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Abstract

In this paper we introduce a new R package, PrevMap, for the analysis of spatially
referenced prevalence data, including both classical maximum likelihood and Bayesian
approaches to parameter estimation and plug-in or Bayesian prediction. More specifically,
the new package implements fitting of geostatistical models for binomial data, based on
two distinct approaches. The first approach uses a generalized linear mixed model with
logistic link function, binomial error distribution and a Gaussian spatial process as a
stochastic component in the linear predictor. A simpler, but approximate, alternative
approach consists of fitting a linear Gaussian model to empirical-logit-transformed data.
The package also includes implementations of convolution-based low-rank approximations
to the Gaussian spatial process to enable computationally efficient analysis of large spatial
data-sets. We illustrate the use of the package through the analysis of Loa loa prevalence
data from Cameroon and Nigeria. We illustrate the use of the low rank approximation
using a simulated geostatistical data-set.
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1. Introduction

This article introduces PrevMap, an R package for classical and Bayesian inference on spa-
tially referenced prevalence data. The package implements fitting and spatial prediction for
the standard geostatistical model used in the context of prevalence mapping (Diggle, Tawn,
and Moyeed 1998). This model falls within the generalized linear mixed model framework
with binomial error distribution, logistic-link function and a latent Gaussian spatial process
in the linear predictor. For classical analysis, we estimate parameters by Monte Carlo max-
imum likelihood (MCML), which uses importance sampling techniques so as to approximate
the high-dimensional intractable integral that defines the likelihood function; see for example
Christensen (2004). Plug-in spatial prediction is then carried out by fixing the model pa-
rameters at the corresponding MCML estimates. In order to account for uncertainty in the
model parameter estimates, we also consider a Bayesian approach in which plug-in predic-
tive distributions at different values of the model parameters are weighted according to their
posterior probabilities. A simpler, approximate procedure consists of fitting a geostatistical
linear Gaussian model to empirical-logit-transformed prevalences.
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PrevMap geoR geoRglm geostatsp geoBayes spBayes

Binomial models X ✕ X X X X

Likelihood-based inference (binomial) X ✕ X ✕ ✕ ✕

Bayesian inference (binomial) X ✕ X X X X

Nugget effect (binomial) X ✕ X X X ✕

Low-rank approximations. X ✕ ✕ ✕ ✕ X

Fitting of two-level models. X ✕ ✕ X ✕ ✕

Non-linear prediction X X∗ X ✕ X X

Multivariate prediction X X∗ X ✕ X X

Anisotropy ✕ X∗ X X∗
✕ ✕

Non-Matérn correlation functions ✕ X∗ X ✕ X X

Table 1: List of functionalities that are currently available (X) and not available (✕) in
PrevMap and other R packages for geostatistical analysis.

* Available only for the linear model.

Table 1 summarises the common functionalities required for prevalence mapping that are
available in PrevMap and the existing packages geoR (Diggle and Ribeiro 2007; Ribeiro and
Diggle 2001), geoRglm (Christensen and Ribeiro 2002), geostatsp (Brown 2015), geoBayes
and spBayes (Finley, Banerjee, and Carlin 2007; Finley, Banerjee, and Gelfand 2015). Over-
all, PrevMap provides the most extensive functionality. Specifically, PrevMap provides the
following features: implementation of a convolution-based low-rank approximation that can
be used to reduce the computational burden when analysing large spatial data-sets; accurate
numerical computation of MCML standard errors for both regression and covariance parame-
ters estimates; inclusion of both individual-level and location-level explanatory variables with
random effects defined at location-level when repeated observations are made at the same
location; more flexible prior specifications for the covariance parameters; implementation of
an efficient Hamiltonian Markov chain Monte Carlo algorithm for Bayesian parameter esti-
mation.

The paper is structured as follows. In Section 2, we briefly introduce the geostatistical bino-
mial logistic (henceforth BL) model, describe methods for classical and Bayesian inference,
and outline approximate procedures based on the empirical logit transformation and low-rank
approximations. Section 3 describes geostatistical analyses of Loa loa prevalence data using
either the approximate linear model for the empirical logit transformation of prevalence or
the exact BL model using Monte Carlo methods, both for classical and Bayesian analysis.
In Section 4, we illustratethe use of the low-rank approximation by fitting a BL model to a
simulated geostatistical data-set. Section 5 is a concluding discussion on planned extensions
to the package.

2. Methodological framework

The ingredients of a geostatistical BL model are: random variables Yi of positive counts,
binomial denominators mi, explanatory variables di ∈ R

p and associated sampling locations
xi : i = 1, . . . , n in a given region of interest A ⊆ R

2. Conditionally on a zero-mean Gaussian
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process S(x) and mutually independent zero-mean Gaussian variables Zi, Yi follows a binomial
distribution with mean E[Yi|S(xi), Zi] = mipi such that

log

{

pi
1− pi

}

= Ti = d(xi)
⊤β + S(xi) + Zi, (1)

where we set di = d(xi) to emphasize the spatial context. In (1), we write τ2 for the variance
of Zi and model S(x) as a stationary isotropic Gaussian process with variance σ2 and Matérn
(1986) correlation function given by

ρ(u;φ, κ) = {2k−1Γ(κ)}−1(u/φ)κKκ(u/φ), u > 0,

where φ > 0 is a scale parameter, Kκ(·) is the modified Bessel function of the second kind
of order κ > 0 and u is the distance between two sampling locations. The shape parameter
κ determines the smoothness of S(x), in the sense that S(x) is ⌈κ⌉ − 1 times mean-square
differentiable, with ⌈κ⌉ denoting the smallest integer greater than or equal to κ.

In most of the functions available in PrevMap, the Matérn shape parameter κ is treated as
fixed. One reason for this is that, as shown by Zhang (2004), not all of the three parameters
σ2, φ and κ can be consistently estimated under in-fill asymptotics, and in practice this
translates to κ often being poorly identified. Additionally, the parameter κ is rarely of direct
scientific interest. We therefore recommend either fixing κ at a plausible value, or considering
a discrete set of values e.g., {1/2, 3/2, 5/2} corresponding to different levels of smoothness,
and profiling on κ.

2.1. Monte Carlo maximum likelihood

The likelihood function for the parameters β and θ⊤ = (σ2, φ, τ2) is obtained by integrating
out the random effects in Ti as defined by Equation 1. Let D denote the n by p matrix
of explanatory variables and y⊤ = (y1, . . . , yn) the vector of binomial observations. The
marginal distribution of T is multivariate Gaussian with mean vector Dβ and covariance
matrix Σ(θ) with diagonal elements σ2 + τ2 and off-diagonal elements σ2ρ(uij), where uij is
the distance between locations xi and xj . The conditional distribution of Y ⊤ = (Y1, . . . , Yn)
given T⊤ = t⊤ = (t1, . . . , tn) is

f(y|t) =
n
∏

i=1

f(yi|ti), (2)

a product of independent binomial probability functions. The likelihood function for β and θ
follows as

L(β, θ) = f(y;β, θ) =

∫

Rn

N(t;Dβ,Σ(θ))f(y|t) dt (3)

where N(·;µ,Σ) is the density function of a multivariate Gaussian distribution with mean
vector µ and covariance matrix Σ.

The MCML method (Geyer and Thompson 1992; Geyer 1994, 1996, 1999) uses conditional
simulation from the distribution of T given Y = y to approximate the high-dimensional
integral in Equation 3. Specifically, the likelihood function can be rewritten as

L(β, θ) =

∫

Rn

N(t;Dβ,Σ(θ))f(y|t)

N(t;Dβ0,Σ(θ0))f(y|t)
f(y, t) dt

∝

∫

Rn

N(t;Dβ,Σ(θ))

N(t;Dβ0,Σ(θ0))
f(t|y) dt = ET |y

[

N(t;Dβ,Σ(θ))

N(t;Dβ0,Σ(θ0))

]

(4)
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where f(y, t) = N(t;Dβ0,Σ(θ0))f(y|t) is the joint distribution of Y and T for pre-defined,
fixed values of β0 and θ0. We use a Markov Chain Monte Carlo (MCMC) algorithm to obtain
m samples t(i) from the conditional distribution of T given Y = y under β0 and θ0 and
approximate Equation 4 with

Lm(β, θ) =
1

m

n
∑

i=1

N(t(i);Dβ,Σ(θ))

N(t(i);Dβ0,Σ(θ0))
. (5)

Note that Lm(β, θ) is a consistent estimator of L(β, θ), whether or not the samples t(i) are
correlated. The optimal choices for β0 and θ0 are the maximum likelihood estimates of β
and θ, for which maxβ,θ Lm(β, θ) → 1 as m → ∞. Since our choices for β0 and θ0 will

necessarily differ from the actual maximum likelihood estimates, the distance of Lm(β̂m, θ̂m)
from 1, where β̂m and θ̂m are the MCML estimates, provides a measure of the quality of
the Monte Carlo approximation. In practice, we embed the maximisation of Lm(β, θ) within
the following iterative procedure. Let β̂m and θ̂m denote the values that maximise Lm(β, θ)
using an initial guess at suitable values β0 and θ0, repeat the maximisation with β0 = β̂m and
θ0 = θ̂m and continue until convergence.

For maximization of the approximation to the log-likelihood lm(β, θ) = logLm(β, θ) in Pre-

vMap, the user can choose between a BFGS algorithm or unconstrained optimization with
PORT routines. Let ψ = log θ; analytical expressions for the first and second derivatives of
lm(β, ψ) with respect to β and ψ are internally passed to the optimization functions maxBFGS
of the maxLik package (Henningsen and Toomet 2011) in the former case and to the nlminb
function in the latter. This can be very useful in order better to locate the global maximum
on a relatively flat likelihood surface, as it is often the case for the ψ parameter. The MCML
standard errors are then estimated by taking the square-roots of the diagonal elements of the
inverse of the negative Hessian of lm(β̂m, ψ̂m). The inherent accuracy of this approximation
for the standard errors is context-specific in addition to being affected by the Monte Carlo
error. As a partial check, the resulting standard errors for β are typically larger than those
estimated using an ordinary logistic regression. In the examples of Section 3.3 and Section 4,
the number of simulated samples is sufficiently large to make the Monte Carlo error negligible.

In the PrevMap package, conditional simulation of T given y with fixed parameters β and θ
is implemented by the function Laplace.sampling. This function uses a Langevin-Hastings
algorithm to update the random variable T̂ = Σ̂1/2(T− t̂), where t̂ and Σ̂ are, respectively, the
mode and the inverse of the negative Hessian of the density of the conditional distribution.
The objective of this linear transformation is to break the dependence between the different
components of T so as to allow for faster convergence of the MCMC algorithm. However, when
using the function binomial.logistic.MCML for parameter estimation, conditional simulation
is carried out internally; see Section 3.3.1.

2.2. Bayesian inference

In the Bayesian framework, a joint prior distribution for β and θ is combined with the likeli-
hood function through Bayes’ theorem so as to obtain the corresponding posterior distribution.
We assume that the prior distributions for θ and β are of the form

θ ∼ g(·),

β|σ2 ∼ N(·; ξ, σ2Ω)



Emanuele Giorgi, Peter J. Diggle 5

Function Model Method of inference Type of use

binomial.logistic.MCML Binomial Classical Parameter estimation
binomial.logistic.Bayes Binomial Bayesian Parameter estimation
linear.model.MLE Linear Classical Parameter estimation
linear.model.Bayes Linear Bayesian Parameter estimation
spatial.pred.binomial.MCML Binomial Classical Spatial prediction
spatial.pred.binomial.Bayes Binomial Bayesian Spatial prediction
spatial.pred.linear.MLE Linear Classical Spatial prediction
spatial.pred.linear.Bayes Linear Bayesian Spatial prediction

Table 2: Some of the main functions available in the PrevMap package. Note that all of the
listed functions include an option to use a low-rank approximation procedure.

where g(·) can be any distribution for θ, and ξ and Ω are the mean vector and a p by p
covariance matrix for the Gaussian prior of β. The posterior distribution for β, θ and T is
given by

π(β, θ, t|y) ∝ g(θ)N(β; ξ, σ2Ω)N(t;Dβ,Σ(θ))f(y|t). (6)

The function binomial.logistic.Bayes can be used to obtain samples from the above pos-
terior distribution. This uses an MCMC algorithm, where θ, β and T are updated in turn
using the following procedure.

1. Initialise β, θ and T .

2. Following the procedure proposed by Christensen, Roberts, and Sköld (2006), use the
following re-parametrization for the covariance parameters

(θ̃1, θ̃2, θ̃3) = (log σ, log(σ2/φ2κ), log τ2)

and update each of them in turn using a random-walk Metropolis Hastings (RWMH).
In each of the three RWMH for θ̃1, θ̃2 and θ̃3, the standard deviation, h say, of the
Gaussian proposal at i-th iteration is given by

hi = hi−1 + c1i
−c2(αi − 0.45), (7)

where c1 > 0 and c2 ∈ (0, 1] are pre-defined constants, αi is the acceptance probability
at the i-th iteration and 0.45 is the optimal acceptance probability for a univariate
Gaussian distribution.

3. Update β using a Gibbs step. The required conditional distribution of β given θ and T
is Gaussian, independent of y and with mean ξ̃ and covariance matrix σ2Ω̃ given by

ξ̃ = Ω̃(Ω−1ξ +D⊤R(θ)−1T )

σ2Ω̃ = σ2(Ω−1 +D⊤R(θ)−1D)−1,

where σ2R(θ) = Σ(θ).
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4. Update the distribution of T given β, θ and y using a Hamiltonian Monte Carlo algo-
rithm (Neal 2011). Specifically, let H(t, u) be the Hamiltonian function

H(t, u) = u⊤u/2− log f(t|y, β, θ),

where u ∈ R
n is the vector of the momentum variables and f(t|y, β, θ) is the conditional

density of T given β, θ and y. The partial derivatives of H(u, t) determine how u and
t change over time v according to the Hamiltonian equations

dti
dv

=
∂H

∂ui
,

dui
dv

= −
∂H

∂ti

for i = 1, . . . , n. In order to implement the Hamiltonian dynamic, the above differential
equations are discretized using the leapfrog method (Neal 2011, pages 121-122) and
approximate solutions are then found.

Two auxiliary functions, control.prior and control.mcmc.Bayes, define prior distributions
and tuning parameters for the above MCMC scheme.

2.3. Empirical logit transformation

An alternative approach to exact fitting methods is to use a trans-Gaussian approximation
of the model in Equation 1. This consists of fitting a linear model to the empirical logit
transformation of the data,

Ỹi = log

(

Yi + 1/2

mi − Yi + 1/2

)

: i = 1, . . . , n. (8)

The method then assumes that Ỹi|S(xi) ∼ N(d(xi)
⊤β+S(xi), τ

2) with S(x) having the same
properties as previously defined. Guidance on when this model can be used safely is given by
Stanton and Diggle (2013).

In the PrevMap package the empirical logit transformation is implemented both for classical
and Bayesian inference in the functions linear.model.MLE and linear.model.Bayes.

2.4. Low-rank approximation

The Gaussian process S(x) in Equation 1 can be represented as a convolution of Gaussian
noise (Higdon 1998, 2002) ,

S(x) =

∫

R2

K(‖x− t‖;φ, κ) dB(t) (9)

where B is Brownian motion, ‖ · ‖ is the Euclidean distance and K(·) is the Matérn kernel
given by the following expression

K(u;φ, κ) =
Γ(κ+ 1)1/2κ(κ+1)/4u(κ−1)/2

π1/2Γ((κ+ 1)/2)Γ(κ)1/2(2κ1/2φ)(κ+1)/2
Kκ(u/φ), u > 0. (10)
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Let (x̃1, . . . , x̃r) be a grid of spatial knots. By discretization of Equation 9, and for r sufficiently
large, we obtain a low-rank approximation

S(x) ≈

r
∑

i=1

K(‖x− x̃i‖;φ, κ)Ui, (11)

where the Ui are independent zero-mean Gaussian variables with variance σ2. This approx-
imation is particularly beneficial for relatively large values of the scale parameter φ, when a
small number of spatial knots is required to give a good approximation over the study-region.
Note also that the number of spatial knots r is independent of the sample size n, making this
approach computationally attractive when n is large.

Since the resulting approximation in Equation 11 is no longer a stationary process, we adjust
the value of σ2 by multiplying it by the following quantity

1

n

n
∑

i=1

m
∑

j=1

K(‖x̃j − x̃i‖;φ, κ)
2.

The adjusted value of σ2 is then a closer approximation to the actual variance of the Gaussian
process S(x).

Different implementations of this method are possible, depending on whether we use an exact
fitting method or an empirical logit approximation. In the PrevMap package, low-rank ap-
proximations can be used in each of the fitting functions listed in Table 2; we give an example
in Section 4.

Implementations of the low-rank approximation for the BL and linear model are as follows.

❼ BL model. In this implementation the nugget effect is not included, hence τ2 = 0. For
both the classical and Bayesian analysis, conditional simulation from the distribution of
the random effect U given the data y (and the model parameters in the Bayesian case)
is used, hence avoiding matrix inversion.

❼ Linear model. The low-rank approximation is here used for the empirical logit trans-
formation of prevalence. In this case τ2 > 0, since the nugget effect is now a proxy for
binomial sampling variation. Inversion of the covariance matrix and computation of the
determinant are simplified as follows. Let K(θ) denote the n by r kernel matrix. The
covariance matrix now assumes the form

Σ(θ) = σ2K(θ)K(θ)⊤ + τ2In

where In is the n by n identity matrix. The Woodbury identity for matrix inversion
gives

Σ(θ)−1 = σ2ν−2(In − ν−2K(θ)(ν−2K(θ)⊤K(θ) + Ir)
−1K(θ)⊤)

where ν2 = τ2/σ2. Inversion of Σ(θ) now requires inversion of an r by r matrix. Com-
putation of the determinant, denoted by | · |, can also be simplified by using Sylvester’s
determinant theorem. This gives

|Σ(θ)| = |σ2K(θ)K(θ)⊤ + τ2In|

= τ2n|ν−2K(θ)⊤K(θ) + Ir|,
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which again reduces the dimensionality of the required matrix operations from n by n
to r by r.

2.5. Spatial prediction

We now consider the prediction of T ∗ = (T (xn+1), . . . , T (xn+q))
⊤ at q additional locations

not included in the data. This requires all relevant explanatory variables to be available at
the prediction locations. We do not include the mutually independent random variables Zi

in Equation 1 as part of our target for prediction, hence T (xn+i) = d(xn+i)
⊤β + S(xn+i) for

i = 1, . . . , q.

Conditionally on T⊤ = (T1, . . . , Tn), β, θ and y, the target for prediction T ∗ follows a multi-
variate Gaussian distribution with mean and covariance matrix

µ∗(T ) = D∗β + CΣ−1(T −Dβ), (12)

Σ∗ = V − CΣ−1C⊤, (13)

where C is the cross-covariance matrix between T and T ∗, V is the covariance matrix of T ∗

and D∗ is a q by p matrix of explanatory variables at the prediction locations. Let T ∗
(j) denote

the j-th simulated sampled from the posterior distribution of T ∗ for j = 1, . . . ,m. If the
sample mean is to be used as a point predictor of T , the package uses the following result to
reduce the associated Monte Carlo error,

ET ∗|yE[T ∗] = ET,β,θ|y[ET ∗|T,β,θ,y[T
∗]] = ET,β,θ|y[µ

∗(T )] ≈
1

m

m
∑

j=1

µ∗(T(j)).

Prediction of the functional W (T ∗)⊤ = (W (T (xn+1)), . . . ,W (T (xn+q))) follows immediately
by computing W(j) = W (T ∗

(j)) for j = 1, . . . ,m. The PrevMap package provides automatic
computation of the following functionals.

❼ Prevalence: W (T (xn+i)) = exp{T (xn+i)}/(1 + exp{T (xn+i)}).

❼ Odds: W (Tn+i) = exp{T (xn+i)}. Let σ2∗ = diag(Σ∗) denote the vector of conditional
variances. In this case, the Monte Carlo error in the computation of the posterior mean
is reduced by noticing that ET ∗|T,β,θ,y[exp{T

∗}] = exp{µ∗(T ) + σ2∗/2}, hence

ET ∗|y[exp{T
∗}] ≈

1

m

m
∑

j=1

exp{µ∗(T(j)) + σ2∗(j)/2}.

Another summary of the posterior distribution that is often relevant, particularly in problems
of hotspot detection, is the exceedance probability P (T (xn+i) > l | y) for a given threshold l
and i = 1, . . . , q. We estimate this as

1

m

m
∑

j=1

I
(

T(j)(xn+i) > l
)

,

where I(a > l) is 1 if a > l and 0 otherwise, and T(j)(xn+i) is the i-th element of T ∗
(j).
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The spatial.pred.binomial.MCML and spatial.pred.binomial.Bayes functions can be
used for classical and Bayesian spatial prediction, respectively. As we later illustrate, one of
the available options is also the computation of either joint or marginal predictions. For exam-
ple, joint predictions are needed when the target for prediction is an average over a sub-region.
Spatial prediction for the empirical logit transformation using classical and Bayesian ap-
proaches is implemented in the spatial.pred.linear.MLE and spatial.pred.linear.Bayes
functions, respectively. Low-rank approximations for each of the above functions are also
available; see Section 3.3.

3. Example: Loa loa prevalence mapping

The data for this example relate to a study of the prevalence of Loa loa (eyeworm) in a series of
surveys undertaken in 197 villages in Cameroon and southern Nigeria; see Diggle, Thomson,
Christensen, Rowlingson, Obsomer, Gardon, Wanji, Takougang, Enyong, Kamgno, Remme,
Boussinesq, and Molyneux (2007) for more details. Figure 2(a) shows the locations of the
sampled villages.

3.1. Exploratory analysis

Exploratory analysis is useful under both classical and Bayesian inferential frameworks, to
identify a provisional model for the data. under the classical framework, initial values for the
model parameters are also needed for numerical optimisation of the likelihood. Initial values
for the regression coefficients can be easily obtained from an ordinary logistic regression
fit. Choosing initial values for the covariance parameters is less straightforward. The shape
parameter κ of the Matérn function is typically chosen from a discrete set of candidate values,
which can be compared by evaluating a profile likelihood for κ based on the empirical logit
transformation of the observed prevalence, as in the following example.

R> library("PrevMap")

R> data("loaloa")

R> loaloa$logit <- log((loaloa$NO_INF + 0.5)/

+ (loaloa$NO_EXAM - loaloa$NO_INF + 0.5))

R> profile.kappa <- shape.matern(formula = logit ~ 1,

+ coords = ~ LONGITUDE + LATITUDE,

+ data = loaloa, set.kappa = seq(0.2,1.5, length = 15),

+ start.par = c(0.2,0.05), coverage = 0.95)

R>

R> c(profile.kappa$lower, profile.kappa$upper)

[1] 0.2140705 1.1044392

R> profile.kappa$kappa.hat

[1] 0.4991899

The shape.matern function evaluates the profile likelihood for κ and obtains a corresponding
confidence interval with coverage specified by the argument coverage. The set of values that
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Figure 1: Profile likelihood for the shape parameter κ of the Matérn covariance function,
obtained using the function shape.matern; the profile likelihood (black solid line) is interpo-
lated by a spline (red solid line), which is then used to obtain a confidence interval of coverage
95% (vertical dashed lines).

Figure 2: (a) Sampling locations for the Loa loa data. (b) Empirical variogram for the
empirical logit transformation of the observed prevalence with theoretical variogram (solid
line) obtained by least-squares estimation.
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are used for evaluation of the profile likelihood is specified through the set.kappa argument.
Computation of the confidence interval uses the interpolated profile log-likelihood as shown
in Figure 1: the red line corresponds to an interpolating spline and the likelihood threshold,
denoted by the horizontal dashed line, is obtained using the asymptotic distribution of a chi-
squared with one degree of freedom. Since the maximum likelihood estimate is very close to
1/2, we then fix the shape parameter κ at this value for the subsequent analysis.

The package geoR provides several functions that are useful for an initial exploratory analysis
of geostatistical data. For example, using the function variofit, a least-squares estimation
of the empirical variogram can be used in order to choose initial values for the covariance
parameters of the Gaussian spatial process.

R> library("geoR")

R> coords <- as.matrix(loaloa[, c("LONGITUDE", "LATITUDE")])

R> vari <- variog(coords = coords, data = loaloa$logit,

+ uvec = c(0, 0.1, 0.15, 0.2, 0.4, 0.8, 1.4, 1.8, 2, 2.5, 3))

R> vari.fit <- variofit(vari, ini.cov.pars = c(2, 0.2),

+ cov.model = "matern",

+ fix.nugget = FALSE, nugget = 0 ,

+ fix.kappa = TRUE, kappa = 0.5)

R> par(mfrow = c(1,2))

R> plot(coords, pch = 20, asp = 1, cex = 0.5, main = "(a)")

R> plot(vari, main = "(b)")

R> lines(vari.fit)

R> vari.fit

variofit: model parameters estimated by WLS (weighted least squares):

covariance model is: matern with fixed kappa = 0.5 (exponential)

parameter estimates:

tausq sigmasq phi

0.1554 2.0827 0.1890

Practical Range with cor = 0.05 for asymptotic range: 0.5662674

variofit: minimised weighted sum of squares = 780.6663

The above code computes the empirical logit transformation of the observed Loa loa preva-
lence, uses this to obtain the empirical variogram with the variog function and fits an ex-
ponential correlation function to the empirical variogram with the variofit function, which
uses a least squares curve-fitting criterion. The results are shown in Figure 2(b).

3.2. Linear model

In this section we show how to fit a linear model with Matérn correlation function to the
empirical logit transformation of the Loa loa data using the maximum likelihood method.
The linear.model.MLE function has its counterpart in the likfit function in geoR but,
unlike likfit, uses analytic expressions for the gradient function and Hessian matrix, and
delivers an estimated covariance matrix of the maximum likelihood estimates accordingly. As
shown in the next section, the binomial.logistic.MCML function uses the same approach in
fitting a BL model.
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R> fit.MLE <- linear.model.MLE(formula = logit ~ 1,

+ coords = ~ LONGITUDE + LATITUDE, data = loaloa,

+ start.cov.pars = c(0.2, 0.15), kappa = 0.5)

R>

R> summary(fit.MLE, log.cov.pars = FALSE)

Geostatistical linear Gaussian model

Call:

geo.linear.MLE(formula = formula, coords = coords, data = data,

kappa = kappa, fixed.rel.nugget = fixed.rel.nugget,

start.cov.pars = start.cov.pars,

method = method)

Estimate StdErr z.value p.value

(Intercept) -2.2986 0.5469 -4.203 2.634e-05 ***

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Log-likelihood: -94.34047

Covariance parameters Matern function (kappa = 0.5)

Estimate StdErr

sigma^2 2.45148 0.1393

phi 0.84398 0.4933

tau^2 0.36865 1.1717

Legend:

sigma^2 = variance of the Gaussian process

phi = scale of the spatial correlation

tau^2 = variance of the nugget effect

The first argument of linear.model.MLE specifies the covariates used in the regression as
a formula object; in this case formula = logit ~ 1 since we only fit an intercept. The
argument start.cov.pars provides the initial values of φ and ν2(= τ2/σ2), respectively,
used in the optimization algorithm. The argument fixed.rel.nugget allows the relative
variance of the nugget effect ν2 to be fixed if desired. Additionally, two different maximisation
algorithms are available: if method = "BFGS" (set by default), the maxBFGS function in the
maxLik package is used, otherwise method = "nlminb" and the nlminb function is then used
for unconstrained optimization using PORT routines. When calling a summary of the fitted
model, estimates and standard errors of the covariance parameters are given on the log-scale
by default. Setting log.scale = FALSE gives estimates and standard errors on the original
scale.

The function loglik.linear.model can be used either for computation of the profile likeli-
hood for φ and/or ν2 or for evaluation of the likelihood keeping the other parameters fixed.
The auxiliary function control.profile is used to define the set of values for φ and/or ν2

used in the evaluation of the likelihood, and the fixed values for β and σ2, if necessary. The
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Figure 3: Profile log-likelihood for ν2 (left panel) and (ν2, φ) (right panel) obtained using the
function loglik.linear.model.

shape parameter κ is also fixed at the value defined in the fitted model object that must be
specified as first argument of loglik.linear.model.

R> cp1 <- control.profile(rel.nugget = exp(seq(-5, 0, length = 20)))

Control profile: parameters have been set for

evaluation of the profile log-likelihood.

R> cp2 <- control.profile(rel.nugget = exp(seq(-5, 0, length = 20)),

+ phi = exp(seq(-4, 4, length = 20)))

Control profile: parameters have been set for

evaluation of the profile log-likelihood.

R> lp1 <- loglik.linear.model(fit.MLE, cp1, plot.profile = FALSE)

R>

R> lp2 <- loglik.linear.model(fit.MLE, cp2, plot.profile = FALSE)

R>

R> par(mfrow = c(1, 2))

R> plot(lp1, type = "l", log.scale = TRUE, xlab = expression(log(nu^2)),

+ ylab = "log-likelihood",

+ main = expression("Profile likelihood for" ~ nu^2))

R> plot(lp2, log.scale = TRUE, xlab = expression(log(phi)),

+ ylab = expression(log(nu^2)),

+ main = expression("Profile likelihood for" ~ nu^2 ~ "and" ~ phi))
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The resulting plots of the profile log-likelihood for ν2 and the profile log-likelihood surface of
(ν2, φ) are shown in Figure 3. These are generated using the function plot.profile.PrevMap

as an S3 method, in which the logical argument log.scale can be set to TRUE in order to plot
the profile likelihood on the log-scale of the chosen parameters. Likelihood-based confidence
intervals for φ or ν2 can also be obtained by using the loglik.ci function. As with the
shape.matern function, the loglik.ci function uses a spline to interpolate the univariate
profile likelihood and obtain a confidence interval of coverage specified by coverage.

R> ci0.95 <- loglik.ci(lp1, coverage = 0.95, plot.spline.profile = FALSE)

Likelihood-based 95% confidence interval: (0.04460758, 0.2936487)

3.3. Binomial logistic model

We now show how to fit a BL model to the Loa loa data using either the MCML method
(Section 3.3.1) or a Bayesian approach (Section 3.3.2).

Likelihood-based analysis

For the MCML method, we set the parameters of the importance sampling distribution, β0
and θ0, to the estimates reported in Section 3.1 using ordinary logistic regression and a least
squares fit to the variogram, respectively.

R> fit.glm <- glm(cbind(NO_INF, NO_EXAM - NO_INF) ~ 1, data = loaloa,

+ family = binomial)

R> par0 <- c(coef(fit.glm), vari.fit$cov.pars, vari.fit$nugget)

R> c.mcmc <- control.mcmc.MCML(n.sim = 10000, burnin = 2000,

+ thin = 8, h = (1.65)/(nrow(loaloa) ^ (1/6)))

R> fit.MCML1 <- binomial.logistic.MCML(formula = NO_INF ~ 1,

+ units.m = ~ NO_EXAM, par0 = par0,

+ coords = ~ LONGITUDE + LATITUDE, data = loaloa,

+ control.mcmc = c.mcmc,

+ kappa = 0.5, start.cov.pars = c(par0[3], par0[4]/par0[2]))

R> fit.MCML1$log.lik

[1] 24.24903

The above code fits a BL model by simulating 10,000 samples and retaining every eighth
sample after a burn-in of 2,000 values to approximate the likelihood integral. The function
control.mcmc.MCMCL sets the control parameters of the MCMC algorithm. The argument h
represents the proposal density of the Langevin-Hastings (see Section 2.1). Our suggestion is
to set this to 1.65/n1/6, where n is the sample size, which corresponds to the optimal value for
sampling from a standard multivariate Gaussian distribution (Roberts and Rosenthal 2001).

We now repeat the MCML procedure twice, but with new values for β0 and θ0 set as the
MCML estimates each time; in the last iteration, we also increase the number of retained
simulated samples to 10,000.
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Figure 4: Plots of the prevalence estimates, standard errors and exceedance probabilities for
the Loa loa data from the MCML (upper panels) and Bayesian (lower panels) analyses.

R> par0 <- coef(fit.MCML1)

R> start <- c(par0[3], par0[4]/par0[2])

R> fit.MCML2 <- binomial.logistic.MCML(formula = NO_INF ~ 1,

+ units.m = ~ NO_EXAM, par0 = par0,

+ coords = ~ LONGITUDE + LATITUDE, data = loaloa,

+ control.mcmc = c.mcmc, kappa = 0.5,

+ start.cov.pars = c(par0[3], par0[4]/par0[2]))

R> fit.MCML2$log.lik

[1] 1.287294

R> c.mcmc <- control.mcmc.MCML(n.sim = 65000, burnin = 5000,

+ thin = 6, h = (1.65)/(nrow(loaloa)^(1/6)))

R> par0 <- coef(fit.MCML2)

R> fit.MCML3 <- binomial.logistic.MCML(formula = NO_INF ~ 1,

+ units.m = ~ NO_EXAM,par0=par0,

+ coords = ~LONGITUDE+LATITUDE,data=loaloa,

+ control.mcmc = c.mcmc,

+ kappa = 0.5, start.cov.pars = c(par0[3],par0[4]/par0[2]))

R> summary(fit.MCML3)

Binomial geostatistical model

Call:

binomial.logistic.MCML(formula = NO_INF ~ 1, units.m = ~NO_EXAM,

coords = ~LONGITUDE + LATITUDE, data = loaloa, par0 = par0,

control.mcmc = c.mcmc, kappa = 0.5, start.cov.pars = c(par0[3],
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par0[4]/par0[2]))

Estimate StdErr z.value p.value

(Intercept) -2.30556 0.51743 -4.4558 8.358e-06 ***

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Objective function: 0.1366855

Covariance parameters Matern function (kappa=0.5)

Estimate StdErr

log(sigma^2) 0.92408 0.3215

log(phi) -0.28736 0.3804

log(tau^2) -3.23648 1.5796

Legend:

sigma^2 = variance of the Gaussian process

phi = scale of the spatial correlation

tau^2 = variance of the nugget effect

Note that updating β0 and θ0 with the resulting MCML estimates at each iteration results
in the maximum value of the approximation to the log-likelihood function approaching zero.
This is an indication that the MCML estimates are converging towards the actual maximum
likelihood estimates of β and θ, for which the value of the Monte Carlo likelihood is exactly
zero. We now carry out spatial predictions over a 0.1 by 0.1 degree regular grid, fixing
the model parameters at the MCML estimates, and summarise the predictive distribution of
prevalence in each grid cell through its mean, standard deviation and probability that the
estimated prevalence is above 20%.

R> library("splancs")

R> poly <- coords[chull(coords),]

R> grid.pred <- gridpts(poly, xs = 0.1, ys = 0.1)

R> pred.MCML <- spatial.pred.binomial.MCML(fit.MCML3, grid.pred,

+ control.mcmc = c.mcmc, type = "marginal",

+ scale.predictions = "prevalence",

+ standard.errors = TRUE, thresholds = 0.2,

+ scale.thresholds = "prevalence")

R>

R> par(mfrow = c(1,3))

R> plot(pred.MCML, type = "prevalence",

+ summary = "predictions", zlim = c(0,0.45),

+ main = "Prevalence - predictions \n (classical analysis)")

R> contour(pred.MCML, type = "prevalence",

+ summary = "predictions",

+ levels = c(0.05,0.1,0.2,0.3), add = TRUE)

R> plot(pred.MCML, type = "prevalence",

+ summary = "standard.errors", zlim = c(0,0.3),
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+ main = "Prevalence - standard errors \n (classical analysis)")

R> contour(pred.MCML, type = "prevalence",

+ summary = "standard.errors",

+ levels = c(0.05,0.1,0.15,0.2), add = TRUE)

R> plot(pred.MCML, summary = "exceedance.prob",

+ zlim = c(0,1),

+ main = "Prevalence - exceedance probabilities \n (classical analysis)")

R> contour(pred.MCML, summary = "exceedance.prob",

+ levels = c(0.1,0.4,0.5,0.7), add = TRUE)

Using the argument type in spatial.pred.binomial.MCML, we can specify either marginal
(type = "marginal") or joint (type = "joint") predictions. Through scale.predictions,
we can also specify the scale on which predictions are required: "logit", "prevalence" or
"odds". Exceedance probability thresholds and the scale on which they are provided are
specified through the arguments thresholds and scale.thresholds, respectively. Figure 4
shows the images of prevalence estimates, standard errors and exceedance probabilities with
associated contours. These plots are obtained using the methods plot.pred.PrevMap and
contour.pred.PrevMap, whose arguments type and summary can be used to specify which
summaries should be displayed.

The following code generates a set of diagnostic plots, shown in Figure 5, that provide checks
on convergence of the MCMC.

R> par(mfrow=c(3,3))

R> S.mean <- apply(pred.MCML$samples, 2, mean)

R> acf(S.mean,main = "")

R> plot(S.mean,type = "l")

R> plot(ecdf(S.mean[1:5000]), main = "")

R> lines(ecdf(S.mean[5001:10000]), col = 2, lty = "dashed")

+

R> ind.S <- sample(1:nrow(grid.pred), 2)

R> acf(pred.MCML$samples[ind.S[1],], main = "")

R> plot(pred.MCML$samples[ind.S[1], ],

+ ylab = paste("Component n.", ind.S[1]), type = "l")

R> plot(ecdf(pred.MCML$samples[ind.S[1], 1:5000]), main = "")

R> lines(ecdf(pred.MCML$samples[ind.S[1], 5001:10000]),

+ col = 2, lty = "dashed")

+

R> acf(pred.MCML$samples[ind.S[2],], main = "")

R> plot(pred.MCML$samples[ind.S[2], ],

+ ylab = paste("Component n.", ind.S[2]), type = "l")

R> plot(ecdf(pred.MCML$samples[ind.S[2], 1:5000]), main = "")

R> lines(ecdf(pred.MCML$samples[ind.S[2], 5001:10000]),

+ col = 2, lty = "dashed")

In the first row of Figure 5, the target for prediction is the spatial average of logit-transformed
prevalence, in the second and third rows the target is logit-transformed prevalence at each
of two randomly sampled location. The three columns show: the autocorrelation plot of a
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Figure 5: Autocorrelation plot of a thinned sequence of 10000 MCMC samples (left panels),
trace plot of the same sequence (central panels) and empirical cumulative distribution plots
for the first 5000 and second 5000 samples (right panels), for the spatial average of predicted
logit-transformed prevalence (first row) and for the predicted logit-transformed prevalence at
two randomly selected locations (second and third rows).
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thinned sequence of 10000 MCMC samples; the trace plot of these same 10000 samples; the
empirical cumulative distribution functions of the first 5000 and the second 5000 of these
10000 samples. None of these plots show any evidence of non-convergence.

Bayesian analysis

For a Bayesian analysis of the Loa loa data, we use the following prior specification:

φ ∼ Uniform(0, 8),

log(σ2) ∼ N(·; 1, 25),

log(τ2) ∼ N(·;−3, 1),

β|σ2 ∼ N(·; 0, σ21002).

In the PrevMap package, the control.prior function can be used to set a Gaussian prior on β
and any required prior distribution for the covariance parameters σ2, φ and τ2. The arguments
beta.mean and beta.covar are the mean vector and the covariance matrix of the Gaussian
prior for β. Log-Gaussian and uniform priors can also be directly defined for each covariance
parameter by using the corresponding arguments. For example, log.normal.sigma2 and
uniform.sigma2 define log-Gaussian and uniform priors, respectively, for σ2. In both cases a
vector of length two must be provided. If the prior is log-Gaussian the two elements are the
mean and standard deviation of the distribution on the log scale. If the prior is uniform the
two elements are the lower and upper limits of the support of the uniform distribution.

R> cp <-control.prior(beta.mean = 0, beta.covar = 100^2,

+ log.normal.sigma2 = c(1,5),

+ uniform.phi = c(0,8),

+ log.normal.nugget = c(-3,1))

If different priors are required for the covariance parameters, user-defined functions of the
prior log-density can be specified through the arguments log.prior.sigma2, log.prior.phi
and log.prior.nugget.

Control parameters for the MCMC algorithm (see Section 2.2) are specified with the function
control.mcmc.Bayes.

R> mcmc.Bayes <- control.mcmc.Bayes(n.sim = 6000, burnin = 1000, thin = 1,

+ h.theta1 = 1, h.theta2 = 0.7, h.theta3 = 0.05,

+ L.S.lim = c(5,50), epsilon.S.lim = c(0.03,0.06),

+ start.beta = -2.3, start.sigma2 = 2.6,

+ start.phi = 0.8, start.nugget = 0.05,

+ start.S = predict(fit.glm))

The arguments h.theta1, h.theta2 and h.theta3 are the starting values for the standard
deviations of the Gaussian proposals; these are then tuned according to the adaptive scheme
given by Equation 7. The control parameters for the Hamiltonian Monte Carlo procedure,
used to update the random effects, are L.S.lim and epsilon.S.lim. These represent, re-
spectively, the intervals used to randomly generate from a uniform distribution the number
of steps and the step size in the leapfrog method at each iteration of the MCMC (see Section
2.2).
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R> fit.Bayes <- binomial.logistic.Bayes(formula = NO_INF ~ 1,

+ units.m = ~ NO_EXAM,

+ coords = ~ LONGITUDE + LATITUDE,

+ data = loaloa, control.prior = cp,

+ control.mcmc = mcmc.Bayes, kappa = 0.5)

R>

R> summary(fit.Bayes, hpd.coverage = 0.95)

Bayesian binomial geostatistical logistic model

Call:

binomial.logistic.Bayes(formula = NO_INF ~ 1, units.m = ~ NO_EXAM,

coords = ~ LONGITUDE + LATITUDE, data = loaloa, control.prior = cp,

control.mcmc = mcmc.Bayes, kappa = 0.5)

Mean Median Mode StdErr HPD 0.025 HPD 0.975

(Intercept) -2.696243 -2.48606 -2.305288 1.827606 -7.253424 0.5964536

Covariance parameters Matern function (kappa = 0.5)

Mean Median Mode StdErr HPD 0.025 HPD 0.975

sigma^2 7.66349058 5.27116856 3.28389063 5.86998256 1.650528734 20.5858584

phi 2.58509412 1.79584603 1.04951602 1.98215672 0.440133492 6.9920447

tau^2 0.05250712 0.04516296 0.02365498 0.03371813 0.003049963 0.1190124

Legend:

sigma^2 = variance of the Gaussian process

phi = scale of the spatial correlation

tau^2 = variance of the nugget effect

The above code fits a Bayesian BL model and returns summaries of the posterior distribution
for each of the model parameters. In the output, high posterior density credible intervals are
also computed, with associated coverage specified through the argument hpd.coverage.

R> par(mfrow = c(2,4))

R> autocor.plot(fit.Bayes, param = "beta", component.beta = 1)

R> autocor.plot(fit.Bayes, param = "sigma2")

R> autocor.plot(fit.Bayes, param = "phi")

R> autocor.plot(fit.Bayes, param = "tau2")

R> i <- sample(1:nrow(loaloa),4)

R> autocor.plot(fit.Bayes, param = "S", component.S = i[1])

R> autocor.plot(fit.Bayes, param = "S", component.S = i[2])

R> autocor.plot(fit.Bayes, param = "S", component.S = i[3])

R> autocor.plot(fit.Bayes, param = "S", component.S = i[4])

Autocorrelation plots can be obtained with the autocor.plot function, whose argument
param specifies the model component for which the autocorrelation plot is required. If param
= "beta", then component.beta must be used to specify the component of the regression
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coefficients. To display autocorrelation plots for the random effect, then param = "S" and
component.S must be either a positive integer indicating the component of the random effect,
or "all" in order to display the autocorrelation for all components in a single plot. Using a
similar syntax, the functions trace.plot and dens.plot are also available for visualization
of trace-plots and kernel density estimates based on the posterior samples.

Figure 6: Autocorrelation plots for the posterior samples of β (the intercept), σ2, φ, τ2 and
four randomly chosen components of the spatial random effect.

R> pred.Bayes <- spatial.pred.binomial.Bayes(fit.Bayes, grid.pred,

+ type = "marginal",

+ scale.predictions = "prevalence", quantiles = NULL,

+ standard.errors = TRUE, thresholds = 0.2,

+ scale.thresholds = "prevalence")

R>

R> par(mfrow = c(1,3))

R> plot(pred.Bayes, type = "prevalence", summary = "predictions",

+ zlim = c(0,0.45),

+ main = "Prevalence - predictions \n (Bayesian analysis)")

R> contour(pred.Bayes, type = "prevalence", summary = "predictions",

+ levels = c(0.05,0.1,0.2,0.3), add = TRUE)

R> plot(pred.Bayes, type = "prevalence", summary = "standard.errors",

+ zlim = c(0,0.3),

+ main = "Prevalence - standard errors \n (Bayesian analysis)")

R> contour(pred.Bayes, type = "prevalence",

+ summary = "standard.errors",

+ levels = c(0.05,0.1,0.15,0.2), add = TRUE)

R> plot(pred.Bayes, type = "exceedance.prob", zlim = c(0,1),

+ main = "Prevalence - exceedance probabilities \n
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+ (Bayesian analysis)")

R> contour(pred.Bayes, type = "exceedance.prob",

+ levels = c(0.1,0.4,0.5,0.7), add = TRUE)

The function spatial.pred.binomial.Bayes generates spatial Bayesian predictions using
the same syntax as spatial.pred.binomial.MCML. The resulting plots of the prevalence
estimates, standard errors and exceedance probabilities are shown in Figure 4.

4. Example: simulated data

In this example, we use a simulated binomial data-set, available in the package as data_sim.
For these data, a zero-mean Gaussian process was generated over a 30 by 30 grid covering the
unit square, with parameters σ2 = 1, φ = 0.15 and κ = 2; the nugget effect was not included,
hence τ2 = 0. Binomial observations, with 10 trials at each grid point and probabilities given
by the anti-logit of the simulated values of the Gaussian process, constitute the variable y in
the data. To illustrate the accuracy of the low-rank approximation, we analyse these data
using three different grids covering the square [−0.2, 1.2] × [−0.2, 1.2] with 25, 100 and 225
spatial knots, respectively. By letting some knots lie outside of the unit square, we avoid the
presence of edge-effects due to the restriction of the integral in Equation 9 to a sub-region of
the real plane.

R> data("data_sim")

R> knots1 <- expand.grid(seq(-0.2,1.2, length = 5),

+ seq(-0.2,1.2, length = 5))

R> knots2 <- expand.grid(seq(-0.2,1.2, length = 10),

+ seq(-0.2,1.2, length = 10))

R> knots3 <- expand.grid(seq(-0.2,1.2, length = 15),

+ seq(-0.2,1.2, length = 15))

We use the MCML method to fit a BL model using both exact and approximate approaches.
We then use the resulting binomial fits to generate spatial predictions of prevalence at each
of the 900 sampling locations.

R> par0.exact <- c(0,1,0.15)

R> exact.mcmc <- control.mcmc.MCML(n.sim = 65000, burnin = 5000, thin = 12,

+ h = 1.65/(nrow(data_sim)^(1/6)))

R> system.time(fit.MCML.exact <- binomial.logistic.MCML(y ~ 1,

+ units.m = ~ units.m, coords = ~ x1 + x2,

+ data = data_sim, par0 = par0.exact,

+ start.cov.pars = 0.15,

+ control.mcmc = exact.mcmc,

+ kappa = 2, fixed.rel.nugget = 0, method = "nlminb",

+ plot.correlogram = FALSE))

user system elapsed

2401.530 297.871 2714.146
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R> par0.lr <- c(-0.219294,0.97945,0.21393)

R> lr.mcmc <- control.mcmc.MCML(n.sim = 65000, burnin = 5000, thin = 12,

+ h = 1.65/(nrow(knots1)^(1/6)))

R> system.time(fit.MCML.lr1 <- binomial.logistic.MCML(y ~ 1,

+ units.m = ~ units.m, coords = ~ x1 + x2,

+ data = data_sim, par0 = par0.lr,

+ start.cov.pars = par0.lr[3], control.mcmc = lr.mcmc,

+ low.rank = TRUE, knots = knots1, kappa = 2,

+ method = "nlminb", plot.correlogram = FALSE))

user system elapsed

72.893 2.785 77.157

R> lr.mcmc$h <- 1.65/(nrow(knots2)^(1/6))

R> par0.lr <- c(-0.017333,0.16490,0.16971)

R> system.time(fit.MCML.lr2 <- binomial.logistic.MCML(y ~ 1,

+ units.m = ~ units.m, coords = ~ x1 + x2,

+ data = data_sim, par0 = par0.lr,

+ start.cov.pars = par0.lr[3], control.mcmc = lr.mcmc,

+ low.rank = TRUE, knots = knots2, kappa = 2,

+ method = "nlminb", plot.correlogram = FALSE))

user system elapsed

172.864 20.973 194.625

R> lr.mcmc$h <- 1.65/(nrow(knots3)^(1/6))

R> par0.lr <- c(-0.031759,0.30572, 0.18854)

R> system.time(fit.MCML.lr3 <- binomial.logistic.MCML(y ~ 1,

+ units.m = ~ units.m, coords = ~ x1 + x2,

+ data = data_sim, par0 = par0.lr,

+ start.cov.pars = par0.lr[3], control.mcmc = lr.mcmc,

+ low.rank = TRUE, knots = knots3, kappa = 2,

+ method = "nlminb", plot.correlogram = FALSE))

user system elapsed

407.376 14.397 423.235

To fit a low-rank approximation, we only need to specify low.rank = TRUE and define the
set of spatial knots through the argument knots. For parameter estimation, this approach
was about 35, 13 and 6 times faster than the exact method when using 5, 100 and 225 knots,
respectively.

R> par.hat <- coef(fit.MCML.exact)

R> Sigma.hat <- varcov.spatial(coords = data_sim[c("x1","x2")],

+ cov.pars = par.hat[2:3], kappa = 2)$varcov

R> mu.hat <- rep(par.hat[1], nrow(data_sim))
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R> system.time(S.cond.sim <- Laplace.sampling(mu = mu.hat,

+ sigma = Sigma.hat,

+ y = data_sim$y, units.m = data_sim$units.m,

+ control.mcmc = exact.mcmc, plot.correlogram = FALSE))

user system elapsed

1275.890 134.015 1393.457

R> prevalence.sim <- exp(S.cond.sim$samples)/(1 + exp(S.cond.sim$samples))

R> prevalence.exact <- apply(prevalence.sim,2, mean)

R>

R> lr.mcmc$h <- 1.65/(nrow(knots1)^(1/6))

R> system.time(pred.MCML.lr1 <- spatial.pred.binomial.MCML(fit.MCML.lr1,

+ grid.pred = data_sim[c("x1","x2")], control.mcmc = lr.mcmc,

+ type = "joint", scale.predictions = "prevalence",

+ plot.correlogram = FALSE))

user system elapsed

34.571 2.954 37.664

R> lr.mcmc$h <- 1.65/(nrow(knots2)^(1/6))

R> system.time(pred.MCML.lr2 <- spatial.pred.binomial.MCML(fit.MCML.lr2,

+ grid.pred = data_sim[c("x1","x2")], control.mcmc = lr.mcmc,

+ type = "joint", scale.predictions = "prevalence",

+ plot.correlogram = FALSE))

user system elapsed

75.035 6.008 81.399

R> lr.mcmc$h <- 1.65/(nrow(knots3)^(1/6))

R> system.time(pred.MCML.lr3 <- spatial.pred.binomial.MCML(fit.MCML.lr3,

+ grid.pred = data_sim[c("x1","x2")], control.mcmc = lr.mcmc,

+ type = "joint", scale.predictions = "prevalence",

+ plot.correlogram = FALSE))

user system elapsed

169.352 21.975 192.218

R> par(mfrow = c(2,2), mar = c(3,4,3,4))

R> r.exact <- rasterFromXYZ(cbind(data_sim[, c("x1","x2")],

+ prevalence.exact))

R> plot(r.exact, zlim = c(0,1), main = "Exact method")

R> contour(r.exact, levels = seq(0.1,0.9,0.1), add = TRUE)

R>

R> plot(pred.MCML.lr1,"prevalence","predictions", zlim = c(0,1),

+ main = "Low-rank: 25 knots")
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R> contour(pred.MCML.lr1,"prevalence","predictions", zlim = c(0,1),

+ levels = seq(0.1,0.9,0.1), add = TRUE)

R>

R> plot(pred.MCML.lr2,"prevalence","predictions", zlim = c(0,1),

+ main = "Low-rank: 100 knots")

R> contour(pred.MCML.lr2,"prevalence","predictions", zlim = c(0,1),

+ levels = seq(0.1,0.9,0.1), add = TRUE)

R>

R> plot(pred.MCML.lr3,"prevalence","predictions", zlim = c(0,1),

+ main = "Low-rank: 225 knots")

R> contour(pred.MCML.lr3,"prevalence","predictions", zlim = c(0,1),

+ levels = seq(0.1,0.9,0.1), add = TRUE)

The above code generates and plots spatial predictions of prevalence at the 900 sample lo-
cations using exact and approximate methods. In the exact case, we first use the function
Laplace.sampling to sample from the predictive distribution of T⊤ = (T1, . . . , t900), where
Ti is given by (1). The arguments mu and Sigma of this function represents the mean vector
and covariance matrix of the unconditional distribution of T . We post-process the simulation
output to obtain estimates of prevalence by using the anti-logit transformation of each simu-
lated sample and taking the average of these values at each sampling location. Figure 7 shows
the resulting estimates of prevalence. As expected, the accuracy of the low-rank approxima-
tion increases as more knots are included: while using 5 knots leads to a computationally fast
but poor approximation, 100 and 225 knots give progressive improvements in accuracy which
might be considered sufficient in practice.

5. Conclusions and future developments

We have illustrated the use the PrevMap package for geostatistical modelling of spatially
referenced prevalence data. The package is intended to be compatible with the existing geoR

and geoRglm packages, but with increased functionality. By comparison with these earlier
packages, PrevMap provides more accurate numerical procedures for maximum likelihood
estimation of the geostatistical linear and BL models, as well as routines for evaluation of
the profile likelihood. Computationally faster approximations of the likelihood function for
geostatistical BL models can be obtained using the Laplace approximation (LA). However, the
resulting parameter estimates can be substantially biased in the case of binomial observations
with small denominators (Joe 2008), whereas the MCML method delivers asymptotically
unbiased estimates.

For likelihood-based inference we have used a Langevin-Hastings MCMC algorithm because
the availability of optimal scaling results makes it easier to tune than the Hamiltonian MCMC.
However, for Bayesian inference where model parameters are also updated at each iteration,
the required computation of the mode of the random effects conditional distribution (see
Section 2.1) would have been computationally too demanding. For Bayesian analysis, we
have therefore implemented an efficient Hamiltonian MCMC scheme that updates the random
effects on their original scale and allows a more flexible prior specification for the model
parameters.

The sampling-based approach to inference allows the user to access any predictive target
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Figure 7: Images of the estimated surfaces of prevalence obtained for the simulated data using
the exact method (upper left panel) and the low-rank approximation using 25 (upper right
panel), 100 (lower left panel) and 225 (lower right panel) spatial knots.
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through post-processing of the samples from the joint predictive distribution of the val-
ues of the latent field at all prediction points. Within the package, the user can speci-
fy whether marginal or joint predictions are required for different predictive targets: logit,
prevalence, odds and exceedance probabilities. Software based on analytical approximations
to the marginal predictive distributions, such as the geostatsp package that uses Integrated
nested Laplace approximations (Rue, Martino, and Chopin 2009), cannot routinely calculate
predictive distributions for arbitrary functionals of the latent field.

The package includes several functions for automatic post-processing of the results, such as
the diagnostic plots illustrated in Figure 5. As is the case for any MCMC application, these
can only reveal or fail to reveal non-convergence rather than guarantee convergence, but are
nevertheless useful as partial checks. We therefore considered it important to make them
easily accessible to users.

The accuracy of the low-rank approximations that are incorporated into the package is
context-specific. However, used with care they offer computationally efficient procedures
for analysing large data-sets. The spBayes package implements a low-rank procedure based
on Gaussian predictive process models (Banerjee, Gelfand, Finley, and Sang 2008). In this
approach, the latent field S(x) in Equation 1 is replaced by the conditional expectation of
S(x) given S(x̃i) for i = 1, . . . , r < n, where x̃i is a set of pre-defined spatial knots. This is
particularly useful and computationally advantageous when spatial interpolation is the sole
objective of the analysis. In this context, other computationally efficient procedures could also
be considered, such as low-rank spline smoothers (Wood 2003). However, for applications that
involve a range of inferential objectives, including both spatial prediction and estimation of
covariate effects, it is desirable that the low-rank method approximates the same probabilistic
model that would be used were computational burden not an issue, rather than changing the
model specification. For this reason, we consider our version of low-rank approximation (Sec-
tion 2.4) to be more suitable for disease mapping applications where, typically, the objectives
include inference for regression parameters, both to assess the importance of hypothesised
risk-factors and to enable spatial prediction under a range of scenarios. A specific example
is the construction of predictive maps for malaria under different climate scenarios, or before
and after widespread distribution of insecticide-treated bed-nets.

Another feature not illustrated in the present paper is the possibility of fitting a BL model
to prevalence data from household surveys so as to include information at both household
and individual level. More specifically, let i and j identify the i-th household and the j-th
individual within that household; in this case the linear predictor is

log

{

pij
1− pij

}

= d⊤ijβ + S(xi) + Zi, (14)

where the random effects are now defined at household level. With the exception of the
geostatsp package, the model in Equation 14 can not be fitted in the other packages reported
in Table 1 other than by replacing individual-level explanatory variables dij by their location-
level averages. However, this would invalidate inferences on the regression coefficients β by
introducing ecological bias (Wakefield and Lyons 2010).

Possible extensions of the package include the implementation of functions for spatio-temporal
analyses, for geostatistical modelling of zero-inflated data, for combining data from multiple
spatially referenced prevalence surveys (Giorgi, Sesay, Terlouw, and Diggle 2015) and for open-
ends count data through a Poisson log-linear formulation. We will report these extensions



28 PrevMap: An R Package for Prevalence Mapping

separately in due course.
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