Package ‘PhyloMeasures’

January 14, 2017

Type Package

Title Fast and Exact Algorithms for Computing Phylogenetic
Biodiversity Measures

Version 2.1

Date 2017-1-14

Author Constantinos Tsirogiannis [aut, cre], Brody Sandel [aut]
Maintainer Constantinos Tsirogiannis <tsirogiannis.c@gmail.com>

Description Given a phylogenetic tree T and an assemblage S of species represented as
a subset of tips in T, we want to compute a measure of the diversity
of the species in S with respect to T. The current package offers
efficient algorithms that can process large phylogenetic data for several such measures.
Most importantly, the package includes algorithms for computing
efficiently the standardized versions of phylogenetic measures and their p-values, which are
essential for null model comparisons. Among other functions,
the package provides efficient computation of richness-standardized versions
for indices such as the net relatedness index (NRI),
nearest taxon index (NTI), phylogenetic
diversity index (PDI), and the corresponding indices of two-sample measures.
The package also introduces a new
single-sample measure, the Core Ancestor Cost (CAC); the package provides
functions for computing the value and the standardised index of the CAC and,
more than that, there is an extra function available that can compute exactly
any statistical moment of the measure. The package supports computations
under different null models, including abundance-weighted models.

License GPL-3

Imports ape, methods

LazyLoad yes

SystemRequirements C++11
NeedsCompilation yes

Repository CRAN

Date/Publication 2017-01-14 01:13:19

2 PhyloMeasures-package

R topics documented:
PhyloMeasures-package 2
CAC.MOMENLS v v v v et e et e e e e e e e e e e e e e e e 4
cac.pvalues e e e 6
CAC.QUETY + . v v v v e 8
cblmoments 10
cblquery e e e e 11
cdmoments e 13
CA.QUETY . . . o e e e e 14
cdntaveraged.qUery L. e 16
cdnt.directed.query 19
CANL.QUETY . . . o o o o e e e e e e e e e e e 21
mntd.MOMENtS 23
mntd.pvalues 25
mntd.qUEery e e 27
MPA.MOMENES o v vttt e e e e e e e 29
mpd.pvalues e e e e e 31
MPA.QUETY o e e e e e e e e e e e e 33
PAMOMENts e e 35
pdpvalueso 37
PAQUEry e 39
phylosor.query 42
unifrac.qUery e e e e e e e e 43

Index 46

PhyloMeasures-package PhyloMeasures: Fast Computations of Phylogenetic Biodiversity

Measures

Description

The package supports fast biodiversity computations on large phylogenetic data. More specifically,
the package provides functions for computing the stdandardized values and p-values of several phy-
logenetic biodiversity measures. The measures which are supported in the current version of the
package are: the Phylogenetic Diversity (PD), the Mean Pairwise Distance (MPD), the Mean Near-
est Taxon Distance (MNTD), the Core Ancestor Cost (CAC), the Common Branch Length (CBL),
the Community Distance (CD), the Community Distance Nearest Taxon (CDNT), the Phylogenetic
Sorensen’s Similarity (PhyloSor), and the Unique Fraction (UniFrac).

Details

Package: PhyloMeasures
Type: Package
Version: 2.1
Date: 2017-1-14
License: GPL-3

PhyloMeasures-package 3

The package contains three types of functions; functions that compute the (standardized) value
of a phylogenetic biodiversity measure (query functions), functions that compute the p-values of
a measure (p-value functions), and functions that compute the statistical moments of a measure
(moment functions).

For the single sample measures, the computation of the standardized values, the statistical moments,
and of the p-values can be done under three different null models. We refer to these models as uni-
form, frequency by richness, and sequential. All these models maintain species richness, and the
latter two models are abundance-weighted. The strong advantage of this package is the very effi-
cient algorithms that support the provided functions. These algorithms make it possible to process
very large phylogenies in reasonable time even on a standard computer. For more details and ex-
perimental results, the reader can refer to the main paper for this package, but also the other works
that introduce the efficient algorithms used in the package functions.

Author(s)

Constantinos Tsirogiannis and Brody Sandel

Maintainer: Constantinos Tsirogiannis <tsirogiannis.c @ gmail.com>

References

Tsirogiannis, C. and B. Sandel. 2015. PhyloMeasures: A Package for Computing Phylogenetic
Biodiversity Measures and Their Statistical Moments. Ecography, doi: 10.1111/ecog.01814, 2015.

Tsirogiannis, C. and B. Sandel. 2016. Fast Computation of Measures of Phylogenetic Beta Diver-
sity. PLoS ONE, 11(4): e0151167, doi:10.1371/journal.pone.0151167.

Tsirogiannis, C., B. Sandel and D. Cheliotis. 2012. Efficient Computation of Popular Phylogenetic
Tree Measures. Algorithms in Bioinformatics, LNCS 7534: 30-43.

Tsirogiannis, C., B. Sandel and A. Kalvisa. 2014. New Algorithms for Computing Phylogenetic
Biodiversity. Algorithms in Bioinformatics, LNCS 8701: 187-203.

Webb, C.0O. 2000. Exploring the Phylogenetic Structure of Ecological Communities: An Example
for Rain Forest Trees. The American Naturalist 156: 145-155.

Examples

#Load phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

#Create 100 random communities with 50 families each

comm = matrix(@,nrow = 100,ncol = length(bird.families$tip.label))
for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 1}
colnames(comm) = bird.families$tip.label

#Use query function to calculate pd values for each community
pd.query(bird.families, comm)

#Use query function to calculate standardised versions under the uniform model
pd.query(bird.families, comm, TRUE)

Create random abundance weights
weights = runif(length(bird.families$tip.label))

cac.moments

names (weights) = bird.families$tip.label

#Use query function to calculate standardized versions under the sequential model
pd.query(bird.families, comm, TRUE, null.model="sequential”,
abundance.weights=weights, reps=1000)

cac.moments

Computes the statistical moments of the Core Ancestor Cost measure

Description

Calculates the mean and standard deviation of the Core Ancestor Cost (CAC) for a tree and a vector
of tip set sizes. The means and deviations can be calculated under two different null models which
maintain species richness. When the "uniform" null model is used, the function can calculate the
first k statistical moments of this measure. The CAC is calculated by identifying the node in the
tree that is the most recent common ancestor of at least chi proportion of the tips in the set, where
chi is an input parameter larger than 0.5. The CAC is the distance of this node from the root of the

tree.

Usage

cac.moments(tree, chi, sample.sizes, k=2,

Arguments

tree
chi

sample.sizes

null.model

null.model="uniform”, abundance.weights, reps=1000, seed)

A phylo tree object
A number in the interval (0.5,1]

A vector of non-negative integers specifying the tip set sizes for which to calcu-
late moments

A positive integer specifying the number of moments to compute (default = 2).
If the "sequential" model is selected, the only values that can be used for this
argument are either one or two.

A character vector (string) that defines which null model is used for computing
the moments of the measure. There are two possible null models that can be
used for computing the moments: these are "uniform" and "sequential”. Both
models maintain species richness. More specifically, the available models are
defined as follows:

* "uniform" considers samples with equal (uniform) probability among all
possible tip samples of the same richness.

* "sequential" is an abundance-weighted null model where species samples
are chosen based on the same method as R’s sample function. Unlike the
other model (which is computed analytically), this model uses Monte-Carlo
randomization.

This argument is optional, and its default value is "uniform".

cac.moments 5

abundance.weights
A vector of positive numeric values. These are the abundance weights that will
be used if option "sequential" is selected. The names stored at the vector must
match the names of the tips in the tree. This argument is redundant if the "uni-
form" model is selected.

reps An integer that defines the number of Monte-Carlo random repetitions that will
be performed when using the "sequential” model. This argument is redundant if
the "uniform" model is selected.

seed A positive integer that defines the random seed used in the Monte-Carlo ran-
domizations of the "sequential" model. This argument is optional, and becomes
redundant if the "uniform" model is selected.

Value

A k-column matrix with length(sample.sizes) rows. Entry [i,j] in the matrix gives the j-th moment
for the i-th sample size in sample.sizes . The first moment in each row is the mean, and for j larger
than one, the j-th returned moment is the raw statistical moment of order j. Given a phylogenetic
tree T, a sample size r and a value chi, the raw statistical moment of order j for the CAC is defined
as:

Egesun(r,m[CAC, (T, R)F],

where E'resup(T,) denotes the expectation of a random variable for all tip sets in T that consist of
r tips each.
Author(s)

Constantinos Tsirogiannis (tsirogiannis.c @ gmail.com)

References
Tsirogiannis, C., B. Sandel and A. Kalvisa. 2014. New algorithms for computing phylogenetic
biodiversity. Algorithms in Bioinformatics, LNCS 8701: 187-203.

See Also

cac.query

Examples

#lLoad phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

Calculate first four raw moments under the uniform model
cac.moments(bird.families,®.75,1:100,k=4)

Create random abundance weights
weights = runif(length(bird.families$tip.label))
names(weights) = bird.families$tip.label

Calculate mean and variance under the sequential model
cac.moments(bird.families,®.75,1:100,k=2,

cac.pvalues

null.model="sequential”, abundance.weights=weights, reps=1000)

cac.pvalues

Computes the p-values of the Core Ancestor Cost measure

Description

Calculates the p-values of the core ancestor cost (CAC) measure for sets of tips on a phylogeny.
The p-values can be calculated under two different null models which maintain species richness.
The CAC is calculated by identifying the node in the tree that is the most recent common ancestor
of at least chi proportion of the tips in the set, where chi is an input parameter larger than 0.5. The
CAC is the distance of this node from the root of the tree.

Usage

cac.pvalues(tree, matrix, chi, null.model="uniform”,

Arguments

tree

matrix

chi

null.model

abundance.weights, reps=1000, seed)

A phylo tree object

A matrix with binary (0/1) values, where each row represents a tip set. Each col-
umn name in the matrix must match a tip label on the input tree. If not all values
in the matrix are binary, we consider two cases; if the matrix contains only non-
negative values, all values are coerced to binary ones and a warning message is
printed. If the matrix contains at least one negative value, the function throws
an error.

A number in the interval (0.5,1]

A character vector (string) that defines which null model is used for computing
the p-values of the measure. There are two possible null models that can be used
for computing the p-values: these are "uniform" and "sequential". Both models
maintain species richness. More specifically, the available models are defined as
follows:

* "uniform' considers samples with equal (uniform) probability among all
possible tip samples of the same richness.

* "sequential" is an abundance-weighted null model where species samples
are chosen based on the same method as R’s sample function. Unlike the
other model (which is computed analytically), this model uses Monte-Carlo
randomization.

This argument is optional, and its default value is set to "uniform".

abundance.weights

A vector of positive numeric values. These are the abundance weights that will
be used if option "sequential” is selected. The names stored at the vector must
match the names of the tips in the tree. This argument is redundant if the "uni-
form" model is selected.

cac.pvalues 7

reps An integer that defines the number of Monte-Carlo random repetitions that will
be performed when using the "sequential” model. This argument is redundant if
the other null model is selected.

seed A positive integer that defines the random seed used in the Monte-Carlo ran-
domizations of the "sequential" model. This argument is optional, and becomes
redundant if the other null model is selected.

Value
A vector which stores the computed CAC p-values. The i-th entry in this vector stores the CAC
p-value of the i-th row in the input matrix.

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c @ gmail.com)

References

Tsirogiannis, C. and B. Sandel. 2015. PhyloMeasures: A package for computing phylogenetic
biodiversity measures and their statistical moments. Ecography, doi: 10.1111/ecog.01814, 2015.

Tsirogiannis, C., B. Sandel and A. Kalvisa. 2014. New algorithms for computing phylogenetic
biodiversity. Algorithms in Bioinformatics, LNCS 8701: 187-203.

See Also

cac.moments

Examples

#Load phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

#Create 100 random communities with 50 families each

comm = matrix(@,nrow = 100,ncol = length(bird.families$tip.label))
for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 1}
colnames(comm) = bird.families$tip.label

chi=0.6

#Calculate p-values under the uniform model
cac.pvalues(bird.families,comm,chi, reps=1000)

Create random abundance weights
weights = runif(length(bird.families$tip.label))
names(weights) = bird.families$tip.label

Calculate p-values under the sequential model

cac.pvalues(bird.families,comm,chi,null.model="sequential”,
abundance.weights=weights, reps=1000)

cac.query

cac.query

Computes the (standardized) value of the Core Ancestor Cost measure

Description

Calculates the Core Ancestor Cost (CAC) for sets of tips on a phylogeny. The CAC is calculated by
identifying the node in the tree that is the most recent common ancestor of at least chi proportion of
the tips in the set. The CAC is the distance of this node from the root of the tree. The same function
can also calculate the standardized value of this measure under three different null models which
maintain species richness.

Usage

cac.query(tree, matrix, chi, standardize = FALSE,
null.model="uniform”, abundance.weights, reps=1000, seed)

Arguments

tree

matrix

chi

standardize

null.model

A phylo tree object

A matrix with binary (0/1) values, where each row represents a tip set. Each col-
umn name in the matrix must match a tip label on the input tree. If not all values
in the matrix are binary, we consider two cases; if the matrix contains only non-
negative values, all values are coerced to binary ones and a warning message is
printed. If the matrix contains at least one negative value, the function throws
an error.

A number in the interval (0.5,1]

Specifies whether the function should standardize the CAC value according to
the variation in species richness. For each input tip set R, the CAC value for R
is standardized by subtracting the mean CAC and dividing by the standard de-
viation of this measure. The mean and standard deviation are calculated among
all tip sets that have the same number of elements as set R (default = FALSE)

A character vector (string) that defines which null model is used for computing
the standardized values of the measure. There are two possible null models
that can be used for computing the standardized values: these are "uniform",
and "sequential”". Both models maintain species richness. More specifically, the
available models are defined as follows:

* "uniform" considers samples with equal (uniform) probability among all
possible tip samples of the same richness.

* "sequential" is an abundance-weighted null model where species samples
are chosen based on the same method as R’s sample function. Unlike the
other model (which is computed analytically), this model uses Monte-Carlo
randomization.

This argument is optional, and its default value is set to "uniform".

cac.query 9

abundance.weights
A vector of positive numeric values. These are the abundance weights that will
be used if option "sequential" is selected. The names stored at the vector must
match the names of the tips in the tree. This argument is redundant if the "uni-
form" model is selected.

reps An integer that defines the number of Monte-Carlo random repetitions that will
be performed when using the "sequential” model. This argument is redundant if
the "uniform” model selected.

seed A positive integer that defines the random seed used in the Monte-Carlo ran-
domizations of the "sequential" model. This argument is optional, and becomes
redundant if this model is not selected.

Value

A vector which stores the computed (standardized) CAC values. The i-th entry in this vector stores
the CAC value of the i-th row in the input matrix.

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c@gmail.com)

References

Tsirogiannis, C. and B. Sandel. 2015. PhyloMeasures: A package for computing phylogenetic
biodiversity measures and their statistical moments. Ecography, doi: 10.1111/ecog.01814, 2015.

Tsirogiannis, C., B. Sandel and A. Kalvisa. 2014. New algorithms for computing phylogenetic
biodiversity. Algorithms in Bioinformatics, LNCS 8701: 187-203.

See Also

cac.moments

Examples

#Load phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

#Create 100 random communities with 50 families each

comm = matrix(@,nrow = 100,ncol = length(bird.families$tip.label))
for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 1}
colnames(comm) = bird.families$tip.label

#Calculate cac values for each community
cac.query(bird.families,comm,@.8)

#Calculate standardized versions under the uniform model
cac.query(bird.families,comm,@.8,TRUE)

Create random abundance weights
weights = runif(length(bird.families$tip.label))

10 cbl.moments

names (weights) = bird.families$tip.label

#Use query function to calculate standardized versions under the sequential model
cac.query(bird.families,comm,@.8,TRUE,null.model="sequential”,
abundance.weights=weights, reps=1000)

cbl.moments Computes the moments of the Common Branch Length measure under
the uniform null model

Description

Calculates the mean and standard deviation of the Common Branch Length (CBL) on a given tree
for several pairs of tip set sizes. These calculations consider equal (uniform) probability among all
possible tip samples of the same richness.

Usage

cbl.moments(tree, sample.sizes, comp.expectation = TRUE,
comp.deviation = TRUE)

Arguments

tree A phylo tree object

sample.sizes A two-column matrix of non-negative integers indicating the tip set sizes for
which the moments should be calculated. The moments are calculated for each
row of the matrix. Let x and y be the values that are stored in the i-th row
of sample.sizes. For this row, the CBL moments are calculated considering all
pairs of tip sets that can be extracted from the input tree such that one set has x
elements and the other set has y elements.

comp.expectation
Specifies whether the function computes the mean of the CBL (default = TRUE)

comp.deviation Specifies whether the function computes the standard deviation of the CBL (de-
fault = TRUE)

Value

If both comp.expectation and comp.deviation are TRUE, the function returns a two-column ma-
trix with one row per element in sample.sizes; the first column of the output matrix stores the
mean CBL and the second column stores the standard deviation of this measure. If only one of
comp.expectation or comp.deviation is TRUE, the function returns a vector with the corresponding
values instead.

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c@gmail.com)

cbl.query 11

References

Graham, C.H. and P.V.A. Fine. 2008. Phylogenetic beta diversity: linking ecological and evolu-
tionary processes across space and time. Ecology Letters 11: 1265:1277.

Swenson, N.G. 2011. Phylogenetic beta diversity metrics, trait evolution and inferring functional
beta diversity of communities. PLoS ONE: 6: 21264.

Tsirogiannis, C. and B. Sandel. In prep. Fast computation of measures of phylogenetic beta diver-
sity.
See Also

cbl.query

Examples

”n

#Load phylogenetic tree of bird families from package "ape
data(bird.families, package = "ape")

cbl.moments(bird.families, sample.sizes = expand.grid(1:10,1:10))

cbl.query Computes the (standardized) value of the Common Branch Length
measure

Description

Calculates the Common Branch Length (CBL) given paired sets of tips on a phylogeny. The Com-
mon Branch Length is the beta diversity version of Phylogenetic Diversity (PD), giving the total
branch length shared between two communities. The same function can also calculate the stan-
dardized value of this measure for the given tip sets. The standardized calculations consider equal
(uniform) probability among all possible tip samples of the same richness.

Usage

cbl.query(tree, matrix.a, matrix.b = NULL,
query.matrix = NULL, standardize = FALSE)

Arguments
tree A phylo tree object
matrix.a A matrix with binary (0/1) values, where each row represents a tip set. Each col-

umn name in the matrix must match a tip label on the input tree. If not all values
in the matrix are binary, we consider two cases; if the matrix contains only non-
negative values, all values are coerced to binary ones and a warning message is
printed. If the matrix contains at least one negative value, the function throws
an error

matrix.b Optional, a second matrix with a similar format as matrix.a

12 cbl.query

query.matrix Optional, a two-column matrix specifying the pairs of rows (tip sets) for which
the function computes the CBL values. Each row in query.matrix indicates a
pair of tip sets for which we want to compute the CBL value. Let k and r be the
values that are stored in the i-th row of query.matrix, where k is the value stored
in the first column and r is the value stored in the second column. If matrix.b
is given, the function computes the CBL value between the k-th row of matrix.a
and the r-th row of matrix.b. If matrix.b is not given, the function computes the
CBL value between the k-th and r-th row of matrix.a (default = NULL)

standardize Specifies whether the function should return the standardized value of the CBL
for each sample pair. The value is standardized by subtracting the mean and
dividing by the standard deviation of CBL. The mean and standard deviation are
calculated among all tip sets that have the same number of elements as the two
samples (default = FALSE)

Details

Queries can be given in four ways. If neither matrix.b nor query.matrix are given, the function
computes the CBL values for all pairs of rows (tip sets) in matrix.a . If matrix.b is given but not
query.matrix, the function computes the CBL values for all combinations of a row in matrix.a with
rows in matrix.b. If query.matrix is given and matrix.b is not, the function returns the CBL values for
the pairs of rows in matrix.a specified by query.matrix. If query.matrix and matrix.b are both given,
CBL values are computed for the rows in matrix.a specified by the first column of query.matrix
against the rows in matrix.b specified in the second column of query.matrix.

Value

The CBL values for the requested pairs of tip sets. If query.matrix is provided, then the values are
returned in an one-dimensional vector. The i-th element of this vector is the CBL value for the pair
of tip sets indicated in the i-th row of query.matrix. If query.matrix is not provided, the CBL values
are returned in a matrix object; entry [i,j] in the output matrix stores the CBL value between the tip
sets specified on the i-th and j-th row of matrix.a (if matrix.b is not specified), or the CBL value
between the i-th row of matrix.a and the j-th row of matrix.b (if matrix.b is specified)

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c@gmail.com)

References

Graham, C.H. and P.V.A. Fine. 2008. Phylogenetic beta diversity: linking ecological and evolu-
tionary processes across space and time. Ecology Letters 11: 1265:1277.

Swenson, N.G. 2011. Phylogenetic beta diversity metrics, trait evolution and inferring functional
beta diversity of communities. PLoS ONE: 6: 21264.

Tsirogiannis, C. and B. Sandel. In prep. Fast computation of measures of phylogenetic beta diver-
sity.

See Also

cbl.moments

cd.moments 13

Examples

#lLoad phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

#Create 10 random communities with 50 families each

comm = matrix(@,nrow = 10,ncol = length(bird.families$tip.label))
for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 1}
colnames(comm) = bird.families$tip.label

#Calculate all pairwise CBL values for communities in comm
cbl.query(bird.families, comm)

#Calculate pairwise CBL values from
#the first two rows of comm to all rows
cbl.query(bird.families, comm[1:2,],comm)

#Calculate the CBL from the first two rows

#to all rows using the query matrix

gm = expand.grid(1:2,1:10)
cbl.query(bird.families, comm,query.matrix = qgm)

#Calculate standardized versions
cbl.query(bird.families,comm, standardize = TRUE)

cd.moments Computes the moments of the Community Distance measure under the
uniform null model

Description

Calculates the mean and standard deviation of the Community Distance (CD) on a given tree for
several pairs of tip set sizes. These calculations consider equal (uniform) probability among all
possible tip samples of the same richness.

Usage

cd.moments(tree, sample.sizes, comp.expectation = TRUE,
comp.deviation = TRUE)

Arguments

tree A phylo tree object

sample.sizes A two-column matrix of non-negative integers indicating the tip set sizes for
which the moments should be calculated. The moments are calculated for each
row of the matrix. Let x and y be the values that are stored in the i-th row
of sample.sizes. For this row, the CD moments are calculated considering all
pairs of tip sets that can be extracted from the input tree such that one set has x
elements and the other set has y elements.

14 cd.query

comp.expectation
Specifies whether the function returns the mean of the CD (default = TRUE)

comp.deviation Specifies whether the function returns the standard deviation of the CD (default
=TRUE)

Value

If both comp.expectation and comp.deviation are TRUE, the function returns a two-column matrix
with one row per element in sample.sizes, such that the first column stores the mean CD and the
second column stores the standard deviation of this measure. If only one of comp.expectation or
comp.deviation is TRUE, the function returns a vector with the corresponding values instead.

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c @ gmail.com)

References

Graham, C.H. and P.V.A. Fine. 2008. Phylogenetic beta diversity: linking ecological and evolu-
tionary processes across space and time. Ecology Letters 11: 1265:1277.

Swenson, N.G. 2011. Phylogenetic beta diversity metrics, trait evolution and inferring functional
beta diversity of communities. PLoS ONE: 6: €21264.

Tsirogiannis, C. and B. Sandel. In prep. Fast computation of measures of phylogenetic beta diver-
sity.

See Also

cd.query

Examples

#Load phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

cd.moments(bird.families,sample.sizes = expand.grid(1:10,1:10))

cd.query Computes the (standardized) value of the Community Distance mea-
sure

Description

Calculates the Community Distance (CD) given paired sets of tips on a phylogeny. The Community
Distance is the beta diversity version of Mean Pairwise Distance (MPD), giving the average phylo-
genetic distance between two communities. The same function can also calculate the standardized
value of this measure for the given tip sets. The standardized calculations consider equal (uniform)
probability among all possible tip samples of the same richness.

cd.query 15

Usage

cd.query(tree, matrix.a, matrix.b = NULL,
query.matrix = NULL, standardize = FALSE)

Arguments

tree A phylo tree object

matrix.a A matrix with binary (0/1) values, where each row represents a tip set. Each col-
umn name in the matrix must match a tip label on the input tree. If not all values
in the matrix are binary, we consider two cases; if the matrix contains only non-
negative values, all values are coerced to binary ones and a warning message is
printed. If the matrix contains at least one negative value, the function throws
an error

matrix.b Optional, a second matrix with a similar format as matrix.a

query.matrix Optional, a two-column matrix specifying the pairs of rows (tip sets) for which
the function computes the CD values. Each row in query.matrix indicates a pair
of tip sets for which we want to compute the CD value. Let k and r be the values
that are stored in the i-th row of query.matrix, where k is the value stored in
the first column and r is the value stored in the second column. If matrix.b is
given, the function computes the CD value between the k-th row of matrix.a and
the r-th row of matrix.b. If matrix.b is not given, the function computes the CD
value between the k-th and r-th row of matrix.a (default = NULL)

standardize Specifies whether the function should return the standardized value of the CD
for each sample pair. The value is standardized by subtracting the mean and
dividing by the standard deviation of the CD. The mean and standard deviation
are calculated among all tip sets that have the same number of elements as the
two samples (default = FALSE)

Details

Queries can be given in four ways. If neither matrix.b nor query.matrix are given, the function
computes the CD values for all pairs of rows (tip sets) in matrix.a . If matrix.b is given but not
query.matrix, the function computes the CD values for all combinations of a row in matrix.a with
rows in matrix.b. If query.matrix is given and matrix.b is not, the function returns the CD values
for the pairs of rows in matrix.a specified by query.matrix. If query.matrix and matrix.b are both
given, CD values are computed for the rows in matrix.a specified by the first column of query.matrix
against the rows in matrix.b specified in the second column of query.matrix.

Value

The CD values for the requested pairs of tip sets. If query.matrix is provided, then the values are
returned in an one-dimensional vector. The i-th element of this vector is the CD value for the pair of
tip sets indicated in the i-th row of query.matrix. If query.matrix is not provided, the CD values are
returned in a matrix object; entry [i,j] in the output matrix stores the CD value between the tip sets
specified on the i-th and j-th row of matrix.a (if matrix.b is not specified), or the CD value between
the i-th row of matrix.a and the j-th row of matrix.b (if matrix.b is specified)

16

Author(s)

cdnt.averaged.query

Constantinos Tsirogiannis (tsirogiannis.c@gmail.com)

References

Graham, C.H. and P.V.A. Fine. 2008. Phylogenetic beta diversity: linking ecological and evolu-
tionary processes across space and time. Ecology Letters 11: 1265:1277.

Swenson, N.G. 2011. Phylogenetic beta diversity metrics, trait evolution and inferring functional
beta diversity of communities. PLoS ONE: 6: e21264.

Tsirogiannis, C. and B. Sandel. In prep. Fast computation of measures of phylogenetic beta diver-

sity.

See Also

cd.moments

Examples

#lLoad phylogenetic tree of bird families from package "ape

”

data(bird.families, package = "ape")

#Create 10 random communities with 50 families each

comm = matrix(@,nrow

10,ncol = length(bird.families$tip.label))

for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 1}
colnames(comm) = bird.families$tip.label

#Calculate all pairwise CD values for communities in comm
cd.query(bird.families, comm)

#Calculate pairwise distances from
#the first two rows of comm to all rows
cd.query(bird.families, comm[1:2,], comm)

#Calculate the distances from the first two rows
#to all rows using the query matrix

gm = expand.grid(1:2,1:10)
cd.query(bird.families,comm,query.matrix = gm)

#Calculate standardized versions
cd.query(bird.families,comm,standardize = TRUE)

cdnt.averaged.query

Computes the value of the averaged Community Distance Nearest
Taxon measure

cdnt.averaged.query 17

Description

Calculates the averaged Community Distance Nearest Taxon (aCDNT) given paired sets of tips on
a phylogeny. The aCDNT is a beta diversity version of MNTD. It is computed based on the values
of the directed CDNT (dCDNT); let A and B be two tip sets in the input tree. Let dCDNT(A,B) be
the directed CDNT from A to B, and let dCDNT(B,A) be the directed CDNT from B to A. Let also
|Al denote the number of elements in A, and |IBl the number of elements in B. The aCDNT between
these two tip sets is equal to:

|A|- dCDNT(A, B) + | B| - dACDNT(B, A)
Al +| B

The version of this function that computes the standardised value of aCDNT is not yet available.

Usage

cdnt.averaged.query(tree, matrix.a, matrix.b = NULL,
query.matrix = NULL)

Arguments

tree A phylo tree object

matrix.a A matrix with binary (0/1) values, where each row represents a tip set. Each col-
umn name in the matrix must match a tip label on the input tree. If not all values
in the matrix are binary, we consider two cases; if the matrix contains only non-
negative values, all values are coerced to binary ones and a warning message is
printed. If the matrix contains at least one negative value, the function throws
an error

matrix.b Optional, a second matrix with a similar format as matrix.a

query.matrix Optional, a two-column matrix specifying the pairs of rows (tip sets) for which
the function computes the aCDNT values. Each row in query.matrix indicates
a pair of tip sets for which we want to compute the aCDNT value. Let k and
r be the values that are stored in the i-th row of query.matrix, where k is the
value stored in the first column and r is the value stored in the second column.
If matrix.b is given, the aCDNT value is computed between the k-th row of
matrix.a and the r-th row of matrix.b. If matrix.b is not given, the aCDNT value
is computed between the k-th and r-th row of matrix.a (default = NULL)

Details

Queries can be given in four ways. If neither matrix.b nor query.matrix are given, the function
computes the aCDNT values for all pairs of rows (tip sets) in matrix.a . If matrix.b is given but not
query.matrix, the function computes the aCDNT values for all combinations of a row in matrix.a
with rows in matrix.b. If query.matrix is given and matrix.b is not, the function returns the aCDNT
values for the pairs of rows in matrix.a specified by query.matrix. If query.matrix and matrix.b are
both given, aCDNT values are computed for the rows in matrix.a specified by the first column of
query.matrix against the rows in matrix.b specified in the second column of query.matrix

18 cdnt.averaged.query

Value

The aCDNT values for the requested pairs of tip sets. If query.matrix is provided, then the values
are returned in an one-dimensional vector. The i-th element of this vector is the aCDNT value for
the pair of tip sets indicated in the i-th row of query.matrix. If query.matrix is not provided, the
aCDNT values are returned in a matrix object; entry [i,j] in the output matrix stores the aCDNT
value between the tip sets specified on the i-th and j-th row of matrix.a (if matrix.b is not specified),
or the aCDNT value between the i-th row of matrix.a and the j-th row of matrix.b (if matrix.b is
specified)

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c @ gmail.com)

References

Graham, C.H. and P.V.A. Fine. 2008. Phylogenetic beta diversity: linking ecological and evolu-
tionary processes across space and time. Ecology Letters 11: 1265:1277.

Swenson, N.G. 2011. Phylogenetic beta diversity metrics, trait evolution and inferring functional
beta diversity of communities. PLoS ONE: 6: e21264.

See Also

cdnt.directed.query, cdnt.query

Examples

#lLoad phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

#Create 10 random communities with 50 families each

comm = matrix(@,nrow = 10,ncol = length(bird.families$tip.label))
for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 1}
colnames(comm) = bird.families$tip.label

#Calculate all pairwise aCDNT values for communities in comm
cdnt.averaged.query(bird.families, comm)

#Calculate pairwise distances from
#the first two rows of comm to all rows
cdnt.averaged.query(bird.families, comm[1:2,],comm)

#Calculate the distances from the first two rows

#to all rows using the query matrix

gm = expand.grid(1:2,1:10)
cdnt.averaged.query(bird.families,comm,query.matrix = gm)

cdnt.directed.query 19

cdnt.directed. query Computes the value of the directed Community Distance Nearest
Taxon measure

Description

Calculates the directed Community Distance Nearest Taxon (ICDNT) given paired sets of tips on
a phylogeny. The dCDNT is a beta diversity version of MNTD, giving the mean distance on the
tree of tips in a set A to their nearest neighbors in a set B. Note that the measure is asymmetrical,
as for taxon t in A the nearest neighbor in B may be taxon s, but for taxon s the nearest neighbor in
A might be a third taxon u. Therefore, for every input pair of tip sets A and B, the function returns
two values; the dCDNT value from A to B, and the dCDNT value from B to A. The version of this
function that computes the standardised value of the measure is not yet available.

Usage

cdnt.directed.query(tree, matrix.a, matrix.b = NULL,
query.matrix = NULL)

Arguments

tree A phylo tree object

matrix.a A matrix with binary (0/1) values, where each row represents a tip set. Each col-
umn name in the matrix must match a tip label on the input tree. If not all values
in the matrix are binary, we consider two cases; if the matrix contains only non-
negative values, all values are coerced to binary ones and a warning message is
printed. If the matrix contains at least one negative value, the function throws
an error

matrix.b Optional, a second matrix with a similar format as matrix.a

query.matrix Optional, a two-column matrix specifying the pairs of rows (tip sets) for which
the function computes the dCDNT values. Each row in query.matrix indicates
a pair of tip sets for which we want to compute the two dCDNT values. Let k
and r be the values that are stored in the i-th row of query.matrix, where k is the
value stored in the first column and r is the value stored in the second column.
If matrix.b is given, the function computes both the dCDNT value from the tip
set in the k-th row of matrix.a to the tip set in the r-th row of matrix.b, and the
dCDNT value from the tip set in the r-th row of matrix.b to the tip set in the
k-th row of matrix.a . If matrix.b is not given, the two values computed are the
dCDNT from the k-th to the r-th set of matrix.a, and the dCDNT from the r-th
to the k-th set of matrix.a (default = NULL)

Details

Queries can be given in four ways. If neither matrix.b nor query.matrix are given, the function
computes the two dCDNT values for each pair of rows in matrix.a . If matrix.b is given but not
query.matrix, the function computes the two dCDNT values for each combination of a row in ma-
trix.a with a row in matrix.b . If query.matrix is given and matrix.b is not, the function returns

20

cdnt.directed.query

two dCDNT values for each pair of rows in matrix.a specified by query.matrix. If query.matrix
and matrix.b are both given, two dCDNT values are computed for each pair of a row in matrix.a
specified by the fist column of query.matrix with a row in matrix.b specified in the second column
of query.matrix.

Value

The dCDNT values for the requested pairs of tip sets. If query.matrix is provided, then the values
are returned in a list that contains two elements; each element is a one-dimensional vector storing
dCDNT values. Let k and r be the values stored in the i-th row of query.matrix. For the first vector
in the returned list, the i-th element of this vector is the dCDNT value from the tip set of the k-th
row in matrix.a to the tip set of the r-th row in matrix.a (if matrix.b is not specified), or to the tip
set of the r-th row of matrix.b (if this matrix is specified). For the second vector of the output list,
the i-th element of this vector is the dCDNT value from the tip set of the r-th row in matrix.a (if
matrix.b is not specified), or from the tip set of the r-th row of matrix.b (if this matrix is specified)
to the tip set of the k-th row in matrix.a.

If query.matrix is not provided and matrix.b is provided, the function returns a list which consists
of two matrix objects; for the first matrix in this list, entry [i,j] stores the dCDNT value from the
tip set specified on the i-th row of matrix.a to the tip set in the j-th row of matrix.b. For the second
matrix in the output list, entry [i,j] stores the dCDNT value from the tip set specified on the j-th row
of matrix.b to the tip set in the i-th row of matrix.a.

If neither query.matrix nor matrix.b are provided, the function returns a matrix object such that
matrix entry [i,j] stores the dCDNT value from the tip set specified on the i-th row of matrix.a to
the tip set in the j-th row of this matrix.

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c @gmail.com)

References

Graham, C.H. and P.V.A. Fine. 2008. Phylogenetic beta diversity: linking ecological and evolu-
tionary processes across space and time. Ecology Letters 11: 1265:1277.

Swenson, N.G. 2011. Phylogenetic beta diversity metrics, trait evolution and inferring functional
beta diversity of communities. PLoS ONE: 6: e21264.

See Also

cdnt.query, cdnt.averaged.query

Examples

#Load phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

#Create 10 random communities with 50 families each

comm = matrix(@,nrow = 10,ncol = length(bird.families$tip.label))
for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 1}
colnames(comm) = bird.families$tip.label

cdnt.query 21

#Calculate all pairwise dCDNT values for communities in comm
cdnt.directed.query(bird.families, comm)

#Note that this matrix is asymmetrical, compare to:
cdnt.query(bird.families, comm)
cdnt.averaged.query(bird.families, comm)

#Calculate pairwise distances from
#the first two rows of comm to all rows
cdnt.directed.query(bird.families, comm[1:2,], comm)

#Calculate the distances from the first two rows

#to all rows using the query matrix

gm = expand.grid(1:2,1:10)
cdnt.directed.query(bird.families,comm,query.matrix = gm)

cdnt.query Computes the value of the maximised Community Distance Nearest
P
Taxon measure

Description

Calculates the maximised Community Distance Nearest Taxon (mCDNT) given paired sets of tips
on a phylogeny. The mCDNT is a beta diversity version of MNTD, and provides the distance on
the tree between nearest neighbors in sets A and B. It is derived by calculating the directed CDNT
(dCDNT) from set A to set B, and from set B to set A, and taking the maximum of these two values.
A version of this function that computes the standardised value of the measure is not yet available.

Usage

cdnt.query(tree, matrix.a, matrix.b = NULL,
query.matrix = NULL)

Arguments

tree A phylo tree object

matrix.a A matrix with binary (0/1) values, where each row represents a tip set. Each col-
umn name in the matrix must match a tip label on the input tree. If not all values
in the matrix are binary, we consider two cases; if the matrix contains only non-
negative values, all values are coerced to binary ones and a warning message is
printed. If the matrix contains at least one negative value, the function throws
an error

matrix.b Optional, a second matrix with a similar format as matrix.a

query.matrix Optional, a two-column matrix specifying the pairs of rows (tip sets) for which
the function computes the mCDNT values. Each row in query.matrix indicates
a pair of tip sets for which we want to compute the mCDNT value. Let k and
r be the values that are stored in the i-th row of query.matrix, where k is the

22 cdnt.query
value stored in the first column and r is the value stored in the second column.
If matrix.b is given, the mCDNT value is computed between the k-th row of
matrix.a and the r-th row of matrix.b. If matrix.b is not given, the mCDNT value
is computed between the k-th and r-th row of matrix.a (default = NULL)
Details

Queries can be given in four ways. If neither matrix.b nor query.matrix are given, the function
computes the mCDNT values for all pairs of rows (tip sets) in matrix.a . If matrix.b is given but not
query.matrix, the function computes the mCDNT values for all combinations of a row in matrix.a
with rows in matrix.b. If query.matrix is given and matrix.b is not, the function returns the mCDNT
values for the pairs of rows in matrix.a specified by query.matrix. If query.matrix and matrix.b are
both given, mCDNT values are computed for the rows in matrix.a specified by the first column of
query.matrix against the rows in matrix.b specified in the second column of query.matrix

Value

The mCDNT values for the requested pairs of tip sets. If query.matrix is provided, then the values
are returned in an one-dimensional vector. The i-th element of this vector is the mCDNT value for
the pair of tip sets indicated in the i-th row of query.matrix. If query.matrix is not provided, the
mCDNT values are returned in a matrix object; entry [i,j] in the output matrix stores the mCDNT
value between the tip sets specified on the i-th and j-th row of matrix.a (if matrix.b is not specified),
or the mCDNT value between the i-th row of matrix.a and the j-th row of matrix.b (if matrix.b is
specified)

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c@gmail.com)

References

Graham, C.H. and P.V.A. Fine. 2008. Phylogenetic beta diversity: linking ecological and evolu-
tionary processes across space and time. Ecology Letters 11: 1265:1277.

Swenson, N.G. 2011. Phylogenetic beta diversity metrics, trait evolution and inferring functional
beta diversity of communities. PLoS ONE: 6: e21264.

See Also

cdnt.directed.query, cdnt.averaged.query

Examples

”n

#Load phylogenetic tree of bird families from package "ape
data(bird.families, package = "ape")

#Create 10 random communities with 50 families each

comm = matrix(@,nrow = 10,ncol = length(bird.families$tip.label))
for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 13}
colnames(comm) = bird.families$tip.label

mntd.moments

23

#Calculate all pairwise mCDNT values for communities in comm
cdnt.query(bird.families, comm)

#Calculate pairwise distances from
#the first two rows of comm to all rows
cdnt.query(bird.families, comm[1:2,],comm)

#Calculate the distances from the first two rows
#to all rows using the query matrix

gm = expand.grid(1:2,1:10)
cdnt.query(bird.families,comm,query.matrix = qm)

mntd.moments

Computes the moments of the Mean Nearest Taxon Distance measure

Description

Calculates the mean and standard deviation of the Mean Nearest Taxon Distance (MNTD) for a tree
and a vector of tip set sizes. The means and deviations can be calculated under three different null
models which maintain species richness. Note: this function returns a result for the "uniform" and
"frequency.by.richness" models only if the input tree is ultrametric.

Usage

mntd.moments(tree, sample.sizes, comp.expectation = TRUE, comp.deviation = TRUE,
null.model="uniform”, abundance.weights, reps=1000, seed)

Arguments

tree

sample.sizes

A phylo tree object

A vector of non-negative integers specifying the tip set sizes for which to calcu-
late moments

comp.expectation

comp.deviation

null.model

Specifies whether the function should compute the mean (default = TRUE)

Specifies whether the function should compute the standard deviation (default =
TRUE)

A character vector (string) that defines which null model is used for computing
the moments of the measure. There are three possible null models that can be
used for computing the moments: these are "uniform", "frequency.by.richness",
and "sequential". All these models maintain species richness. More specifically,
the available models are defined as follows:

* "uniform" considers samples with equal (uniform) probability among all
possible tip samples of the same richness.

* "frequency.by.richness' is an abundance-weighted model where species
samples are chosen in a manner similar to the following process; first, each

24

mntd.moments

species is selected independently with probability proportional to its abun-
dance. If the resulting sample consists of exactly the same number of ele-
ments as the input assemblage then it is used by the null model, otherwise
it is tossed and the whole process is repeated.

* "'sequential" is an abundance-weighted null model where species samples
are chosen based on the same method as R’s sample function. Unlike
the other two models (which are computed analytically), this model uses
Monte-Carlo randomization.

This argument is optional, and its default value is set to "uniform".

abundance.weights

reps

seed

Value

A vector of positive numeric values. These are the abundance weights that will
be used if either of the options "frequency.by.richness" or "sequential” are se-
lected. The names stored at the vector must match the names of the tips in the
tree. This argument is redundant if the "uniform" model is selected.

An integer that defines the number of Monte-Carlo random repetitions that will
be performed when using the "sequential” model. This argument is redundant if
any of the other two null models is selected.

A positive integer that defines the random seed used in the Monte-Carlo ran-
domizations of the "sequential" model. This argument is optional, and becomes
redundant if any of the other two null models is selected.

If both comp.expectation and comp.deviation are TRUE, the function returns a two-column matrix
with one row per element in sample.sizes, where the first column stores the mean MNTD and the
second column stores the standard deviation for this sample size. If only one of comp.expectation
or comp.deviation are TRUE, the function returns a vector with the corresponding values instead.

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c @ gmail.com)

References

Tsirogiannis, C. and B. Sandel. 2015. PhyloMeasures: A package for computing phylogenetic
biodiversity measures and their statistical moments. Ecography, doi: 10.1111/ecog.01814, 2015.

Tsirogiannis, C., B. Sandel and A. Kalvisa. 2014. New algorithms for computing phylogenetic
biodiversity. Algorithms in Bioinformatics, LNCS 8701: 187-203.

Webb, C.O. 2000. Exploring the phylogenetic structure of ecological communities: An example for
rain forest trees. The American Naturalist 156: 145-155.

See Also

mntd.query

mntd.pvalues

Examples

25

#lLoad phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

Calculate mean and variance under the uniform model
mntd.moments(bird.families,1:100)

Create random abundance weights
weights = runif(length(bird.families$tip.label))
names(weights) = bird.families$tip.label

Calculate mean and variance under the sequential model
mntd.moments(bird.families,1:100,

null.model="sequential”, abundance.weights=weights, reps=1000)

mntd.pvalues

Computes the p-values of the Mean Nearest Taxon Distance measure

Description

Calculates the p-values of the mean nearest taxon distance (MNTD) measure for sets of tips on a
phylogeny. The p-values can be calculated under two different null models which maintain species

richness.

Usage

mntd.pvalues(tree, matrix, null.model="uniform",

Arguments

tree

matrix

null.model

abundance.weights, reps=1000, seed)

A phylo tree object

A matrix with binary (0/1) values, where each row represents a tip set. Each col-
umn name in the matrix must match a tip label on the input tree. If not all values
in the matrix are binary, we consider two cases; if the matrix contains only non-
negative values, all values are coerced to binary ones and a warning message is
printed. If the matrix contains at least one negative value, the function throws
an error.

A character vector (string) that defines which null model is used for computing
the p-values of the measure. There are two possible null models that can be used
for computing the p-values: these are "uniform" and "sequential". Both models
maintain species richness. More specifically, the available models are defined as
follows:

* "uniform" considers samples with equal (uniform) probability among all
possible tip samples of the same richness.

26 mntd.pvalues

* "'sequential'' is an abundance-weighted null model where species samples
are chosen based on the same method as R’s sample function. Unlike the
other model (which is computed analytically), this model uses Monte-Carlo
randomization.

This argument is optional, and its default value is set to "uniform".
abundance.weights

A vector of positive numeric values. These are the abundance weights that will

be used if option "sequential" is selected. The names stored at the vector must

match the names of the tips in the tree. This argument is redundant if the "uni-
form" model is selected.

reps An integer that defines the number of Monte-Carlo random repetitions that will
be performed when using the "sequential” model. This argument is redundant if
the other null model is selected.

seed A positive integer that defines the random seed used in the Monte-Carlo ran-
domizations of the "sequential" model. This argument is optional, and becomes
redundant if the other null model is selected.

Value

A vector which stores the computed MNTD p-values. The i-th entry in this vector stores the MNTD
p-value of the i-th row in the input matrix.

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c @ gmail.com)

References

Tsirogiannis, C. and B. Sandel. 2015. PhyloMeasures: A package for computing phylogenetic
biodiversity measures and their statistical moments. Ecography, doi: 10.1111/ecog.01814, 2015.

Tsirogiannis, C., B. Sandel and D. Cheliotis. 2012. Efficient computation of popular phylogenetic
tree measures. Algorithms in Bioinformatics, LNCS 7534: 30-43.

Tsirogiannis, C., B. Sandel and A. Kalvisa. 2014. New algorithms for computing phylogenetic
biodiversity. Algorithms in Bioinformatics, LNCS 8701: 187-203.

See Also

mntd.moments

Examples

#Load phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

#Create 100 random communities with 50 families each

comm = matrix(@,nrow = 100,ncol = length(bird.families$tip.label))
for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 1}
colnames(comm) = bird.families$tip.label

mntd.query

27

#Calculate p-values under the uniform model
mntd.pvalues(bird.families,comm, reps=1000)

Create random abundance weights
weights = runif(length(bird.families$tip.label))
names (weights) = bird.families$tip.label

Calculate p-values under the sequential model

mntd.pvalues(bird.families, comm,null.model
abundance.weights=weights, reps=1000)

_n

sequential”,

mntd.query

Computes the (standardized) value of the Mean Nearest Taxon Dis-
tance measure

Description

Calculates the Mean Nearest Taxon Distance (MNTD) for sets of tips on a phylogeny. The same
function can also calculate the standardised value of this measure under three different null models
which maintain species richness (the standardised value is equal to minus one times the so-called
Nearest Taxon Index, NTI). Note: if the input argument is.standardised is set to TRUE and the null
model used is either "uniform" or "frequency.by.richness", then this function returns a result only if
the input tree is ultrametric.

Usage

mntd.query(tree, matrix, standardize = FALSE,

Arguments

tree

matrix

standardize

null.model="uniform”, abundance.weights, reps=1000, seed)

A phylo tree object

A matrix with binary (0/1) values, where each row represents a tip set. Each col-
umn name in the matrix must match a tip label on the input tree. If not all values
in the matrix are binary, we consider two cases; if the matrix contains only non-
negative values, all values are coerced to binary ones and a warning message is
printed. If the matrix contains at least one negative value, the function throws
an error.

Specifies whether the function should standardize the MNTD for variation in
species richness. For each tip set S, the observed MNTD is standardized by
subtracting the mean MNTD and dividing by the standard deviation of this mea-
sure. The mean and standard deviation are calculated among all tip sets that
have the same number of elements as set S, the tip set whose value we want to
standardize (default = FALSE).

28

null.model

mntd.query

A character vector (string) that defines which null model is used for computing
the standardized values of the measure. There are three possible null models
that can be used for computing the standardized values: these are "uniform",
"frequency.by.richness", and "sequential". All these models maintain species
richness. More specifically, the available models are defined as follows:

* "uniform" considers samples with equal (uniform) probability among all
possible tip samples of the same richness.

* "frequency.by.richness' is an abundance-weighted model where species
samples are chosen in a manner similar to the following process; first, each
species is selected independently with probability proportional to its abun-
dance. If the resulting sample consists of exactly the same number of ele-
ments as the input assemblage then it is used by the null model, otherwise
it is tossed and the whole process is repeated.

* "'sequential" is an abundance-weighted null model where species samples
are chosen based on the same method as R’s sample function. Unlike
the other two models (which are computed analytically), this model uses
Monte-Carlo randomization.

This argument is optional, and its default value is set to "uniform".

abundance.weights

reps

seed

Value

A vector of positive numeric values. These are the abundance weights that will
be used if either of the options "frequency.by.richness" or "sequential” are se-
lected. The names stored at the vector must match the names of the tips in the
tree. This argument is redundant if the "uniform" model is selected.

An integer that defines the number of Monte-Carlo random repetitions that will
be performed when using the "sequential” model. This argument is redundant if
any of the other two null models is selected.

A positive integer that defines the random seed used in the Monte-Carlo ran-
domizations of the "sequential" model. This argument is optional, and becomes
redundant if any of the other two null models is selected.

A vector which stores the computed (standardized) MNTD values. The i-th entry in this vector
stores the (standardized) MNTD value of the i-th row in the input matrix.

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c@gmail.com)

References

Tsirogiannis, C. and B. Sandel. 2015. PhyloMeasures: A package for computing phylogenetic
biodiversity measures and their statistical moments. Ecography, doi: 10.1111/ecog.01814, 2015.

Tsirogiannis, C., B. Sandel and A. Kalvisa. 2014. New algorithms for computing phylogenetic

biodiversity. Algorithms in Bioinformatics, LNCS 8701: 187-203.
Webb, C.0O. 2000. Exploring the phylogenetic structure of ecological communities: An example for

rain forest trees. The American Naturalist 156: 145-155.

mpd.moments 29

See Also

mntd.moments

Examples

#lLoad phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

#Create 100 random communities with 50 families each

comm = matrix(@,nrow = 100,ncol = length(bird.families$tip.label))
for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 1}
colnames(comm) = bird.families$tip.label

#Calculate mntd values for each community
mntd.query(bird.families, comm)

#Calculate standardized versions under the uniform model
mntd.query(bird.families, comm, TRUE)

Create random abundance weights
weights = runif(length(bird.families$tip.label))
names (weights) = bird.families$tip.label

#Use query function to calculate standardized versions under the sequential model
mntd.query(bird.families, comm, TRUE,null.model="sequential”,
abundance.weights=weights, reps=1000)

mpd.moments Computes the moments of the Mean Pairwise Distance measure

Description

Calculates the mean and standard deviation of the Mean Pairwise Distance (MPD) for a tree and a
vector of tip set sizes. The means and deviations can be calculated under three different null models
which maintain species richness.

Usage

mpd.moments(tree, sample.sizes, comp.expectation = TRUE, comp.deviation = TRUE,
null.model="uniform”, abundance.weights, reps=1000, seed)

Arguments

tree A phylo tree object

sample.sizes A vector of non-negative integers specifying the tip set sizes for which to calcu-
late moments

comp.expectation
Specifies whether the function should compute the mean (default = TRUE)

30

mpd.moments

comp.deviation Specifies whether the function should compute the standard deviation (default =

null.model

TRUE)

A character vector (string) that defines which null model is used for computing
the moments of the measure. There are three possible null models that can be
used for computing the moments: these are "uniform", "frequency.by.richness",
and "sequential". All these models maintain species richness. More specifically,
the available models are defined as follows:

* "uniform' considers samples with equal (uniform) probability among all
possible tip samples of the same richness.

* "frequency.by.richness' is an abundance-weighted model where species
samples are chosen in a manner similar to the following process; first, each
species is selected independently with probability proportional to its abun-
dance. If the resulting sample consists of exactly the same number of ele-
ments as the input assemblage then it is used by the null model, otherwise
it is tossed and the whole process is repeated.

* "sequential" is an abundance-weighted null model where species samples
are chosen based on the same method as R’s sample function. Unlike
the other two models (which are computed analytically), this model uses
Monte-Carlo randomization.

This argument is optional, and its default value is set to "uniform".

abundance.weights

reps

seed

Value

A vector of positive numeric values. These are the abundance weights that will
be used if either of the options "frequency.by.richness" or "sequential” are se-
lected. The names stored at the vector must match the names of the tips in the
tree. This argument is redundant if the "uniform" model is selected.

An integer that defines the number of Monte-Carlo random repetitions that will
be performed when using the "sequential” model. This argument is redundant if
any of the other two null models is selected.

A positive integer that defines the random seed used in the Monte-Carlo ran-
domizations of the "sequential" model. This argument is optional, and becomes
redundant if any of the other two null models is selected.

If both comp.expectation and comp.deviation are TRUE, the function returns a two-column matrix
with one row per element in sample.sizes, where the first column stores the mean MPD and the
second column stores the standard deviation for this sample size. If only one of comp.expectation
or comp.deviation are TRUE, the function returns a vector with the corresponding values instead.

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c@gmail.com)

References

Tsirogiannis, C. and B. Sandel. 2015. PhyloMeasures: A package for computing phylogenetic
biodiversity measures and their statistical moments. Ecography, doi: 10.1111/ecog.01814, 2015.

mpd.pvalues 31

Webb, C.0O. 2000. Exploring the phylogenetic structure of ecological communities: An example for
rain forest trees. The American Naturalist 156: 145-155.

See Also

mpd. query

Examples

#Load phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

Calculate mean and variance under the uniform model
mpd.moments(bird.families,1:100)

Create random abundance weights
weights = runif(length(bird.families$tip.label))
names(weights) = bird.families$tip.label

Calculate mean and variance under the sequential model
mpd.moments(bird.families,1:100,
null.model="sequential”, abundance.weights=weights, reps=1000)

mpd. pvalues Computes the p-values of the Mean Pairwise Distance measure

Description

Calculates the p-values of the mean pairwise distance (MPD) measure for sets of tips on a phy-
logeny. The p-values can be calculated under two different null models which maintain species
richness.

Usage

mpd.pvalues(tree, matrix, null.model="uniform”,
abundance.weights, reps=1000, seed)

Arguments
tree A phylo tree object
matrix A matrix with binary (0/1) values, where each row represents a tip set. Each col-

umn name in the matrix must match a tip label on the input tree. If not all values
in the matrix are binary, we consider two cases; if the matrix contains only non-
negative values, all values are coerced to binary ones and a warning message is
printed. If the matrix contains at least one negative value, the function throws
an error.

32

null.model

mpd.pvalues

A character vector (string) that defines which null model is used for computing
the p-values of the measure. There are two possible null models that can be used
for computing the p-values: these are "uniform" and "sequential". Both models
maintain species richness. More specifically, the available models are defined as
follows:

* "uniform" considers samples with equal (uniform) probability among all
possible tip samples of the same richness.

* "'sequential'' is an abundance-weighted null model where species samples
are chosen based on the same method as R’s sample function. Unlike the
other model (which is computed analytically), this model uses Monte-Carlo
randomization.

This argument is optional, and its default value is set to "uniform".

abundance.weights

reps

seed

Value

A vector of positive numeric values. These are the abundance weights that will
be used if option "sequential” is selected. The names stored at the vector must
match the names of the tips in the tree. This argument is redundant if the "uni-
form" model is selected.

An integer that defines the number of Monte-Carlo random repetitions that will
be performed when using the "sequential” model. This argument is redundant if
the other null model is selected.

A positive integer that defines the random seed used in the Monte-Carlo ran-
domizations of the "sequential" model. This argument is optional, and becomes
redundant if the other null model is selected.

A vector which stores the computed MPD p-values. The i-th entry in this vector stores the MPD
p-value of the i-th row in the input matrix.

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c@gmail.com)

References

Tsirogiannis, C. and B. Sandel. 2015. PhyloMeasures: A package for computing phylogenetic
biodiversity measures and their statistical moments. Ecography, doi: 10.1111/ecog.01814, 2015.

Tsirogiannis, C., B. Sandel and D. Cheliotis. 2012. Efficient computation of popular phylogenetic
tree measures. Algorithms in Bioinformatics, LNCS 7534: 30-43.

See Also

mpd.moments

mpd.query 33

Examples

" ”

#lLoad phylogenetic tree of bird families from package "ape
data(bird.families, package = "ape")

#Create 100 random communities with 50 families each

comm = matrix(@,nrow = 100,ncol = length(bird.families$tip.label))
for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 13}
colnames(comm) = bird.families$tip.label

#Calculate p-values under the uniform model
mpd.pvalues(bird.families,comm, reps=1000)

Create random abundance weights
weights = runif(length(bird.families$tip.label))
names(weights) = bird.families$tip.label

Calculate p-values under the sequential model
mpd.pvalues(bird.families,comm,null.model="sequential”,
abundance.weights=weights, reps=1000)

mpd. query Computes the (standardized) value of the Mean Pairwise Distance
measure

Description

Calculates the Mean Pairwise Distance (MPD) measure for sets of tips on a phylogeny. The same
function can also calculate the standardized value of this measure under three different null models
which maintain species richness (this is equal to the Net Relatedness Index, NRI).

Usage

mpd.query(tree, matrix, standardize = FALSE,
null.model="uniform”, abundance.weights, reps=1000, seed)

Arguments

tree A phylo tree object

matrix A matrix with binary (0/1) values, where each row represents a tip set. Each col-
umn name in the matrix must match a tip label on the input tree. If not all values
in the matrix are binary, we consider two cases; if the matrix contains only non-
negative values, all values are coerced to binary ones and a warning message is
printed. If the matrix contains at least one negative value, the function throws
an error.

standardize Specifies whether the function should standardize the MPD for variation in

species richness. For each tip set S, the observed MPD is standardized by sub-
tracting the mean MPD and dividing by the standard deviation of this measure.
The mean and standard deviation are calculated among all tip sets that have the

34

null.model

mpd.query

same number of elements as set S, the tip set whose value we want to standardize
(default = FALSE).

A character vector (string) that defines which null model is used for computing
the standardized values of the measure. There are three possible null models
that can be used for computing the standardized values: these are "uniform",
"frequency.by.richness", and "sequential". All these models maintain species
richness. More specifically, the available models are defined as follows:

* "uniform" considers samples with equal (uniform) probability among all
possible tip samples of the same richness.

* "frequency.by.richness' is an abundance-weighted model where species
samples are chosen in a manner similar to the following process; first, each
species is selected independently with probability proportional to its abun-
dance. If the resulting sample consists of exactly the same number of ele-
ments as the input assemblage then it is used by the null model, otherwise
it is tossed and the whole process is repeated.

* "sequential" is an abundance-weighted null model where species samples
are chosen based on the same method as R’s sample function. Unlike
the other two models (which are computed analytically), this model uses
Monte-Carlo randomization.

This argument is optional, and its default value is set to "uniform".

abundance.weights

reps

seed

Value

A vector of positive numeric values. These are the abundance weights that will
be used if either of the options "frequency.by.richness" or "sequential” are se-
lected. The names stored at the vector must match the names of the tips in the
tree. This argument is redundant if the "uniform" model is selected.

An integer that defines the number of Monte-Carlo random repetitions that will
be performed when using the "sequential” model. This argument is redundant if
any of the other two null models is selected.

A positive integer that defines the random seed used in the Monte-Carlo ran-
domizations of the "sequential" model. This argument is optional, and becomes
redundant if any of the other two null models is selected.

A vector which stores the computed (standardized) MPD values. The i-th entry in this vector stores
the (standardized) MPD value of the i-th row in the input matrix.

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c@gmail.com)

References

Tsirogiannis, C. and B. Sandel. 2015. PhyloMeasures: A package for computing phylogenetic
biodiversity measures and their statistical moments. Ecography, doi: 10.1111/ecog.01814, 2015.

Tsirogiannis, C., B. Sandel and D. Cheliotis. 2012. Efficient computation of popular phylogenetic
tree measures. Algorithms in Bioinformatics, LNCS 7534: 30-43.

pd.moments 35

Webb, C.0O. 2000. Exploring the phylogenetic structure of ecological communities: An example for
rain forest trees. The American Naturalist 156: 145-155.

See Also

mpd.moments

Examples

#Load phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

#Create 100 random communities with 50 families each

comm = matrix(@,nrow = 100,ncol = length(bird.families$tip.label))
for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 1}
colnames(comm) = bird.families$tip.label

#Calculate mpd values for each community
mpd.query(bird.families, comm)

#Calculate standardized versions under the uniform model
mpd. query(bird.families, comm, TRUE)

Create random abundance weights
weights = runif(length(bird.families$tip.label))
names (weights) = bird.families$tip.label

#Use query function to calculate standardized versions under the sequential model
mpd.query(bird.families,comm, TRUE,null.model="sequential”,
abundance.weights=weights, reps=1000)

pd.moments Computes the moments of the Phylogenetic Diversity measure

Description

Calculates the mean and standard deviation of the unrooted Phylogenetic Diversity (PD) for a tree
and a vector of tip set sizes. The means and deviations can be calculated under three different null
models which maintain species richness.

Usage

pd.moments(tree, sample.sizes, comp.expectation = TRUE, comp.deviation = TRUE,
null.model="uniform”, abundance.weights, reps=1000, seed)

36

Arguments

tree

sample.sizes

pd.moments

A phylo tree object

A vector of non-negative integers specifying the tip set sizes for which to calcu-
late moments

comp.expectation

comp.deviation

null.model

Specifies whether the function should compute the mean (default = TRUE)

Specifies whether the function should compute the standard deviation (default =
TRUE)

A character vector (string) that defines which null model is used for computing
the moments of the measure. There are three possible null models that can be
used for computing the moments: these are "uniform", "frequency.by.richness",
and "sequential". All these models maintain species richness. More specifically,
the available models are defined as follows:

* "uniform" considers samples with equal (uniform) probability among all
possible tip samples of the same richness.

* "frequency.by.richness' is an abundance-weighted model where species
samples are chosen in a manner similar to the following process; first, each
species is selected independently with probability proportional to its abun-
dance. If the resulting sample consists of exactly the same number of ele-
ments as the input assemblage then it is used by the null model, otherwise
it is tossed and the whole process is repeated.

* "sequential' is an abundance-weighted null model where species samples
are chosen based on the same method as R’s sample function. Unlike
the other two models (which are computed analytically), this model uses
Monte-Carlo randomization.

This argument is optional, and its default value is set to "uniform".

abundance.weights

reps

seed

Value

A vector of positive numeric values. These are the abundance weights that will
be used if either of the options "frequency.by.richness" or "sequential” are se-
lected. The names stored at the vector must match the names of the tips in the
tree. This argument is redundant if the "uniform" model is selected.

An integer that defines the number of Monte-Carlo random repetitions that will
be performed when using the "sequential” model. This argument is redundant if
any of the other two null models is selected.

A positive integer that defines the random seed used in the Monte-Carlo ran-
domizations of the "sequential" model. This argument is optional, and becomes
redundant if any of the other two null models is selected.

If both comp.expectation and comp.deviation are TRUE, the function returns a two-column matrix
with one row per element in sample.sizes, where the first column stores the mean PD and the
second column stores the standard deviation for this sample size. If only one of comp.expectation
or comp.deviation are TRUE, the function returns a vector with the corresponding values instead.

pd.pvalues 37

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c@gmail.com)

References

Faith, D.P. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61:
1-10.

Tsirogiannis, C. and B. Sandel. 2015. PhyloMeasures: A package for computing phylogenetic
biodiversity measures and their statistical moments. Ecography, doi: 10.1111/ecog.01814, 2015.

Tsirogiannis, C., B. Sandel and A. Kalvisa. 2014. New algorithms for computing phylogenetic
biodiversity. Algorithms in Bioinformatics, LNCS 8701: 187-203.

See Also

pd.query

Examples

#Load phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

Calculate mean and variance under the uniform model
pd.moments(bird.families, 1:100)

Create random abundance weights
weights = runif(length(bird.families$tip.label))
names(weights) = bird.families$tip.label

Calculate mean and variance under the sequential model
pd.moments(bird.families,1:100,
null.model="sequential”, abundance.weights=weights, reps=1000)

pd.pvalues Computes the p-values of the unrooted Phylogenetic Diversity measure

Description

Calculates the p-values of the unrooted phylogenetic diversity (PD) measure for sets of tips on a
phylogeny. The p-values can be calculated under two different null models which maintain species
richness.

Usage

pd.pvalues(tree, matrix, null.model="uniform”,
abundance.weights, reps=1000, seed)

38

Arguments

tree

matrix

null.model

pd.pvalues

A phylo tree object

A matrix with binary (0/1) values, where each row represents a tip set. Each col-
umn name in the matrix must match a tip label on the input tree. If not all values
in the matrix are binary, we consider two cases; if the matrix contains only non-
negative values, all values are coerced to binary ones and a warning message is
printed. If the matrix contains at least one negative value, the function throws
an error.

A character vector (string) that defines which null model is used for computing
the p-values of the measure. There are two possible null models that can be used
for computing the p-values: these are "uniform" and "sequential". Both models
maintain species richness. More specifically, the available models are defined as
follows:

* "uniform" considers samples with equal (uniform) probability among all
possible tip samples of the same richness.

* "sequential" is an abundance-weighted null model where species samples
are chosen based on the same method as R’s sample function. Unlike the
other model (which is computed analytically), this model uses Monte-Carlo
randomization.

This argument is optional, and its default value is set to "uniform".

abundance.weights

reps

seed

Value

A vector of positive numeric values. These are the abundance weights that will
be used if option "sequential” is selected. The names stored at the vector must
match the names of the tips in the tree. This argument is redundant if the "uni-
form" model is selected.

An integer that defines the number of Monte-Carlo random repetitions that will
be performed when using the "sequential” model. This argument is redundant if
the other null model is selected.

A positive integer that defines the random seed used in the Monte-Carlo ran-
domizations of the "sequential" model. This argument is optional, and becomes
redundant if the other null model is selected.

A vector which stores the computed PD p-values. The i-th entry in this vector stores the PD p-value
of the i-th row in the input matrix.

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c@gmail.com)

References

Faith, D.P. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61:

1-10.

pd.query 39

Tsirogiannis, C. and B. Sandel. 2015. PhyloMeasures: A package for computing phylogenetic
biodiversity measures and their statistical moments. Ecography, doi: 10.1111/ecog.01814, 2015.

Tsirogiannis, C., B. Sandel and D. Cheliotis. 2012. Efficient computation of popular phylogenetic
tree measures. Algorithms in Bioinformatics, LNCS 7534: 30-43.

Tsirogiannis, C., B. Sandel and A. Kalvisa. 2014. New algorithms for computing phylogenetic
biodiversity. Algorithms in Bioinformatics, LNCS 8701: 187-203.

See Also

pd.moments

Examples

#Load phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

#Create 100 random communities with 50 families each

comm = matrix(@,nrow = 100,ncol = length(bird.families$tip.label))
for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 1}
colnames(comm) = bird.families$tip.label

#Calculate p-values under the uniform model
pd.pvalues(bird.families,comm, reps=1000)

Create random abundance weights
weights = runif(length(bird.families$tip.label))
names(weights) = bird.families$tip.label

#Use query function to calculate standardized versions under the sequential model
pd.pvalues(bird.families, comm,null.model="sequential”,
abundance.weights=weights, reps=1000)

pd.query Computes the (standardized) value of the unrooted Phylogenetic Di-
versity measure

Description

Calculates the unrooted phylogenetic diversity (PD) measure for sets of tips on a phylogeny. The
same function can also calculate the standardized value of this measure under three different null
models which maintain species richness (this is equal to the Phylogenetic Diversity Index, PDI).

Usage

pd.query(tree, matrix, standardize = FALSE,
null.model="uniform”, abundance.weights, reps=1000, seed)

40

Arguments

tree

matrix

standardize

null.model

pd.query

A phylo tree object

A matrix with binary (0/1) values, where each row represents a tip set. Each col-
umn name in the matrix must match a tip label on the input tree. If not all values
in the matrix are binary, we consider two cases; if the matrix contains only non-
negative values, all values are coerced to binary ones and a warning message is
printed. If the matrix contains at least one negative value, the function throws
an error.

Specifies whether the function should standardize the PD for variation in species
richness. For each tip set S, the observed PD is standardized by subtracting the
mean PD and dividing by the standard deviation of this measure. The mean and
standard deviation are calculated among all tip sets that have the same number
of elements as set S, the tip set whose value we want to standardize (default =
FALSE).

A character vector (string) that defines which null model is used for computing
the standardized values of the measure. There are three possible null models
that can be used for computing the standardized values: these are "uniform",
"frequency.by.richness", and "sequential". All these models maintain species
richness. More specifically, the available models are defined as follows:

» "uniform' considers samples with equal (uniform) probability among all
possible tip samples of the same richness.

* "frequency.by.richness' is an abundance-weighted model where species
samples are chosen in a manner similar to the following process; first, each
species is selected independently with probability proportional to its abun-
dance. If the resulting sample consists of exactly the same number of ele-
ments as the input assemblage then it is used by the null model, otherwise
it is tossed and the whole process is repeated.

* "sequential" is an abundance-weighted null model where species samples
are chosen based on the same method as R’s sample function. Unlike
the other two models (which are computed analytically), this model uses
Monte-Carlo randomization.

This argument is optional, and its default value is set to "uniform".

abundance.weights

reps

seed

A vector of positive numeric values. These are the abundance weights that will
be used if either of the options "frequency.by.richness" or "sequential” are se-
lected. The names stored at the vector must match the names of the tips in the
tree. This argument is redundant if the "uniform" model is selected.

An integer that defines the number of Monte-Carlo random repetitions that will
be performed when using the "sequential” model. This argument is redundant if
any of the other two null models is selected.

A positive integer that defines the random seed used in the Monte-Carlo ran-
domizations of the "sequential" model. This argument is optional, and becomes
redundant if any of the other two null models is selected.

pd.query 41

Value

A vector which stores the computed (standardized) PD values. The i-th entry in this vector stores
the (standardized) PD value of the i-th row in the input matrix.

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c @ gmail.com)

References

Faith, D.P. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61:
1-10.

Tsirogiannis, C. and B. Sandel. 2015. PhyloMeasures: A package for computing phylogenetic
biodiversity measures and their statistical moments. Ecography, doi: 10.1111/ecog.01814, 2015.

Tsirogiannis, C., B. Sandel and D. Cheliotis. 2012. Efficient computation of popular phylogenetic
tree measures. Algorithms in Bioinformatics, LNCS 7534: 30-43.

Tsirogiannis, C., B. Sandel and A. Kalvisa. 2014. New algorithms for computing phylogenetic
biodiversity. Algorithms in Bioinformatics, LNCS 8701: 187-203.

See Also

pd.moments

Examples

#lLoad phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

#Create 100 random communities with 50 families each

comm = matrix(@,nrow = 100,ncol = length(bird.families$tip.label))
for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 1}
colnames(comm) = bird.families$tip.label

#Use query function to calculate pd values for each community
pd.query(bird.families, comm)

#Use query function to calculate standardized versions under the uniform model
pd.query(bird.families, comm, TRUE)

Create random abundance weights
weights = runif(length(bird.families$tip.label))
names (weights) = bird.families$tip.label

#Use query function to calculate standardized versions under the sequential model
pd.query(bird.families, comm, TRUE, null.model="sequential”,
abundance.weights=weights, reps=1000)

42

phylosor.query

phylosor.query

Computes the value of the Phylogenetic Sorensen’s Similarity measure

Description

Calculates the Phylogenetic Sorensen’s Similarity (PhyloSor) given paired sets of tips on a phy-
logeny. A version of this function that computes the standardised value of the measure is not yet

available.

Usage

phylosor.query(tree, matrix.a, matrix.b = NULL,

Arguments

tree

matrix.a

matrix.b

query.matrix

Details

query.matrix = NULL)

A phylo tree object

A matrix with binary (0/1) values, where each row represents a tip set. Each col-
umn name in the matrix must match a tip label on the input tree. If not all values
in the matrix are binary, we consider two cases; if the matrix contains only non-
negative values, all values are coerced to binary ones and a warning message is
printed. If the matrix contains at least one negative value, the function throws
an error

Optional, a second matrix with a similar format as matrix.a

Optional, a two-column matrix specifying the pairs of rows (tip sets) for which
the function computes the PhyloSor values. Each row in query.matrix indicates
a pair of tip sets for which we want to compute the PhyloSor value. Let k and
r be the values that are stored in the i-th row of query.matrix, where k is the
value stored in the first column and r is the value stored in the second column.
If matrix.b is given, the function computes the PhyloSor value between the k-th
row of matrix.a and the r-th row of matrix.b. If matrix.b is not given, the function
computes the PhyloSor value between the k-th and r-th row of matrix.a (default
=NULL)

Queries can be given in four ways. If neither matrix.b nor query.matrix are given, the function
computes the PhyloSor values for all pairs of rows (tip sets) in matrix.a . If matrix.b is given but not
query.matrix, the function computes the PhyloSor values for all combinations of a row in matrix.a
with rows in matrix.b. If query.matrix is given and matrix.b is not, the function returns the PhyloSor
values for the pairs of rows in matrix.a specified by query.matrix. If query.matrix and matrix.b are
both given, PhyloSor values are computed for the rows in matrix.a specified by the first column of
query.matrix against the rows in matrix.b specified in the second column of query.matrix.

unifrac.query 43

Value

The PhyloSor values for the requested pairs of tip sets. If query.matrix is provided, then the values
are returned in an one-dimensional vector. The i-th element of this vector is the PhyloSor value for
the pair of tip sets indicated in the i-th row of query.matrix. If query.matrix is not provided, the
PhyloSor values are returned in a matrix object; entry [i,j] in the output matrix stores the PhyloSor
value between the tip sets specified on the i-th and j-th row of matrix.a (if matrix.b is not specified),
or the PhyloSor value between the i-th row of matrix.a and the j-th row of matrix.b (if matrix.b is
specified)

Author(s)

Constantinos Tsirogiannis (tsirogiannis.c@gmail.com) and Brody Sandel (bsandel @scu.edu)

References

Graham, C.H. and P.V.A. Fine. 2008. Phylogenetic beta diversity: linking ecological and evolu-
tionary processes across space and time. Ecology Letters 11: 1265:1277.

Swenson, N.G. 2011. Phylogenetic beta diversity metrics, trait evolution and inferring functional
beta diversity of communities. PLoS ONE: 6: e21264.

Examples

#lLoad phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

#Create 10 random communities with 50 families each

comm = matrix(@,nrow = 10,ncol = length(bird.families$tip.label))
for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 1}
colnames(comm) = bird.families$tip.label

#Calculate all pairwise PhyloSor values for communities in comm
phylosor.query(bird.families, comm)

#Calculate pairwise distances from
#the first two rows of comm to all rows
phylosor.query(bird.families, comm[1:2,],comm)

#Calculate the distances from the first two rows
#to all rows using the query matrix

gm = expand.grid(1:2,1:10)
phylosor.query(bird.families,comm,query.matrix = qgm)

unifrac.query Computes the value of the Unique Fraction measure

Description

Calculates the Unique Fraction (UniFrac) given paired sets of tips on a phylogeny. A version of this
function that computes the standardised value of the measure is not yet available.

44 unifrac.query
Usage
unifrac.query(tree, matrix.a, matrix.b = NULL,
query.matrix = NULL)
Arguments
tree A phylo tree object
matrix.a A matrix with binary (0/1) values, where each row represents a tip set. Each col-
umn name in the matrix must match a tip label on the input tree. If not all values
in the matrix are binary, we consider two cases; if the matrix contains only non-
negative values, all values are coerced to binary ones and a warning message is
printed. If the matrix contains at least one negative value, the function throws
an error
matrix.b Optional, a second matrix with a similar format as matrix.a
query.matrix Optional, a two-column matrix specifying the pairs of rows (tip sets) for which
the function computes the UniFrac values. Each row in query.matrix indicates
a pair of tip sets for which we want to compute the UniFrac value. Let k and
r be the values that are stored in the i-th row of query.matrix, where k is the
value stored in the first column and r is the value stored in the second column. If
matrix.b is given, the function computes the UniFrac value between the k-th row
of matrix.a and the r-th row of matrix.b. If matrix.b is not given, the function
computes the UniFrac value between the k-th and r-th row of matrix.a (default
=NULL)
Details
Queries can be given in four ways. If neither matrix.b nor query.matrix are given, the function
computes the UniFrac values for all pairs of rows (tip sets) in matrix.a . If matrix.b is given but not
query.matrix, the function computes the UniFrac values for all combinations of a row in matrix.a
with rows in matrix.b. If query.matrix is given and matrix.b is not, the function returns the UniFrac
values for the pairs of rows in matrix.a specified by query.matrix. If query.matrix and matrix.b are
both given, UniFrac values are computed for the rows in matrix.a specified by the first column of
query.matrix against the rows in matrix.b specified in the second column of query.matrix.
Value
The UniFrac values for the requested pairs of tip sets. If query.matrix is provided, then the values
are returned in an one-dimensional vector. The i-th element of this vector is the UniFrac value for
the pair of tip sets indicated in the i-th row of query.matrix. If query.matrix is not provided, the
UniFrac values are returned in a matrix object; entry [i,j] in the output matrix stores the UniFrac
value between the tip sets specified on the i-th and j-th row of matrix.a (if matrix.b is not specified),
or the UniFrac value between the i-th row of matrix.a and the j-th row of matrix.b (if matrix.b is
specified)
Author(s)

Constantinos Tsirogiannis (tsirogiannis.c@gmail.com) and Brody Sandel (bsandel @scu.edu)

unifrac.query 45

References

Lozupone C. and R. Knight. 2005. UniFrac: a New Phylogenetic Method for Comparing Microbial
Communities. Applied and Environmental Microbiology,71(12):8228-35.

Examples

#Load phylogenetic tree of bird families from package "ape”
data(bird.families, package = "ape")

#Create 10 random communities with 50 families each

comm = matrix(@,nrow = 10,ncol = length(bird.families$tip.label))
for(i in 1:nrow(comm)) {comm[i,sample(1:ncol(comm),50)] = 1}
colnames(comm) = bird.families$tip.label

#Calculate all pairwise UniFrac values for communities in comm
unifrac.query(bird.families, comm)

#Calculate pairwise distances from
#the first two rows of comm to all rows
unifrac.query(bird.families, comm[1:2,],comm)

#Calculate the distances from the first two rows
#to all rows using the query matrix

gm = expand.grid(1:2,1:10)
unifrac.query(bird.families,comm,query.matrix = gm)

Index

+Topic biodiversity
PhyloMeasures-package, 2

xTopic distance
PhyloMeasures-package, 2

xTopic phylogeny
PhyloMeasures-package, 2

cac.moments, 4, 7, 9
cac.pvalues, 6

cac.query, 5, 8
cbl.moments, 10, 12

cbl.query, 11,11
cd.moments, 13, /6
cd.query, 14, 14
cdnt.averaged.query, 16, 20, 22
cdnt.directed.query, 18, 19, 22
cdnt.query, 18, 20, 21

mntd.moments, 23, 26, 29
mntd.pvalues, 25
mntd.query, 24, 27
mpd.moments, 29, 32, 35
mpd.pvalues, 31
mpd.query, 31, 33

pd.moments, 35, 39, 41

pd.pvalues, 37

pd.query, 37, 39

PhyloMeasures (PhyloMeasures-package), 2
PhyloMeasures-package, 2
phylosor.query, 42

unifrac.query, 43

46

	PhyloMeasures-package
	cac.moments
	cac.pvalues
	cac.query
	cbl.moments
	cbl.query
	cd.moments
	cd.query
	cdnt.averaged.query
	cdnt.directed.query
	cdnt.query
	mntd.moments
	mntd.pvalues
	mntd.query
	mpd.moments
	mpd.pvalues
	mpd.query
	pd.moments
	pd.pvalues
	pd.query
	phylosor.query
	unifrac.query
	Index

