The Poisson Approximation (DC) approach is requested with method = "Poisson"
. It is based on a Poisson distribution, whose parameter is the sum of the probabilities of success.
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
dpbinom(NULL, pp, wt, "Poisson")
#> [1] 2.263593e-16 8.154460e-15 1.468798e-13 1.763753e-12 1.588454e-11
#> [6] 1.144462e-10 6.871428e-10 3.536273e-09 1.592402e-08 6.373926e-08
#> [11] 2.296169e-07 7.519830e-07 2.257479e-06 6.255718e-06 1.609704e-05
#> [16] 3.865908e-05 8.704191e-05 1.844490e-04 3.691482e-04 6.999128e-04
#> [21] 1.260697e-03 2.162661e-03 3.541299e-03 5.546660e-03 8.325631e-03
#> [26] 1.199704e-02 1.662255e-02 2.217842e-02 2.853445e-02 3.544609e-02
#> [31] 4.256414e-02 4.946284e-02 5.568342e-02 6.078674e-02 6.440607e-02
#> [36] 6.629115e-02 6.633610e-02 6.458699e-02 6.122916e-02 5.655755e-02
#> [41] 5.093630e-02 4.475488e-02 3.838734e-02 3.216003e-02 2.633059e-02
#> [46] 2.107875e-02 1.650760e-02 1.265269e-02 9.495953e-03 6.981348e-03
#> [51] 5.029979e-03 3.552981e-03 2.461424e-03 1.673044e-03 1.116119e-03
#> [56] 7.310458e-04 4.702766e-04 2.972182e-04 1.846053e-04 1.127169e-04
#> [61] 6.767601e-05 9.288901e-05
ppbinom(NULL, pp, wt, "Poisson")
#> [1] 2.263593e-16 8.380820e-15 1.552606e-13 1.919013e-12 1.780355e-11
#> [6] 1.322498e-10 8.193925e-10 4.355666e-09 2.027968e-08 8.401894e-08
#> [11] 3.136359e-07 1.065619e-06 3.323097e-06 9.578815e-06 2.567585e-05
#> [16] 6.433494e-05 1.513768e-04 3.358259e-04 7.049740e-04 1.404887e-03
#> [21] 2.665584e-03 4.828245e-03 8.369543e-03 1.391620e-02 2.224184e-02
#> [26] 3.423887e-02 5.086142e-02 7.303984e-02 1.015743e-01 1.370204e-01
#> [31] 1.795845e-01 2.290474e-01 2.847308e-01 3.455175e-01 4.099236e-01
#> [36] 4.762147e-01 5.425508e-01 6.071378e-01 6.683670e-01 7.249245e-01
#> [41] 7.758608e-01 8.206157e-01 8.590031e-01 8.911631e-01 9.174937e-01
#> [46] 9.385724e-01 9.550800e-01 9.677327e-01 9.772287e-01 9.842100e-01
#> [51] 9.892400e-01 9.927930e-01 9.952544e-01 9.969275e-01 9.980436e-01
#> [56] 9.987746e-01 9.992449e-01 9.995421e-01 9.997267e-01 9.998394e-01
#> [61] 9.999071e-01 1.000000e+00
A comparison with exact computation shows that the approximation quality of the PA procedure increases with smaller probabilities of success. The reason is that the Poisson Binomial distribution approaches a Poisson distribution when the probabilities are very small.
set.seed(1)
# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "Poisson")
#> [1] 0.0000150619 0.0001672374 0.0009284471 0.0034362888 0.0095385726
#> [6] 0.0211820073 0.0391985129 0.0621763578 0.0862956727 0.1064633767
#> [11] 0.1182099310 0.1193204840 0.1104046811 0.0942969970 0.0747865595
#> [16] 0.0553587178 0.0384166744 0.0250913815 0.0154776776 0.0090449448
#> [21] 0.0101904160
dpbinom(NULL, pp)
#> [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#> [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "Poisson") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -9.555e-02 1.506e-05 9.437e-03 0.000e+00 2.407e-02 4.379e-02
# U(0, 0.01) random probabilities of success
pp <- runif(20, 0, 0.01)
dpbinom(NULL, pp, method = "Poisson")
#> [1] 9.095763e-01 8.620639e-02 4.085167e-03 1.290592e-04 3.057942e-06
#> [6] 5.796418e-08 9.156063e-10 1.239697e-11 1.468825e-13 1.443290e-15
#> [11] 0.000000e+00 0.000000e+00 0.000000e+00 -1.110223e-16 0.000000e+00
#> [16] 1.110223e-16 -1.110223e-16 1.110223e-16 -1.110223e-16 1.110223e-16
#> [21] 0.000000e+00
dpbinom(NULL, pp)
#> [1] 9.093051e-01 8.672423e-02 3.861917e-03 1.066765e-04 2.048094e-06
#> [6] 2.902198e-08 3.145829e-10 2.667571e-12 1.794592e-14 9.656258e-17
#> [11] 4.170114e-19 1.444465e-21 3.994453e-24 8.738444e-27 1.490372e-29
#> [16] 1.938487e-32 1.859939e-35 1.249654e-38 5.381374e-42 1.245845e-45
#> [21] 9.511846e-50
summary(dpbinom(NULL, pp, method = "Poisson") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -5.178e-04 0.000e+00 0.000e+00 0.000e+00 6.000e-10 2.712e-04
The Arithmetic Mean Binomial Approximation (AMBA) approach is requested with method = "Mean"
. It is based on a Binomial distribution, whose parameter is the arithmetic mean of the probabilities of success.
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
mean(rep(pp, wt))
#> [1] 0.5905641
dpbinom(NULL, pp, wt, "Mean")
#> [1] 2.204668e-24 1.939788e-22 8.393759e-21 2.381049e-19 4.979863e-18
#> [6] 8.188480e-17 1.102354e-15 1.249300e-14 1.216331e-13 1.033156e-12
#> [11] 7.749086e-12 5.182139e-11 3.114432e-10 1.693217e-09 8.373498e-09
#> [16] 3.784379e-08 1.569327e-07 5.991812e-07 2.112610e-06 6.896287e-06
#> [21] 2.088890e-05 5.882491e-05 1.542694e-04 3.773093e-04 8.616897e-04
#> [26] 1.839474e-03 3.673702e-03 6.868933e-03 1.203071e-02 1.974641e-02
#> [31] 3.038072e-02 4.382068e-02 5.925587e-02 7.510979e-02 8.921887e-02
#> [36] 9.927353e-02 1.034154e-01 1.007871e-01 9.181496e-02 7.810121e-02
#> [41] 6.195859e-02 4.577391e-02 3.143980e-02 2.003761e-02 1.182352e-02
#> [46] 6.442647e-03 3.232269e-03 1.487928e-03 6.259647e-04 2.395401e-04
#> [51] 8.292214e-05 2.579729e-05 7.155695e-06 1.752667e-06 3.745215e-07
#> [56] 6.875325e-08 1.062521e-08 1.344354e-09 1.337294e-10 9.807932e-12
#> [61] 4.716227e-13 1.110223e-14
ppbinom(NULL, pp, wt, "Mean")
#> [1] 2.204668e-24 1.961834e-22 8.589942e-21 2.466948e-19 5.226557e-18
#> [6] 8.711136e-17 1.189465e-15 1.368247e-14 1.353155e-13 1.168472e-12
#> [11] 8.917558e-12 6.073895e-11 3.721822e-10 2.065399e-09 1.043890e-08
#> [16] 4.828268e-08 2.052154e-07 8.043966e-07 2.917007e-06 9.813294e-06
#> [21] 3.070220e-05 8.952711e-05 2.437965e-04 6.211058e-04 1.482796e-03
#> [26] 3.322270e-03 6.995972e-03 1.386490e-02 2.589561e-02 4.564203e-02
#> [31] 7.602274e-02 1.198434e-01 1.790993e-01 2.542091e-01 3.434279e-01
#> [36] 4.427015e-01 5.461169e-01 6.469040e-01 7.387189e-01 8.168201e-01
#> [41] 8.787787e-01 9.245526e-01 9.559924e-01 9.760300e-01 9.878536e-01
#> [46] 9.942962e-01 9.975285e-01 9.990164e-01 9.996424e-01 9.998819e-01
#> [51] 9.999648e-01 9.999906e-01 9.999978e-01 9.999995e-01 9.999999e-01
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00
A comparison with exact computation shows that the approximation quality of the AMBA procedure increases when the probabilities of success are closer to each other. The reason is that, although the expectation remains unchanged, the distribution’s variance becomes smaller the less the probabilities differ. Since this variance is minimized by equal probabilities (but still underestimated), the AMBA method is best suited for situations with very similar probabilities of success.
set.seed(1)
# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "Mean")
#> [1] 9.203176e-08 2.297178e-06 2.723611e-05 2.039497e-04 1.081780e-03
#> [6] 4.320318e-03 1.347977e-02 3.364646e-02 6.823695e-02 1.135495e-01
#> [11] 1.558851e-01 1.768638e-01 1.655492e-01 1.271454e-01 7.934094e-02
#> [16] 3.960811e-02 1.544760e-02 4.536271e-03 9.435709e-04 1.239589e-04
#> [21] 7.735255e-06
dpbinom(NULL, pp)
#> [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#> [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "Mean") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -3.801e-02 2.290e-06 6.360e-04 0.000e+00 8.837e-03 1.662e-02
# U(0.3, 0.5) random probabilities of success
pp <- runif(20, 0.3, 0.5)
dpbinom(NULL, pp, method = "Mean")
#> [1] 4.348271e-05 5.672598e-04 3.515127e-03 1.375712e-02 3.813748e-02
#> [6] 7.960444e-02 1.298114e-01 1.693472e-01 1.795010e-01 1.561137e-01
#> [11] 1.120132e-01 6.642197e-02 3.249439e-02 1.304339e-02 4.253984e-03
#> [16] 1.109919e-03 2.262438e-04 3.472347e-05 3.774915e-06 2.591904e-07
#> [21] 8.453263e-09
dpbinom(NULL, pp)
#> [1] 4.015121e-05 5.344728e-04 3.370391e-03 1.338738e-02 3.756479e-02
#> [6] 7.915145e-02 1.299445e-01 1.702071e-01 1.806555e-01 1.569062e-01
#> [11] 1.121277e-01 6.604356e-02 3.200604e-02 1.269255e-02 4.078679e-03
#> [16] 1.045709e-03 2.088926e-04 3.133484e-05 3.320483e-06 2.216332e-07
#> [21] 7.008006e-09
summary(dpbinom(NULL, pp, method = "Mean") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -1.155e-03 1.400e-09 1.735e-05 0.000e+00 3.508e-04 5.727e-04
# U(0.39, 0.41) random probabilities of success
pp <- runif(20, 0.39, 0.41)
dpbinom(NULL, pp, method = "Mean")
#> [1] 3.638616e-05 4.854405e-04 3.076305e-03 1.231262e-02 3.490673e-02
#> [6] 7.451247e-02 1.242621e-01 1.657824e-01 1.797056e-01 1.598344e-01
#> [11] 1.172824e-01 7.112295e-02 3.558286e-02 1.460687e-02 4.871885e-03
#> [16] 1.299951e-03 2.709859e-04 4.253314e-05 4.728746e-06 3.320414e-07
#> [21] 1.107470e-08
dpbinom(NULL, pp)
#> [1] 3.636149e-05 4.851935e-04 3.075192e-03 1.230970e-02 3.490204e-02
#> [6] 7.450845e-02 1.242626e-01 1.657891e-01 1.797153e-01 1.598415e-01
#> [11] 1.172840e-01 7.112011e-02 3.557873e-02 1.460374e-02 4.870251e-03
#> [16] 1.299328e-03 2.708111e-04 4.249771e-05 4.723809e-06 3.316172e-07
#> [21] 1.105772e-08
summary(dpbinom(NULL, pp, method = "Mean") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -9.641e-06 1.700e-11 1.747e-07 0.000e+00 2.844e-06 4.689e-06
The Geometric Mean Binomial Approximation (Variant A) (GMBA-A) approach is requested with method = "GeoMean"
. It is based on a Binomial distribution, whose parameter is the geometric mean of the probabilities of success: \[\hat{p} = \sqrt[n]{p_1 \cdot ... \cdot p_n}\]
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
prod(rep(pp, wt))^(1/sum(wt))
#> [1] 0.4669916
dpbinom(NULL, pp, wt, "GeoMean")
#> [1] 2.141782e-17 1.144670e-15 3.008684e-14 5.184208e-13 6.586057e-12
#> [6] 6.578175e-11 5.379195e-10 3.703028e-09 2.189958e-08 1.129911e-07
#> [11] 5.147813e-07 2.091103e-06 7.633772e-06 2.520966e-05 7.572779e-05
#> [16] 2.078916e-04 5.236606e-04 1.214475e-03 2.601021e-03 5.157435e-03
#> [21] 9.489168e-03 1.623184e-02 2.585712e-02 3.841422e-02 5.328923e-02
#> [26] 6.909972e-02 8.382634e-02 9.520502e-02 1.012875e-01 1.009827e-01
#> [31] 9.437363e-02 8.268481e-02 6.791600e-02 5.229152e-02 3.772988e-02
#> [36] 2.550094e-02 1.613623e-02 9.552467e-03 5.285892e-03 2.731219e-03
#> [41] 1.316117e-03 5.906156e-04 2.464113e-04 9.539397e-05 3.419132e-05
#> [46] 1.131690e-05 3.448772e-06 9.643463e-07 2.464308e-07 5.728188e-08
#> [51] 1.204491e-08 2.276152e-09 3.835067e-10 5.705769e-11 7.406076e-12
#> [56] 8.257839e-13 7.760459e-14 5.884182e-15 4.440892e-16 0.000000e+00
#> [61] 0.000000e+00 0.000000e+00
ppbinom(NULL, pp, wt, "GeoMean")
#> [1] 2.141782e-17 1.166088e-15 3.125293e-14 5.496737e-13 7.135731e-12
#> [6] 7.291748e-11 6.108370e-10 4.313865e-09 2.621345e-08 1.392046e-07
#> [11] 6.539859e-07 2.745088e-06 1.037886e-05 3.558852e-05 1.113163e-04
#> [16] 3.192079e-04 8.428685e-04 2.057343e-03 4.658364e-03 9.815799e-03
#> [21] 1.930497e-02 3.553681e-02 6.139393e-02 9.980815e-02 1.530974e-01
#> [26] 2.221971e-01 3.060234e-01 4.012285e-01 5.025160e-01 6.034986e-01
#> [31] 6.978723e-01 7.805571e-01 8.484731e-01 9.007646e-01 9.384945e-01
#> [36] 9.639954e-01 9.801316e-01 9.896841e-01 9.949700e-01 9.977012e-01
#> [41] 9.990173e-01 9.996080e-01 9.998544e-01 9.999498e-01 9.999840e-01
#> [46] 9.999953e-01 9.999987e-01 9.999997e-01 9.999999e-01 1.000000e+00
#> [51] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00
It is known that the geometric mean of the probabilities of success is always smaller than their arithmetic mean. Thus, we get a stochastically smaller binomial distribution. A comparison with exact computation shows that the approximation quality of the GMBA-A procedure increases when the probabilities of success are closer to each other:
set.seed(1)
# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "GeoMean")
#> [1] 4.557123e-06 7.742984e-05 6.249130e-04 3.185359e-03 1.150098e-02
#> [6] 3.126602e-02 6.640491e-02 1.128282e-01 1.557610e-01 1.764351e-01
#> [11] 1.648790e-01 1.273387e-01 8.113517e-02 4.241734e-02 1.801777e-02
#> [16] 6.122779e-03 1.625497e-03 3.249263e-04 4.600672e-05 4.114199e-06
#> [21] 1.747603e-07
dpbinom(NULL, pp)
#> [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#> [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "GeoMean") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.11151 -0.01493 0.00000 0.00000 0.01140 0.10279
# U(0.4, 0.6) random probabilities of success
pp <- runif(20, 0.4, 0.6)
dpbinom(NULL, pp, method = "GeoMean")
#> [1] 1.317886e-06 2.551200e-05 2.345875e-04 1.362363e-03 5.604265e-03
#> [6] 1.735823e-02 4.200318e-02 8.131092e-02 1.278907e-01 1.650496e-01
#> [11] 1.757292e-01 1.546280e-01 1.122499e-01 6.686047e-02 3.235759e-02
#> [16] 1.252775e-02 3.789307e-03 8.629936e-04 1.392173e-04 1.418425e-05
#> [21] 6.864565e-07
dpbinom(NULL, pp)
#> [1] 1.046635e-06 2.098187e-05 1.993006e-04 1.192678e-03 5.043114e-03
#> [6] 1.601621e-02 3.964022e-02 7.829406e-02 1.253351e-01 1.642218e-01
#> [11] 1.770816e-01 1.574210e-01 1.151700e-01 6.896627e-02 3.347297e-02
#> [16] 1.296524e-02 3.913788e-03 8.873960e-04 1.421738e-04 1.435144e-05
#> [21] 6.864565e-07
summary(dpbinom(NULL, pp, method = "GeoMean") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.0029201 -0.0004375 0.0000000 0.0000000 0.0005612 0.0030169
# U(0.49, 0.51) random probabilities of success
pp <- runif(20, 0.49, 0.51)
dpbinom(NULL, pp, method = "GeoMean")
#> [1] 9.491177e-07 1.899145e-05 1.805052e-04 1.083550e-03 4.607292e-03
#> [6] 1.475040e-02 3.689366e-02 7.382266e-02 1.200193e-01 1.601024e-01
#> [11] 1.761970e-01 1.602558e-01 1.202494e-01 7.403508e-02 3.703527e-02
#> [16] 1.482120e-02 4.633845e-03 1.090839e-03 1.818935e-04 1.915586e-05
#> [21] 9.582517e-07
dpbinom(NULL, pp)
#> [1] 9.472606e-07 1.895984e-05 1.802539e-04 1.082315e-03 4.603107e-03
#> [6] 1.474011e-02 3.687497e-02 7.379784e-02 1.199969e-01 1.600932e-01
#> [11] 1.762060e-01 1.602781e-01 1.202742e-01 7.405383e-02 3.704562e-02
#> [16] 1.482542e-02 4.635093e-03 1.091093e-03 1.819256e-04 1.915775e-05
#> [21] 9.582517e-07
summary(dpbinom(NULL, pp, method = "GeoMean") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -2.485e-05 -4.219e-06 0.000e+00 0.000e+00 4.185e-06 2.482e-05
The Geometric Mean Binomial Approximation (Variant B) (GMBA-B) approach is requested with method = "GeoMeanCounter"
. It is based on a Binomial distribution, whose parameter is 1 minus the geometric mean of the probabilities of failure: \[\hat{p} = 1 - \sqrt[n]{(1 - p_1) \cdot ... \cdot (1 - p_n)}\]
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
1 - prod(1 - rep(pp, wt))^(1/sum(wt))
#> [1] 0.7275426
dpbinom(NULL, pp, wt, "GeoMeanCounter")
#> [1] 3.574462e-35 5.822379e-33 4.664248e-31 2.449471e-29 9.484189e-28
#> [6] 2.887121e-26 7.195512e-25 1.509685e-23 2.721134e-22 4.279009e-21
#> [11] 5.941642e-20 7.356037e-19 8.184508e-18 8.237686e-17 7.541858e-16
#> [16] 6.310225e-15 4.844429e-14 3.424255e-13 2.235148e-12 1.350769e-11
#> [21] 7.574609e-11 3.948978e-10 1.917264e-09 8.681177e-09 3.670379e-08
#> [26] 1.450549e-07 5.363170e-07 1.856461e-06 6.019586e-06 1.829121e-05
#> [31] 5.209921e-05 1.391205e-04 3.482749e-04 8.172712e-04 1.797236e-03
#> [36] 3.702208e-03 7.139892e-03 1.288219e-02 2.172588e-02 3.421374e-02
#> [41] 5.024851e-02 6.872559e-02 8.738947e-02 1.031108e-01 1.126377e-01
#> [46] 1.136267e-01 1.055364e-01 8.994057e-02 7.004907e-02 4.962603e-02
#> [51] 3.180393e-02 1.831737e-02 9.406320e-03 4.265268e-03 1.687339e-03
#> [56] 5.734528e-04 1.640669e-04 3.843049e-05 7.077304e-06 9.609416e-07
#> [61] 8.553338e-08 3.744258e-09
ppbinom(NULL, pp, wt, "GeoMeanCounter")
#> [1] 3.574462e-35 5.858123e-33 4.722829e-31 2.496699e-29 9.733859e-28
#> [6] 2.984460e-26 7.493958e-25 1.584624e-23 2.879597e-22 4.566969e-21
#> [11] 6.398339e-20 7.995871e-19 8.984095e-18 9.136095e-17 8.455467e-16
#> [16] 7.155772e-15 5.560007e-14 3.980256e-13 2.633173e-12 1.614086e-11
#> [21] 9.188695e-11 4.867847e-10 2.404049e-09 1.108523e-08 4.778901e-08
#> [26] 1.928440e-07 7.291610e-07 2.585622e-06 8.605207e-06 2.689642e-05
#> [31] 7.899562e-05 2.181161e-04 5.663910e-04 1.383662e-03 3.180899e-03
#> [36] 6.883107e-03 1.402300e-02 2.690519e-02 4.863107e-02 8.284481e-02
#> [41] 1.330933e-01 2.018189e-01 2.892084e-01 3.923192e-01 5.049569e-01
#> [46] 6.185836e-01 7.241200e-01 8.140606e-01 8.841097e-01 9.337357e-01
#> [51] 9.655396e-01 9.838570e-01 9.932633e-01 9.975286e-01 9.992159e-01
#> [56] 9.997894e-01 9.999534e-01 9.999919e-01 9.999989e-01 9.999999e-01
#> [61] 1.000000e+00 1.000000e+00
It is known that the geometric mean of the probabilities of failure is always smaller than their arithmetic mean. As a result, 1 minus the geometric mean is larger than 1 minus the arithmetic mean. Thus, we get a stochastically larger binomial distribution. A comparison with exact computation shows that the approximation quality of the GMBA-B procedure again increases when the probabilities of success are closer to each other:
set.seed(1)
# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "GeoMeanCounter")
#> [1] 4.401037e-11 2.019854e-09 4.403304e-08 6.062685e-07 5.912743e-06
#> [6] 4.341843e-05 2.490859e-04 1.143179e-03 4.262876e-03 1.304297e-02
#> [11] 3.292337e-02 6.868258e-02 1.182069e-01 1.669263e-01 1.915269e-01
#> [16] 1.758024e-01 1.260695e-01 6.807004e-02 2.603394e-02 6.288561e-03
#> [21] 7.215333e-04
dpbinom(NULL, pp)
#> [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#> [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "GeoMeanCounter") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -1.469e-01 -1.724e-02 -3.200e-07 0.000e+00 2.592e-02 1.528e-01
# U(0.4, 0.6) random probabilities of success
pp <- runif(20, 0.4, 0.6)
dpbinom(NULL, pp, method = "GeoMeanCounter")
#> [1] 1.046635e-06 2.073844e-05 1.951870e-04 1.160254e-03 4.885321e-03
#> [6] 1.548796e-02 3.836059e-02 7.600922e-02 1.223688e-01 1.616443e-01
#> [11] 1.761588e-01 1.586582e-01 1.178895e-01 7.187414e-02 3.560358e-02
#> [16] 1.410928e-02 4.368234e-03 1.018282e-03 1.681387e-04 1.753458e-05
#> [21] 8.685930e-07
dpbinom(NULL, pp)
#> [1] 1.046635e-06 2.098187e-05 1.993006e-04 1.192678e-03 5.043114e-03
#> [6] 1.601621e-02 3.964022e-02 7.829406e-02 1.253351e-01 1.642218e-01
#> [11] 1.770816e-01 1.574210e-01 1.151700e-01 6.896627e-02 3.347297e-02
#> [16] 1.296524e-02 3.913788e-03 8.873960e-04 1.421738e-04 1.435144e-05
#> [21] 6.864565e-07
summary(dpbinom(NULL, pp, method = "GeoMeanCounter") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.0029663 -0.0005283 0.0000000 0.0000000 0.0004544 0.0029079
# U(0.49, 0.51) random probabilities of success
pp <- runif(20, 0.49, 0.51)
dpbinom(NULL, pp, method = "GeoMeanCounter")
#> [1] 9.472606e-07 1.895800e-05 1.802225e-04 1.082065e-03 4.601880e-03
#> [6] 1.473596e-02 3.686475e-02 7.377926e-02 1.199722e-01 1.600709e-01
#> [11] 1.761969e-01 1.602871e-01 1.202964e-01 7.407854e-02 3.706427e-02
#> [16] 1.483571e-02 4.639289e-03 1.092334e-03 1.821786e-04 1.918963e-05
#> [21] 9.601293e-07
dpbinom(NULL, pp)
#> [1] 9.472606e-07 1.895984e-05 1.802539e-04 1.082315e-03 4.603107e-03
#> [6] 1.474011e-02 3.687497e-02 7.379784e-02 1.199969e-01 1.600932e-01
#> [11] 1.762060e-01 1.602781e-01 1.202742e-01 7.405383e-02 3.704562e-02
#> [16] 1.482542e-02 4.635093e-03 1.091093e-03 1.819256e-04 1.915775e-05
#> [21] 9.582517e-07
summary(dpbinom(NULL, pp, method = "GeoMeanCounter") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -2.467e-05 -4.159e-06 0.000e+00 0.000e+00 4.196e-06 2.470e-05
The Normal Approximation (NA) approach is requested with method = "Normal"
. It is based on a Normal distribution, whose parameters are derived from the theoretical mean and variance of the input probabilities of success.
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
dpbinom(NULL, pp, wt, "Normal")
#> [1] 2.552770e-32 1.207834e-30 5.219650e-29 2.022022e-27 7.021785e-26
#> [6] 2.185917e-24 6.100302e-23 1.526188e-21 3.423032e-20 6.882841e-19
#> [11] 1.240755e-17 2.005270e-16 2.905604e-15 3.774712e-14 4.396661e-13
#> [16] 4.591569e-12 4.299381e-11 3.609645e-10 2.717342e-09 1.834224e-08
#> [21] 1.110185e-07 6.025326e-07 2.932337e-06 1.279682e-05 5.007841e-05
#> [26] 1.757379e-04 5.530339e-04 1.560683e-03 3.949650e-03 8.963710e-03
#> [31] 1.824341e-02 3.329786e-02 5.450317e-02 8.000636e-02 1.053238e-01
#> [36] 1.243451e-01 1.316535e-01 1.250080e-01 1.064497e-01 8.129267e-02
#> [41] 5.567468e-02 3.419491e-02 1.883477e-02 9.303614e-03 4.121280e-03
#> [46] 1.637186e-03 5.832371e-04 1.863241e-04 5.337829e-05 1.371282e-05
#> [51] 3.159002e-06 6.525712e-07 1.208800e-07 2.007813e-08 2.990389e-09
#> [56] 3.993563e-10 4.782064e-11 5.134337e-12 4.942713e-13 4.263256e-14
#> [61] 3.330669e-15 2.220446e-16
ppbinom(NULL, pp, wt, "Normal")
#> [1] 2.552770e-32 1.233362e-30 5.342987e-29 2.075452e-27 7.229330e-26
#> [6] 2.258210e-24 6.326123e-23 1.589449e-21 3.581977e-20 7.241039e-19
#> [11] 1.313165e-17 2.136587e-16 3.119262e-15 4.086639e-14 4.805325e-13
#> [16] 5.072102e-12 4.806591e-11 4.090305e-10 3.126373e-09 2.146861e-08
#> [21] 1.324871e-07 7.350197e-07 3.667357e-06 1.646417e-05 6.654258e-05
#> [26] 2.422805e-04 7.953144e-04 2.355997e-03 6.305647e-03 1.526936e-02
#> [31] 3.351276e-02 6.681062e-02 1.213138e-01 2.013201e-01 3.066439e-01
#> [36] 4.309891e-01 5.626426e-01 6.876506e-01 7.941003e-01 8.753930e-01
#> [41] 9.310676e-01 9.652625e-01 9.840973e-01 9.934009e-01 9.975222e-01
#> [46] 9.991594e-01 9.997426e-01 9.999290e-01 9.999823e-01 9.999960e-01
#> [51] 9.999992e-01 9.999999e-01 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00
A comparison with exact computation shows that the approximation quality of the NA procedure increases with larger numbers of probabilities of success:
set.seed(1)
# 10 random probabilities of success
pp <- runif(10)
dpn <- dpbinom(NULL, pp, method = "Normal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.0053305 -0.0010422 0.0005271 0.0000000 0.0016579 0.0026553
# 1000 random probabilities of success
pp <- runif(1000)
dpn <- dpbinom(NULL, pp, method = "Normal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -8.412e-06 0.000e+00 2.656e-09 0.000e+00 6.073e-07 3.815e-06
# 100000 random probabilities of success
pp <- runif(100000)
dpn <- dpbinom(NULL, pp, method = "Normal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -4.484e-09 0.000e+00 8.990e-13 0.000e+00 4.919e-10 2.734e-09
The Refined Normal Approximation (RNA) approach is requested with method = "RefinedNormal"
. It is based on a Normal distribution, whose parameters are derived from the theoretical mean, variance and skewness of the input probabilities of success.
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
dpbinom(NULL, pp, wt, "RefinedNormal")
#> [1] 2.579548e-31 1.128297e-29 4.507210e-28 1.611452e-26 5.156486e-25
#> [6] 1.476806e-23 3.785627e-22 8.685911e-21 1.783953e-19 3.280039e-18
#> [11] 5.399492e-17 7.959230e-16 1.050796e-14 1.242802e-13 1.317210e-12
#> [16] 1.251531e-11 1.066498e-10 8.155390e-10 5.599786e-09 3.455053e-08
#> [21] 1.917106e-07 9.574753e-07 4.308224e-06 1.748069e-05 6.401569e-05
#> [26] 2.117447e-04 6.329842e-04 1.710740e-03 4.180480e-03 9.234968e-03
#> [31] 1.843341e-02 3.322175e-02 5.401115e-02 7.912655e-02 1.043358e-01
#> [36] 1.236782e-01 1.316360e-01 1.256489e-01 1.074322e-01 8.218619e-02
#> [41] 5.618825e-02 3.428872e-02 1.865323e-02 9.032795e-03 3.886960e-03
#> [46] 1.483178e-03 5.004545e-04 1.487517e-04 3.873113e-05 8.757189e-06
#> [51] 1.693868e-06 2.722346e-07 3.388544e-08 2.218356e-09 0.000000e+00
#> [56] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [61] 0.000000e+00 0.000000e+00
ppbinom(NULL, pp, wt, "RefinedNormal")
#> [1] 2.579548e-31 1.154092e-29 4.622620e-28 1.657678e-26 5.322254e-25
#> [6] 1.530028e-23 3.938629e-22 9.079774e-21 1.874750e-19 3.467514e-18
#> [11] 5.746244e-17 8.533855e-16 1.136134e-14 1.356415e-13 1.452852e-12
#> [16] 1.396817e-11 1.206179e-10 9.361569e-10 6.535943e-09 4.108647e-08
#> [21] 2.327971e-07 1.190272e-06 5.498496e-06 2.297918e-05 8.699487e-05
#> [26] 2.987396e-04 9.317238e-04 2.642463e-03 6.822944e-03 1.605791e-02
#> [31] 3.449132e-02 6.771307e-02 1.217242e-01 2.008508e-01 3.051866e-01
#> [36] 4.288648e-01 5.605008e-01 6.861497e-01 7.935820e-01 8.757682e-01
#> [41] 9.319564e-01 9.662451e-01 9.848984e-01 9.939312e-01 9.978181e-01
#> [46] 9.993013e-01 9.998018e-01 9.999505e-01 9.999892e-01 9.999980e-01
#> [51] 9.999997e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00
A comparison with exact computation shows that the approximation quality of the RNA procedure increases with larger numbers of probabilities of success:
set.seed(1)
# 10 random probabilities of success
pp <- runif(10)
dpn <- dpbinom(NULL, pp, method = "RefinedNormal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.0039538 -0.0006920 0.0003543 0.0000000 0.0017167 0.0023597
# 1000 random probabilities of success
pp <- runif(1000)
dpn <- dpbinom(NULL, pp, method = "RefinedNormal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -2.974e-06 0.000e+00 3.181e-10 0.000e+00 3.747e-07 2.270e-06
# 100000 random probabilities of success
pp <- runif(100000)
dpn <- dpbinom(NULL, pp, method = "RefinedNormal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -3.126e-09 0.000e+00 6.337e-13 0.000e+00 4.632e-10 2.293e-09
To assess the performance of the approximation procedures, we use the microbenchmark
package. Each algorithm has to calculate the PMF repeatedly based on random probability vectors. The run times are then summarized in a table that presents, among other statistics, their minima, maxima and means. The following results were recorded on an AMD Ryzen 7 1800X with 32 GiB of RAM and Ubuntu 18.04.4 (running inside a VirtualBox VM; the host system is Windows 10 Education).
library(microbenchmark)
set.seed(1)
f1 <- function() dpbinom(NULL, runif(4000), method = "Normal")
f2 <- function() dpbinom(NULL, runif(4000), method = "RefinedNormal")
f3 <- function() dpbinom(NULL, runif(4000), method = "Poisson")
f4 <- function() dpbinom(NULL, runif(4000), method = "Mean")
f5 <- function() dpbinom(NULL, runif(4000), method = "GeoMean")
f6 <- function() dpbinom(NULL, runif(4000), method = "GeoMeanCounter")
f7 <- function() dpbinom(NULL, runif(4000), method = "DivideFFT")
microbenchmark(f1(), f2(), f3(), f4(), f5(), f6(), f7())
#> Unit: microseconds
#> expr min lq mean median uq max neval cld
#> f1() 547.002 568.4010 676.753 597.352 624.8015 4260.102 100 a
#> f2() 699.601 718.7015 794.284 754.451 779.5010 3617.301 100 a
#> f3() 1276.000 1298.9010 1425.546 1336.901 1387.3505 5028.102 100 b
#> f4() 1549.000 1569.6505 1711.965 1626.801 1705.9510 5222.501 100 bc
#> f5() 1666.201 1701.7510 1863.317 1743.201 1831.7510 7786.702 100 c
#> f6() 1685.801 1735.6010 1802.258 1795.151 1834.6510 3099.201 100 c
#> f7() 6573.602 6881.7005 7715.742 6990.301 7233.6010 13663.102 100 d
Clearly, the NA procedure is the fastest, followed by the RNA method, which needs roughly 30-40% more time, and the PA, AMBA and GMBA approaches that need almost twice as long as the NA algorithm. AMBA, GMBA-A and GMBA-B procedures exhibit almost equal mean execution speed, with the AMBA algorithm being slightly faster. All of the approximation procedures outperform the fastest exact approach, DC-FFT, by far. Even the slowest approximate algorithm is around 4x as fast as DC-FFT.
The Generalized Normal Approximation (G-NA) approach is requested with method = "Normal"
. It is based on a Normal distribution, whose parameters are derived from the theoretical mean and variance of the input probabilities of success (see Introduction.
set.seed(2)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dgpbinom(NULL, pp, va, vb, wt, "Normal")
#> [1] 5.607923e-34 8.868899e-34 2.266907e-33 5.759009e-33 1.454159e-32
#> [6] 3.649437e-32 9.103112e-32 2.256856e-31 5.561194e-31 1.362016e-30
#> [11] 3.315478e-30 8.021587e-30 1.928965e-29 4.610400e-29 1.095224e-28
#> [16] 2.585931e-28 6.068497e-28 1.415453e-27 3.281403e-27 7.560907e-27
#> [21] 1.731562e-26 3.941418e-26 8.916960e-26 2.005077e-25 4.481212e-25
#> [26] 9.954281e-25 2.197730e-24 4.822684e-24 1.051849e-23 2.280173e-23
#> [31] 4.912836e-23 1.052075e-22 2.239296e-22 4.737247e-22 9.960718e-22
#> [36] 2.081639e-21 4.323844e-21 8.926573e-21 1.831680e-20 3.735634e-20
#> [41] 7.572323e-20 1.525612e-19 3.054984e-19 6.080284e-19 1.202787e-18
#> [46] 2.364851e-18 4.621350e-18 8.976023e-18 1.732802e-17 3.324790e-17
#> [51] 6.340586e-17 1.201834e-16 2.264174e-16 4.239603e-16 7.890246e-16
#> [56] 1.459506e-15 2.683313e-15 4.903282e-15 8.905378e-15 1.607563e-14
#> [61] 2.884254e-14 5.143387e-14 9.116221e-14 1.605945e-13 2.811877e-13
#> [66] 4.893417e-13 8.464047e-13 1.455104e-12 2.486337e-12 4.222561e-12
#> [71] 7.127579e-12 1.195799e-11 1.993996e-11 3.304764e-11 5.443857e-11
#> [76] 8.912982e-11 1.450405e-10 2.345880e-10 3.771137e-10 6.025440e-10
#> [81] 9.568753e-10 1.510330e-09 2.369401e-09 3.694497e-09 5.725614e-09
#> [86] 8.819398e-09 1.350224e-08 2.054578e-08 3.107347e-08 4.670967e-08
#> [91] 6.978689e-08 1.036313e-07 1.529531e-07 2.243755e-07 3.271469e-07
#> [96] 4.740893e-07 6.828536e-07 9.775638e-07 1.390954e-06 1.967117e-06
#> [101] 2.765018e-06 3.862920e-06 5.363935e-06 7.402890e-06 1.015475e-05
#> [106] 1.384482e-05 1.876097e-05 2.526814e-05 3.382528e-05 4.500488e-05
#> [111] 5.951520e-05 7.822512e-05 1.021915e-04 1.326884e-04 1.712386e-04
#> [116] 2.196444e-04 2.800198e-04 3.548195e-04 4.468649e-04 5.593647e-04
#> [121] 6.959275e-04 8.605635e-04 1.057674e-03 1.292025e-03 1.568701e-03
#> [126] 1.893038e-03 2.270537e-03 2.706749e-03 3.207136e-03 3.776912e-03
#> [131] 4.420856e-03 5.143112e-03 5.946968e-03 6.834635e-03 7.807017e-03
#> [136] 8.863494e-03 1.000172e-02 1.121747e-02 1.250446e-02 1.385431e-02
#> [141] 1.525651e-02 1.669842e-02 1.816543e-02 1.964112e-02 2.110749e-02
#> [146] 2.254536e-02 2.393468e-02 2.525505e-02 2.648616e-02 2.760831e-02
#> [151] 2.860294e-02 2.945314e-02 3.014411e-02 3.066363e-02 3.100235e-02
#> [156] 3.115414e-02 3.111624e-02 3.088932e-02 3.047753e-02 2.988830e-02
#> [161] 2.913216e-02 2.822242e-02 2.717477e-02 2.600684e-02 2.473770e-02
#> [166] 2.338736e-02 2.197622e-02 2.052462e-02 1.905228e-02 1.757799e-02
#> [171] 1.611912e-02 1.469141e-02 1.330871e-02 1.198280e-02 1.072335e-02
#> [176] 9.537908e-03 8.431904e-03 7.408807e-03 6.470249e-03 5.616215e-03
#> [181] 4.845254e-03 4.154698e-03 3.540890e-03 2.999407e-03 2.525274e-03
#> [186] 2.113156e-03 1.757538e-03 1.452874e-03 1.193717e-03 9.748208e-04
#> [191] 7.912218e-04 6.382955e-04 5.117942e-04 4.078674e-04 3.230671e-04
#> [196] 2.543411e-04 1.990171e-04 1.547798e-04 1.196432e-04 9.192046e-05
#> [201] 7.019178e-05 5.327340e-05 4.018691e-05 3.013068e-05 2.245346e-05
#> [206] 1.663059e-05 1.224284e-05 8.957907e-06 6.514501e-06 1.614725e-05
pgpbinom(NULL, pp, va, vb, wt, "Normal")
#> [1] 5.607923e-34 1.447682e-33 3.714589e-33 9.473598e-33 2.401518e-32
#> [6] 6.050955e-32 1.515407e-31 3.772263e-31 9.333457e-31 2.295361e-30
#> [11] 5.610840e-30 1.363243e-29 3.292208e-29 7.902608e-29 1.885484e-28
#> [16] 4.471416e-28 1.053991e-27 2.469444e-27 5.750847e-27 1.331175e-26
#> [21] 3.062738e-26 7.004156e-26 1.592112e-25 3.597189e-25 8.078401e-25
#> [26] 1.803268e-24 4.000998e-24 8.823682e-24 1.934217e-23 4.214390e-23
#> [31] 9.127226e-23 1.964798e-22 4.204093e-22 8.941340e-22 1.890206e-21
#> [36] 3.971844e-21 8.295689e-21 1.722226e-20 3.553906e-20 7.289540e-20
#> [41] 1.486186e-19 3.011798e-19 6.066782e-19 1.214707e-18 2.417494e-18
#> [46] 4.782345e-18 9.403695e-18 1.837972e-17 3.570774e-17 6.895564e-17
#> [51] 1.323615e-16 2.525449e-16 4.789624e-16 9.029227e-16 1.691947e-15
#> [56] 3.151453e-15 5.834767e-15 1.073805e-14 1.964343e-14 3.571905e-14
#> [61] 6.456159e-14 1.159955e-13 2.071577e-13 3.677521e-13 6.489399e-13
#> [66] 1.138282e-12 1.984686e-12 3.439790e-12 5.926127e-12 1.014869e-11
#> [71] 1.727627e-11 2.923425e-11 4.917421e-11 8.222186e-11 1.366604e-10
#> [76] 2.257903e-10 3.708308e-10 6.054188e-10 9.825325e-10 1.585076e-09
#> [81] 2.541952e-09 4.052282e-09 6.421683e-09 1.011618e-08 1.584179e-08
#> [86] 2.466119e-08 3.816343e-08 5.870922e-08 8.978268e-08 1.364924e-07
#> [91] 2.062792e-07 3.099106e-07 4.628636e-07 6.872392e-07 1.014386e-06
#> [96] 1.488475e-06 2.171329e-06 3.148893e-06 4.539847e-06 6.506964e-06
#> [101] 9.271982e-06 1.313490e-05 1.849884e-05 2.590173e-05 3.605648e-05
#> [106] 4.990129e-05 6.866226e-05 9.393040e-05 1.277557e-04 1.727606e-04
#> [111] 2.322758e-04 3.105009e-04 4.126924e-04 5.453808e-04 7.166194e-04
#> [116] 9.362638e-04 1.216284e-03 1.571103e-03 2.017968e-03 2.577333e-03
#> [121] 3.273260e-03 4.133824e-03 5.191498e-03 6.483523e-03 8.052224e-03
#> [126] 9.945263e-03 1.221580e-02 1.492255e-02 1.812968e-02 2.190660e-02
#> [131] 2.632745e-02 3.147056e-02 3.741753e-02 4.425217e-02 5.205918e-02
#> [136] 6.092268e-02 7.092440e-02 8.214187e-02 9.464633e-02 1.085006e-01
#> [141] 1.237572e-01 1.404556e-01 1.586210e-01 1.782621e-01 1.993696e-01
#> [146] 2.219150e-01 2.458497e-01 2.711047e-01 2.975909e-01 3.251992e-01
#> [151] 3.538021e-01 3.832553e-01 4.133994e-01 4.440630e-01 4.750653e-01
#> [156] 5.062195e-01 5.373357e-01 5.682250e-01 5.987026e-01 6.285909e-01
#> [161] 6.577230e-01 6.859454e-01 7.131202e-01 7.391271e-01 7.638648e-01
#> [166] 7.872521e-01 8.092283e-01 8.297529e-01 8.488052e-01 8.663832e-01
#> [171] 8.825023e-01 8.971938e-01 9.105025e-01 9.224853e-01 9.332086e-01
#> [176] 9.427465e-01 9.511784e-01 9.585872e-01 9.650575e-01 9.706737e-01
#> [181] 9.755189e-01 9.796736e-01 9.832145e-01 9.862139e-01 9.887392e-01
#> [186] 9.908524e-01 9.926099e-01 9.940628e-01 9.952565e-01 9.962313e-01
#> [191] 9.970225e-01 9.976608e-01 9.981726e-01 9.985805e-01 9.989036e-01
#> [196] 9.991579e-01 9.993569e-01 9.995117e-01 9.996314e-01 9.997233e-01
#> [201] 9.997935e-01 9.998467e-01 9.998869e-01 9.999171e-01 9.999395e-01
#> [206] 9.999561e-01 9.999684e-01 9.999773e-01 9.999839e-01 1.000000e+00
A comparison with exact computation shows that the approximation quality of the NA procedure increases with larger numbers of probabilities of success:
set.seed(2)
# 10 random probabilities of success
pp <- runif(10)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "Normal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.0346309 -0.0042919 0.0001378 0.0000000 0.0038447 0.0317044
# 100 random probabilities of success
pp <- runif(100)
va <- sample(0:100, 100, TRUE)
vb <- sample(0:100, 100, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "Normal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -3.006e-05 -1.862e-07 0.000e+00 0.000e+00 1.759e-07 2.967e-05
# 1000 random probabilities of success
pp <- runif(1000)
va <- sample(0:1000, 1000, TRUE)
vb <- sample(0:1000, 1000, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "Normal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -3.152e-08 0.000e+00 3.090e-12 0.000e+00 9.001e-10 3.707e-08
The Generalized Refined Normal Approximation (G-RNA) approach is requested with method = "RefinedNormal"
. It is based on a Normal distribution, whose parameters are derived from the theoretical mean, variance and skewness of the input probabilities of success.
set.seed(2)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dgpbinom(NULL, pp, va, vb, wt, "RefinedNormal")
#> [1] 5.100768e-32 7.816039e-32 1.959106e-31 4.880045e-31 1.208047e-30
#> [6] 2.971921e-30 7.265798e-30 1.765311e-29 4.262362e-29 1.022751e-28
#> [11] 2.438814e-28 5.779315e-28 1.361012e-27 3.185186e-27 7.407878e-27
#> [16] 1.712136e-26 3.932484e-26 8.975930e-26 2.035985e-25 4.589352e-25
#> [21] 1.028037e-24 2.288476e-24 5.062470e-24 1.112900e-23 2.431235e-23
#> [26] 5.278047e-23 1.138660e-22 2.441116e-22 5.200621e-22 1.101015e-21
#> [31] 2.316333e-21 4.842591e-21 1.006056e-20 2.076983e-20 4.260973e-20
#> [36] 8.686571e-20 1.759748e-19 3.542530e-19 7.086575e-19 1.408697e-18
#> [41] 2.782630e-18 5.461965e-18 1.065359e-17 2.064884e-17 3.976912e-17
#> [46] 7.611065e-17 1.447413e-16 2.735176e-16 5.135966e-16 9.582999e-16
#> [51] 1.776730e-15 3.273256e-15 5.992053e-15 1.089949e-14 1.970017e-14
#> [56] 3.538058e-14 6.313772e-14 1.119541e-13 1.972495e-13 3.453144e-13
#> [61] 6.006676e-13 1.038179e-12 1.782897e-12 3.042246e-12 5.157913e-12
#> [66] 8.688860e-12 1.454315e-11 2.418568e-11 3.996319e-11 6.560867e-11
#> [71] 1.070186e-10 1.734408e-10 2.792769e-10 4.467944e-10 7.101774e-10
#> [76] 1.121527e-09 1.759679e-09 2.743061e-09 4.248282e-09 6.536785e-09
#> [81] 9.992759e-09 1.517660e-08 2.289965e-08 3.432780e-08 5.112383e-08
#> [86] 7.564129e-08 1.111860e-07 1.623661e-07 2.355550e-07 3.394997e-07
#> [91] 4.861107e-07 6.914779e-07 9.771650e-07 1.371840e-06 1.913307e-06
#> [96] 2.651012e-06 3.649099e-06 4.990081e-06 6.779222e-06 9.149662e-06
#> [101] 1.226837e-05 1.634294e-05 2.162919e-05 2.843967e-05 3.715276e-05
#> [106] 4.822249e-05 6.218875e-05 7.968764e-05 1.014618e-04 1.283702e-04
#> [111] 1.613972e-04 2.016606e-04 2.504176e-04 3.090698e-04 3.791651e-04
#> [116] 4.623982e-04 5.606082e-04 6.757744e-04 8.100102e-04 9.655553e-04
#> [121] 1.144767e-03 1.350110e-03 1.584150e-03 1.849543e-03 2.149024e-03
#> [126] 2.485405e-03 2.861561e-03 3.280420e-03 3.744950e-03 4.258135e-03
#> [131] 4.822941e-03 5.442277e-03 6.118927e-03 6.855467e-03 7.654163e-03
#> [136] 8.516833e-03 9.444692e-03 1.043817e-02 1.149671e-02 1.261856e-02
#> [141] 1.380053e-02 1.503782e-02 1.632377e-02 1.764978e-02 1.900514e-02
#> [146] 2.037702e-02 2.175055e-02 2.310888e-02 2.443348e-02 2.570445e-02
#> [151] 2.690096e-02 2.800177e-02 2.898579e-02 2.983278e-02 3.052397e-02
#> [156] 3.104271e-02 3.137515e-02 3.151071e-02 3.144261e-02 3.116818e-02
#> [161] 3.068902e-02 3.001109e-02 2.914456e-02 2.810352e-02 2.690563e-02
#> [166] 2.557147e-02 2.412399e-02 2.258773e-02 2.098813e-02 1.935073e-02
#> [171] 1.770044e-02 1.606093e-02 1.445398e-02 1.289904e-02 1.141287e-02
#> [176] 1.000927e-02 8.699011e-03 7.489773e-03 6.386301e-03 5.390581e-03
#> [181] 4.502114e-03 3.718233e-03 3.034469e-03 2.444914e-03 1.942594e-03
#> [186] 1.519822e-03 1.168521e-03 8.805066e-04 6.477360e-04 4.625001e-04
#> [191] 2.621189e-04 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [196] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [201] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [206] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
pgpbinom(NULL, pp, va, vb, wt, "RefinedNormal")
#> [1] 5.100768e-32 1.291681e-31 3.250786e-31 8.130831e-31 2.021130e-30
#> [6] 4.993051e-30 1.225885e-29 2.991196e-29 7.253558e-29 1.748106e-28
#> [11] 4.186920e-28 9.966236e-28 2.357636e-27 5.542822e-27 1.295070e-26
#> [16] 3.007206e-26 6.939690e-26 1.591562e-25 3.627547e-25 8.216899e-25
#> [21] 1.849727e-24 4.138203e-24 9.200673e-24 2.032968e-23 4.464203e-23
#> [26] 9.742250e-23 2.112885e-22 4.554002e-22 9.754623e-22 2.076477e-21
#> [31] 4.392810e-21 9.235402e-21 1.929596e-20 4.006579e-20 8.267552e-20
#> [36] 1.695412e-19 3.455160e-19 6.997690e-19 1.408427e-18 2.817123e-18
#> [41] 5.599754e-18 1.106172e-17 2.171531e-17 4.236415e-17 8.213328e-17
#> [46] 1.582439e-16 3.029852e-16 5.765028e-16 1.090099e-15 2.048399e-15
#> [51] 3.825129e-15 7.098385e-15 1.309044e-14 2.398993e-14 4.369010e-14
#> [56] 7.907068e-14 1.422084e-13 2.541625e-13 4.514120e-13 7.967264e-13
#> [61] 1.397394e-12 2.435573e-12 4.218470e-12 7.260717e-12 1.241863e-11
#> [66] 2.110749e-11 3.565064e-11 5.983632e-11 9.979950e-11 1.654082e-10
#> [71] 2.724267e-10 4.458675e-10 7.251445e-10 1.171939e-09 1.882116e-09
#> [76] 3.003643e-09 4.763322e-09 7.506383e-09 1.175466e-08 1.829145e-08
#> [81] 2.828421e-08 4.346081e-08 6.636046e-08 1.006883e-07 1.518121e-07
#> [86] 2.274534e-07 3.386394e-07 5.010055e-07 7.365605e-07 1.076060e-06
#> [91] 1.562171e-06 2.253649e-06 3.230814e-06 4.602653e-06 6.515960e-06
#> [96] 9.166972e-06 1.281607e-05 1.780615e-05 2.458537e-05 3.373504e-05
#> [101] 4.600341e-05 6.234634e-05 8.397554e-05 1.124152e-04 1.495680e-04
#> [106] 1.977905e-04 2.599792e-04 3.396668e-04 4.411286e-04 5.694988e-04
#> [111] 7.308960e-04 9.325566e-04 1.182974e-03 1.492044e-03 1.871209e-03
#> [116] 2.333607e-03 2.894215e-03 3.569990e-03 4.380000e-03 5.345555e-03
#> [121] 6.490322e-03 7.840432e-03 9.424583e-03 1.127413e-02 1.342315e-02
#> [126] 1.590855e-02 1.877011e-02 2.205053e-02 2.579549e-02 3.005362e-02
#> [131] 3.487656e-02 4.031884e-02 4.643777e-02 5.329323e-02 6.094740e-02
#> [136] 6.946423e-02 7.890892e-02 8.934709e-02 1.008438e-01 1.134624e-01
#> [141] 1.272629e-01 1.423007e-01 1.586245e-01 1.762743e-01 1.952794e-01
#> [146] 2.156564e-01 2.374070e-01 2.605159e-01 2.849493e-01 3.106538e-01
#> [151] 3.375548e-01 3.655565e-01 3.945423e-01 4.243751e-01 4.548991e-01
#> [156] 4.859418e-01 5.173169e-01 5.488276e-01 5.802702e-01 6.114384e-01
#> [161] 6.421274e-01 6.721385e-01 7.012831e-01 7.293866e-01 7.562922e-01
#> [166] 7.818637e-01 8.059877e-01 8.285754e-01 8.495636e-01 8.689143e-01
#> [171] 8.866147e-01 9.026757e-01 9.171296e-01 9.300287e-01 9.414415e-01
#> [176] 9.514508e-01 9.601498e-01 9.676396e-01 9.740259e-01 9.794165e-01
#> [181] 9.839186e-01 9.876368e-01 9.906713e-01 9.931162e-01 9.950588e-01
#> [186] 9.965786e-01 9.977471e-01 9.986276e-01 9.992754e-01 9.997379e-01
#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
A comparison with exact computation shows that the approximation quality of the RNA procedure increases with larger numbers of probabilities of success:
set.seed(2)
# 10 random probabilities of success
pp <- runif(10)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "RefinedNormal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -3.045e-02 -4.084e-03 1.727e-04 1.179e-05 4.324e-03 3.161e-02
# 100 random probabilities of success
pp <- runif(100)
va <- sample(0:100, 100, TRUE)
vb <- sample(0:100, 100, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "RefinedNormal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -8.831e-06 0.000e+00 6.375e-09 1.200e-11 8.662e-07 1.333e-05
# 1000 random probabilities of success
pp <- runif(1000)
va <- sample(0:1000, 1000, TRUE)
vb <- sample(0:1000, 1000, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "RefinedNormal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -1.980e-08 0.000e+00 5.010e-12 0.000e+00 1.564e-09 3.197e-08
To assess the performance of the approximation procedures, we use the microbenchmark
package. Each algorithm has to calculate the PMF repeatedly based on random probability vectors. The run times are then summarized in a table that presents, among other statistics, their minima, maxima and means. The following results were recorded on an AMD Ryzen 7 1800X with 32 GiB of RAM and Ubuntu 18.04.4 (running inside a VirtualBox VM; the host system is Windows 10 Education).
library(microbenchmark)
n <- 200
set.seed(2)
va <- sample(1:n, n, FALSE)
vb <- sample(1:n, n, FALSE)
f1 <- function() dgpbinom(NULL, runif(n), va, vb, method = "Normal")
f2 <- function() dgpbinom(NULL, runif(n), va, vb, method = "RefinedNormal")
f3 <- function() dgpbinom(NULL, runif(n), va, vb, method = "DivideFFT")
microbenchmark(f1(), f2(), f3())
#> Unit: milliseconds
#> expr min lq mean median uq max neval cld
#> f1() 2.043301 2.154251 2.311215 2.202251 2.284151 5.239100 100 a
#> f2() 2.739700 2.902750 2.973090 2.951001 3.021851 4.508901 100 b
#> f3() 5.082701 5.250451 6.537350 5.376802 7.745252 12.446401 100 c
Clearly, the G-NA procedure is the fastest, followed by the G-RNA method, which needs roughly 20-30% more time. But even the slowest approximate algorithm is around ten times as fast as G-DC-FFT.