The Direct Convolution (DC) approach is requested with method = "Convolve"
.
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
dpbinom(NULL, pp, wt, "Convolve")
#> [1] 3.574462e-35 1.120280e-32 1.685184e-30 1.620524e-28 1.119523e-26
#> [6] 5.920060e-25 2.493263e-23 8.591850e-22 2.470125e-20 6.011429e-19
#> [11] 1.252345e-17 2.253115e-16 3.525477e-15 4.825171e-14 5.803728e-13
#> [16] 6.158735e-12 5.784692e-11 4.822437e-10 3.576566e-09 2.364563e-08
#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05
#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03
#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01
#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02
#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03
#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06
#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110922e-10
#> [56] 2.392070e-11 1.468267e-12 6.991155e-14 2.478218e-15 6.130807e-17
#> [61] 9.411166e-19 6.727527e-21
ppbinom(NULL, pp, wt, "Convolve")
#> [1] 3.574462e-35 1.123854e-32 1.696423e-30 1.637488e-28 1.135898e-26
#> [6] 6.033650e-25 2.553600e-23 8.847210e-22 2.558597e-20 6.267289e-19
#> [11] 1.315018e-17 2.384617e-16 3.763939e-15 5.201565e-14 6.323884e-13
#> [16] 6.791123e-12 6.463805e-11 5.468818e-10 4.123448e-09 2.776908e-08
#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05
#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02
#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01
#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01
#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01
#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01
#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00
The Divide & Conquer FFT Tree Convolution (DC-FFT) approach is requested with method = "DivideFFT"
.
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
dpbinom(NULL, pp, wt, "DivideFFT")
#> [1] 3.574462e-35 1.120280e-32 1.685184e-30 1.620524e-28 1.119523e-26
#> [6] 5.920060e-25 2.493263e-23 8.591850e-22 2.470125e-20 6.011429e-19
#> [11] 1.252345e-17 2.253115e-16 3.525477e-15 4.825171e-14 5.803728e-13
#> [16] 6.158735e-12 5.784692e-11 4.822437e-10 3.576566e-09 2.364563e-08
#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05
#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03
#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01
#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02
#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03
#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06
#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110922e-10
#> [56] 2.392070e-11 1.468267e-12 6.991155e-14 2.478218e-15 6.130807e-17
#> [61] 9.411166e-19 6.727527e-21
ppbinom(NULL, pp, wt, "DivideFFT")
#> [1] 3.574462e-35 1.123854e-32 1.696423e-30 1.637488e-28 1.135898e-26
#> [6] 6.033650e-25 2.553600e-23 8.847210e-22 2.558597e-20 6.267289e-19
#> [11] 1.315018e-17 2.384617e-16 3.763939e-15 5.201565e-14 6.323884e-13
#> [16] 6.791123e-12 6.463805e-11 5.468818e-10 4.123448e-09 2.776908e-08
#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05
#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02
#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01
#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01
#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01
#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01
#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00
By design, as proposed by Biscarri, Zhao & Brunner (2018), its results are identical to the DC procedure, if \(n \leq 750\). Thus, differences can be observed for larger \(n > 750\):
set.seed(1)
pp1 <- runif(751)
pp2 <- pp1[1:750]
sum(abs(dpbinom(NULL, pp2, method = "DivideFFT") - dpbinom(NULL, pp2, method = "Convolve")))
#> [1] 3.149919e-16
sum(abs(dpbinom(NULL, pp1, method = "DivideFFT") - dpbinom(NULL, pp1, method = "Convolve")))
#> [1] 1.587793e-16
The reason is that the DC-FFT method splits the input probs
vector into as equally sized parts as possible and computes their distributions separately with the DC approach. The results of the portions are then convoluted by means of the Fast Fourier Transformation. As proposed by Biscarri, Zhao & Brunner (2018), no splitting is done for \(n \leq 750\). In addition, the DC-FFT procedure does not produce probabilities \(\leq 5.55e\text{-}17\), i.e. smaller values are rounded off to 0, if \(n > 750\), whereas the smallest possible result of the DC algorithm is \(\sim 1e\text{-}323\). This is most likely caused by the used FFTW3 library.
The Discrete Fourier Transformation of the Characteristic Function (DFT-CF) approach is requested with method = "Characteristic"
.
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
dpbinom(NULL, pp, wt, "Characteristic")
#> [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [11] 0.000000e+00 2.238353e-16 3.549132e-15 4.829828e-14 5.804377e-13
#> [16] 6.158818e-12 5.784702e-11 4.822438e-10 3.576566e-09 2.364563e-08
#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05
#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03
#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01
#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02
#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03
#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06
#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110923e-10
#> [56] 2.392079e-11 1.468354e-12 6.994931e-14 2.513558e-15 0.000000e+00
#> [61] 0.000000e+00 0.000000e+00
ppbinom(NULL, pp, wt, "Characteristic")
#> [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [11] 0.000000e+00 2.238353e-16 3.772968e-15 5.207125e-14 6.325089e-13
#> [16] 6.791327e-12 6.463834e-11 5.468822e-10 4.123448e-09 2.776908e-08
#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05
#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02
#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01
#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01
#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01
#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01
#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00
As can be seen, the DFT-CF procedure does not produce probabilities \(\leq 2.22e\text{-}16\), i.e. smaller values are rounded off to 0, most likely due to the used FFTW3 library.
The Recursive Formula (RF) approach is requested with method = "Recursive"
.
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
dpbinom(NULL, pp, wt, "Recursive")
#> [1] 3.574462e-35 1.120280e-32 1.685184e-30 1.620524e-28 1.119523e-26
#> [6] 5.920060e-25 2.493263e-23 8.591850e-22 2.470125e-20 6.011429e-19
#> [11] 1.252345e-17 2.253115e-16 3.525477e-15 4.825171e-14 5.803728e-13
#> [16] 6.158735e-12 5.784692e-11 4.822437e-10 3.576566e-09 2.364563e-08
#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05
#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03
#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01
#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02
#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03
#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06
#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110922e-10
#> [56] 2.392070e-11 1.468267e-12 6.991155e-14 2.478218e-15 6.130807e-17
#> [61] 9.411166e-19 6.727527e-21
ppbinom(NULL, pp, wt, "Recursive")
#> [1] 3.574462e-35 1.123854e-32 1.696423e-30 1.637488e-28 1.135898e-26
#> [6] 6.033650e-25 2.553600e-23 8.847210e-22 2.558597e-20 6.267289e-19
#> [11] 1.315018e-17 2.384617e-16 3.763939e-15 5.201565e-14 6.323884e-13
#> [16] 6.791123e-12 6.463805e-11 5.468818e-10 4.123448e-09 2.776908e-08
#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05
#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02
#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01
#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01
#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01
#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01
#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00
Obviously, the RF procedure does produce probabilities \(\leq 5.55e\text{-}17\), because it does not rely on the FFTW3 library. Furthermore, it yields the same results as the DC method.
To assess the performance of the exact procedures, we use the microbenchmark
package. Each algorithm has to calculate the PMF repeatedly based on random probability vectors. The run times are then summarized in a table that presents, among other statistics, their minima, maxima and means. The following results were recorded on an AMD Ryzen 7 1800X with 32 GiB of RAM and Ubuntu 18.04.4 (running inside a VirtualBox VM; the host system is Windows 10 Education).
library(microbenchmark)
set.seed(1)
f1 <- function() dpbinom(NULL, runif(4000), method = "DivideFFT")
f2 <- function() dpbinom(NULL, runif(4000), method = "Convolve")
f3 <- function() dpbinom(NULL, runif(4000), method = "Recursive")
f4 <- function() dpbinom(NULL, runif(4000), method = "Characteristic")
microbenchmark(f1(), f2(), f3(), f4())
#> Unit: milliseconds
#> expr min lq mean median uq max neval cld
#> f1() 6.702001 7.079301 7.762327 7.276651 7.47065 11.1294 100 a
#> f2() 16.326600 16.863800 18.836509 17.265850 19.02555 110.8615 100 b
#> f3() 37.621001 37.927651 38.159459 38.127902 38.38685 39.5834 100 c
#> f4() 42.076100 42.484851 42.739849 42.660101 43.01000 44.1175 100 d
Clearly, the DC-FFT procedure is the fastest, followed by the DC method, which needs roughly 3 times as much time. RF and DFT-CF approaches exhibit almost equal mean execution speed, with the RF algorithm being slightly faster (and with some advantage in precision, as stated before). They are slowest procedures and their computation takes roughly twice as long as the DC method.
The Generalized Direct Convolution (G-DC) approach is requested with method = "Convolve"
.
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dgpbinom(NULL, pp, va, vb, wt, "Convolve")
#> [1] 1.140600e-31 5.349930e-30 1.164698e-28 1.572037e-27 1.491024e-26
#> [6] 1.077204e-25 6.336147e-25 3.215011e-24 1.466295e-23 6.127671e-23
#> [11] 2.363402e-22 8.484857e-22 2.866109e-21 9.171228e-21 2.788507e-20
#> [16] 8.091940e-20 2.254155e-19 6.051395e-19 1.570129e-18 3.953458e-18
#> [21] 9.696098e-18 2.321913e-17 5.442392e-17 1.251302e-16 2.824507e-16
#> [26] 6.264454e-16 1.366745e-15 2.934598e-15 6.203639e-15 1.292697e-14
#> [31] 2.657759e-14 5.394727e-14 1.081983e-13 2.144873e-13 4.201625e-13
#> [36] 8.135609e-13 1.557745e-12 2.949821e-12 5.527695e-12 1.025815e-11
#> [41] 1.885777e-11 3.434641e-11 6.196981e-11 1.106787e-10 1.956340e-10
#> [46] 3.425394e-10 5.948077e-10 1.025224e-09 1.753751e-09 2.972596e-09
#> [51] 4.985314e-09 8.275458e-09 1.362195e-08 2.227979e-08 3.622799e-08
#> [56] 5.845270e-08 9.332219e-08 1.473012e-07 2.302797e-07 3.576650e-07
#> [61] 5.529336e-07 8.496291e-07 1.292864e-06 1.943382e-06 2.888042e-06
#> [66] 4.257944e-06 6.248675e-06 9.128095e-06 1.322640e-05 1.893515e-05
#> [71] 2.675612e-05 3.741507e-05 5.199255e-05 7.194684e-05 9.895330e-05
#> [76] 1.347017e-04 1.809349e-04 2.399008e-04 3.150314e-04 4.112231e-04
#> [81] 5.341537e-04 6.888863e-04 8.788234e-04 1.106198e-03 1.374340e-03
#> [86] 1.690272e-03 2.065290e-03 2.511885e-03 3.037800e-03 3.641214e-03
#> [91] 4.311837e-03 5.039293e-03 5.824625e-03 6.686091e-03 7.651765e-03
#> [96] 8.740859e-03 9.945159e-03 1.122411e-02 1.252016e-02 1.378863e-02
#> [101] 1.502576e-02 1.627450e-02 1.759663e-02 1.902489e-02 2.052786e-02
#> [106] 2.201243e-02 2.336424e-02 2.450429e-02 2.543095e-02 2.622065e-02
#> [111] 2.697857e-02 2.776636e-02 2.855637e-02 2.924236e-02 2.969655e-02
#> [116] 2.983772e-02 2.967384e-02 2.929746e-02 2.883252e-02 2.836282e-02
#> [121] 2.788971e-02 2.734351e-02 2.663438e-02 2.570794e-02 2.457639e-02
#> [126] 2.331289e-02 2.201380e-02 2.075053e-02 1.954176e-02 1.836001e-02
#> [131] 1.716200e-02 1.592047e-02 1.464084e-02 1.335803e-02 1.211826e-02
#> [136] 1.095708e-02 9.886542e-03 8.897658e-03 7.972694e-03 7.098018e-03
#> [141] 6.270583e-03 5.496952e-03 4.787457e-03 4.149442e-03 3.583427e-03
#> [146] 3.083701e-03 2.641746e-03 2.249767e-03 1.902455e-03 1.596805e-03
#> [151] 1.330879e-03 1.102475e-03 9.084265e-04 7.447312e-04 6.071616e-04
#> [156] 4.918629e-04 3.956251e-04 3.158260e-04 2.502339e-04 1.968330e-04
#> [161] 1.537458e-04 1.192445e-04 9.179821e-05 7.010494e-05 5.308547e-05
#> [166] 3.984854e-05 2.965115e-05 2.187013e-05 1.598631e-05 1.157497e-05
#> [171] 8.295941e-06 5.881266e-06 4.121776e-06 2.854642e-06 1.953341e-06
#> [176] 1.320224e-06 8.809465e-07 5.799307e-07 3.763587e-07 2.406488e-07
#> [181] 1.515662e-07 9.401686e-08 5.742327e-08 3.451481e-08 2.039831e-08
#> [186] 1.184350e-08 6.751380e-09 3.777327e-09 2.073644e-09 1.116337e-09
#> [191] 5.887148e-10 3.036829e-10 1.529887e-10 7.516829e-11 3.598151e-11
#> [196] 1.676154e-11 7.585978e-12 3.326429e-12 1.407527e-12 5.717370e-13
#> [201] 2.216349e-13 8.149241e-14 2.824954e-14 9.179165e-15 2.780017e-15
#> [206] 7.803525e-16 2.018046e-16 4.775552e-17 1.025798e-17 1.979767e-18
#> [211] 3.386554e-19 5.038594e-20 6.336865e-21 6.424747e-22 4.821385e-23
#> [216] 2.108301e-24
pgpbinom(NULL, pp, va, vb, wt, "Convolve")
#> [1] 1.140600e-31 5.463990e-30 1.219337e-28 1.693971e-27 1.660421e-26
#> [6] 1.243246e-25 7.579393e-25 3.972950e-24 1.863590e-23 7.991261e-23
#> [11] 3.162528e-22 1.164739e-21 4.030847e-21 1.320208e-20 4.108715e-20
#> [16] 1.220065e-19 3.474220e-19 9.525615e-19 2.522691e-18 6.476149e-18
#> [21] 1.617225e-17 3.939138e-17 9.381530e-17 2.189455e-16 5.013962e-16
#> [26] 1.127842e-15 2.494586e-15 5.429184e-15 1.163282e-14 2.455979e-14
#> [31] 5.113739e-14 1.050847e-13 2.132829e-13 4.277703e-13 8.479327e-13
#> [36] 1.661494e-12 3.219239e-12 6.169059e-12 1.169675e-11 2.195491e-11
#> [41] 4.081268e-11 7.515909e-11 1.371289e-10 2.478076e-10 4.434415e-10
#> [46] 7.859810e-10 1.380789e-09 2.406013e-09 4.159763e-09 7.132360e-09
#> [51] 1.211767e-08 2.039313e-08 3.401508e-08 5.629487e-08 9.252285e-08
#> [56] 1.509756e-07 2.442977e-07 3.915989e-07 6.218786e-07 9.795436e-07
#> [61] 1.532477e-06 2.382106e-06 3.674970e-06 5.618352e-06 8.506394e-06
#> [66] 1.276434e-05 1.901301e-05 2.814111e-05 4.136751e-05 6.030266e-05
#> [71] 8.705877e-05 1.244738e-04 1.764664e-04 2.484132e-04 3.473665e-04
#> [76] 4.820683e-04 6.630032e-04 9.029039e-04 1.217935e-03 1.629158e-03
#> [81] 2.163312e-03 2.852198e-03 3.731022e-03 4.837220e-03 6.211560e-03
#> [86] 7.901832e-03 9.967122e-03 1.247901e-02 1.551681e-02 1.915802e-02
#> [91] 2.346986e-02 2.850915e-02 3.433378e-02 4.101987e-02 4.867163e-02
#> [96] 5.741249e-02 6.735765e-02 7.858176e-02 9.110192e-02 1.048906e-01
#> [101] 1.199163e-01 1.361908e-01 1.537874e-01 1.728123e-01 1.933402e-01
#> [106] 2.153526e-01 2.387169e-01 2.632211e-01 2.886521e-01 3.148727e-01
#> [111] 3.418513e-01 3.696177e-01 3.981740e-01 4.274164e-01 4.571130e-01
#> [116] 4.869507e-01 5.166245e-01 5.459220e-01 5.747545e-01 6.031173e-01
#> [121] 6.310070e-01 6.583505e-01 6.849849e-01 7.106929e-01 7.352692e-01
#> [126] 7.585821e-01 7.805959e-01 8.013465e-01 8.208882e-01 8.392482e-01
#> [131] 8.564102e-01 8.723307e-01 8.869715e-01 9.003296e-01 9.124478e-01
#> [136] 9.234049e-01 9.332914e-01 9.421891e-01 9.501618e-01 9.572598e-01
#> [141] 9.635304e-01 9.690273e-01 9.738148e-01 9.779642e-01 9.815477e-01
#> [146] 9.846314e-01 9.872731e-01 9.895229e-01 9.914253e-01 9.930221e-01
#> [151] 9.943530e-01 9.954555e-01 9.963639e-01 9.971087e-01 9.977158e-01
#> [156] 9.982077e-01 9.986033e-01 9.989191e-01 9.991694e-01 9.993662e-01
#> [161] 9.995199e-01 9.996392e-01 9.997310e-01 9.998011e-01 9.998542e-01
#> [166] 9.998940e-01 9.999237e-01 9.999455e-01 9.999615e-01 9.999731e-01
#> [171] 9.999814e-01 9.999873e-01 9.999914e-01 9.999943e-01 9.999962e-01
#> [176] 9.999975e-01 9.999984e-01 9.999990e-01 9.999994e-01 9.999996e-01
#> [181] 9.999998e-01 9.999999e-01 9.999999e-01 1.000000e+00 1.000000e+00
#> [186] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [211] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [216] 1.000000e+00
The Generalized Divide & Conquer FFT Tree Convolution (G-DC-FFT) approach is requested with method = "DivideFFT"
.
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dgpbinom(NULL, pp, va, vb, wt, "DivideFFT")
#> [1] 1.140600e-31 5.349930e-30 1.164698e-28 1.572037e-27 1.491024e-26
#> [6] 1.077204e-25 6.336147e-25 3.215011e-24 1.466295e-23 6.127671e-23
#> [11] 2.363402e-22 8.484857e-22 2.866109e-21 9.171228e-21 2.788507e-20
#> [16] 8.091940e-20 2.254155e-19 6.051395e-19 1.570129e-18 3.953458e-18
#> [21] 9.696098e-18 2.321913e-17 5.442392e-17 1.251302e-16 2.824507e-16
#> [26] 6.264454e-16 1.366745e-15 2.934598e-15 6.203639e-15 1.292697e-14
#> [31] 2.657759e-14 5.394727e-14 1.081983e-13 2.144873e-13 4.201625e-13
#> [36] 8.135609e-13 1.557745e-12 2.949821e-12 5.527695e-12 1.025815e-11
#> [41] 1.885777e-11 3.434641e-11 6.196981e-11 1.106787e-10 1.956340e-10
#> [46] 3.425394e-10 5.948077e-10 1.025224e-09 1.753751e-09 2.972596e-09
#> [51] 4.985314e-09 8.275458e-09 1.362195e-08 2.227979e-08 3.622799e-08
#> [56] 5.845270e-08 9.332219e-08 1.473012e-07 2.302797e-07 3.576650e-07
#> [61] 5.529336e-07 8.496291e-07 1.292864e-06 1.943382e-06 2.888042e-06
#> [66] 4.257944e-06 6.248675e-06 9.128095e-06 1.322640e-05 1.893515e-05
#> [71] 2.675612e-05 3.741507e-05 5.199255e-05 7.194684e-05 9.895330e-05
#> [76] 1.347017e-04 1.809349e-04 2.399008e-04 3.150314e-04 4.112231e-04
#> [81] 5.341537e-04 6.888863e-04 8.788234e-04 1.106198e-03 1.374340e-03
#> [86] 1.690272e-03 2.065290e-03 2.511885e-03 3.037800e-03 3.641214e-03
#> [91] 4.311837e-03 5.039293e-03 5.824625e-03 6.686091e-03 7.651765e-03
#> [96] 8.740859e-03 9.945159e-03 1.122411e-02 1.252016e-02 1.378863e-02
#> [101] 1.502576e-02 1.627450e-02 1.759663e-02 1.902489e-02 2.052786e-02
#> [106] 2.201243e-02 2.336424e-02 2.450429e-02 2.543095e-02 2.622065e-02
#> [111] 2.697857e-02 2.776636e-02 2.855637e-02 2.924236e-02 2.969655e-02
#> [116] 2.983772e-02 2.967384e-02 2.929746e-02 2.883252e-02 2.836282e-02
#> [121] 2.788971e-02 2.734351e-02 2.663438e-02 2.570794e-02 2.457639e-02
#> [126] 2.331289e-02 2.201380e-02 2.075053e-02 1.954176e-02 1.836001e-02
#> [131] 1.716200e-02 1.592047e-02 1.464084e-02 1.335803e-02 1.211826e-02
#> [136] 1.095708e-02 9.886542e-03 8.897658e-03 7.972694e-03 7.098018e-03
#> [141] 6.270583e-03 5.496952e-03 4.787457e-03 4.149442e-03 3.583427e-03
#> [146] 3.083701e-03 2.641746e-03 2.249767e-03 1.902455e-03 1.596805e-03
#> [151] 1.330879e-03 1.102475e-03 9.084265e-04 7.447312e-04 6.071616e-04
#> [156] 4.918629e-04 3.956251e-04 3.158260e-04 2.502339e-04 1.968330e-04
#> [161] 1.537458e-04 1.192445e-04 9.179821e-05 7.010494e-05 5.308547e-05
#> [166] 3.984854e-05 2.965115e-05 2.187013e-05 1.598631e-05 1.157497e-05
#> [171] 8.295941e-06 5.881266e-06 4.121776e-06 2.854642e-06 1.953341e-06
#> [176] 1.320224e-06 8.809465e-07 5.799307e-07 3.763587e-07 2.406488e-07
#> [181] 1.515662e-07 9.401686e-08 5.742327e-08 3.451481e-08 2.039831e-08
#> [186] 1.184350e-08 6.751380e-09 3.777327e-09 2.073644e-09 1.116337e-09
#> [191] 5.887148e-10 3.036829e-10 1.529887e-10 7.516829e-11 3.598151e-11
#> [196] 1.676154e-11 7.585978e-12 3.326429e-12 1.407527e-12 5.717370e-13
#> [201] 2.216349e-13 8.149241e-14 2.824954e-14 9.179165e-15 2.780017e-15
#> [206] 7.803525e-16 2.018046e-16 4.775552e-17 1.025798e-17 1.979767e-18
#> [211] 3.386554e-19 5.038594e-20 6.336865e-21 6.424747e-22 4.821385e-23
#> [216] 2.108301e-24
pgpbinom(NULL, pp, va, vb, wt, "DivideFFT")
#> [1] 1.140600e-31 5.463990e-30 1.219337e-28 1.693971e-27 1.660421e-26
#> [6] 1.243246e-25 7.579393e-25 3.972950e-24 1.863590e-23 7.991261e-23
#> [11] 3.162528e-22 1.164739e-21 4.030847e-21 1.320208e-20 4.108715e-20
#> [16] 1.220065e-19 3.474220e-19 9.525615e-19 2.522691e-18 6.476149e-18
#> [21] 1.617225e-17 3.939138e-17 9.381530e-17 2.189455e-16 5.013962e-16
#> [26] 1.127842e-15 2.494586e-15 5.429184e-15 1.163282e-14 2.455979e-14
#> [31] 5.113739e-14 1.050847e-13 2.132829e-13 4.277703e-13 8.479327e-13
#> [36] 1.661494e-12 3.219239e-12 6.169059e-12 1.169675e-11 2.195491e-11
#> [41] 4.081268e-11 7.515909e-11 1.371289e-10 2.478076e-10 4.434415e-10
#> [46] 7.859810e-10 1.380789e-09 2.406013e-09 4.159763e-09 7.132360e-09
#> [51] 1.211767e-08 2.039313e-08 3.401508e-08 5.629487e-08 9.252285e-08
#> [56] 1.509756e-07 2.442977e-07 3.915989e-07 6.218786e-07 9.795436e-07
#> [61] 1.532477e-06 2.382106e-06 3.674970e-06 5.618352e-06 8.506394e-06
#> [66] 1.276434e-05 1.901301e-05 2.814111e-05 4.136751e-05 6.030266e-05
#> [71] 8.705877e-05 1.244738e-04 1.764664e-04 2.484132e-04 3.473665e-04
#> [76] 4.820683e-04 6.630032e-04 9.029039e-04 1.217935e-03 1.629158e-03
#> [81] 2.163312e-03 2.852198e-03 3.731022e-03 4.837220e-03 6.211560e-03
#> [86] 7.901832e-03 9.967122e-03 1.247901e-02 1.551681e-02 1.915802e-02
#> [91] 2.346986e-02 2.850915e-02 3.433378e-02 4.101987e-02 4.867163e-02
#> [96] 5.741249e-02 6.735765e-02 7.858176e-02 9.110192e-02 1.048906e-01
#> [101] 1.199163e-01 1.361908e-01 1.537874e-01 1.728123e-01 1.933402e-01
#> [106] 2.153526e-01 2.387169e-01 2.632211e-01 2.886521e-01 3.148727e-01
#> [111] 3.418513e-01 3.696177e-01 3.981740e-01 4.274164e-01 4.571130e-01
#> [116] 4.869507e-01 5.166245e-01 5.459220e-01 5.747545e-01 6.031173e-01
#> [121] 6.310070e-01 6.583505e-01 6.849849e-01 7.106929e-01 7.352692e-01
#> [126] 7.585821e-01 7.805959e-01 8.013465e-01 8.208882e-01 8.392482e-01
#> [131] 8.564102e-01 8.723307e-01 8.869715e-01 9.003296e-01 9.124478e-01
#> [136] 9.234049e-01 9.332914e-01 9.421891e-01 9.501618e-01 9.572598e-01
#> [141] 9.635304e-01 9.690273e-01 9.738148e-01 9.779642e-01 9.815477e-01
#> [146] 9.846314e-01 9.872731e-01 9.895229e-01 9.914253e-01 9.930221e-01
#> [151] 9.943530e-01 9.954555e-01 9.963639e-01 9.971087e-01 9.977158e-01
#> [156] 9.982077e-01 9.986033e-01 9.989191e-01 9.991694e-01 9.993662e-01
#> [161] 9.995199e-01 9.996392e-01 9.997310e-01 9.998011e-01 9.998542e-01
#> [166] 9.998940e-01 9.999237e-01 9.999455e-01 9.999615e-01 9.999731e-01
#> [171] 9.999814e-01 9.999873e-01 9.999914e-01 9.999943e-01 9.999962e-01
#> [176] 9.999975e-01 9.999984e-01 9.999990e-01 9.999994e-01 9.999996e-01
#> [181] 9.999998e-01 9.999999e-01 9.999999e-01 1.000000e+00 1.000000e+00
#> [186] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [211] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [216] 1.000000e+00
By design, similar to the ordinary DC-FFT algorithm by Biscarri, Zhao & Brunner (2018), its results are identical to the G-DC procedure, if \(n\) and the number of possible observed values is small. Thus, differences can be observed for larger numbers:
set.seed(1)
pp1 <- runif(250)
va1 <- sample(0:50, 250, TRUE)
vb1 <- sample(0:50, 250, TRUE)
pp2 <- pp1[1:248]
va2 <- va1[1:248]
vb2 <- vb1[1:248]
sum(abs(dgpbinom(NULL, pp1, va1, vb1, method = "DivideFFT")
- dgpbinom(NULL, pp1, va1, vb1, method = "Convolve")))
#> [1] 0
sum(abs(dgpbinom(NULL, pp2, va2, vb2, method = "DivideFFT")
- dgpbinom(NULL, pp2, va2, vb2, method = "Convolve")))
#> [1] 0
The reason is that the G-DC-FFT method splits the input probs
, val_p
and val_q
vectors into parts such that the numbers of possible observations of all parts are as equally sized as possible. Their distributions are then computed separately with the G-DC approach. The results of the portions are then convoluted by means of the Fast Fourier Transformation. For small \(n\) and small distribution sizes, no splitting is needed. In addition, the G-DC-FFT procedure, just like the DC-FFT method, does not produce probabilities \(\leq 5.55e\text{-}17\), i.e. smaller values are rounded off to \(0\), if the total number of possible observations is smaller than \(750\), whereas the smallest possible result of the DC algorithm is \(\sim 1e\text{-}323\). This is most likely caused by the used FFTW3 library.
The Generalized Discrete Fourier Transformation of the Characteristic Function (G-DFT-CF) approach is requested with method = "Characteristic"
.
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dgpbinom(NULL, pp, va, vb, wt, "Characteristic")
#> [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [11] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [16] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [21] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.811537e-16
#> [26] 6.252714e-16 1.363862e-15 2.933867e-15 6.200544e-15 1.292510e-14
#> [31] 2.657288e-14 5.394348e-14 1.081953e-13 2.144817e-13 4.201567e-13
#> [36] 8.135550e-13 1.557738e-12 2.949811e-12 5.527686e-12 1.025815e-11
#> [41] 1.885776e-11 3.434640e-11 6.196980e-11 1.106787e-10 1.956340e-10
#> [46] 3.425394e-10 5.948077e-10 1.025224e-09 1.753750e-09 2.972596e-09
#> [51] 4.985314e-09 8.275458e-09 1.362195e-08 2.227979e-08 3.622799e-08
#> [56] 5.845270e-08 9.332219e-08 1.473012e-07 2.302797e-07 3.576650e-07
#> [61] 5.529336e-07 8.496291e-07 1.292864e-06 1.943382e-06 2.888042e-06
#> [66] 4.257944e-06 6.248675e-06 9.128095e-06 1.322640e-05 1.893515e-05
#> [71] 2.675612e-05 3.741507e-05 5.199255e-05 7.194684e-05 9.895330e-05
#> [76] 1.347017e-04 1.809349e-04 2.399008e-04 3.150314e-04 4.112231e-04
#> [81] 5.341537e-04 6.888863e-04 8.788234e-04 1.106198e-03 1.374340e-03
#> [86] 1.690272e-03 2.065290e-03 2.511885e-03 3.037800e-03 3.641214e-03
#> [91] 4.311837e-03 5.039293e-03 5.824625e-03 6.686091e-03 7.651765e-03
#> [96] 8.740859e-03 9.945159e-03 1.122411e-02 1.252016e-02 1.378863e-02
#> [101] 1.502576e-02 1.627450e-02 1.759663e-02 1.902489e-02 2.052786e-02
#> [106] 2.201243e-02 2.336424e-02 2.450429e-02 2.543095e-02 2.622065e-02
#> [111] 2.697857e-02 2.776636e-02 2.855637e-02 2.924236e-02 2.969655e-02
#> [116] 2.983772e-02 2.967384e-02 2.929746e-02 2.883252e-02 2.836282e-02
#> [121] 2.788971e-02 2.734351e-02 2.663438e-02 2.570794e-02 2.457639e-02
#> [126] 2.331289e-02 2.201380e-02 2.075053e-02 1.954176e-02 1.836001e-02
#> [131] 1.716200e-02 1.592047e-02 1.464084e-02 1.335803e-02 1.211826e-02
#> [136] 1.095708e-02 9.886542e-03 8.897658e-03 7.972694e-03 7.098018e-03
#> [141] 6.270583e-03 5.496952e-03 4.787457e-03 4.149442e-03 3.583427e-03
#> [146] 3.083701e-03 2.641746e-03 2.249767e-03 1.902455e-03 1.596805e-03
#> [151] 1.330879e-03 1.102475e-03 9.084265e-04 7.447312e-04 6.071616e-04
#> [156] 4.918629e-04 3.956251e-04 3.158260e-04 2.502339e-04 1.968330e-04
#> [161] 1.537458e-04 1.192445e-04 9.179821e-05 7.010494e-05 5.308547e-05
#> [166] 3.984854e-05 2.965115e-05 2.187013e-05 1.598631e-05 1.157497e-05
#> [171] 8.295941e-06 5.881266e-06 4.121776e-06 2.854642e-06 1.953341e-06
#> [176] 1.320224e-06 8.809465e-07 5.799307e-07 3.763587e-07 2.406488e-07
#> [181] 1.515662e-07 9.401686e-08 5.742327e-08 3.451481e-08 2.039831e-08
#> [186] 1.184350e-08 6.751380e-09 3.777327e-09 2.073644e-09 1.116337e-09
#> [191] 5.887148e-10 3.036829e-10 1.529887e-10 7.516829e-11 3.598151e-11
#> [196] 1.676155e-11 7.585980e-12 3.326432e-12 1.407531e-12 5.717412e-13
#> [201] 2.216406e-13 8.149757e-14 2.825672e-14 9.187867e-15 2.788407e-15
#> [206] 7.871790e-16 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [211] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [216] 0.000000e+00
pgpbinom(NULL, pp, va, vb, wt, "Characteristic")
#> [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [11] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [16] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [21] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.811537e-16
#> [26] 9.064251e-16 2.270287e-15 5.204154e-15 1.140470e-14 2.432980e-14
#> [31] 5.090268e-14 1.048462e-13 2.130415e-13 4.275232e-13 8.476799e-13
#> [36] 1.661235e-12 3.218973e-12 6.168784e-12 1.169647e-11 2.195462e-11
#> [41] 4.081237e-11 7.515877e-11 1.371286e-10 2.478072e-10 4.434412e-10
#> [46] 7.859806e-10 1.380788e-09 2.406013e-09 4.159763e-09 7.132359e-09
#> [51] 1.211767e-08 2.039313e-08 3.401508e-08 5.629487e-08 9.252285e-08
#> [56] 1.509756e-07 2.442977e-07 3.915989e-07 6.218786e-07 9.795436e-07
#> [61] 1.532477e-06 2.382106e-06 3.674970e-06 5.618352e-06 8.506394e-06
#> [66] 1.276434e-05 1.901301e-05 2.814111e-05 4.136751e-05 6.030266e-05
#> [71] 8.705877e-05 1.244738e-04 1.764664e-04 2.484132e-04 3.473665e-04
#> [76] 4.820683e-04 6.630032e-04 9.029039e-04 1.217935e-03 1.629158e-03
#> [81] 2.163312e-03 2.852198e-03 3.731022e-03 4.837220e-03 6.211560e-03
#> [86] 7.901832e-03 9.967122e-03 1.247901e-02 1.551681e-02 1.915802e-02
#> [91] 2.346986e-02 2.850915e-02 3.433378e-02 4.101987e-02 4.867163e-02
#> [96] 5.741249e-02 6.735765e-02 7.858176e-02 9.110192e-02 1.048906e-01
#> [101] 1.199163e-01 1.361908e-01 1.537874e-01 1.728123e-01 1.933402e-01
#> [106] 2.153526e-01 2.387169e-01 2.632211e-01 2.886521e-01 3.148727e-01
#> [111] 3.418513e-01 3.696177e-01 3.981740e-01 4.274164e-01 4.571130e-01
#> [116] 4.869507e-01 5.166245e-01 5.459220e-01 5.747545e-01 6.031173e-01
#> [121] 6.310070e-01 6.583505e-01 6.849849e-01 7.106929e-01 7.352692e-01
#> [126] 7.585821e-01 7.805959e-01 8.013465e-01 8.208882e-01 8.392482e-01
#> [131] 8.564102e-01 8.723307e-01 8.869715e-01 9.003296e-01 9.124478e-01
#> [136] 9.234049e-01 9.332914e-01 9.421891e-01 9.501618e-01 9.572598e-01
#> [141] 9.635304e-01 9.690273e-01 9.738148e-01 9.779642e-01 9.815477e-01
#> [146] 9.846314e-01 9.872731e-01 9.895229e-01 9.914253e-01 9.930221e-01
#> [151] 9.943530e-01 9.954555e-01 9.963639e-01 9.971087e-01 9.977158e-01
#> [156] 9.982077e-01 9.986033e-01 9.989191e-01 9.991694e-01 9.993662e-01
#> [161] 9.995199e-01 9.996392e-01 9.997310e-01 9.998011e-01 9.998542e-01
#> [166] 9.998940e-01 9.999237e-01 9.999455e-01 9.999615e-01 9.999731e-01
#> [171] 9.999814e-01 9.999873e-01 9.999914e-01 9.999943e-01 9.999962e-01
#> [176] 9.999975e-01 9.999984e-01 9.999990e-01 9.999994e-01 9.999996e-01
#> [181] 9.999998e-01 9.999999e-01 9.999999e-01 1.000000e+00 1.000000e+00
#> [186] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [211] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [216] 1.000000e+00
As can be seen, the G-DFT-CF procedure does not produce probabilities \(\leq 2.2e\text{-}16\), i.e. smaller values are rounded off to 0, most likely due to the used FFTW3 library.
To assess the performance of the exact procedures, we use the microbenchmark
package. Each algorithm has to calculate the PMF repeatedly based on random probability and value vectors. The run times are then summarized in a table that presents, among other statistics, their minima, maxima and means. The following results were recorded on an AMD Ryzen 7 1800X with 32 GiB of RAM and Ubuntu 18.04.4 (running inside a VirtualBox VM; the host system is Windows 10 Education).
library(microbenchmark)
n <- 600
set.seed(1)
va <- sample(1:50, n, TRUE)
vb <- sample(1:50, n, TRUE)
f1 <- function() dgpbinom(NULL, runif(n), va, vb, method = "DivideFFT")
f2 <- function() dgpbinom(NULL, runif(n), va, vb, method = "Convolve")
f3 <- function() dgpbinom(NULL, runif(n), va, vb, method = "Characteristic")
microbenchmark(f1(), f2(), f3())
#> Unit: milliseconds
#> expr min lq mean median uq max neval cld
#> f1() 8.509601 8.987351 10.03859 9.109151 9.690451 36.5311 100 a
#> f2() 9.455301 9.953401 12.79430 11.779000 12.394750 105.6989 100 b
#> f3() 46.794400 47.151701 47.34941 47.328301 47.507952 48.8285 100 c
Clearly, the G-DC-FFT procedure is the fastest one. It outperforms both the G-DC and G-DFT-CF approaches. The latter one needs roughly twice as much time as G-DC. Generally, the computational speed advantage of the G-DC-FFT procedure increases with larger \(n\) and \(m\)