values in the current workspace, which is R’s
default behaviour. This behaviour is undesirable when saving a fit along with the corresponding
profitSetupData object, as the parameters of the prior function can be changed or lost if the
workspace is not saved.

Value

Function; a legal ProFit prior function that can be input to profitSetupData

Author(s)

Dan Taranu

See Also

profitLikeModel, profitSetupData

Examples

Not run:
params = c(50,50,0,5,1,0,0.5,0)

modellist=list(
sersic=list(

xcen= params[1], ycen=params[2],
mag= params[3], re=params[4],

profitMoffat 75

nser=params[5], ang=params[6],
axrat=params[7], box=params[8]

)
)

tolog=list(
sersic=list(

xcen=FALSE, ycen=FALSE,
mag=FALSE, re=TRUE,
nser=TRUE, ang=FALSE,
axrat=TRUE, box=FALSE

)
)

Setup s.d. = 1 for linear and 0.1 dex for logged parameters
linear = unlist(tolog)
sigmas = unlist(modellist)
sigmas[which(linear)] = 0.1
sigmas[which(!linear)] = 1
sigmas = relist(sigmas, modellist)

#Make the list structure of prior function:
priors=profitMakePriors(modellist, sigmas, tolog)

#Check that the priors return the expected likelihood:
stopifnot(abs(priors(modellist,modellist) - sum(dnorm(0,0,unlist(sigmas),log=TRUE)))
< 10*.Machine$double.eps)

End(Not run)

profitMoffat Moffat Profile Specific Functions

Description

Useful functions related to the Moffat profile. profitCubaMoffat computes the exact 2D pixel
integrals for a given Moffat model image. This is very slow compared to profitMakeModel, but
it is useful for checking model creation tuning (i.e. the degree to which speed can be increased
without overly harming accuracy). Tests with this function were used to tune profitMakeModel.
profitRadialMoffat computes the 1D radial flux intensity of the Moffat profile along the major
axis of the profile.

Usage

profitCubaMoffat(xcen = dim[1]/2, ycen = dim[2]/2, mag = 15, fwhm = 3, con = 2, ang = 0,
axrat = 1, box = 0, dim = c(25, 25), rel.tol=1e-3, abs.tol= 1e-10, plot = FALSE, ...)
profitRadialMoffat(r = 1, mag = 15, fwhm = 3, con = 2, ang = 0, axrat = 1, box = 0)

76 profitMoffat

Arguments

xcen Scalar; x centre of the 2D Sersic profile (can be fractional pixel positions).
ycen Scalar; y centre of the 2D Sersic profile (can be fractional pixel positions).
r Vector; the radius along the major axis at which to evaluate the flux intensity.
mag Scalar; total magnitude of the 2D Moffat profile. Converted to flux using flux=10^(-

0.4*(mag-magzero)).
fwhm Scalar; full width half max of the Moffat function.
con Scalar; concentration parameter for Moffat functions. Must be larger than 1.

con=1 is pure Lorentzian and con=Inf is pure Normal. In practice con>5 starts
to look very close to Normal.

ang Scalar; the orientation of the major axis of the Sersic profile in degrees. When
plotted as an R image the angle (theta) has the convention that 0= | (vertical),
45= \, 90= - (horizontal), 135= /, 180= | (vertical). Values outside the range 0
<= ang <= 180 are allowed, but these get recomputed as ang = ang.

axrat Scalar; axial ratio of the Sersic profile defined as minor-axis/major-axis, i.e. 1 is
a circle and 0 is a line.

box Scalar; the boxiness of the Sersic profile that traces contours of iso-flux, defined
such that r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When box=0 the iso-
flux contours will be normal ellipses, but modifications between -1<box<1 will
produce visually boxy distortions. Negative values have a pin-cushion effect,
whereas positive values have a barrel effect (the major and minor axes staying
fixed in all cases).

dim Vector; The dimensions of the image to be generated. Typically this should be
c(Nx,Ny). If length 1 then the value will be replicated for both dimensions.

rel.tol Scalar; the requested relative accuracy. Default, 0.001.
abs.tol Scalar; the requested absolute accuracy. The algorithm stops when either the

relative or the absolute accuracies are met. Default, near 1e-10.
plot Logical; should a magimage plot of the output be generated?
... Further arguments to be passed to magimage. Only relevant is ‘plot’=TRUE.

Details

This function uses the Cuba package to make an accurate (but expensive) cubature integral. This
function was written to test the accuracy of Moffat models generated by profitMakeModel.

By ProFit convention the bottom-left part of the bottom-left pixel when plotting the image matrix
is c(0,0) and the top-right part of the bottom-left pixel is c(1,1), i.e. the mid-point of pixels are half
integer values in x and y.

To confuse things a bit, when R plots an image of a matrix it is transposed and re-ordered vertically
to how it appears if you print the matrix directly to screen, i.e. compare print(matrix(1:4,2,2))
and image(matrix(1:4,2,2)). The lowest value (1) is top-left when printed but bottom-left when
displayed using image (the red pixel). Both are "correct": the issue is whether you consider the first
element of a matrix to be the Cartesian x position (movement in x) or a row element (movement in
y). Matrices in maths are always written top-left first where the first argument refers to row number,
but images by convention are accessed in a Cartesian sense. Hence [3,4] in a maths matrix means 3
down and 4 right from the top-left, but 3 right and 4 up from the bottom-left in an image.

profitOpenCLEnv 77

Value

profitCubaMoffat: Matrix; contains the flux values of the specified model image. Dimensions
‘dim’.

profitRadialMoffat: Vector; same length as input ‘r’, specifying the flux intensity of the profile
along the major axis.

Author(s)

Aaron Robotham

References

Moffat A. F. J., 1969, A\&A, 3, 455

See Also

profitMakeModel, profitSersic, profitFerrer, profitCoreSersic, profitKing

Examples

Not run:
magimage(profitCubaMoffat(axrat=0.7, ang=30))

End(Not run)

profitOpenCLEnv Create OpenCL Pointer Object

Description

This function returns a legal external pointer to a GPU card that will then be used to compute
models.

Usage

profitOpenCLEnv(plat_idx = 1, dev_idx = 1, use_double = FALSE)

Arguments

plat_idx The platform index to use for the GPU computation. If in doubt leave as the
default (1).

dev_idx The device index within the platform for the GPU computation. If in doubt leave
as the default (1).

use_double Logical; use double precision arithmetic. Double precision will re-create CPU
calculations down to double precision accuracy. Single precision is not as accu-
rate, but typically good to sub 1:1e6 relative error.

78 profitOpenCLEnv

Details

Some computers might have multiple platforms and devices available for GPU computation. The
indices used refer to device number N on platform number M. If you have multiple cards then
you might have more than one card device on a single platform, or single devices across multiple
platforms.

If your computer has a single card (or you do not know what platforms and devices means with
regards to GPUs) you probably want to leave the values as their defaults.

Value

The output is an external pointer of class ’externalptr’ to be parsed to profitMakeModel and/or
profitSetupData. If there is any error building the OpenCL environment object an error is printed
and NULL is returned.

Author(s)

Rodrigo Tobar & Aaron Robotham

See Also

profitOpenCLEnvInfo, profitClearCache, profitMakeModel, profitSetupData

Examples

modellist = list(
sersic = list(
xcen = c(180, 60),
ycen = c(90, 10),
mag = c(15, 13),
re = c(14, 5),
nser = c(3, 10),
ang = c(46, 80),
axrat = c(0.4, 0.6),
box = c(0.5,-0.5)

),
pointsource = list(

xcen = c(34,10,150),
ycen = c(74,120,130),
mag = c(10,13,16)

),
sky = list(

bg = 3e-12
)

)

magimage(profitMakeModel(modellist=modellist, dim=c(200,200)))

Not run:
profitClearCache()
tempCL=profitOpenCLEnv()
magimage(profitMakeModel(modellist=modellist, dim=c(200,200), openclenv=tempCL))

profitOpenCLEnvInfo 79

End(Not run)

profitOpenCLEnvInfo Discover System Available OpenCL GPUs

Description

This helper function discovers all accessible GPUs that can be used by OpenCL.

Usage

profitOpenCLEnvInfo()

Details

The output from this function has to be interpreted by the user to decide which device and platform
should be used. There might be one available GPU that is much faster than the others, so some
experimentation may be necessary.

Value

List; complex structure containing one or more platforms at the highest level, and within each
platform a list of one or more devices. Each platform has "name" and "opencl_version" elements,
and each device has "name" and "supports_double" elements.

An example running on a MacBook pro might look like:

[[plat_idx]]list(
name = "Apple" (Character; platform name)
opencl_version = 1.2 (Numeric; OpenCL version)
[[dev_idx]]list(
name = "GeForce GT 650M" (Character; device name)
supports_double = TRUE (Logical; does the device support double precision)
)
)

Author(s)

Rodrigo Tobar & Aaron Robotham

See Also

profitOpenCLEnv, profitClearCache profitMakeModel, profitSetupData

Examples

profitOpenCLEnvInfo()

80 profitParseLikefunc

profitParseLikefunc Check various allowed names for likelihoods

Description

A simple convenience function. Probably not useful to the user, but used by multiple functions so
it should not be hidden.

Usage

profitParseLikefunc(funcname)

Arguments

funcname The allowed generic names for various functions. See Details.

Details

The Normal distribution can be called "norm" or "normal" The Chi-Squared distribution can be
called "chisq" or "chi-sq" The Student-T distribution can be called "student-t", "t" or "student" The
Poisson distribution can be called "pois", "poisson", "cash" or "c"

Value

If input is "norm" or "normal" returns "norm" If input is "chi-sq" or "chi-sq" returns "chisq" If input
is "student-t", "t" or "student" returns "t" If input is "pois", "poisson", "cash" or "c" returns "pois"

Author(s)

Dan Taranu & Aaron Robotham

Examples

profitParseLikefunc("normal")
profitParseLikefunc("chi-sq")
profitParseLikefunc("student")
profitParseLikefunc("cash")

profitPoissonMonteCarlo 81

profitPoissonMonteCarlo

Monte Carlo sample an image assuming Poisson-distributed counts

Description

A convenience function to generate a random image given an expected number of counts.

Usage

profitPoissonMonteCarlo(x)

Arguments

x Numeric; required. A number of counts. All should be >=0.

Details

For now, this is merely a convenience function to call R’s built-in rpois() function. In the future, the
implementation should be moved to libprofit.

Value

Returns a random sample from Poisson distributions with means given by ‘x’, preserving input
dimensions.

Author(s)

Dan Taranu

Examples

Not run:
disk = profitMakeModel(modellist=list(sersic=list(xcen=50,ycen=50,mag=15,re=5,nser=1,
axrat=0.5,ang=125,box=0)))$z
gain = 1e13
magimage(profitPoissonMonteCarlo(disk*gain))

End(Not run)

82 profitRemakeModellist

profitRemakeModellist Reconstruct an Image Model

Description

This is a convenience function that allows users to easily substitute into a legal image model re-
sults from an optimisation run. This can be parsed directly into profitMakeModel. It uses the
same conversion functions in the same manner as profitLikeModel so you can create an image
model that is fully consistent. These consistent model lists can be used for other analysis, e.g.
profitEllipsePlot.

Usage

profitRemakeModellist(parm, modellist, tofit, tolog, intervals, constraints, Data)

Arguments

parm Vector; required, of parameters that will be inserted into the ‘modellist’ pro-
vided.

modellist List; required, the basic model list that describes the structure of the object (see
profitMakeModel for details).

tofit List; required, of elements that are being fitted, flagging which elements of
‘modellist’ will be replaced with ‘parm’ (see profitSetupData for details).

tolog List; optional, of elements that are being fitted in log space, flagging which
elements of ‘modellist’ will be replaced with unlogged elements of ‘parm’
(see profitSetupData for details). If missing then all parameters are assumed
to be provided in native linear space.

intervals List; optional, interval limits for each parameter, using a similar list structure
to ‘modellist’ (see profitSetupData for details). If missing then no interval
limits are applied.

constraints Function; optional, takes the ‘modellist’ and returns a list with exactly the
same structure (see profitSetupData for details). If missing then no con-
straints are applied.

Data Data of class profit.data; optional. This must be generated by the profitSetupData
function. If the ‘Data’ structure is present then ‘modellist’, ‘tofit’, ‘tolog’,
‘intervals’ and ‘constraints’ are taken from the list items within ‘Data’. If
they are also provided as separate input arguments then these are used instead,
so be careful when mixing and matching.

Value

A list with two elements: modellist; a list with the same structure as ‘modellist’; and parm, a
vector with the same structure as ‘parm’.

profitsample 83

Author(s)

Aaron Robotham

See Also

profitMakeModel, profitSetupData, profitLikeModel, profitEllipsePlot

Examples

modellist = list(
sersic = list(
xcen = c(50, 50),
ycen = c(50, 50),
mag = c(15, 13),
re = c(14, 5),
nser = c(3, 10),
ang = c(46, 80),
axrat = c(0.4, 0.6),
box = c(0,-0.5)

)
)

magimage(profitMakeModel(modellist))

tofit = list(
sersic = list(

xcen = c(TRUE, NA),
ycen = c(TRUE, NA),
mag = c(TRUE, FALSE),
re = c(TRUE, FALSE),
nser = c(TRUE, TRUE),
ang = c(FALSE, FALSE),
axrat = c(TRUE, FALSE),
box = c(FALSE, FALSE)

)
)

parm=c(55,55,12,20,1,4,0.8)

magimage(profitMakeModel(profitRemakeModellist(parm, modellist, tofit)$modellist))

profitsample Down/Up-Samples an Image

Description

Function to do integer down/up sampling of an image. Used for finesampling.

84 profitSersic

Usage

profitDownsample(img, factor)
profitUpsample(img, factor)

Arguments

img The image matrix to be down-sampled.

factor Integer down- or up-sampling factor.

Value

Returns the down/up-sampled image matrix.

Author(s)

Dan Taranu

See Also

profitMakeModel

Examples

#Need to add one.

profitSersic Sersic Profile Specific Functions

Description

Useful functions related to the Sersic profile. profitCubaSersic computes the exact 2D pixel
integrals for a given Sersic model image. This is very slow compared to profitMakeModel, but
it is useful for checking model creation tuning (i.e. the degree to which speed can be increased
without overly harming accuracy). Tests with this function were used to tune profitMakeModel.
profitRadialSersic computes the 1D radial flux intensity of the Sersic profile along the major
axis of the profile.

Usage

profitCubaSersic(xcen = dim[1]/2, ycen = dim[2]/2, mag = 15, re = 1, nser = 4, ang = 0,
axrat = 1, box = 0, dim = c(25, 25), rel.tol=1e-3, abs.tol= 1e-10, plot = FALSE, ...)
profitRadialSersic(r = 1, mag = 15, re = 1, nser = 4, ang = 0, axrat = 1, box = 0)

profitSersic 85

Arguments

xcen Scalar; x centre of the 2D Sersic profile (can be fractional pixel positions).

ycen Scalar; y centre of the 2D Sersic profile (can be fractional pixel positions).

r Vector; the radius along the major axis at which to evaluate the flux intensity.

mag Scalar; total magnitude of the 2D Sersic profile. Converted to flux using flux=10^(-
0.4*(mag-magzero)).

re Scalar; effective radius of the Sersic profile.

nser Scalar; Sersic index of the Sersic profile.

ang Scalar; the orientation of the major axis of the Sersic profile in degrees. When
plotted as an R image the angle (theta) has the convention that 0= | (vertical),
45= \, 90= - (horizontal), 135= /, 180= | (vertical). Values outside the range 0
<= ang <= 180 are allowed, but these get recomputed as ang = ang.

axrat Scalar; axial ratio of the Sersic profile defined as minor-axis/major-axis, i.e. 1 is
a circle and 0 is a line.

box Scalar; the boxiness of the Sersic profile that traces contours of iso-flux, defined
such that r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When box=0 the iso-
flux contours will be normal ellipses, but modifications between -1<box<1 will
produce visually boxy distortions. Negative values have a pin-cushion effect,
whereas positive values have a barrel effect (the major and minor axes staying
fixed in all cases).

dim Scalar; the dimensions of the image to be generated. Typically this should be
c(Nx,Ny). If length 1 then the value will be replicated for both dimensions.

rel.tol Scalar; the requested relative accuracy. Default, 0.001.

abs.tol Scalar; the requested absolute accuracy. The algorithm stops when either the
relative or the absolute accuracies are met. Default, near 1e-10.

plot Logical; should a magimage plot of the output be generated?

... Further arguments to be passed to magimage. Only relevant is ‘plot’=TRUE.

Details

This function uses the Cuba package to make an accurate (but expensive) cubature integral. This
function was written to test the accuracy of ProFit Sersic models generated by profitMakeModel.

By ProFit convention the bottom-left part of the bottom-left pixel when plotting the image matrix
is c(0,0) and the top-right part of the bottom-left pixel is c(1,1), i.e. the mid-point of pixels are half
integer values in x and y.

To confuse things a bit, when R plots an image of a matrix it is transposed and re-ordered vertically
to how it appears if you print the matrix directly to screen, i.e. compare print(matrix(1:4,2,2))
and image(matrix(1:4,2,2)). The lowest value (1) is top-left when printed but bottom-left when
displayed using image (the red pixel). Both are "correct": the issue is whether you consider the first
element of a matrix to be the Cartesian x position (movement in x) or a row element (movement in
y). Matrices in maths are always written top-left first where the first argument refers to row number,
but images by convention are accessed in a Cartesian sense. Hence [3,4] in a maths matrix means 3
down and 4 right from the top-left, but 3 right and 4 up from the bottom-left in an image.

86 profitSersic

Value

profitCubaSersic: Matrix; contains the flux values of the specified model image. Dimensions
‘dim’.

profitRadialSersic: Vector; same length as input ‘r’, specifying the flux intensity of the profile
along the major axis.

Author(s)

Aaron Robotham

References

Sersic J. L., 1963, Boletin de la Asociacion Argentina de Astronomia La Plata Argentina, 6, 41

See Also

profitMakeModel, profitMoffat, profitFerrer, profitCoreSersic, profitKing

Examples

Not run:
model = list(

sersic = list(
xcen = 10,
ycen = 10,
mag = 15,
re = 2,
nser = 4,
ang = 30,
axrat = 0.5,
box = 0

)
)

dim=c(20,20)

tempExact=profitCubaSersic(xcen=model$sersic$xcen, ycen=model$sersic$ycen,
mag=model$sersic$mag, re=model$sersic$re, nser=model$sersic$nser, ang=model$sersic$ang,
axrat=model$sersic$axrat, box=model$sersic$box, dim=dim)
tempProFit=profitMakeModel(model, dim=dim)$z

#The relative differences between the exact and approximate ProFit model image.
#This is scaled to show 1% differences as extremes:
magimage((tempExact-tempProFit)/tempExact, magmap=FALSE, zlim=c(-0.01,0.01))
#They differ by no more the 1% in flux for any pixel, and in general much less than that:
hist((tempExact-tempProFit)/tempExact)

End(Not run)

profitSetupData 87

profitSetupData Setup ProFit Data

Description

This is a utility function to get the user inputs in the format required for model optimisation / fitting.
It will format the PSF (if supplied) and benchmark the available convolution methods, caching any
data required for efficient convolution (such as the PSF FFT). This function does all of the book-
keeping required to convert the user data into the format required by ProFit.

Usage

profitSetupData(image, region, sigma, segim, mask, modellist, tofit, tolog, priors,
intervals, constraints, psf=NULL, psfdim=dim(psf), finesample=1L, psffinesampled=FALSE,
magzero=0, algo.func='LA', like.func="norm", magmu=FALSE, verbose=FALSE,
omp_threads = NULL, openclenv=NULL, openclenv_int=openclenv, openclenv_conv=openclenv,
nbenchmark=0L, nbenchint=nbenchmark, nbenchconv=nbenchmark,
benchintmethods=c("brute"), benchconvmethods = c("brute","fftw"),
benchprecisions="double", benchconvprecisions=benchprecisions,
benchintprecisions=benchprecisions,
benchopenclenvs = profitGetOpenCLEnvs(make.envs = TRUE),
printbenchmark=FALSE, printbenchint=printbenchmark, printbenchconv=printbenchmark)

Arguments

image Image matrix; required, the galaxy image we want to fit a model to. The galaxy
should be approximately central within this image.

region Logical matrix; optional, specifying the parts of the image to be used for fitting
this will override the combination of ‘segim’ and ‘mask’ that is used otherwise.
If provided this matrix *must* be the same dimensions as ‘image’. Can be
integer 1/0 or boolean TRUE/FALSE type logic.

sigma Sigma matrix; optional, the measurement errors per pixel (expressed in terms of
sigma). This matrix *must* be the same dimensions as ‘image’.

segim Segmentation matrix; optional, the full segmentation map of the image. If
‘region’ is not provided then value of the central pixel is used to select the
segmented pixels of the galaxy we want to fit. The log-likelihood is then com-
puted using only these pixels. This matrix *must* be the same dimensions as
‘image’.

mask Logical matrix; optional, non galaxy parts of the image to mask out, where 1
means mask out and 0 means use for analysis. If ‘region’ is not provided then
0 values are used to define the common area to use for fitting. This matrix
must be the same dimensions as ‘image’.

modellist List; required, the initial model list that describes the analytic model to be cre-
ated. Can contain an analytical PSF model as well. See Details.

88 profitSetupData

tofit Logical list, optional, using exactly the same list structure as ‘modellist’. This
flags which parameters of the model list should be fitted. Parameters which
are not fitted will inherit their values from ‘modellist’. NA values mean the
parameter will inherit the value of the previous parameter. In practice this is used
to force one parameter (like xcen) to be inherited by multiple Sersic profiles, i.e.
we want them to share the same centre, which we fit. The first element of the
vector should be TRUE in this case, with the joined profiles set to NA. See
Details.

tolog Logical list; optional, using exactly the same list structure as ‘modellist’. This
flags which parameters of the model list should be fitted in log space (i.e. only
relevant to set this if the parameter is being fitted). Parameters like size (re)
and axial ratio (axrat) are more naturally explored in log-space, so these should
typically be set to true. See Details.

priors Function; optional, that takes the new trial ‘modellist’ (strictly the first argu-
ment) and then the initial ‘modellist’ (strictly second argument) and returns the
log-likelihood of the priors. As long as the returned output if a single summed
log-likelihood, there is no restriction on what happens internally to the function.
You can also parse additional values to be used internally (say Normal sd, as in
the galaxy fitting vignette). This very simple or very complex conditional priors
can be specified using R functions. See vignettes for an example. If left empty
priors will not be used when computing likelihoods.

intervals List; optional, interval limits for each parameter, using a similar list structure to
‘modellist’. The limits should be specified as length 2 vectors: c(low, high)
in linear parameter space (no matter if tolog is TRUE for this parameter). See
Vignettes and Details.

constraints Function; optional, takes the new trial ‘modellist’ and returns a list with ex-
actly the same structure. This exists for the purpose of allowing complex rela-
tionships between parameters. A simple example is given in the Vignettes of not
allowing the bulge Re to become larger than the disk Re. You could also use
it to specify the offset of, e.g., a Ferrer profile to be linked to that of the Sersic
bulge. Your imagination is the limit, as long as the basic structure returns has
the same skeleton as ‘modellist’.

psf Matrix; optional. An empirical point spread function (PSF) image matrix that
ProFit will use to convolve the image, as an alternative to defining an analytical
PSF in ‘modellist’. This should have odd sizes in each dimension. If the
dimension has an even size then the function will internally interpolate it onto
an odd sized grid 1 element larger. profitSetupData forces negative values to
equal 0. During any convolution profitConvolvePSF will force the sum of the
pixels to equal 1 to ensure flux conservation during convolution of the model
image.

psfdim Numeric; optional. Dimensions of the PSF image to generate when fitting an
analytic PSF and convolving extended sources. Defaults to the dimensions of
‘psf’. Ignored if there are no extended sources or analytic PSF.

finesample An integer factor to determine how much finer of a grid the model image and
PSF should be evaluated on. Because the PSF is discretized, convolution in-
troduces additional discretization of the model, diminishing the accuracy of the
convolved model. If this parameter is set to an integer greater than one, the

profitSetupData 89

model and PSF (but see ‘psffinesampled’) will be upsampled prior to convo-
lution, and then downsampled after convolution. The fine sampling factor must
be an integer to avoid non-integral re-binning artefacts when downsampling.
Large finesample factors will significantly increase convolution time and accu-
racy, while moderately increasing model generation time and accuracy, so it is
recommended to set ‘nbenchmark’ to at least a few when using this option.

psffinesampled Logical, is the provided PSF already fine-sampled? If this flag is set and an
empirical PSF is provided, it will not be interpolated even if ‘finesample’ is
greater than unity.

magzero The magnitude zero point, where values become scaled by the standard scale=10^(-
0.4*(mag-magzero)).

algo.func Character string; the fitting functions being used. Allowed options are "op-
tim", "CMA", "LA" and "LD". profitLikeModel uses the value of algo.func
in the profit.data object to determine the type of output generated for fitting pur-
poses (see profitSetupData for details). If this flag is set to either "optim" or
"CMA" then it will output the log-likelihood as a single value. If set to "LA"
or "LD" then a more complex structure as expected by LaplaceApproximation
and LaplacesDemon (see details for these functions). In practice the simple log-
likelihood scalar output as given by setting to "optim" or "CMA" is useful for
a large number of maximisation algorithms available within R. In practice the
user must ensure that this option is set correctly for the higher level function
used to fit the image data.

like.func Character string specifying the likelihood distribution function to use. Chi-
Squared "chisq", Normal "norm" (default), Poisson "pois" and Student-T "t"
are the currently supported options. Poisson uses the Cash (or C) statistic, and
can be accessed identically using "cash" (or "c"). The choice of the Student-T is
probably sensible in the regime where the model is not a perfect reflection of the
data- i.e. there are asymmetric or spiral features that the models in ProFit will
never be able to reproduce. These can cause high tension when using Normal
statistics, but the use of the Student-T (with more mass in the distant wings)
reduces the dominance of poorly fitting and un-fitable regions. The degrees of
freedom (DoF) for the Student-T are evaluated from the data and model directly
so as to maximise the likelihood. If the model is an excellent fit than Normal
likelihoods are preferred, and this is the default.

magmu Logical vector. If TRUE then the mag parameter in the input ‘modellist’ list
is interpreted as the mean surface brightness within Re in units of mag/pix^2. If
this is of length 1 then all mag values will be interpreted in the same sense, other-
wise it should be the same length as the number of components being generated.
If FALSE mag is taken to mean total magnitude of the integrated profile. Using
this flag might be useful for disk components since they occupy and relatively
narrow range in surface brightness, but can have essentially any total magnitude.

verbose Logical; if TRUE then the value of parameters currently being assessed will be
printed to screen. Useful for prototyping, but typically this produces a lot of
screen output and can slow down the fitting process.

omp_threads An integer indicating the number of threads to use to evaluate radial profiles. If
not given only one thread is used. ‘openclenv’ has precedence over this option,
so if both are given then OpenCL evaluation takes place.

90 profitSetupData

openclenv If NULL (default) then the CPU is used to compute the profile. If ‘openclenv’
is a legal pointer to a graphics card of class externalptr then that card will
be used to make a GPU based model. This object can be obtained from the
profitOpenCLEnv function directly. If ‘openclenv’=’get’ then the OpenCL
environment is obtained from running profitOpenCLEnv with default values
(which are usually reasonable).

openclenv_int The OpenCL environment to use for integrating profiles. Defaults to the value
specified in ‘openclenv’.

openclenv_conv The OpenCL environment to use for PSF convolution. Defaults to the value
specified in ‘openclenv’.

nbenchmark Integer; the number of times to benchmark the speed of the available convolution
and integration methods. The results of this benchmarking are saved, along with
the optimal method.

nbenchint Integer; the number of times to benchmark the speed of the available profile
integration methods. The results of this benchmarking are saved, along with the
optimal benchmarking method. Defaults to the value specified in ‘nbenchmark’.

nbenchconv Integer; the number of times to benchmark the speed of the available convo-
lution methods. The results of this benchmarking are saved, along with the
optimal method and any additional data required for efficient convolution (such
as the FFT of the PSF, if it is not variable). Defaults to the value specified in
‘nbenchmark’.

benchintmethods

List of strings specifying which profile integration methods to benchmark. See
profitBenchmark for details.

benchconvmethods

List of strings specifying which convolution methods to benchmark. See profitBenchmark
for details.

benchprecisions

List of floating point precisions to benchmark. Available options are "single"
and "double". Defaults to "double", which should be used unless you are certain
that single-precision roundoff errors are not important.

benchintprecisions

List of floating point precisions to benchmark profile integration with. Available
options are "single" and "double". Defaults to ‘benchprecisions’.

benchconvprecisions

List of floating point precisions to benchmark convolution with. Available op-
tions are "single" and "double". Defaults to ‘benchprecisions’.

benchopenclenvs

List of OpenCL environments to benchmark. Defaults to all available environ-
ments. The optimal environment will then be used for ‘openclenvint’ and
‘openclenvconv’, overriding any values set there.

printbenchmark Logical; flag to output a summary of benchmarking results. Default false.

printbenchint Logical; flag to output a summary of profile integration benchmarking results.
Defaults to ‘printbenchmark’.

printbenchconv Logical; flag to output a summary of convolution benchmarking results. De-
faults to ‘printbenchmark’.

profitSetupData 91

Details

A legal model list (‘modellist’) has the structure of, e.g., list(sersic, ferrer, psf, sky). At least one
of sersic, coresersic, moffat, ferrer, king, pointsource, psf or sky should be present. Each of these is
itself a list which contain vectors for each relevant parameter. All these vectors should be the same
length for each type of model structure.

The parameters that must be specified for ‘sersic’ are:

xcen Vector; x centres of the 2D Sersic profiles (can be fractional pixel positions).

ycen Vector; y centres of the 2D Sersic profiles (can be fractional pixel positions).

mag Vector; total magnitudes of the 2D Sersic profiles. Converted to flux using 10^(-0.4*(‘mag’-
‘magzero’)).

re Vector; effective radii of the 2D Sersic profiles

nser Vector; the Sersic indices of the 2D Sersic profiles

ang Vector; the orientation of the major axis of the profile in degrees. When plotted as an R image
the angle (theta) has the convention that 0= | (vertical), 45= \, 90= - (horizontal), 135= /, 180=
| (vertical). Values outside the range 0 <= ang <= 180 are allowed, but these get recomputed
as ang = ang %% 180.

axrat Vector; axial ratios of Sersic profiles defined as minor-axis/major-axis, i.e. 1 is a circle and
0 is a line.

box Vector; the boxiness of the Sersic profiles that trace contours of iso-flux, defined such that
r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When ‘box’=0 the iso-flux contours will be
normal ellipses, but modifications between -1<box<1 will produce visually boxy distortions.
Negative values have a pin-cushion effect, whereas positive values have a barrel effect (the
major and minor axes staying fixed in all cases).

The parameters that must be specified for ‘coresersic’ are:

xcen Vector; x centres of the 2D Sersic profiles (can be fractional pixel positions).

ycen Vector; y centres of the 2D Sersic profiles (can be fractional pixel positions).

mag Vector; total magnitudes of the 2D Sersic profiles. Converted to flux using 10^(-0.4*(‘mag’-
‘magzero’)).

re Vector; effective radii of the 2D Sersic profiles

rb Vector; transition radius of the Sersic profile (from inner power-law to outer Sersic).

nser Vector; the Sersic indices of the 2D Sersic profiles

a Vector; strength of transition from inner core to outer Sersic. Larger +ve means sharper.

b Vector; the inner power-law of the Core-Sersic. Less than 1 is an increasingly flat core.

ang Vector; the orientation of the major axis of the profile in degrees. When plotted as an R image
the angle (theta) has the convention that 0= | (vertical), 45= \, 90= - (horizontal), 135= /, 180=
| (vertical). Values outside the range 0 <= ang <= 180 are allowed, but these get recomputed
as ang = ang %% 180.

axrat Vector; axial ratios of Sersic profiles defined as minor-axis/major-axis, i.e. 1 is a circle and
0 is a line.

92 profitSetupData

box Vector; the boxiness of the Sersic profiles that trace contours of iso-flux, defined such that
r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When ‘box’=0 the iso-flux contours will be
normal ellipses, but modifications between -1<box<1 will produce visually boxy distortions.
Negative values have a pin-cushion effect, whereas positive values have a barrel effect (the
major and minor axes staying fixed in all cases).

The parameters that must be specified for ‘moffat’ are:

xcen Vector; x centres of the 2D Moffat profiles (can be fractional pixel positions).
ycen Vector; y centres of the 2D Moffat profiles (can be fractional pixel positions).
mag Vector; total magnitudes of the 2D Moffat profiles. Converted to flux using 10^(-0.4*(‘mag’-

‘magzero’)).
fwhm Vector; full width half max of the Moffat function.
con Vector; concentration parameter for Moffat functions. Must be larger than 1.
ang Vector; the orientation of the major axis of the profile in degrees. When plotted as an R image

the angle (theta) has the convention that 0= | (vertical), 45= \, 90= - (horizontal), 135= /, 180=
| (vertical). Values outside the range 0 <= ang <= 180 are allowed, but these get recomputed
as ang = ang %% 180.

axrat Vector; axial ratios of Moffat profiles defined as minor-axis/major-axis, i.e. 1 is a circle and
0 is a line.

box Vector; the boxiness of the Moffat profiles that trace contours of iso-flux, defined such that
r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When ‘box’=0 the iso-flux contours will be
normal ellipses, but modifications between -1<box<1 will produce visually boxy distortions.
Negative values have a pin-cushion effect, whereas positive values have a barrel effect (the
major and minor axes staying fixed in all cases).

The parameters that must be specified for ‘ferrer’ or ‘ferrers’ (either allowed) are:

xcen Vector; x centres of the 2D Ferrer profiles (can be fractional pixel positions).
ycen Vector; y centres of the 2D Ferrer profiles (can be fractional pixel positions).
mag Vector; total magnitudes of the 2D Ferrer profiles. Converted to flux using 10^(-0.4*(‘mag’-

‘magzero’)).
rout Vector; the outer limit of the Ferrer profile. Beyond this radius the profile is evaluated as zero.
a Vector; the global profile power-law slope. 0 would mean a flat top, and +ve increases in intensity

towards the centre.
b Vector; the strength of the profile truncation as it approaches ‘rout’.
ang Vector; the orientation of the major axis of the profile in degrees. When plotted as an R image

the angle (theta) has the convention that 0= | (vertical), 45= \, 90= - (horizontal), 135= /, 180=
| (vertical). Values outside the range 0 <= ang <= 180 are allowed, but these get recomputed
as ang = ang %% 180.

axrat Vector; axial ratios of Ferrer profiles defined as minor-axis/major-axis, i.e. 1 is a circle and
0 is a line.

box Vector; the boxiness of the Ferrer profiles that trace contours of iso-flux, defined such that
r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When ‘box’=0 the iso-flux contours will be
normal ellipses, but modifications between -1<box<1 will produce visually boxy distortions.
Negative values have a pin-cushion effect, whereas positive values have a barrel effect (the
major and minor axes staying fixed in all cases).

profitSetupData 93

The parameters that must be specified for ‘king’ are:

xcen Vector; x centres of the 2D Ferrer profiles (can be fractional pixel positions).

ycen Vector; y centres of the 2D Ferrer profiles (can be fractional pixel positions).

mag Vector; total magnitudes of the 2D Ferrer profiles. Converted to flux using 10^(-0.4*(‘mag’-
‘magzero’)).

rc Vector; the core radius of the King profile.

rt Vector, the truncation radius of the King profile. Beyond this radius the profile is evaluated as
zero.

a Vector; the power-law of the King profile.

ang Vector; the orientation of the major axis of the profile in degrees. When plotted as an R image
the angle (theta) has the convention that 0= | (vertical), 45= \, 90= - (horizontal), 135= /, 180=
| (vertical). Values outside the range 0 <= ang <= 180 are allowed, but these get recomputed
as ang = ang %% 180.

axrat Vector; axial ratios of Ferrer profiles defined as minor-axis/major-axis, i.e. 1 is a circle and
0 is a line.

box Vector; the boxiness of the Ferrer profiles that trace contours of iso-flux, defined such that
r[mod]=(x^(2+box)+y^(2+box))^(1/(2+box)). When ‘box’=0 the iso-flux contours will be
normal ellipses, but modifications between -1<box<1 will produce visually boxy distortions.
Negative values have a pin-cushion effect, whereas positive values have a barrel effect (the
major and minor axes staying fixed in all cases).

The parameters that must be specified for ‘pointsource’ (see profitMakePointSource for de-
tails) are:

xcen Vector of x centres of the PSFs (can be fractional pixel positions).

ycen Vectors of y centres of the PSFs (can be fractional pixel positions).

mag Vectors of total magnitudes of the PSFs. Converted to flux using 10^(-0.4*(‘mag’-‘magzero’)).

The parameters that may be specified for the ‘psf’ must be a valid model themselves. Using this
option allows users to specify an analytic (e.g. Moffat) PSF.

The parameter that must be specified for ‘sky’ is:

bg Value per pixel for the background. This should be the value as measured in the original image,
i.e. there is no need to worry about the effect of ‘magzero’.

An example of a legal model list structure is:

modellist = list(
sersic = list(
xcen = c(180.5, 50),
ycen = c(90, 50),
mag = c(15, 13),
re = c(140, 50),
nser = c(10, 4),
ang = c(60, 135),
axrat = c(0.5, 0.3),

94 profitSetupData

box = c(2,-2)
),
pointsource = list(
xcen = c(34,10,150),
ycen = c(74,120,130),
mag = c(10,13,16)
),
sky = list(
bg = 3e-12
),
)

The parameters to be fitted are defined in a list with the same format as above:

tofit=list(
sersic=list(
xcen= c(T,NA), #We fit for xcen and tie the two together
ycen= c(T,NA), #We fit for ycen and tie the two together
mag= c(T,T),
#Fit for both re= c(T,T),
#Fit for both nser= c(T,F), #Fit for bulge
ang= c(F,T), #Fit for disk
axrat= c(F,T), #Fit for disk
box= c(F,F)
#Fit for neither),
pointsource=list(
xcen = c(F,F,F),
ycen = c(F,F,F),
mag = c(F,F,F)
),
sky=list(
bg = F
)
)

Parameters that are better explored in log space are defined in a list with the same format as above:

tolog=list(
sersic=list(
xcen= c(F,F),
ycen= c(F,F),
mag= c(F,F),
re= c(T,T), #re is best fit in log space
nser= c(T,T), #nser is best fit in log space
ang= c(F,F),
axrat= c(T,T), #axrat is best fit in log space
box= c(F,F)
),
psf=list(

profitSetupData 95

xcen = c(F,F,F),
ycen = c(F,F,F),
mag = c(F,F,F)
),
sky=list(
bg = F
)
)

ProFit will only only use the priors function if specified:

priors=function(modellist,modellistinit,sigmas=c(2,2,2,2,5,5,1,1,1,1,30,30,0.3,0.3))
LL=sum(
dnorm(modellist$sersic$xcen,modellist$sersic$xcen,sigmas[1:2],log=TRUE),
dnorm(modellist$sersic$ycen,modellist$sersic$ycen,sigmas[3:4],log=TRUE),
dnorm(modellist$sersic$mag,modellist$sersic$mag,sigmas[5:6],log=TRUE),
dnorm(log10(modellist$sersic$re),log10(modellist$sersic$re),sigmas[7:8],log=TRUE),
dnorm(log10(modellist$sersic$nser),log10(modellist$sersic$nser),sigmas[9:10],log=TRUE),
dnorm(log10(modellist$sersic$axrat),log10(modellist$sersic$axrat),sigmas[13:14],log=TRUE)
)
return=LL

ProFit will only only use the intervals list if specified:

intervals=list(
sersic=list(
xcen=list(lim=c(0,300),lim=c(0,300)),
ycen=list(lim=c(0,300),lim=c(0,300)),
mag=list(lim=c(10,30),lim=c(10,30)),
re=list(lim=c(1,100),lim=c(1,100)),
nser=list(lim=c(0.5,20),lim=c(0.5,20)),
ang=list(lim=c(-180,360),lim=c(-180,360)),
axrat=list(lim=c(0.1,1),lim=c(0.1,1)),
box=list(lim=c(-1,1),lim=c(-1,1))
)
)

ProFit will only only use the constraints function if specified:

constraints=function(modellist)
if(modellist$sersic$re[1]>modellist$sersic$re[2])
modellist$sersic$re[1]=modellist$sersic$re[2]

return=modellist

By ProFit convention the bottom-left part of the bottom-left pixel when plotting the image matrix
is c(0,0) and the top-right part of the bottom-left pixel is c(1,1), i.e. the mid-point of pixels are half
integer values in x and y.

96 profitSetupData

To confuse things a bit, when R plots an image of a matrix it is transposed and re-ordered vertically
to how it appears if you print the matrix directly to screen, i.e. compare print(matrix(1:4,2,2))
and image(matrix(1:4,2,2)). The lowest value (1) is top-left when printed but bottom-left when
displayed using image (the red pixel). Both are "correct": the issue is whether you consider the first
element of a matrix to be the Cartesian x position (movement in x) or a row element (movement in
y). Matrices in maths are always written top-left first where the first argument refers to row number,
but images by convention are accessed in a Cartesian sense. Hence [3,4] in a maths matrix means 3
down and 4 right from the top-left, but 3 right and 4 up from the bottom-left in an image.

Value

List; complex structure of class profit.data containing:

init The initial parameters to use for fitting. These are parameters where ‘tofit’=TRUE,
and are extracted from ‘modellist’.

image The specified ‘image’ matrix.

mask The specified ‘mask’ matrix.

sigma The specified ‘sigma’ matrix.

segim The specified ‘segim’ matrix.

modellist The specified ‘modellist’ list.

psf The specified ‘psf’ matrix, if any.

psftype The type of PSF - "analytical" if supplied in ‘modellist’, "empirical" if sup-
plied in ‘psf’, or "none".

fitpsf Logical flag specifying whether the ‘modellist’ PSF has any parameters ‘tofit’.

algo.func The specified ‘algo.func’ flag.

mon.names Character vector of parameters to be passed when using the LA/LD algorithms.
Defaults to c("LL","LP","dof").

parm.names Character vector of parameter names to be passed when using the LA/LD algo-
rithms.

N The number of pixels that will be used in fitting, i.e. the number of image pixels
within the segmentation map, which is the same as sum(region).

region Logical matrix specifying which pixels are inside the fitting region.

calcregion Logical matrix specifying which pixels should have their model values calcu-
lated and be convolved by the ‘psf’.

usecalcregion Logical specifying whether the calcregion matrix should be used; it may be more
efficient not to use it.

convopt List including the optimal convolver object and its OpenCL environment (if
any).

benches List containing benchmarking results (if any).

tofit The specified ‘tofit’ list.

tolog The specified ‘tolog’ list.

priors The specified ‘priors’ function.

profitSetupData 97

intervals The specified ‘intervals’ list.

constraints The specified ‘constraints’ function.

like.func The specified ‘like.func’ flag.

magzero The specified ‘magzero’ scalar.

finesample The specified ‘finesample’ factor.

imagedim The dimensions of the ‘image’ matrix.

verbose The specified ‘verbose’ logical.

magmu The specified ‘magmu’ logical vector.

Notes

One of the list outputs of profitSetupData is the calcregion logical matrix. This tells the model
generation and convolution codes whether a particular pixel needs to be considered for fitting pur-
poses. It is computed by convolving the logical region matrix (which itself is the elements of
‘segim’ containing the galaxy to be fitted) with the ‘psf’. Values of the convolved matrix output
from profitConvolvePSF above 0 are necessary for accurate likelihood evaluation later, and have
their pixel value set to TRUE (or 1). This generally has the visual effect of expanding out the region
matrix with a square top-hat kernel the same size as the ‘psf’ matrix.

Author(s)

Aaron Robotham & Dan Taranu

See Also

profitMakeModel, profitSersic, profitCoreSersic, profitMoffat, profitFerrer, profitKing,
profitConvolvePSF

Examples

Load ProFit example data

There are 2 data source options: KiDS or SDSS (the galaxies are the same)

datasource='KiDS'

Now we can extract out the example files we have available for fitting by checking the
contents of the directory containing the example FITS files:

data('ExampleInit')
ExampleFiles=list.files(system.file("extdata",datasource,package="ProFit"))
ExampleIDs=unlist(strsplit(ExampleFiles[grep('fitim',ExampleFiles)],'fitim.fits'))
print(ExampleIDs)

There are 10 example galaxies included. Here we run example 1:

useID=ExampleIDs[1]

image = readFITS(system.file("extdata", paste(datasource,'/',useID,'fitim.fits',sep=''),

98 profitSetupData

package="ProFit"))$imDat
sigma = readFITS(system.file("extdata", paste(datasource,'/',useID,'sigma.fits',sep=''),
package="ProFit"))$imDat
segim = readFITS(system.file("extdata", paste(datasource,'/',useID,'segim.fits',sep=''),
package="ProFit"))$imDat
psf = readFITS(system.file("extdata", paste(datasource,'/',useID,'psfim.fits',sep=''),
package="ProFit"))$imDat

Very rough model (not meant to look too good yet):

useIDnum=as.integer(strsplit(useID,'G')[[1]][2])
useloc=which(ExampleInit$CATAID==useIDnum)

For our initial model we treat component 1 as the putitive bulge and componet 2 as
the putitive disk. We are going to attempt a fit where the disk is forced to have
nser=1 and the bulge has an axial ratio of 1.

modellist=list(
sersic=list(
xcen= c(dim(image)[1]/2, dim(image)[1]/2),
ycen= c(dim(image)[2]/2, dim(image)[2]/2),
mag= c(ExampleInit$sersic.mag1[useloc], ExampleInit$sersic.mag2[useloc]),
re= c(ExampleInit$sersic.re1[useloc], ExampleInit$sersic.re2[useloc])*

if(datasource=='KiDS'){1}else{0.2/0.339},
nser= c(ExampleInit$sersic.nser1[useloc], 1), #Disk is initially nser=1
ang= c(ExampleInit$sersic.ang2[useloc], ExampleInit$sersic.ang2[useloc]),
axrat= c(1, ExampleInit$sersic.axrat2[useloc]), #Bulge is initially axrat=1
box=c(0, 0)

)
)

The pure model (no PSF):
magimage(profitMakeModel(modellist,dim=dim(image)))

The original image:
magimage(image)

The convolved model (with PSF):
magimage(profitMakeModel(modellist,dim=dim(image),psf=psf))

What should we be fitting:

tofit=list(
sersic=list(

xcen= c(TRUE,NA), #We fit for xcen and tie the two together
ycen= c(TRUE,NA), #We fit for ycen and tie the two together
mag= c(TRUE,TRUE), #Fit for both
re= c(TRUE,TRUE), #Fit for both
nser= c(TRUE,FALSE), #Fit for bulge
ang= c(FALSE,TRUE), #Fit for disk
axrat= c(FALSE,TRUE), #Fit for disk
box= c(FALSE,FALSE) #Fit for neither

)

profitSetupData 99

)

What parameters should be fitted in log space:

tolog=list(
sersic=list(
xcen= c(FALSE,FALSE),
ycen= c(FALSE,FALSE),
mag= c(FALSE,FALSE),
re= c(TRUE,TRUE), #re is best fit in log space
nser= c(TRUE,TRUE), #nser is best fit in log space
ang= c(FALSE,FALSE),
axrat= c(TRUE,TRUE), #axrat is best fit in log space
box= c(FALSE,FALSE)

)
)

Setup the minimal data structure we need for likelihood.

Data=profitSetupData(image=image, sigma=sigma, segim=segim, psf=psf,
modellist=modellist, tofit=tofit, tolog=tolog, magzero=0, algo.func='optim', verbose=TRUE)

Finally, calcualte the likelihood and make a plot:

profitLikeModel(parm=Data$init, Data=Data, makeplots=TRUE)

Not run:
If you're brave and your software/drivers are configured correctly, try benchmarking
with OpenCL and OpenMP:
openclenvs = profitGetOpenCLEnvs(make.envs = TRUE)

Data=profitSetupData(image=image, sigma=sigma, segim=segim, psf=psf,
modellist=modellist, tofit=tofit, tolog=tolog, magzero=0, algo.func='optim', verbose=TRUE,
nbenchmark = 5L, benchconvmethods = profitAvailableConvolvers(),
benchintmethods = profitAvailableIntegrators(), benchopenclenvs = openclenvs,
printbenchmark = TRUE, omp_threads=4)

profitLikeModel(parm=Data$init, Data=Data, makeplots=TRUE, plotchisq=TRUE)

End(Not run)

Index

∗Topic FFTW
profitHasOpen, 49

∗Topic OpenCL
profitHasOpen, 49

∗Topic OpenMP
profitHasOpen, 49

∗Topic add
profitAddMats, 8

∗Topic datasets
ExampleInit, 7

∗Topic matrix
profitAddMats, 8

∗Topic plot
profitMakePlots, 69

∗Topic profile
ProFit-package, 3

BrokenExp (profitBrokenExp), 19
brokenexp (profitBrokenExp), 19
BrokenExponential (profitBrokenExp), 19
brokenexponential (profitBrokenExp), 19

Core-Sersic (profitCoreSersic), 27
core-sersic (profitCoreSersic), 27
CoreSersic (profitCoreSersic), 27
coresersic (profitCoreSersic), 27

ExampleInit, 7

Ferrer (profitFerrer), 45
ferrer (profitFerrer), 45
fft, 25

King (profitKing), 51
king (profitKing), 51

LaplaceApproximation, 54, 89
LaplacesDemon, 54, 89

magimage, 8, 20, 21, 26, 28, 46, 52, 61, 64, 72,
76, 85

Moffat (profitMoffat), 75
moffat (profitMoffat), 75

optim, 53

ProFit (ProFit-package), 3
profit (ProFit-package), 3
ProFit-package, 3
profitAddMats, 8
profitAvailableConvolvers, 9, 10–12, 58,

59
profitAvailableIntegrators, 10
profitBenchmark, 11, 17, 18, 30, 31, 34, 48
profitBenchmarkConv, 13, 25, 26, 59
profitBenchmarkResultBest, 17
profitBenchmarkResultStripPointers, 18
profitBrokenExp, 19
profitBruteConv, 14–16, 21, 24–26, 59
profitCheckIsPositiveInteger, 23
profitClearCache, 23, 78, 79
profitConvolve, 24, 58, 59
profitConvolvePSF, 14–16, 21, 22, 25, 50,

61, 73, 88, 97
profitCoreSersic, 27, 47, 77, 86, 97
profitCubaBrokenExp, 68
profitCubaBrokenExp (profitBrokenExp),

19
profitCubaCoreSersic, 52, 68
profitCubaCoreSersic

(profitCoreSersic), 27
profitCubaFerrer, 52, 68
profitCubaFerrer (profitFerrer), 45
profitCubaKing, 68
profitCubaKing (profitKing), 51
profitCubaMoffat, 52, 68
profitCubaMoffat (profitMoffat), 75
profitCubaSersic, 52, 68
profitCubaSersic (profitSersic), 84
profitDataBenchmark, 29, 34

100

INDEX 101

profitDataSetOptionsFromBenchmarks, 31,
34

profitDeprojectImageEllipse, 37
profitDownsample (profitsample), 83
profitEllipse, 38, 42
profitEllipsePlot, 39, 40, 41, 82, 83
profitFerrer, 21, 29, 45, 77, 86, 97
profitFlux2Mag, 47
profitFlux2SB (profitFlux2Mag), 47
profitGetOpenCLEnvs, 12, 18, 30, 48
profitHasFFTW, 10, 24, 59
profitHasFFTW (profitHasOpen), 49
profitHasOpen, 49
profitHasOpenCL, 10
profitHasOpenCL (profitHasOpen), 49
profitHasOpenMP (profitHasOpen), 49
profitInterp2d, 50
profitKing, 21, 29, 47, 51, 77, 86, 97
profitLikeModel, 53, 70, 74, 82, 83
profitMag2Flux (profitFlux2Mag), 47
profitMag2Mu, 56
profitMakeConvolver, 9, 10, 17, 24, 30, 31,

48, 58, 64, 68
profitMakeGaussianPSF, 60
profitMakeModel, 10–12, 16, 19–22, 27–29,

37, 38, 41, 45–47, 51, 52, 57–59, 62,
70, 72, 73, 75–79, 82–86, 97

profitMakePlots, 39, 42, 53, 54, 69
profitMakePointSource, 8, 9, 22, 26, 50, 59,

61, 67, 71, 93
profitMakePriors, 73
profitMoffat, 21, 29, 47, 75, 86, 97
profitMu2Mag (profitMag2Mu), 56
profitOpenCLEnv, 17, 30, 48, 49, 58, 59, 64,

77, 79, 90
profitOpenCLEnvInfo, 48, 49, 78, 79
profitParseLikefunc, 80
profitPoissonMonteCarlo, 81
profitRadialBrokenExp

(profitBrokenExp), 19
profitRadialCoreSersic

(profitCoreSersic), 27
profitRadialFerrer (profitFerrer), 45
profitRadialKing (profitKing), 51
profitRadialMoffat (profitMoffat), 75
profitRadialSersic (profitSersic), 84
profitRemakeModellist, 40–42, 68, 82
profitsample, 83

profitSB2Flux (profitFlux2Mag), 47
profitSersic, 21, 29, 47, 77, 84, 97
profitSetupData, 11, 12, 14, 16, 17, 29, 31,

34, 41, 53, 54, 63, 73, 74, 78, 79, 82,
83, 87, 89

profitUpsample (profitsample), 83

Sersic (profitSersic), 84
sersic (profitSersic), 84

	ProFit-package
	ExampleInit
	profitAddMats
	profitAvailableConvolvers
	profitAvailableIntegrators
	profitBenchmark
	profitBenchmarkConv
	profitBenchmarkResultBest
	profitBenchmarkResultStripPointers
	profitBrokenExp
	profitBruteConv
	profitCheckIsPositiveInteger
	profitClearCache
	profitConvolve
	profitConvolvePSF
	profitCoreSersic
	profitDataBenchmark
	profitDataSetOptionsFromBenchmarks
	profitDeprojectImageEllipse
	profitEllipse
	profitEllipsePlot
	profitFerrer
	profitFlux2Mag
	profitGetOpenCLEnvs
	profitHasOpen
	profitInterp2d
	profitKing
	profitLikeModel
	profitMag2Mu
	profitMakeConvolver
	profitMakeGaussianPSF
	profitMakeModel
	profitMakePlots
	profitMakePointSource
	profitMakePriors
	profitMoffat
	profitOpenCLEnv
	profitOpenCLEnvInfo
	profitParseLikefunc
	profitPoissonMonteCarlo
	profitRemakeModellist
	profitsample
	profitSersic
	profitSetupData
	Index

