Package 'PredictiveRegression'

February 19, 2015

Version 0.1-4

Date2012-10-29TitlePrediction Intervals for Three Basic Statistical ModelsAuthorVladimir Vovk <vovk@cs.rhul.ac.uk> and Ilia Nouretdinov

<ilia@cs.rhul.ac.uk>

Maintainer Vladimir Vovk <vovk@cs.rhul.ac.uk>

Description Three prediction algorithms described in the paper ``On-line predictive linear regression'' Annals of Statistics 37, 1566 - 1590 (2009)

License file LICENSE

Repository CRAN

Date/Publication 2012-10-29 19:07:29

NeedsCompilation no

License_restricts_use yes

R topics documented:

gausspred			•	•	 •			•		•		•	•		•	•	•	•	•	•	•	•	•		•	1
iidpred																										3
mvapred .			•									•	•		•	•	•	•				•				4

6

Index

gausspred

Gauss predictor

Description

Prediction intervals based on the Gauss linear model

Usage

gausspred(train,test,epsilons=c(0.05,0.01))

Arguments

train	Training set as a matrix of size N times $K + 1$. Each row describes an observation. Columns 1 to K are the explanatory variables, and column $K + 1$ is the response variables.
test	Test set as a matrix of size N_2 times K . Each row corresponds to an observation (but without the response variable). Columns 1 to K are the explanatory variables.
epsilons	Vector of several significance levels. Each significance level $epsilons[j]$ is a number between 0 and 1. The default value is $(5\%,1\%)$.

Value

The output is a list of three elements.

output[[1]]	The matrix of lower bounds of prediction intervals. Its size is N_2 times N_{ϵ} , where N_2 is the number of test observations and N_{ϵ} is the number of significance levels. The element output[[1]][i,j] of output[[1]] is the lower bound a of the prediction interval $[a, b]$ for the <i>i</i> th test observation and for the <i>j</i> th significance level epsilons[j] in the vector epsilons.
output[[2]]	The matrix of upper bounds b , with the same structure as $output[[1]]$. Typically $a = output[[1]][i,j]$ and $b = output[[2]][i,j]$ are real numbers such that $a \leq b$. Exceptions: a is allowed to be $-\infty$ and b is allowed to be ∞ ; the only case where $a > b$ is $a = \infty$ and $b = -\infty$ (the empty prediction $[a, b]$).
output[[3]]	The termination code: $0 = normal termination$; $1 = illegal parameters (the training and test sets have different numbers of explanatory variables); 2 = too few observations.$

References

Vovk, V., Nouretdinov, I., and Gammerman, A. (2009) On-line predictive linear regression. *Annals of Statistics* 37, 1566 - 1590. This paper describes this standard textbook procedure and its properties when used in the on-line mode.

Examples

```
train <- matrix(c(1,2,3,4, 2.01,2.99,4.01,4.99), nrow=4, ncol=2);
test <- matrix(c(0,10,20), nrow=3, ncol=1);
output <- gausspred(train,test,c(0.05,0.2));
print(output[[1]]);
print(output[[2]]);
```

iidpred

IID predictor

Description

Prediction intervals based on the IID model

Usage

iidpred(train,test,epsilons=c(0.05,0.01),ridge=0)

Arguments

train	Training set as a matrix of size N times $K + 1$. Each row describes an observation. Columns 1 to K are the explanatory variables, and column $K + 1$ is the response variables.
test	Test set as a matrix of size N_2 times K. Each row corresponds to an observation (but without the response variable). Columns 1 to K are the explanatory variables.
epsilons	Vector of several significance levels. Each significance level $epsilons[j]$ is a number between 0 and 1. The default value is $(5\%,1\%)$.
ridge	Ridge coefficient, a nonnegative number. The default value is 0; setting it to a small positive constant might lead to more stable results.

Value

The output is a list of three elements.

output[[1]]	The matrix of lower bounds of prediction intervals. Its size is N_2 times N_{ϵ} , where N_2 is the number of test observations and N_{ϵ} is the number of significance levels. The element output[[1]][i,j] of output[[1]] is the lower bound a of the prediction interval $[a, b]$ for the <i>i</i> th test observation and for the <i>j</i> th signifi- cance level epsilons[j] in the vector epsilons.
output[[2]]	The matrix of upper bounds b , with the same structure as $output[[1]]$. Typ- ically $a = output[[1]][i,j]$ and $b = output[[2]][i,j]$ are real numbers such that $a \leq b$. Exceptions: a is allowed to be $-\infty$ and b is allowed to be ∞ ; the only case where $a > b$ is $a = \infty$ and $b = -\infty$ (the empty prediction $[a, b]$).
output[[3]]	The termination code: $0 = normal termination; 1 = illegal parameters (the training and test sets have different numbers of explanatory variables); 2 = too few observations for all significance levels.$

References

Vovk, V., Nouretdinov, I., and Gammerman, A. (2009) On-line predictive linear regression. *Annals of Statistics* 37, 1566 - 1590. The new arXiv version http://arxiv.org/abs/math/0511522 of this paper contains the description of this program and the algorithm that this program implements.

Vovk, V., Gammerman, A., and Shafer, G. (2005) *Algorithmic Learning in a Random World*. New York: Springer. This program implements the algorithm described on pages 30 - 34 of this book.

Examples

```
train <- matrix(c(0,10,20,30, 1.01,10.99,21.01,30.99), nrow=4, ncol=2);
test <- matrix(c(5,15,25), nrow=3, ncol=1);
output <- iidpred(train,test,c(0.05,0.2),0.01);
print(output[[1]]);
print(output[[2]]);
```

mvapred

MVA predictor

Description

Prediction intervals based on the MVA model

Usage

```
mvapred(train,test,epsilons=c(0.05,0.01),ridge=0)
```

Arguments

train	Training set as a matrix of size N times $K + 1$. Each row describes an observation. Columns 1 to K are the explanatory variables, and column $K + 1$ is the response variables.
test	Test set as a matrix of size N_2 times K. Each row corresponds to an observa- tion (but without the response variable). Columns 1 to K are the explanatory variables.
epsilons	Vector of several significance levels. Each significance level $epsilons[j]$ is a number between 0 and 1. The default value is $(5\%,1\%)$.
ridge	Ridge coefficient, a nonnegative number. The default value is 0; setting it to a small positive constant might lead to more stable results.

Value

The output is a list of three elements.

output[[1]] The matrix of lower bounds of prediction intervals. Its size is N_2 times N_{ϵ} , where N_2 is the number of test observations and N_{ϵ} is the number of significance levels. The element output[[1]][*i*,*j*] of output[[1]] is the lower bound *a* of the prediction interval [a, b] for the *i*th test observation and for the *j*th significance level epsilons[*j*] in the vector epsilons.

mvapred

output[[2]]	The matrix of upper bounds b , with the same structure as $output[[1]]$. Typ- ically $a = output[[1]][i,j]$ and $b = output[[2]][i,j]$ are real numbers such that $a \leq b$. Exceptions: a is allowed to be $-\infty$ and b is allowed to be ∞ ; the only case where $a > b$ is $a = \infty$ and $b = -\infty$ (the empty prediction $[a, b]$).
output[[3]]	The termination code: $0 = normal termination$; $1 = illegal parameters (the training and test sets have different numbers of explanatory variables); 2 = too few observations.$

References

Vovk, V., Nouretdinov, I., and Gammerman, A. (2009) On-line predictive linear regression. Annals of Statistics 37, 1566 - 1590. The new arXiv version http://arxiv.org/abs/math/0511522 of this paper contains the description of this program and the algorithm that this program implements.

Examples

```
train <- matrix(c(0,10,20,30, 1.01,10.99,21.01,30.99), nrow=4,ncol=2);</pre>
test <- matrix(c(5,15,25), nrow=3, ncol=1);</pre>
output <- mvapred(train,test,c(0.05,0.2),0.01);</pre>
print(output[[1]]);
print(output[[2]]);
```

Index

*Topic models gausspred, 1 iidpred, 3 mvapred, 4 *Topic multivariate mvapred, 4 *Topic regression gausspred, 1 iidpred, 3 mvapred, 4 gausspred, 1

iidpred, 3

mvapred, 4