
Integration of new Methods
PopGenome

Bastian Pfeifer

January 30, 2020

Accessing the class GENOME

The whole framework of PopGenome is based on a single class named GENOME.
A GENOME object contains virtually all information about the observed data,
and also stores the results of calculations. To ensure a whole-genome perspec-
tive despite limited computer memory, we use the ff-package (http://cran.
r-project.org/web/packages/ff/index.html). PopGenome provides an ef-
fortless access to the data stored in the class GENOME. This obviates the need
to re-implement functions already included in PopGenome and thus facilitates
the easy integration of new methods. In the next sections, we will discuss the
integration of new methods on the basis of alignments. Note that the same
approach also works for regions of whole genome SNP data.
Let us implement Watterson’s homozygosity test of neutrality:

H =

k∑
i=1

x2
i

, where k is the total number of haplotypes, and xi is the frequency of the i-th
haplotype with:

k∑
i=1

xi = 1

(1) Reading the data

In this case we read three alignments stored in the folder "Alignments".

GENOME.class <- readData("Alignments")

(2) Calculation

The FST module calculates the haplotype counts needed for the new statistic.

GENOME.class <- F_ST.stats(GENOME.class)

A faster version would be:

GENOME.class <- F_ST.stats(GENOME.class,mode="haplotype",

only.haplotype.counts=TRUE)

1

http://cran.r-project.org/web/packages/ff/index.html
http://cran.r-project.org/web/packages/ff/index.html

(3) Getting the results

The haplotype counts of each alignment or region are stored in the sub-class
region.stats.

haplotype.counts <- GENOME.class@region.stats@haplotype.counts

haplotype.counts

[[1]]

CON RI-0 MR-0 TUL-0 MH-0 ITA-0 CVI-0 COL-2 LA-0 ME-0 GR-5 CHA-

0 WS-0

pop.1 4 1 1 2 1 1 1 1 3 1 1 1 1

RSCH-0 Alyrata

pop.1 1 1

[[2]] ...

[[3]] ...

(4) Writing your own function

EW_Test <- function(GENOME.class){

GENOME.class <- F_ST.stats(GENOME.class,only.haplotype.counts=TRUE)

haplotype.counts <- GENOME.class@region.stats@haplotype.counts

frequencies <- lapply(haplotype.counts,function(x){return((x/sum(x))^2)})

EW_values <- sapply(frequencies,sum)

return(EW_values}

}

EW_Test(GENOME.class)

[1] 0.09297052 0.18367347 0.07482993

Embedding new methods into the PopGenome
framework

PopGenome provides a mechanism to fully integrate your own functions into
the PopGenome framework. The next subsections will guide you through this
mechanism. Let’s integrate the Ewens Watterson Test.

(1) Skeleton of a PopGenome function

Use the function create.PopGenome.method to generate the new function.

one value for one population

create.PopGenome.method("myFunction", population.specific=TRUE)

one value for all populations

create.PopGenome.method("myFunction", population.specific=FALSE)

site specific values

create.PopGenome.method("myFunction", site.specific=TRUE)

2

Figure 1: myFunction.R (population specific)

Now you find the R script myFunction.R in your workspace. The script itself
describes where to put your function.

(2) Writing your own function

Let’s fully integrate the Ewens Watterson test described above in the PopGenome
framework. To better illustrate the integration of new functions, we will do this
without accessing the slot region.stats@haplotype.counts. The following
variables are useful:

bial

The variable bial (short for biallelic matrix) contains the SNPs of the align-
ments. The rownames are the individuals, and the columns correspond to the
positions of the observed SNPs. (Manual:get.biallelic.matrix)

bial[1:5,1:5]

12 13 31 44 59

CON 0 1 0 1 0

KAS-1 0 0 0 1 1

RUB-1 1 0 1 1 0

PER-1 0 0 0 0 0

RI-0 0 1 0 0 0

The Biallelic Matrix contains zeros (major alleles) and ones (minor alleles)
with respect to the whole dataset. Because of that, the third SNP (position:
44) contains 3 minor alleles and 2 major alleles. PopGenome will manage this
automatically and will redefine those values for every subset. Nevertheless, you
should keep that in mind when you write your own functions.

3

Figure 2: myFunction.R (population specific)

populations

The R object populations contains the defined populations as rownumbers of
the Biallelic Matrix. We recommend using this object, as sometimes not all
individuals are present in an alignment. (region.data@populations)

populations[[2]][1:5]

[1] 1 2 3 4 5

In this case the first five individuals of the second ([[2]]) alignment are present.

Implementation

EW_test <- function(bial,populations){

Lets create the subsets of the Biallelic Matrix

pop.bial <- lapply(populations,function(x){return(bial[x,])})

Calculate the haplotype counts without accessing the class GENOME

calc.haplotype.counts is your own sub-function

haplotype.counts <- lapply(pop.bial,calc.haplotype.counts)

frequencies <- lapply(haplotype.counts,function(x){return((x/sum(x))^2)})

EW_values <- sapply(frequencies,sum)

return(EW_values)

}

Loading/Using the function

library(PopGenome)

GENOME.class <- readData("Alignments")

create.PopGenome.method("Ewens.Watterson")

edit this new function as outlined above...

load the edited function into R and use it:

source("Ewens.Watterson.R")

EW_values <- Ewens.Watterson(GENOME.class)

4

Now, you can use your function with the full power of the PopGenome frame-
work.

1 Parser for new input formats

PopGenome also supports R-objects as input. You can use this capability to
parse any text file and convert it into a special R-object readable by PopGenome.
This R-object is a list, which contains a matrix of numerically encoded nu-
cleotides, where each row corresponds to one individual, as well as the positions
of the sites of the matrix. The positions are optional, but might be useful in
case of SNP data. The nucleotides are coded as follows:

• T,U → 1

• C → 2

• G→ 3

• A→ 4

• unknown→ 5

• − → 6

Example

matrix

[,1] [,2] [,3] [,4]

seq1 1 1 1 2

seq2 1 4 2 1

seq3 1 4 4 1

seq4 1 4 4 1

positions

[1] 25 300 1000 2500

Robject <- list(matrix=matrix, positions=positions)

save(file="Aln", Robject)

put the the objects in a folder (for example: .../Alignments/Aln.RData)

GENOME.class <- readData("Alignments", format="RData")

In case of SNP data:

GENOME.class <- readData("SNPData",format="RData",FAST=TRUE,SNP.DATA=TRUE)

You can split large datasets into chunks (by genomic position) stored in a com-
mon folder; Note, these chunks should be labeled with increasing ordered nu-
meric values. (e.g 1.RData, 2.RData,...). PopGenome is able to concatenate
them afterwards with the function concatenate.regions. We recommend to
produce GENOME classes for each chromosome seperately.

5

	Parser for new input formats

