Package 'PowerUpR'

June 1, 2019
Type PackageTitle Power Analysis Tools for Multilevel Randomized ExperimentsVersion 1.0.4
Date 2019-06-01
DescriptionIncludes tools to calculate statistical power, minimum detectable effect size (MDES), MDES dif-ference (MDESD), and minimum required sample size for various multilevel randomized experi-ments with continuous outcomes. Some of the functions can assist with planning two- and three-level cluster-randomized trials (CRTs) sensitive to multilevel moderation and mediation (2-1-
1, 2-2-1, and 3-2-1). See 'PowerUp!' Excel series at https://www.causalevaluation.org/.
Suggests knitr, rmarkdown
VignetteBuilder knitr
License GPL (>= 3)
NeedsCompilation no
Author Metin Bulus [aut, cre],
Nianbo Dong [aut],
Benjamin Kelcey [aut],
Jessaca Spybrook [aut]
Maintainer Metin Bulus bulusmetin@gmail.com
Repository CRAN
Date/Publication 2019-06-01 10:40:03 UTC
R topics documented:
PowerUpR-package 2
bcra3f2 2
bcra3r2 4
bcra4f3 5
bcra4r2 7
bcra4r3 9
bira2c1 10
bira2f1 12
bira2r1 13
bira3r1 14
bira4r1 16
conversion 18
cra2r2 19
cra3r3 22
cra4r4 26
ira1r1 28
plots 29
PowerUpR-deprecated 30
t1t2.error 31
Index 32
PowerUpR-package Power Analysis Tools for Multilevel Randomized Experiments

Description

PowerUp! series consist of three excel-based applications to design various multilevel randomized experiments to detect main treatment effects, and to design two- and three-level cluster-randomized trials (CRTs) to detect multilevel moderation and mediation. For more information please refer to http://www.causalevaluation.org/.

```
bcra3f2 Three-Level Blocked (Fixed) Cluster-level Random Assignment De-
    sign,Treatment at Level 2
```


Description

Use mdes.bcra3f2() to calculate the minimum detectable effect size, power.bcra3f2() to calculate the statistical power, and mrss.bcra3f2() to calculate the minimum required sample size.

Usage

mdes.bcra3f2(power=.80, alpha=.05, two.tailed=TRUE, rho2, $p=.50, g 2=0, r 21=0, r 22=0$, $\mathrm{n}, \mathrm{J}, \mathrm{K}$)
power.bcra3f2(es=.25, alpha=.05, two.tailed=TRUE, rho2, $p=.50, g 2=0, r 21=0, r 22=0$, $\mathrm{n}, \mathrm{J}, \mathrm{K}$)
mrss.bcra3f2(es=.25, power=.80, alpha=.05, two.tailed=TRUE, $\mathrm{n}, \mathrm{J}, \mathrm{K} 0=10$, tol=.10, rho2, $p=.50, g 2=0, r 21=0, r 22=0$)

Arguments

power	statistical power (1- β).
es	effect size.
alpha	probability of type I error.
two.tailed	logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
p	average proportion of level 2 units randomly assigned to treatment within level 3 units.
g2	number of covariates at level 2.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
n	harmonic mean of level 1 units across level 2 units (or simple average).
J	harmonic mean of level 2 units across level 3 units (or simple average).
K	number of level 3 units.
K0	starting value for K .
tol	tolerance to end iterative process for finding K.

Value

fun function name.
parms list of parameters used in power calculation.
$d f \quad$ degrees of freedom.
ncp noncentrality parameter.
power \quad statistical power $(1-\beta)$.
mdes minimum detectable effect size.
K
number of level 3 units.

Examples

```
# cross-checks
mdes.bcra3f2(rho2=.10, n=20, J=44, K=5)
power.bcra3f2(es = .145, rho2=.10, n=20, J=44, K=5)
mrss.bcra3f2(es = .145, rho2=.10, n=20, J=44)
```

```
bcra3r2 Three-Level Blocked Cluster-level Random Assignment Design,Treat-
ment at Level }
```


Description

Use mdes.bcra3r2() to calculate the minimum detectable effect size, power.bcra3r2() to calculate the statistical power, and mrss.bcra3r2() to calculate the minimum required sample size.

Usage

mdes.bcra3r2(power=.80, alpha=.05, two.tailed=TRUE, rho2, rho3, omega3, $p=.50, g 3=0, r 21=0, r 22=0, r 2 t 3=0$, $\mathrm{n}, \mathrm{J}, \mathrm{K}$)
power.bcra3r2(es=.25, alpha=.05, two.tailed=TRUE, rho2, rho3, omega3, $p=50, g 3=0, r 21=0, r 22=0, r 2 t 3=0$, $\mathrm{n}, \mathrm{J}, \mathrm{K}$)
mrss.bcra3r2(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
$\mathrm{n}, \mathrm{J}, \mathrm{K} 0=10$, tol=.10,
rho2, rho3, omega3, $\mathrm{p}=.50, \mathrm{~g} 3=0, \mathrm{r} 21=0$, $\mathrm{r} 22=0$, $\mathrm{r} 2 \mathrm{t} 3=0$)

Arguments

power statistical power $(1-\beta)$.
es effect size.
alpha probability of type I error.
two.tailed logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
rho2 proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3 proportion of variance in the outcome between level 3 units (unconditional ICC3).
omega3 treatment effect heterogeneity as ratio of treatment effect variance among level 3 units to the residual variance at level 3 .
p average proportion of level 2 units randomly assigned to treatment within level 3 units.
g3 number of covariates at level 3.
r21 proportion of level 1 variance in the outcome explained by level 1 covariates.
r22 proportion of level 2 variance in the outcome explained by level 2 covariates.
r2t3 proportion of treatment effect variance among level 3 units explained by level 3 covariates.
$\mathrm{n} \quad$ harmonic mean of level 1 units across level 2 units (or simple average).
J harmonic mean of level 2 units across level 3 units (or simple average).

K	number of level 3 units.
K0	starting value for K.
tol	tolerance to end iterative process for finding K.

Value

fun	function name.
parms	list of parameters used in power calculation.
df	degrees of freedom.
ncp	noncentrality parameter.
power	statistical power $(1-\beta)$.
mdes	minimum detectable effect size.
K	number of level 3 units.

See Also

cosa.berd3r2

Examples

```
# cross-checks
mdes.bcra3r2(rho3=.13, rho2=.10, omega3=.4,
    n=10,J=6, K=24)
power.bcra3r2(es = .246, rho3=.13, rho2=.10, omega3=.4,
    n=10, J=6, K=24)
mrss.bcra3r2(es = .246, rho3=.13, rho2=.10, omega3=.4,
    n=10, J=6)
```

bcra4f3 Four-Level Blocked (Fixed) Cluster-level Random Assignment Design, Treatment at Level 3

Description

Use mdes.bcra4f3() to calculate the minimum detectable effect size, power.bcra4f3() to calculate the statistical power, and mrss.bcra4f3() to calculate the minimum required sample size.

Usage

mdes.bcra4f3(power=.80, alpha=.05, two.tailed=TRUE, rho2, rho3, $p=.50, r 21=0, r 22=0, r 23=0, \mathrm{~g} 3=0$, $\mathrm{n}, \mathrm{J}, \mathrm{K}, \mathrm{L}$)
power.bcra4f3(es=.25, alpha=.05, two.tailed=TRUE, rho2, rho3, $p=.50, r 21=0, r 22=0, r 23=0, g 3=0$, $\mathrm{n}, \mathrm{J}, \mathrm{K}, \mathrm{L}$)

```
mrss.bcra4f3(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
    n, J, K, L0=10, tol=.10,
    rho2, rho3, p=.50, g3=0, r21=0, r22=0, r23=0)
```


Arguments

power	statistical power ($1-\beta$).
es	effect size.
alpha	probability of type I error.
two.tailed	logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2)
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3)
p	average proportion of level 3 units randomly assigned to treatment within level 4 units.
g3	number of covariates at level 3 .
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
r23	proportion of level 3 variance in the outcome explained by level 3 covariates.
n	harmonic mean of level 1 units across level 2 units (or simple average).
J	harmonic mean of level 2 units across level 3 units (or simple average).
K	harmonic mean of level 3 units across level 4 units (or simple average).
L	number of level 4 units.
L0	starting value for L.
tol	tolerance to end iterative process for finding L.

Value

fun	function name.
parms	list of parameters used in power calculation.
$d f$	degrees of freedom.
ncp	noncentrality parameter.
power	statistical power $(1-\beta)$.
mdes	minimum detectable effect size.
L	number of level 4 units.

Examples

```
# cross-checks
mdes.bcra4f3(rho3=.15, rho2=.15,
    n=10, J=4, K=4, L=15)
power.bcra4f3(es=0.339, rho3=.15, rho2=.15,
    n=10, J=4, K=4, L=15)
mrss.bcra4f3(es=0.339, rho3=.15, rho2=.15,
    n=10, J=4, K=4)
```


bcra4r2 Four-Level Blocked Cluster-level Random Assignment Design, Treatment at Level 2

Description

Use mdes.bcra4r2() to calculate the minimum detectable effect size, power.bcra4r2() to calculate the statistical power, and mrss.bcra4r2() to calculate the minimum required sample size.

Usage

```
    mdes.bcra4r2(power=.80, alpha=.05, two.tailed=TRUE,
        rho2, rho3, rho4, omega3, omega4,
        p=.50, r21=0, r22=0, r2t3=0, r2t4=0, g4=0,
        n, J, K, L)
    power.bcra4r2(es=.25, alpha=.05, two.tailed=TRUE,
        rho2, rho3, rho4, omega3, omega4,
        p=.50, r21=0, r22=0, r2t3=0, r2t4=0, g4=0,
        n, J, K, L)
    mrss.bcra4r2(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
        n, J, K, L0=10, tol=.10,
        rho2, rho3, rho4, omega3, omega4,
        p=.50, r21=0, r22=0, r2t3=0, r2t4=0, g4=0)
```


Arguments

power statistical power $(1-\beta)$.
es effect size.
alpha probability of type I error.
two.tailed logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
rho2 proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3 proportion of variance in the outcome between level 3 units (unconditional ICC3).
rho4 proportion of variance in the outcome between level 4 units (unconditional ICC4).
omega3 treatment effect heterogeneity as ratio of treatment effect variance among level 3 units to the residual variance at level 3 .
omega4 treatment effect heterogeneity as ratio of treatment effect variance among level 4 units to the residual variance at level 4.
p average proportion of level 2 units randomly assigned to treatment within level 3 units.
g4 number of covariates at level 4.
r21 proportion of level 1 variance in the outcome explained by level 1 covariates.

r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
r2t3	proportion of treatment effect variance among level 3 units explained by level 3 covariates.
r2t4	proportion of treatment effect variance among level 4 units explained by level 4 covariates.
J	harmonic mean of level 1 units across level 2 units (or simple average).
K	harmonic mean of level 2 units across level 3 units (or simple average).
L	namber of level 4 units.
L0	starting value for L.
tol	tolerance to end iterative process for finding L.

Value

fun	function name.
parms	list of parameters used in power calculation.
$d f$	degrees of freedom.
ncp	noncentrality parameter.
power	statistical power $(1-\beta)$.
mdes	minimum detectable effect size.
L	number of level 4 units.

See Also

cosa.bcrd4r2

Examples

```
# cross-checks
mdes.bcra4r2(rho4=.05, rho3=.15, rho2=.15,
    omega4=.50, omega3=.50, n=10, J=4, K=4, L=20)
    power.bcra4r2(es = . 206, rho4=.05, rho3=.15, rho2=.15,
        omega4=.50, omega3=.50, n=10, J=4, K=4, L=20)
    mrss.bcra4r2(es = .206, rho4=.05, rho3=.15, rho2=.15,
    omega4=.50, omega3=.50, n=10, J=4, K=4)
```

Four-Level Blocked Cluster-level Random Assignment Design, Treatment at Level 3

Description

Use mdes.bcra4r3() to calculate the minimum detectable effect size, power.bcra4r3() to calculate the statistical power, and mrss.bcra4r3() to calculate the minimum required sample size.

Usage

```
    mdes.bcra4r3(power=.80, alpha=.05, two.tailed=TRUE,
        rho2, rho3, rho4, omega4,
        \(\mathrm{p}=.50, \mathrm{r} 21=0, \mathrm{r} 22=0, \mathrm{r} 23=0, \mathrm{r} 2 \mathrm{t} 4=0, \mathrm{~g} 4=0\),
        \(\mathrm{n}, \mathrm{J}, \mathrm{K}, \mathrm{L}\) )
    power.bcra4r3(es=.25, alpha=.05, two.tailed=TRUE,
        rho2, rho3, rho4, omega4,
        \(p=50, r 21=0, r 22=0, r 23=0, r 2 t 4=0, g 4=0\),
        \(\mathrm{n}, \mathrm{J}, \mathrm{K}, \mathrm{L}\) )
    mrss.bcra4r3(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
        \(\mathrm{n}, \mathrm{J}, \mathrm{K}, \mathrm{L} 0=10\), tol=.10,
        rho2, rho3, rho4, omega4,
        \(p=.50, r 21=0, r 22=0, r 23=0, r 2 t 4=0, g 4=0)\)
```


Arguments

power \quad statistical power $(1-\beta)$.
es effect size.
alpha probability of type I error.
two.tailed logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
rho2 proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3 proportion of variance in the outcome between level 3 units (unconditional ICC3).
rho4 proportion of variance in the outcome between level 4 units (unconditional ICC4).
omega4 treatment effect heterogeneity as ratio of treatment effect variance among level 4 units to the residual variance at level 4.
$\mathrm{p} \quad$ average proportion of level 3 units randomly assigned to treatment within level 4 units.
g4 number of covariates at level 4.
r21 proportion of level 1 variance in the outcome explained by level 1 covariates.
r22 proportion of level 2 variance in the outcome explained by level 2 covariates.

r23	proportion of level 3 variance in the outcome explained by level 3 covariates.
r2t4	proportion of treatment effect variance among level 4 units explained by level 4 covariates.
n	harmonic mean of level 1 units across level 2 units (or simple average).
J	harmonic mean of level 2 units across level 3 units (or simple average).
K	harmonic mean of level 3 units across level 4 units (or simple average).
L	number of level 4 units.
L 0	starting value for L.
tol	tolerance to end iterative process for finding L.

Value

fun	function name.
parms	list of parameters used in power calculation.
df	degrees of freedom.
ncp	noncentrality parameter.
power	statistical power $(1-\beta)$.
mdes	minimum detectable effect size.
L	number of level 4 units.

See Also

```
cosa.berd4r3
```


Examples

```
# cross-checks
mdes.bcra4r3(rho4=.05, rho3=.15, rho2=.15,
    omega4=.50, n=10, J=4, K=4, L=20)
power.bcra4r3(es = .316, rho4=.05, rho3=.15, rho2=.15,
    omega4=.50, n=10, J=4, K=4, L=20)
mrss.bcra4r3(es = .316, rho4=.05, rho3=.15, rho2=.15,
    omega4=.50, n=10, J=4, K=4)
```

bira2c1

Two-Level Blocked (Constant Treatment Effect) Individual-level Random Assignment Design, Treatment at Level 1

Description

Use mdes.bira2c1() to calculate the minimum detectable effect size, power.bira2c1() to calculate the statistical power, and mrss.bira2c1() to calculate the minimum required sample size.

Usage

```
mdes.bira2c1(power=.80, alpha=.05, two.tailed=TRUE,
    p=.50, g1=0, r21=0,
    n, J)
power.bira2c1(es=.25, alpha=.05, two.tailed=TRUE,
    p=.50, g1=0, r21=0,
    n, J)
mrss.bira2c1(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
    n, J0=10, tol=.10,
    p=.50,g1=0, r21=0)
```


Arguments

power	statistical power ($1-\beta$).
es	effect size.
alpha	probability of type I error.
two.tailed	logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
p	average proportion of level 1 units randomly assigned to treatment within level 2 units.
g1	number of covariates at level 1.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
n	harmonic mean of level 1 units across level 2 units (or simple average).
J	level 2 sample size.
J0	starting value for J .
tol	tolerance to end iterative process for finding J.

Value

fun	function name.
parms	list of parameters used in power calculation.

df degrees of freedom.
ncp noncentrality parameter.
power \quad statistical power $(1-\beta)$.
mdes minimum detectable effect size.
J number of level 2 units.

Examples

```
# cross-checks
mdes.bira2c1(n=15, J=20)
power.bira2c1(es=.325, n=15, J=20)
mrss.bira2c1(es=.325, n=15)
```

Two-Level Blocked (Fixed) Individual-level Random Assignment Design, Treatment at Level 1

Description

Use mdes.bira2f1() to calculate the minimum detectable effect size, power.bira2f1() to calculate the statistical power, and mrss.bira2f1() to calculate the minimum required sample size.

Usage

```
    mdes.bira2f1(power=.80, alpha=.05, two.tailed=TRUE,
    p=.50, g1=0, r21=0, n, J)
    power.bira2f1(es=.25, alpha=.05, two.tailed=TRUE,
        p=.50, g1=0, r21=0, n, J)
    mrss.bira2f1(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
        n, J0=10, tol=.10,
        p=.50,g1=0, r21=0)
```


Arguments

power statistical power $(1-\beta)$.
es
effect size.
alpha probability of type I error.
two.tailed logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
$\mathrm{p} \quad$ average proportion of level 1 units randomly assigned to treatment within level 2 units.
g1 number of covariates at level 1.
r21 proportion of level 1 variance in the outcome explained by level 1 covariates.
$\mathrm{n} \quad$ harmonic mean of level 1 units across level 2 units (or simple average).
J
J0
tol
level 2 sample size.
starting value for J.
tolerance to end iterative process for finding J.

Value

fun	function name.
parms	list of parameters used in power calculation.
df	degrees of freedom.
ncp	noncentrality parameter.

power	statistical power $(1-\beta)$.
mdes	minimum detectable effect size.
J	number of level 2 units.

Examples

```
# cross-checks
mdes.bira2f1(n=15, J=20)
power.bira2f1(es=.325, n=15, J=20)
mrss.bira2f1(es=.325, n=15)
```

bira2r1 Two-Level Blocked Individual-level Random Assignment Design, Treatment at Level 1

Description

Use mdes.bira2r1() to calculate the minimum detectable effect size, power.bira2r1 () to calculate the statistical power, and mrss.bira2r1() to calculate the minimum required sample size.

Usage

```
mdes.bira2r1(power=.80, alpha=.05, two.tailed=TRUE,
    rho2, omega2, p=.50, g2=0, r21=0, r2t2=0,
    n, J)
power.bira2r1(es=.25, alpha=.05, two.tailed=TRUE,
    rho2, omega2, g2=0, p=.50, r21=0, r2t2=0,
    n, J)
mrss.bira2r1(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
    n, J0=10, tol=.10,
    rho2, omega2, g2=0, p=.50, r21=0, r2t2=0)
```


Arguments

\(\left.$$
\begin{array}{ll}\text { power } & \text { statistical power }(1-\beta) . \\
\text { es } & \text { effect size. }\end{array}
$$ \quad $$
\begin{array}{l}\text { probability of type I error. } \\
\text { alpha } \\
\text { two.tailed }\end{array}
$$ \begin{array}{l}logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis

testing.\end{array}\right]\)| proportion of variance in the outcome between level 2 units (unconditional ICC2). |
| :--- |
| rho2 |
| omega2 |\quad| treatment effect heterogeneity as ratio of treatment effect variance among level |
| :--- |
| 2 units to the residual variance at level 2. |

g2	number of covariates at level 2.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r2t2	proportion of treatment effect variance among level 2 units explained by level 2 covariates.
n	harmonic mean of level 1 units across level 2 units (or simple average).
J	level 2 sample size.
J0	starting value for J.
tol	tolerance to end iterative process for finding J.

Value

fun	function name.
parms	list of parameters used in power calculation.
df	degrees of freedom.
ncp	noncentrality parameter.
power	statistical power $(1-\beta)$.
mdes	minimum detectable effect size.
J	number of level 2 units.

See Also

cosa.bird2r1

Examples

\# cross-checks
mdes.bira2r1(rho2=.17, omega2=.50, $\mathrm{n}=15, \mathrm{~J}=20$)
power.bira2r1 (es=.366, rho2=.17, omega2=.50, $n=15, J=20$)
mrss.bira2r1(es=.366, rho2=.17, omega2=.50, n=15)
bira3r1 Three-Level Blocked Individual-level Random Assignment Design, Treatment at Level 1

Description

Use mdes.bira3r1() to calculate the minimum detectable effect size, power.bira3r1() to calculate the statistical power, and mrss.bira3r1() to calculate the minimum required sample size.

```
Usage
    mdes.bira3r1(power=.80, alpha=.05, two.tailed=TRUE,
        rho2, rho3, omega2, omega3,
        p=.50, r21=0, r2t2=0, r2t3=0, g3=0,
        n, J, K)
    power.bira3r1(es=.25, alpha=.05, two.tailed=TRUE,
        rho2, rho3, omega2, omega3,
        p=.50, r21=0, r2t2=0, r2t3=0, g3=0,
        n, J, K)
    mrss.bira3r1(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
        n, J, K0=10, tol=.10,
        rho2, rho3, omega2, omega3,
        p=.50, r21=0, r2t2=0, r2t3=0, g3=0)
```


Arguments

power	statistical power ($1-\beta$).
es	effect size.
alpha	probability of type I error.
two.tailed	logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
omega2	treatment effect heterogeneity as ratio of treatment effect variance among level 2 units to the residual variance at level 2.
omega3	treatment effect heterogeneity as ratio of treatment effect variance among level 3 units to the residual variance at level 3 .
p	average proportion of level 1 units randomly assigned to treatment within level 2 units.
g3	number of covariates at level 3 .
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r2t2	proportion of treatment effect variance among level 2 units explained by level 2 covariates.
r2t3	proportion of treatment effect variance among level 3 units explained by level 3 covariates.
n	harmonic mean of level 1 units across level 2 units (or simple average).
J	harmonic mean of level 2 units across level 3 units (or simple average).
K	number of level 3 units.
K0	starting value for K .
tol	tolerance to end iterative process for finding K.

Value

fun	function name.
parms	list of parameters used in power calculation.
df	degrees of freedom.
ncp	noncentrality parameter.
power	statistical power $(1-\beta)$.
mdes	minimum detectable effect size.
K	number of level 3 units.

See Also

```
cosa.bird3r1
```


Examples

```
# cross-checks
mdes.bira3r1(rho3=.20, rho2=.15,
    omega3=.10, omega2=.10,
    n=69, J=10, K=100)
power.bira3r1(es = .045, rho3=.20, rho2=.15,
        omega3=.10, omega2=.10,
        n=69, J=10, K=100)
mrss.bira3r1(es = .045, rho3=.20, rho2=.15,
    omega3=.10, omega2=.10,
    n=69, J=10)
```

bira4r1
Four-Level Blocked Individual-level Random Assignment Design,
Treatment at Level 1

Description

Use mdes.bira4r1 () to calculate the minimum detectable effect size, power.bira4r1() to calculate the statistical power, and mrss.bira4r1() to calculate the minimum required sample size.

Usage

```
mdes.bira4r1(power=.80, alpha=.05, two.tailed=TRUE,
    rho2, rho3, rho4, omega2, omega3, omega4,
    p=.50, r21=0, r2t2=0, r2t3=0, r2t4=0, g4=0,
    n, J, K, L)
power.bira4r1(es=.25, alpha=.05, two.tailed=TRUE,
    rho2, rho3, rho4, omega2, omega3, omega4,
    p=.50, r21=0, r2t2=0, r2t3=0, r2t4=0, g4=0,
    n, J, K, L)
```

```
mrss.bira4r1(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
    n, J, K, L0=10, tol=.10,
    rho2, rho3, rho4, omega2, omega3, omega4,
    \(\mathrm{p}=.50, \mathrm{r} 21=0, \mathrm{r} 2 \mathrm{t} 2=0, \mathrm{r} 2 \mathrm{t} 3=0, \mathrm{r} 2 \mathrm{t} 4=0, \mathrm{~g} 4=0\) )
```


Arguments

power \quad statistical power $(1-\beta)$.
es
alpha probability of type I error.
two.tailed logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
rho2 proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3 proportion of variance in the outcome between level 3 units (unconditional ICC3).
rho4 proportion of variance in the outcome between level 4 units (unconditional ICC4).
omega2 treatment effect heterogeneity as ratio of treatment effect variance among level 2 units to the residual variance at level 2.
omega3 treatment effect heterogeneity as ratio of treatment effect variance among level 3 units to the residual variance at level 3 .
omega4 treatment effect heterogeneity as ratio of treatment effect variance among level 4 units to the residual variance at level 4.
p
g4
r21 proportion of level 1 variance in the outcome explained by level 1 covariates.
r2t2 proportion of treatment effect variance among level 2 units explained by level 2 covariates.
proportion of treatment effect variance among level 3 units explained by level 3 covariates.
r2t4 proportion of treatment effect variance among level 4 units explained by level 4 covariates.
harmonic mean of level 1 units across level 2 units (or simple average).
harmonic mean of level 2 units across level 3 units (or simple average).
harmonic mean of level 3 units across level 4 units (or simple average).
number of level 4 units.
starting value for L .
tol tolerance to end iterative process for finding L.

Value

fun	function name.
parms	list of parameters used in power calculation.
$d f$	degrees of freedom.
ncp	noncentrality parameter.
power	statistical power $(1-\beta)$.
mdes	minimum detectable effect size.
L	number of level 4 units.

See Also

cosa.bird4r1

Examples

\# cross-checks
mdes.bira4r1(rho4=.05, rho3=.15, rho2=.15, omega4=.50, omega3=.50, omega2=.50, $\mathrm{n}=10, \mathrm{~J}=4, \mathrm{~K}=4, \mathrm{~L}=27$)
power.bira4r1 (es = 0.142, rho4=.05, rho3=.15, rho2=.15, omega $4=.50$, omega $3=.50$, omega $2=.50$, $\mathrm{n}=10, \mathrm{~J}=4, \mathrm{~K}=4, \mathrm{~L}=27$)
mrss.bira4r1(es $=0.142$, rho4=.05, rho3=.15, rho2=.15, omega $4=.50$, omega3 $=.50$, omega $2=.50$, $\mathrm{n}=10$, $\mathrm{J}=4, \mathrm{~K}=4$)

conversion

Object Conversion

Description

Use mrss.to.mdes() to convert an object returned from MRSS functions into an object returned from MDES functions, mrss.to. power() to convert an object returned from MRSS functions into an object returned from power functions, power.to.mdes() to convert an object returned from power functions into an object returned from MDES functions, mdes.to. power() to convert an object returned from MDES functions into an object returned from power functions, and mdes. to. pctl() to convert effect sizes or an object returned from MDES functions into percentiles.

Usage

mrss.to.mdes(object)
mrss.to. power (object)
power.to.mdes(object)
mdes.to. power (object)
mdes.to.pctl(object)

Arguments

object an object returned from one of the functions in PowerUpR package.

Examples

```
design1 <- power.bira2r1(es=.15, rho2=.35, omega2=.10, n=83, J=10)
design2 <- power.to.mdes(design1)
mdes.to.pctl(design2)
```

cra2r2

Two-level Cluster-randomized Trials to Detect Main, Moderation and Mediation Effects

Description

Use mdes. <design>() to calculate minimum detectable effect size for the main effect, mdesd.<design>() to calculate minimum detectable effect size difference for the moderation effect, power. <design>() to calculate the statistical power, and mrss.<design>() to calculate the minimum required sample size. Use <output>.cra2r2() for the main effect, <output>.mod221() for the moderator at level 1 , <output>.mod222() for the moderator at level 2. Use power.med211() for 2-1-1 mediation, and power.med221() for 2-2-1 mediation.

Usage

mdes.cra2r2(power=.80, alpha=.05, two.tailed=TRUE, rho2, $\mathrm{p}=.50, \mathrm{~g} 2=0, \mathrm{r} 21=0, \mathrm{r} 22=0$, n, J)
mdesd.mod221(power=.80, alpha=.05, two.tailed=TRUE, rho2, omegam2, g1=0, r21=0, r2m2=0, $\mathrm{p}=.50$, $q=$ NULL, $\mathrm{n}, \mathrm{J})$
mdesd.mod222(power=.80, alpha=.05, two.tailed=TRUE, rho2, g2=0, r21=0, r22=0, $p=.50, q=N U L L, n, J)$
power.cra2r2(es=.25, alpha=.05, two.tailed=TRUE, rho2, $g 2=0, p=.50, r 21=0, r 22=0$, n, J)
power.mod221(es=.25, alpha=.05, two.tailed=TRUE, rho2, omegam2, g1=0, r21=0, r2m2=0, $p=.50, q=N U L L, n, J)$
power.mod222(es=.25, alpha=.05, two.tailed=TRUE, rho2, g2=0, r21=0, r22=0, $\mathrm{p}=.50, \mathrm{q}=\mathrm{NULL}, \mathrm{n}, \mathrm{J})$

```
power.med211(esa, esb1, esB, escp, two.tailed = TRUE, alpha = .05,
    mc = FALSE, nsims = 1000, ndraws = 1000,
    rhom2, rho2, r21, r22, r2m1, r2m2,
    p, n, J)
power.med221(esa, esb, escp, two.tailed = TRUE, alpha = .05,
    mc = FALSE, nsims = 1000, ndraws = 1000,
    rho2, r22, r21, r2m2,
    p = . 50, n, J)
mrss.cra2r2(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
    n, J0=10, tol=.10,
    rho2, g2=0, p=.50, r21=0, r22=0)
mrss.mod221(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
    n, J0=10, tol=.10, rho2, omegam2, g1=0, r21=0, r2m2=0,
    p=.50, q=NULL)
mrss.mod222(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
    n, J0=10, tol=.10, rho2, g2=0, r21=0, r22=0,
    p=.50, q=NULL)
mrss.mod222(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
    n, J0=10, tol=.10, rho2, g2=0, r21=0, r22=0,
    p=.50, q=NULL)
```


Arguments

power \quad statistical power $(1-\beta)$
es, esa, esb, esb1, esB, escp
effect size for main/moderator effects, or for path coefficients a (treatment mediator), b (level 2 mediator - outcome), b1 (level 1 mediator - outcome), B (overall mediator - outcome) or cp (direct treatment - outcome) in the mediation model.
alpha probability of type I error.
two.tailed logical; FALSE for one-tailed hypothesis testing.
rho2 proportion of variance in the outcome between level 2 units (unconditional ICC2).
rhom2 proportion of variance in the mediator between level 2 units.
omegam2 ratio of the unconditional variance in the moderator effect that is between level 2 units to the residual variance between level 2 units in the null model.
$p \quad$ proportion of level 2 units randomly assigned to treatment.
q proportion of level 1 or level 2 units in the moderator subgroup.
g1 number of covariates at level 1.
g2 number of covariates at level 2.
r21 proportion of level 1 variance in the outcome explained by level 1 covariates.

r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
r2m1	proportion of mediator variance at level 1 explained by level 1 covariates.
r2m2	proportion of variance in the moderator (or mediator) effect that is explained by level 2 predictors. For the mediation model, proportion of mediator variance at level 2 explained by level 2 predictors.
n	harmonic mean of level 1 units across level 2 units (or simple average). J
J 0	level 2 sample size.
tol	tolerance to end iterative process for finding J.
mc	logical; TRUE for monte carlo simulation based power.
nsims	number of replications, if mc $=$ TRUE.
ndraws	number of draws from the distribution of the path coefficients for each replica- tion, if mc $=$ TRUE.

Value

fun	function name.
parms	list of parameters used in power calculation.
$d f$	degrees of freedom.
ncp	noncentrality parameter.
power	statistical power $(1-\beta)$.
mdes	minimum detectable effect size.
J	number of level 2 units.

See Also

For a more flexible sample size determination see cosa.crd2r2.

Examples

```
# cross-checks for the main effect
mdes.cra2r2(rho2=.17, n=15, J=20)
power.cra2r2(es=.629, rho2=.17, n=15, J=20)
mrss.cra2r2(es=.629, rho2=.17, n=15)
# cross-checks for the randomly varying cont. L1 moderator effect
mdesd.mod221(rho2=.17, omegam2=.10, n=15, J=20)
power.mod221(es=.3563, rho2=.17, omegam2 =.10, n=15, J=20)
mrss.mod221(es=.3563, rho2=.17, omegam2 =.10, n=15)
# cross-checks for the non-randomly varying cont. L1 moderator effect
mdesd.mod221(rho2=.17, omegam2=0, n=15, J=20)
power.mod221(es=0.2957, rho2=.17, omegam2 =0, n=15, J=20)
mrss.mod221(es=0.2957, rho2=.17, omegam2 =0, n=15)
# cross-checks for the randomly varying bin. L1 moderator effect
```

```
mdesd.mod221(rho2=.17, omegam2=.10, q=.50, n=15, J=20)
power.mod221(es=.647, rho2=.17, omegam2 =.10, q=.50, n=15, J=20)
mrss.mod221(es=.647, rho2=.17, omegam2 =.10, q=.50, n=15)
# cross-checks for the non-randomly varying bin. L1 moderator effect
mdesd.mod221(rho2=.17, omegam2=0, q=.50, n=15, J=20)
power.mod221(es=0.5915, rho2=.17, omegam2 =0, q=.50, n=15, J=20)
mrss.mod221(es=0.5915, rho2=.17, omegam2 =0, q=.50, n=15)
# cross-checks for the cont. L2 moderator effect
mdesd.mod222(rho2=.17, n=15, J=100)
power.mod222(es=0.2742, rho2=.17, n=15, J=100)
mrss.mod222(es=0.2742, rho2=.17, n=15)
# cross-checks for the bin. L2 moderator effect
mdesd.mod222(rho2=.17, q=.50, n=15, J=100)
power.mod222(es=0.5485, rho2=.17, q=.50, n=15, J=100)
mrss.mod222(es=0.5485, rho2=.17, q=.50, n=15)
# 2-2-1 mediation
power.med221(esa=0.6596, esb=0.1891, escp=.1,
    rho2=.15, r22=.52, r21=.40, r2m2=.50,
    n=100, J=40, p=.5)
# 2-1-1 mediation
power.med211(esa=0.4135, esb1=0.0670, esB=0.3595, escp=.1,
    rhom2=.3, rho2=.3, r22=.6, r21=.6, r2m2=.6, r2m1=.6,
    n=30, J=80, p=.1)
```

cra3r3 Three-level Cluster-randomized Trials to Detect Main, Moderation,
and Mediation Effects

Description

Use mdes. <design>() to calculate the minimum detectable effect size for the main effect, mdesd.<design>() to calculate the minimum detectable effect size difference for the moderation effect, power . <design>() to calculate the statistical power, and mrss.<design>() to calculate the minimum required sample size. Use <output>. cra3r3() for the main effect, <output>. mod331() for the moderator at level 1, <output>. mod332() for the moderator at level 2, <output>. mod333() for the moderator at level 3. Usepower.med321 () for 3-2-1 mediation.

Usage

mdes.cra3r3(power=.80, alpha=.05, two.tailed=TRUE,
rho2, rho3, $p=.50, g 3=0, r 21=0, r 22=0, r 23=0$,
$\mathrm{n}, \mathrm{J}, \mathrm{K}$)
mdesd.mod331(power=.80, alpha=.05, two.tailed=TRUE,

```
    rho2, rho3, omegam2=0, omegam3=0,
    g1=0, r21=0, r2m2=0, r2m3=0,
    p=.50, q=NULL, n, J, K)
mdesd.mod332(power=.80, alpha=.05, two.tailed=TRUE,
    rho2, rho3, omegam3, g2=0, r21=0, r22=0, r2m3=0,
    p=.50, q=NULL, n, J, K)
mdesd.mod333(power=.80, alpha=.05, two.tailed=TRUE,
    rho2, rho3, g3=0, r21=0, r22=0, r23=0,
    p=.50, q=NULL, n, J, K)
power.cra3r3(es=.25, alpha=.05, two.tailed=TRUE,
    rho2, rho3, g3=0, r21=0, r22=0, r23=0,
    p=.50, n, J, K)
power.mod331(es=.25, alpha=.05, two.tailed=TRUE,
    rho2, rho3, omegam2, omegam3,
    g1=0, r21=0, r2m2=0, r2m3=0,
    p=.50, q=NULL, n, J, K)
power.mod332(es=.25, alpha=.05, two.tailed=TRUE,
    rho2, rho3, omegam3, g2=0, r21=0, r22=0, r2m3=0,
    p=.50, q=NULL, n, J, K)
power.mod333(es=.25, alpha=.05, two.tailed=TRUE,
    rho2, rho3, g3=0, r21=0, r22=0, r23=0,
    p=.50, q=NULL, n, J, K)
power.med321(esa, esB, two.tailed=TRUE, alpha=.05,
    mc=FALSE, nsims=1000, ndraws=1000,
    rhom3, rho2, rho3, r2m2, r2m3, r21, r22, r23,
    p=.50, n, J, K)
mrss.cra3r3(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
    n, J, K0=10, tol=.10,
    rho2, rho3, p=.50, g3=0, r21=0, r22=0, r23=0)
mrss.mod331(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
    rho2, rho3, omegam2, omegam3,
    g1=0, r21=0, r2m2=0, r2m3=0,
    p=.50, q=NULL, n, J, K0=10, tol=.10)
mrss.mod332(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
    rho2, rho3, omegam3, g2=0, r21=0, r22=0, r2m3=0,
    p=.50, q=NULL, n, J, K0=10, tol=.10)
mrss.mod333(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
```

```
rho2, rho3, g3=0, r21=0, r22=0, r23=0,
p=.50, q=NULL, n, J, K0=10, tol=.10)
```


Arguments

power	statistical power ($1-\beta$).
es, esa, esB	effect size for main/moderator effects, or for path coefficients a (treatment mediator), or B (overall mediator - outcome) in the mediation model.
alpha	probability of type I error.
two.tailed	logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
rhom3	proportion of variance in the mediator between level 3 units.
omegam2	ratio of the unconditional variance in the moderator effect that is between level 2 units to the residual variance between level 2 units in the null model.
omegam3	ratio of the unconditional variance in the moderator effect that is between level 3 units to the residual variance between level 3 units in the null model.
p	proportion of level 3 units randomly assigned to treatment.
q	proportion of level 1 , level 2, or level 3 units in the moderator subgroup.
g1	number of covariates at level 1.
g2	number of covariates at level 2.
g3	number of covariates at level 3.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
r23	proportion of level 3 variance in the outcome explained by level 3 covariates.
r2m2	proportion of variance in the moderator (or mediator) effect that is explained by level 2 predictors. For the mediation model, proportion of mediator variance at level 2 explained by level 2 predictors.
r2m3	proportion of variance in the moderator (or mediator) effect that is explained by level 3 predictors. For the mediation model, proportion of aggregated mediator variance at level 3 explained by level 3 predictors.
n	harmonic mean of level 1 units across level 2 units (or simple average).
J	harmonic mean of level 2 units across level 3 units (or simple average).
K	level 3 sample size.
K0	starting value for K .
tol	tolerance to end iterative process for finding K.
mc	logical; TRUE for monte carlo simulation based power.
nsims	number of replications, if $\mathrm{mc}=$ TRUE.
ndraws	number of draws from the distribution of the path coefficients for each replication, if $\mathrm{mc}=$ TRUE.

Value

fun	function name.
parms	list of parameters used in power calculation.
df	degrees of freedom.
ncp	noncentrality parameter.
power	statistical power $(1-\beta)$.
mdes	minimum detectable effect size.
K	number of level 3 units.

See Also

For a more flexible sample size determination see cosa.crd3r3.

Examples

```
# cross-checks for the main effect
mdes.cra3r3(rho3=.06, rho2=.17, n=15, J=3, K=60)
power.cra3r3(es=.269, rho3=.06, rho2=.17, n=15, J=3, K=60)
mrss.cra3r3(es=.269, rho3=.06, rho2=.17, n=15, J=3)
# cross-checks for the randomly varying cont. L1 moderator effect
mdes.mod331(power=.80, alpha=.05, two.tailed=TRUE,
    rho2=.17, rho3=.06, omegam2=.10, omegam3=.10,
    q=NULL, n=15, J=3, K=60)
power.mod331(es=0.1248, alpha=.05, two.tailed=TRUE,
    rho2=.17, rho3=.06, omegam2=.10, omegam3=.10,
    q=NULL, n=15, J=3, K=60)
mrss.mod331(es=0.1248, alpha=.05, two.tailed=TRUE,
    rho2=.17, rho3=.06, omegam2=.10, omegam3=.10,
    q=NULL, n=15, J=3)
# cross-checks for the non-randomly varying cont. L1 moderator effect
mdesd.mod331(power=.80, alpha=.05, two.tailed=TRUE,
    rho2=.17, rho3=.06, omegam2=0, omegam 3=0,
    q=NULL, n=15, J=3, K=60)
power.mod331(es=.0946, alpha=.05, two.tailed=TRUE,
    rho2=.17, rho3=.06, omegam2=0, omegam3=0,
    q=NULL, n=15, J=3, K=60)
mrss.mod331(es=.0946, alpha=.05, two.tailed=TRUE,
    rho2=.17, rho3=.06, omegam2=0, omegam3=0,
    q=NULL, n=15, J=3)
# cross-checks for the randomly varying bin. L1 moderator effect
mdesd.mod331(power=.80, alpha=.05, two.tailed=TRUE,
    rho2=.17, rho3=.06, omegam2=.10, omegam3=.10,
    q=.50, n=15, J=3, K=60)
power.mod331(es=.2082, alpha=.05, two.tailed=TRUE,
    rho2=.17, rho3=.06, omegam2=.10, omegam3=.10,
    q=.50, n=15, J=3, K=60)
```

```
mrss.mod331(es=.2082, alpha=.05, two.tailed=TRUE,
    rho2=.17, rho3=.06, omegam2=.10, omegam3=.10,
    q=.50, n=15, J=3)
# cross-checks for the non-randomly varying bin. L1 moderator effect
mdesd.mod331(power=.80, alpha=.05, two.tailed=TRUE,
    rho2=.17, rho3=.06, omegam2=0, omegam3=0,
    q=.50, n=15, J=3, K=60)
power.mod331(es=.1893, alpha=.05, two.tailed=TRUE,
    rho2=.17, rho3=.06, omegam2=0, omegam3=0,
    q=.50, n=15, J=3, K=60)
mrss.mod331(es=.1893, alpha=.05, two.tailed=TRUE,
    rho2=.17, rho3=.06, omegam2=0, omegam3=0,
    q=.50, n=15, J=3)
# 3-2-1 mediation
power.med321(esa= . 51, esB = . 30, rhom3 = 0.27, rho2 = . 15, rho3 = . 19,
    r2m2 = .07, r2m3 = .16, r21 = .02, r22 = .41, r23 = . 38,
    p = . 50, n = 20, J = 4, K = 60)
```

cra4r4 Four-Level Cluster-randomized Trial

Description

use mdes.cra4r4() calculate the minimum detectable effect size, power.cra4r4() to calculate the statistical power, and mrss.cra4r4() to calculate the minimum required sample size.

Usage

mdes.cra4r4(power=.80, alpha=.05, two.tailed=TRUE,
rho2, rho3, rho4, $p=.50, r 21=0, r 22=0, r 23=0, r 24=0, g 4=0$, $\mathrm{n}, \mathrm{J}, \mathrm{K}, \mathrm{L}$)
power.cra4r4(es=.25, alpha=.05, two.tailed=TRUE,
rho2, rho3, rho4, $p=.50, r 21=0, r 22=0, r 23=0, r 24=0, \mathrm{~g} 4=0$,
$\mathrm{n}, \mathrm{J}, \mathrm{K}, \mathrm{L})$
mrss.cra4r4(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
$\mathrm{n}, \mathrm{J}, \mathrm{K}, \mathrm{L} 0=10$, tol=.10,
rho2, rho3, rho4, $p=.50$,
$r 21=0, r 22=0, r 23=0, r 24=0, \mathrm{~g} 4=0$)

Arguments

power statistical power $(1-\beta)$.
es effect size.
alpha probability of type I error.

two.tailed	logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
rho4	proportion of variance in the outcome between level 4 units (unconditional ICC4).
p	proportion of level 4 units randomly assigned to treatment.
g4	number of covariates at level 4.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
r23	proportion of level 3 variance in the outcome explained by level 3 covariates.
r24	proportion of level 4 variance in the outcome explained by level 4 covariates.
n	harmonic mean of level 1 units across level 2 units (or simple average).
J	harmonic mean of level 2 units across level 3 units (or simple average).
K	harmonic mean of level 3 units across level 4 units (or simple average).
L	number of level 4 units.
L0	starting value for L .
tol	tolerance to end iterative process for finding L.

Value

fun	function name.
parms	list of parameters used in power calculation.
df	degrees of freedom.
ncp	noncentrality parameter.
power	statistical power $(1-\beta)$.
mdes	minimum detectable effect size.
L	number of level 4 units.

See Also

cosa.crd4r4

Examples

```
\# cross-checks
mdes.cra4r4(rho4=.05, rho3=.05, rho2=.10,
    \(\mathrm{n}=10, \mathrm{~J}=2, \mathrm{~K}=3, \mathrm{~L}=20\) )
power.cra4r4(es = .412, rho4=.05, rho3=.05, rho2=.10,
    \(\mathrm{n}=10, \mathrm{~J}=2, \mathrm{~K}=3, \mathrm{~L}=20\) )
mrss.cra4r4(es = .412, rho4=.05, rho3=.05, rho2=.10,
    \(\mathrm{n}=10\), J=2, K=3)
```


ira1r1 Individual-level Random Assignment Design

Description

Use mdes.ira1r1() to calculate minimum detectable effect size, power.ira1r1() to calculate statistical power, and mrss.ira1r1() to calculate minimum required sample size.

Usage

```
mdes.ira1r1(power=.80, alpha=.05, two.tailed=TRUE,
    p=.50, g1=0, r21=0, n)
power.ira1r1(es=.25, alpha=.05, two.tailed=TRUE,
    p=.50, g1=0, r21=0, n)
mrss.ira1r1(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
    n0=10, tol=.10,
    p=.50,g1=0, r21=0)
```


Arguments

power	statistical power $(1-\beta)$.
es	effect size.
alpha	probability of type I error. two. tailed logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
p 1	proportion of units randomly assigned to treatment. n21
n	number of covariates.
n 0	proportion of variance in the outcome explained by covariates.
tol	sample size.
starting value for n.	

Value

fun function name.
parms list of parameters used in power calculation.
df degrees of freedom.
ncp noncentrality parameter.
power statistical power $(1-\beta)$.
mdes minimum detectable effect size.
$\mathrm{n} \quad$ sample size.

See Also

```
power.ird1r1
```


Examples

\# cross-checks
mdes.ira1r1($n=250$)
power.ira1r1 (es=.356, n=250)
mrss.ira1r1(es=.356)
plots Plots

Description

Plots statistical power, minimum detectable effect size (MDES), or MDES difference (MDESD) curves with $(1-\alpha) \times 100 \%$ confidence interval.

Usage

Arguments

x
an object returned from one of the PowerUpR functions.
ypar character; "mdes" or "power" on y axis .
xpar character; one of the sample sizes on x axis.

xlim	limits for xpar.
ylim	limits for ypar.
xlab	x axis label (ignored for objects returned from power.med211(), power.med221(), and power.med321() functions).
ylab	y axis label (ignored for objects returned from power.med211(), power.med221(), and power.med321() functions).
main	title for the plot (ignored for objects returned from power.med221() and power.med211() functions).
sub	subtitle for the plot (ignored for objects returned from power.med221() and power.med211() functions).
locate	logical; TRUE locates parameter values for design \times on the plot.
	other graphical parameters to pass to plot.new().

Examples

```
design1 <- mdes.cra3r3(rho3=.06, rho2=.17, n=15, J=3, K=60)
plot(design1, ypar = "mdes", xpar = "K", xlim = c(30, 100))
plot(design1, ypar = "power", xpar = "K", xlim = c(30, 100))
design2 <- power.cra3r3(es=.269, rho3=.06, rho2=.17, n=15, J=3, K=60)
plot(design2, ypar = "mdes", xpar = "K", xlim = c(30, 100))
plot(design2, ypar = "power", xpar = "K", xlim = c(30, 100))
```

PowerUpR-deprecated Deprecated and Defunct functions in PowerUpR

Description

Experimental MDES functions for 2-1-1 and 2-2-1 mediations are removed.

Format

Deprecated or defunct functions are no longer documented.

Details

Defunct functions:

- mdes.med211 is defunct, there is no replacement function
- mdes.med221 is defunct, there is no replacement function
t1t2.error Plots Type I and Type II Error Rates

Description

t1t2. error plots Type I (α) and Type II (β) error rates using central and noncentral t distributions for any objects returned from one of the PowerUpR functions.

Usage

t1t2.error(object)

Arguments

object an object returned from one of the PowerUpR functions.

Examples

```
    ## Not run:
    design1 <- mdes.bira2r1(rho2=.35, omega2=.10,
        n=83, J=480)
    t1t2.error(design1)
## End(Not run)
```


Index

bcra3f2, 2
bcra3r2, 4
bcra4f3, 5
bcra4r2, 7
bcra4r3, 9
bira2c1, 10
bira2f1, 12
bira2r1, 13
bira3r1, 14
bira4r1, 16
conversion, 18
cosa.bcrd3r2, 5
cosa.bcrd4r2, 8
cosa.bcrd4r3, 10
cosa.bird2r1, 14
cosa.bird3r1, 16
cosa.bird4r1, 18
cosa.crd2r2, 21
cosa.crd3r3, 25
cosa.crd4r4, 27
cra2r2, 19
cra3r3, 22
cra4r4, 26
ira1r1, 28
mdes.bcra3f2 (bcra3f2), 2
mdes.bcra3r2 (bcra3r2), 4
mdes.bcra4f3 (bcra4f3), 5
mdes.bcra4r2 (bcra4r2), 7
mdes.bcra4r3 (bcra4r3), 9
mdes.bira2c1 (bira2c1), 10
mdes.bira2f1 (bira2f1), 12
mdes.bira2r1 (bira2r1), 13
mdes.bira3r1 (bira3r1), 14
mdes.bira4r1 (bira4r1), 16
mdes.cra2r2 (cra2r2), 19
mdes.cra3r3 (cra3r3), 22
mdes.cra4r4 (cra4r4), 26
mdes.ira1r1 (ira1r1), 28
mdes.med211 (PowerUpR-deprecated), 30
mdes.med221 (PowerUpR-deprecated), 30
mdes.mod221 (cra2r2), 19
mdes.mod222 (cra2r2), 19
mdes.mod331 (cra3r3), 22
mdes.mod332 (cra3r3), 22
mdes.mod333 (cra3r3), 22
mdes.to.pctl (conversion), 18
mdes.to. power (conversion), 18
mdesd.mod221 (cra2r2), 19
mdesd.mod222 (cra2r2), 19
mdesd.mod331 (cra3r3), 22
mdesd. mod332 (cra3r3), 22
mdesd.mod333 (cra3r3), 22
mrss.bcra3f2 (bcra3f2), 2
mrss.bcra3r2 (bcra3r2), 4
mrss.bera4f3 (bcra4f3), 5
mrss.bcra4r2 (bcra4r2), 7
mrss.bcra4r3 (bcra4r3), 9
mrss.bira2c1 (bira2c1), 10
mrss.bira2f1 (bira2f1), 12
mrss.bira2r1 (bira2r1), 13
mrss.bira3r1 (bira3r1), 14
mrss.bira4r1 (bira4r1), 16
mrss.cra2r2 (cra2r2), 19
mrss.cra3r3 (cra3r3), 22
mrss.cra4r4 (cra4r4), 26
mrss.ira1r1 (ira1r1), 28
mrss.mod221 (cra2r2), 19
mrss.mod222 (cra2r2), 19
mrss.mod331 (cra3r3), 22
mrss.mod332 (cra3r3), 22
mrss.mod333 (cra3r3), 22
mrss.to.mdes (conversion), 18
mrss.to. power (conversion), 18
plot.mdes (plots), 29
plot.mrss (plots), 29
plot. power (plots), 29

```
plots,29
power.bcra3f2 (bcra3f2), 2
power.bcra3r2 (bcra3r2), 4
power.bcra4f3 (bcra4f3),5
power.bcra4r2 (bcra4r2),7
power.bcra4r3 (bcra4r3),9
power.bira2c1 (bira2c1), 10
power.bira2f1 (bira2f1), 12
power.bira2r1 (bira2r1), 13
power.bira3r1 (bira3r1), 14
power.bira4r1 (bira4r1), 16
power.cra2r2(cra2r2), 19
power.cra3r3(cra3r3), 22
power.cra4r4 (cra4r4), 26
power.ira1r1 (ira1r1), 28
power.ird1r1,29
power.med211 (cra2r2), 19
power.med221 (cra2r2), 19
power.med321 (cra3r3), 22
power.mod221 (cra2r2), 19
power.mod222(cra2r2), 19
power.mod331 (cra3r3), 22
power.mod332(cra3r3), 22
power.mod333 (cra3r3), }2
power.to.mdes (conversion), 18
PowerUpR (PowerUpR-package), 2
PowerUpR-deprecated,30
PowerUpR-package, 2
t1t2.error, 31
```

