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To allocate a sample among different stages of sampling, the contributions of the different stages to the
variance of an estimator must be considered. These components of variance generally depend on the analysis
variable and also on the form of the estimator. This vignette covers some basic variance results for linear
estimators in two-stage and three-stage sampling and how the components can be estimated with functions
in PracTools. Technical background is in Valliant, Dever, and Kreuter (2018), ch.9. First, the package must
be loaded with

library(PracTools)

Alternatively, require(PracTools) can be used.

Two-stage Sampling

Consider a two-stage sample design in which the first-stage units are selected using πps sampling, i.e., with
varying probabilities and without replacement. We will also refer to this as ppswor sampling. Elements
are selected at the second stage via simple random sampling without replacement (srswor). Quite a bit of
notation is needed, even in this fairly simple case:

U = universe of PSUs

M = number of PSUs in universe

Ui = universe of elements in PSU i

Ni = number of elements in the population for PSU i

N =
∑

i∈U Ni is the total number of elements in the population

πi = selection probability of PSU i

πij = joint selection probability of PSUs i and j

m = number of sample PSUs

ni = number of sample elements in PSU i

s = set of sample PSUs

si = set of sample elements in PSU i

yk = analysis variable for element k in PSU i (subscript i is implied)

ȳU = mean per element in the population

ȳUi = mean per element in the population in PSU i

The π-estimator of the population total, tU =
∑

i∈U

∑

k∈Ui
yk, of an analysis variable y is
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t̂π =
∑

i∈s

t̂i

πi

where t̂i = (Ni/ni)
∑

k∈si
yk, which is the estimate of the total for PSU i with a simple random sample. The

design variance of the estimated total can be written as the sum of two components:

V
(

t̂π

)

=
∑

i∈U

∑

j∈U

(πij − πiπj)
ti

πi

tj

πj

+
∑

i∈U

N2
i

πini

(

1 −

ni

Ni

)

S
2
U2i (1)

where

S2
U2i =

∑

k∈Ui

(yk − ȳUi)
2

/ (Ni − 1)

is the unit variance of y among the elements in PSU i.

Formula (1) is difficult or impossible to use for sample size computations because the number of PSUs in the
sample is not exposed. Another is to analyze srswor sampling of PSUs and SSUs as in Example 1 below.
Determining sample sizes this way does not mean that you are necessarily locked into selecting PSUs and
elements within PSUs via srswor or srswr. Basing sample sizes on a design that is less complicated than the
one that will actually be used is a common approach, although it can be deceptive for some analysis variables.

Special case: srswor at first and second stages

Suppose the first stage is an srswor of m out of M PSUs and the second stage is a sample of ni elements
selected by srswor from the population of Ni. The π-estimator is

t̂π =
M

m

∑

i∈s

Ni

ni

∑

k∈si

yk

Its variance is equal to

V
(

t̂π

)

=
M2

m

M − m

M
S

2
U1 +

M

m

∑

i∈U

N2
i

ni

Ni − ni

Ni

S
2
U2i (2)

where S2
U1 =

∑

i∈U
(ti−t̄U )2

M−1 with ti being the population total of y in PSU i and t̄U =
∑

i∈U ti/M is the mean
total per PSU.

If n̄ elements are selected in each PSU and the sampling fractions of PSUs and elements within PSUs are all
small, then the relvariance can be written as

V (t̂π)

t2
U

=
B2

m
+

W 2

mn̄
(3)

where B2 = S2
U1/t̄2

U = M2S2
U1/t2

U is the unit relvariance among PSU totals and W 2 = M
∑

i∈U N2
i S2

U2i/t2
U .

The term B2 is called the “between (PSU) component” while W 2 is the “within component”. Expression (3)

is the form used in the R function, BW2stageSRS. Textbooks often list a specialized form of (3) that requires
that all PSUs have the same size, Ni ≡ N̄ , and that n̄ elements are selected in each. In that case, the
second-stage sampling fraction is n̄/N̄ . This implies that the sample is self-weighting: πiπk|i = mn̄/MN̄ .
The relvariance based on (2) then simplifies to the less general form

V (t̂π)

t2
U

=
1

m

M − m

M
B2 +

1

mn̄

N̄ − n̄

N̄
W 2

where W 2 = 1
Mȳ2

U

∑

i∈U S2
U2i.
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Assuming that n̄ elements are selected in each sample PSU, and m/M and n̄/Ni are both small, the more
general form of the relvariance in (3) can also be written in terms of a measure of homogeneity δ as follows:

V
(

t̂π

)

t2
U

.
=

Ṽ

mn̄
k [1 + δ (n̄ − 1)] (4)

where Ṽ = S2
U /ȳ2

U , k = (B2 + W 2)/Ṽ , and

δ =
B2

B2 + W 2
. (5)

With some effort, it can be shown that when Ni = N̄ and both M and N̄ are large,

S2
U

ȳ2
U

=
1

ȳ2
U

∑

i∈U

∑

k∈Ui
(yk − ȳU )

2

(N − 1)

.
= B2 + W 2

i.e., the population relvariance can be written as the sum of between and within relvariances. If k = 1, (4)

equals the expression found in many textbooks. However, when the population count of elements per cluster
varies, k may be far from 1, as will be illustrated in an example below. In those cases, (4) with an estimate of
the actual k should be used for determining sample sizes and computing advance estimates of coefficients of
variation.

Expressions (3) and (4) are useful for sample size calculation since the number of sample PSUs and sample
units per PSU are explicit in the formula. Equation (4) also connects the variance of the estimated total
to the variance that would be obtained from a simple random sample since Ṽ /mn̄ is the relvariance of the
estimated total in an srswor of size mn̄ when the sampling fraction is small. The product k[1 + δ(n̄ − 1)] is a
type of design effect. When k = 1, the term 1 + δ (n̄ − 1) is the approximate design effect found in many
textbooks.

The next example uses the MDarea.pop from PracTools. This dataset is based on the U.S. Census counts
from the year 2000 for Anne Arundel County in the US state of Maryland. The geographic divisions used in
this dataset are called tracts and block groups. Tracts are constructed by the US Census Bureau to have a
desired population size of 4,000 people. Block groups (BGs) are smaller with a target size of 1,500 people.
Counts of persons in the dataset are the same for most tracts and block groups as in the 2000 Census.

• Example. Between and within variance components in srs/srs design The R function
BW2stageSRS will calculate the unit relvariance of a population, B2 + W 2 for comparison, the ratio
k = (B2 + W 2)/(S2

U /ȳ2
U ), and the full version of δ in (5). The function assumes that the entire sampling

frame is an input. The full R code for this example is in the file Example 9.2.R, available at bookfiles.
We first compute the results using the PSU and SSU variables as clusters. These fields are created so that
all PSUs have the same size; likewise, all SSUs have the same size. For the variable y1 in the Maryland
population, the code is

require(PracTools)

data(MDarea.pop)

BW2stageSRS(MDarea.pop$y1, psuID=MDarea.pop$PSU)

#> B2 W2 unit relvar B2+W2 k delta

#> 0.007859299 1.455263645 1.462741186 1.463122944 1.000260988 0.005371592

BW2stageSRS(MDarea.pop$y1, psuID=MDarea.pop$SSU)

#> B2 W2 unit relvar B2+W2 k delta

#> 0.03653178 1.42770886 1.46274119 1.46424065 1.00102510 0.02494930

The values of δ are 0.005 for PSU and 0.025 for SSU. Next, to illustrate the dramatic effect that varying sizes
of clusters can have, we compute the same statistics as above using tracts and block groups (BGs) within
tracts as clusters. These vary substantially in the number of persons in each cluster. A new variable called
trtBG is computed since the values of the variable, BLKGROUP, are nested within each tract:
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trtBG <- 10*MDarea.pop$TRACT + MDarea.pop$BLKGROUP

BW2stageSRS(MDarea.pop$y1, psuID=MDarea.pop$TRACT)

#> B2 W2 unit relvar B2+W2 k delta

#> 0.2604683 1.8390286 1.4627412 2.0994969 1.4353167 0.1240623

BW2stageSRS(MDarea.pop$y1, psuID=trtBG)

#> B2 W2 unit relvar B2+W2 k delta

#> 0.3488622 1.9498600 1.4627412 2.2987221 1.5715167 0.1517635

The value of δ is 0.124 TRACTs are clusters and 0.152 when trtBG defines clusters. The measures of homogeneity
increase substantially when tracts or BGs are clusters compared to the PSU and SSU results. This is entirely
due to the increase in B2 when units with highly variable sizes are used and an srs is selected. For example,
B2 = 0.0079 for y1 when PSU is a cluster but is 0.2605 when TRACT is a cluster.

More General Two-stage Designs

Variances of estimators in two-stage designs more complicated than simple random sampling at each stage can
be written as a sum of components. However, these have limited usefulness in determining sample sizes for the
same reason that (1) is not. A more convenient formulation is the case where PSUs are selected with varying
probabilities but with replacement, and the sample within each PSU is selected by srswor. With-replacement
designs may not often be used in practice but have simple variance formulae. The pwr-estimator of a total
(Särndal, Swensson, and Wretman 1992) is

t̂pwr =
1

m

∑

i∈s

t̂i

pi

where t̂i = Ni

ni

∑

k∈si
yk is the estimated total for PSU i from a simple random sample and pi is the one-draw

selection probability of PSU i. The variance of t̂pwr is

V
(

t̂pwr

)

=
1

m

∑

i∈U

pi

(

ti

pi

− tU

)2

+
∑

i∈U

N2
i

mpini

(

1 −

ni

Ni

)

S
2
U2i. (6)

Making the assumption that n̄ elements are selected in each PSU, the variance reduces to

V
(

t̂pwr

)

=
S2

U1(pwr)

m
+

1

mn̄

∑

i∈U

(

1 −

n̄

Ni

)

N2
i S2

U2i

pi

where, in this case, S2
U1(pwr) =

∑

i∈U pi

(

ti

pi
− tU

)2

. Dividing this by t2
U and assuming that the within-PSU

sampling fraction, n̄/Ni, is negligible, we obtain the relvariance of t̂pwr as, approximately,

V
(

t̂pwr

)

t2
U

.
=

B2

m
+

W 2

mn̄
=

Ṽ

mn̄
k [1 + δ (n̄ − 1)] (7)

with Ṽ = S2
U /ȳ2

U , k = (B2 + W 2)/Ṽ ,

B
2 =

S2
U1(pwr)

t2
U

, (8)

W
2 =

1

t2
U

∑

i∈U

N
2
i

S2
U2i

pi

, (9)

δ = B
2

/(

B
2 + W

2
)

(10)
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Expression (7) has the same form as (4) but with different definitions of B2 and W 2. Expression (7) also has
the interpretation of an srs variance of an unclustered variance, Ṽ /mn̄, times a design effect, k[1 + δ(n̄ − 1)],
in the same way that (4) did.

• Example. Between and within variance components in ppswr/srs design This example
repeats the calculations in the example above for the variables in the Maryland area population.
Assume that clusters will be selected proportional to the count of persons in each cluster. The function
BW2stagePPS computes the population values of B2, W 2, and δ shown in (8), (9), and (10) which are
appropriate for ppswr sampling of clusters. The code for y1 using PSU or SSU as clusters is shown below.
The variables, pp.PSU and pp.SSU, hold the one-draw probabilities pi that appear in (6):

pp.PSU <- table(MDarea.pop$PSU) / nrow(MDarea.pop)

pp.SSU <- table(MDarea.pop$SSU) / nrow(MDarea.pop)

BW2stagePPS(MDarea.pop$y1, pp=pp.PSU, psuID=MDarea.pop$PSU)

#> B2 W2 unit relvar B2+W2 k delta

#> 0.007762335 1.455263403 1.462741186 1.463025738 1.000194534 0.005305672

BW2stagePPS(MDarea.pop$y1, pp=pp.SSU, psuID=MDarea.pop$SSU)

#> B2 W2 unit relvar B2+W2 k delta

#> 0.03644120 1.42770995 1.46274119 1.46415115 1.00096392 0.02488896

The code for PSUs that are tracts and block groups is

pp.trt <- table(MDarea.pop$TRACT) / nrow(MDarea.pop)

pp.BG <- table(trtBG) / nrow(MDarea.pop)

BW2stagePPS(MDarea.pop$y1, pp=pp.trt, psuID=MDarea.pop$TRACT)

#> B2 W2 unit relvar B2+W2 k delta

#> 0.009171403 1.453908596 1.462741186 1.463079999 1.000231629 0.006268559

BW2stagePPS(MDarea.pop$y1, pp=pp.BG, psuID=trtBG)

#> B2 W2 unit relvar B2+W2 k delta

#> 0.01602891 1.44780622 1.46274119 1.46383513 1.00074787 0.01094994

The between term when clusters are defined by PSU is about the same as when clusters are selected by srs
because PSU’s all have the same size. With PSUs being either tracts or block groups in the ppswr/srswor
design, the between term is much smaller than the within, compared to the results in the srs/srs example.
For example, with y1 and srs sampling of tracts, B2 = 0.2604 but for pps sampling of tracts B2 = 0.0091.

When clusters are selected by srs, S2
U1 is the variance of the cluster totals around the average cluster total.

In contrast, with pps sampling of clusters, S2
U1(pwr) is the variance of the estimated population totals, ti /pi

around the population total, tU . When clusters are selected with probability proportional to Ni, then
ti /pi = NiȳUi. If these one-cluster estimates of the population total are fairly accurate, as they are here, the
B2 term can be quite small. This leads to much smaller values of δ in pps sampling of clusters. This implies
that the negative effect of clustering on the variance is lessened for a design that selects clusters with pp(Ni).
This kind of comparison explains most practitioners’ preference for pps sampling of clusters, especially when
the clusters vary in population size.

General Three-stage Designs

In the case of with-replacement sampling of PSUs with varying probabilities and srswor at the second
and third stages, the relvariance can be written (with a few assumptions) in a form useful for sample size
calculations. Treating the case where SSUs are selected via srs (either with or without replacement) is not
too unrealistic since SSUs (like block groups) are often created to have about the same population sizes.

The variance formulae for a three-stage design with ppswor selection of first-stage units is complex enough
that it is not useful for sample size planning. See Valliant, Dever, and Kreuter (2018), sec. 9.2.4 for details.
To obtain a simpler formula, suppose that n̄ SSUs are sampled in each sample PSU, the sampling fractions of
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SSUs in each PSU, n̄ /Ni , are small, and ¯̄q elements are selected in each sample SSU. The relvariance of the
pwr-estimator is then

V
(

t̂pwr

)

t2
U

=
B2

m
+

W 2
2

mn̄
+

W 2
3

mn̄ ¯̄q
, (11)

where B2 = S2
U1(pwr)

/

t2
U is given by (8),

W
2
2 =

1

t2
U

∑

i∈U

N
2
i S

2
U2i /pi ; (12)

W
2
3 =

1

t2
U

∑

i∈U

Ni

pi

∑

j∈Ui

Q
2
ijS

2
U3ij . (13)

The relvariance can also be written in terms of two measures of homogeneity:

V
(

t̂pwr

)

t2
U

=
Ṽ

mn̄ ¯̄q

{

k1δ1n̄ ¯̄q + k2

[

1 + δ2

(

¯̄q − 1
)]}

(14)

where

k1 = (B2 + W 2)/Ṽ with Ṽ = 1
Q−1

∑

i∈U

∑

j∈Ui

∑

k∈Uij
(yk − ȳU )

2 /

ȳ2
U is the unit relvariance of y in the

population.

k2 = (W 2
2 + W 2

3 )/Ṽ

δ1 = B2/(B2 + W 2)

W 2 = 1
t2

U

∑

i∈U Q2
i S2

U3i /pi with S2
U3i = 1

Qi−1

∑

j∈Ui

∑

k∈Uij
(yk − ȳUi)

2
and ȳUi =

∑

j∈Ui

∑

k∈Uij
yk /Qi ,

i.e., S2
U3i is the element-level variance among all elements in PSU i

δ2 = W 2
2 /(W 2

2 + W 2
3 )

Note that the term W 2 in δ1 does not enter the variance in (11) but is defined by analogy to the term in
two-stage sampling. If elements were selected directly from the sample PSUs (instead of first sampling SSUs),
then W 2 above would be the appropriate within-PSU component.

The term δ1 is a measure of the homogeneity among the PSU totals. If the estimate of the population total
from each PSU total, ti /pi , was exactly equal to the population total, tU , then B2 = 0 and δ1 = 0. That is,
if the variation within PSUs is much larger than the variation among PSU totals, then δ1 will be small; this is
the typical situation in household surveys if PSUs all have about the same number of elements. As we saw in
the earlier example, the condition of equal-sized PSUs can be critically important to insure that B2 is small.

If the SSUs all have about the same totals, tij , then W 2
2 will be small and δ2

.
= 0. Although attempts may

be made to create SSUs that have about the same number of elements Qij , the totals tij of other variables
tend to vary, leading to values of δ2 that are larger than those of δ1.

The R function, BW3stagePPS, will calculate B2, W 2, W 2
2 , W 2

3 , δ1, and δ2 defined above for ppswr/srs/srs
and srswr/srs/srs sampling. The function is appropriate if an entire frame is available and takes the following
parameters:

Parameter Description

X data vector; length is the number of elements in the
population.

pp vector of one-draw probabilities for the PSUs; length is
number of PSUs in population.
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Parameter Description

psuID vector of PSU identification numbers. This vector must
be as long as X. Each element in a given PSU should
have the same value in psuID. PSUs must be in the
same order as in X.

ssuID vector of SSU identification numbers. This vector must
be as long as X. Each element in a given SSU should
have the same value in ssuID. PSUs and SSUs must be
in the same order as in X. ssuID should have the form
psuID||(ssuID within PSU).

• Example. Variance components in three stage srswr/srs/srs and ppswr/srs/srs designs.
In the Maryland population suppose that suppose that tracts and BGs within tracts are the first- and
second-stage units, and that persons are elements in a three-stage design. All three stages are selected
by srs. The call to BW3stagePPS for the variable y1 in an srswr/srs/srs design is:

M <- length(unique(MDarea.pop$TRACT))

trtBG <- 10*MDarea.pop$TRACT + MDarea.pop$BLKGROUP

pp.trt <- rep(1/M,M)

BW3stagePPS(X=MDarea.pop$y1, pp=pp.trt,

psuID=MDarea.pop$TRACT, ssuID=trtBG)

#> B W W2 W3 unit relvar k1

#> 0.2577266 1.8390286 0.2698581 2.1083645 1.4627412 1.4334423

#> k2 delta1 delta2

#> 1.6258670 0.1229169 0.1134705

We repeat the calculation but assuming ppswr sampling of PSUs. The calculation for y1 using tracts and
block groups as the first- and second-stage sampling units is done via this call:

trtBG <- 10*MDarea.pop$TRACT + MDarea.pop$BLKGROUP

pp.trt <- table(MDarea.pop$TRACT) / nrow(MDarea.pop)

BW3stagePPS(X=MDarea.pop$y1, pp=pp.trt,

psuID=MDarea.pop$TRACT, ssuID=trtBG)

#> B W W2 W3 unit relvar k1

#> 0.009171403 1.453908596 0.249889887 1.687254100 1.462741186 1.000231629

#> k2 delta1 delta2

#> 1.324324498 0.006268559 0.128999129

Notice that δ1 = 0.123 with srs sampling of tracts but is 0.006 when tracts are sampled proportional to their
population sizes.

An important practical, sample design problem that we do not cover in this vignette is how to estimate
variance components and measures of homogeneity from a complex, multistage sample. This topic is covered
in detail in section 9.4 of Valliant, Dever, and Kreuter (2018). The PracTools package includes a variety of
other functions relevant to two- and three-stage sampling that are also not discussed in this vignette:

Function Description

BW2stagePPSe Estimate components of relvariance for a sample design
where primary sampling units (PSUs) are selected with
pps and elements are selected via srs. The input is a
sample selected in this way.
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Function Description

BW3stagePPSe Estimate components of relvariance for a sample design
where primary sampling units (PSUs) are selected with
probability proportional to size with replacement
(ppswr) and secondary sampling units (SSUs) and
elements within SSUs are selected via simple random
sampling (srs). The input is a sample selected in this
way.

clusOpt2 Compute the sample sizes that minimize the variance
of the pwr-estimator of a total in a two-stage sample.

clusOpt2fixedPSU Compute the optimum number of sample elements per
primary sampling unit (PSU) for a fixed set of PSUs.

clusOpt3 Compute the sample sizes that minimize the variance
of the pwr-estimator of a total in a three-stage sample.

clusOpt3fixedPSU Compute the sample sizes that minimize the variance
of the pwr-estimator of a total in a three-stage sample
when the PSU sample is fixed.

CVcalc2 Compute the coefficient of variation of an estimated
total in a two-stage design. Primary sampling units
(PSUs) can be selected either with probability
proportional to size (pps) or with equal probability.
Elements are selected via simple random sampling
(srs).

CVcalc3 Compute the coefficient of variation of an estimated
total in a three-stage design. Primary sampling units
(PSUs) can be selected either with probability
proportional to size (pps) or with equal probability.
Secondary units and elements within SSUs are selected
via simple random sampling (srs).

deff Compute the Kish, Henry, Spencer, or Chen-Rust
design effects.
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