
Package ‘ParBayesianOptimization’
February 24, 2020

Title Parallel Bayesian Optimization of Hyperparameters

Version 1.1.0

Description Fast, flexible framework for implementing Bayesian optimization of model
hyperparameters according to the methods described in Snoek et al. <arXiv:1206.2944>.
The package allows the user to run scoring function in parallel, save intermediary
results, and tweak other aspects of the process to fully utilize the computing resources
available to the user.

URL https://github.com/AnotherSamWilson/ParBayesianOptimization

BugReports https://github.com/AnotherSamWilson/ParBayesianOptimization/issues

Depends R (>= 3.4)

Imports data.table (>= 1.11.8), DiceKriging, stats, foreach, dbscan,
lhs, plotly, crayon, ggplot2, ggpubr

Suggests knitr, rmarkdown, xgboost, doParallel, testthat

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

VignetteBuilder knitr

Maintainer Samuel Wilson <samwilson303@gmail.com>

NeedsCompilation no

Author Samuel Wilson [aut, cre]

Repository CRAN

Date/Publication 2020-02-24 20:10:02 UTC

R topics documented:
addIterations . 2
bayesOpt . 3
changeSaveFile . 7

1

https://github.com/AnotherSamWilson/ParBayesianOptimization
https://github.com/AnotherSamWilson/ParBayesianOptimization/issues

2 addIterations

getBestPars . 8
getLocalOptimums . 9
plot.bayesOpt . 10
print.bayesOpt . 10
updateGP . 11

Index 12

addIterations Run Additional Optimization Iterations

Description

Use this function to continue optimization of a bayesOpt object.

Usage

addIterations(
optObj,
iters.n = 1,
iters.k = 1,
otherHalting = list(timeLimit = Inf, minUtility = 0),
bounds = optObj$bounds,
acq = optObj$optPars$acq,
kappa = optObj$optPars$kappa,
eps = optObj$optPars$eps,
gsPoints = optObj$optPars$gsPoints,
convThresh = optObj$optPars$convThresh,
acqThresh = optObj$optPars$acqThresh,
errorHandling = "stop",
saveFile = optObj$saveFile,
parallel = FALSE,
plotProgress = FALSE,
verbose = 1,
...

)

Arguments

optObj an object of class bayesOpt.

iters.n The total number of additional times to sample the scoring function.

iters.k integer that specifies the number of times to sample FUN at each Epoch (opti-
mization step). If running in parallel, good practice is to set iters.k to some
multiple of the number of cores you have designated for this process. Must
belower than, and preferrably some multiple of iters.n.

otherHalting Same as bayesOpt()

bounds Same as bayesOpt()

bayesOpt 3

acq Same as bayesOpt()

kappa Same as bayesOpt()

eps Same as bayesOpt()

gsPoints Same as bayesOpt()

convThresh Same as bayesOpt()

acqThresh Same as bayesOpt()

errorHandling Same as bayesOpt()

saveFile Same as bayesOpt()

parallel Same as bayesOpt()

plotProgress Same as bayesOpt()

verbose Same as bayesOpt()

... Same as bayesOpt()

Details

By default, this function uses the original parameters used to create optObj, however the parameters
(including the bounds) can be customized. If new bounds are used which cause some of the prior
runs to fall outside of the bounds, these samples are removed from the optimization procedure, but
will remain in scoreSummary. FUN should return the same elements and accept the same inputs as
the original, or this function may fail.

Value

A bayesOpt object.

bayesOpt Bayesian Optimization with Gaussian Processes

Description

Maximizes a user defined function within a set of bounds. After the function is sampled a pre-
determined number of times, a Gaussian process is fit to the results. An acquisition function is
then maximized to determine the most likely location of the global maximum of the user defined
function. This process is repeated for a set number of iterations.

Usage

bayesOpt(
FUN,
bounds,
saveFile = NULL,
initGrid,
initPoints = 4,
iters.n = 3,

4 bayesOpt

iters.k = 1,
otherHalting = list(timeLimit = Inf, minUtility = 0),
acq = "ucb",
kappa = 2.576,
eps = 0,
parallel = FALSE,
gsPoints = pmax(100, length(bounds)^3),
convThresh = 1e+08,
acqThresh = 1,
errorHandling = "stop",
plotProgress = FALSE,
verbose = 1,
...

)

Arguments

FUN the function to be maximized. This function should return a named list with at
least 1 component. The first component must be named Score and should con-
tain the metric to be maximized. You may return other named scalar elements
that you wish to include in the final summary table.

bounds named list of lower and upper bounds for each FUN input. The names of the list
should be arguments passed to FUN. Use "L" suffix to indicate integers.

saveFile character filepath (including file name and extension, .RDS) that specifies the
location to save results as they are obtained. A bayesOpt object is saved to the
file after each epoch.

initGrid user specified points to sample the scoring function, should be a data.frame or
data.table with identical column names as bounds.

initPoints Number of points to initialize the process with. Points are chosen with latin
hypercube sampling within the bounds supplied.

iters.n The total number of times FUN will be run after initialization.

iters.k integer that specifies the number of times to sample FUN at each Epoch (opti-
mization step). If running in parallel, good practice is to set iters.k to some
multiple of the number of cores you have designated for this process. Must
belower than, and preferrably some multiple of iters.n.

otherHalting A list of other halting specifications. The process will stop if any of the follow-
ing is true. These checks are only performed in between optimization steps:

• The elapsed seconds is greater than the list element timeLimit.
• The utility expected from the Gaussian process is less than the list element
minUtility.

acq acquisition function type to be used. Can be "ucb", "ei", "eips" or "poi".

• ucb Upper Confidence Bound
• ei Expected Improvement
• eips Expected Improvement Per Second
• poi Probability of Improvement

bayesOpt 5

kappa tunable parameter kappa of the upper confidence bound. Adjusts exploitation/exploration.
Increasing kappa will increase the importance that uncertainty (unexplored space)
has, therefore incentivising exploration. This number represents the standard
deviations above 0 of your upper confidence bound. Default is 2.56, which cor-
responds to the ~99th percentile.

eps tunable parameter epsilon of ei, eips and poi. Adjusts exploitation/exploration.
This value is added to y_max after the scaling, so should between -0.1 and 0.1.
Increasing eps will make the "improvement" threshold for new points higher,
therefore incentivising exploitation.

parallel should the process run in parallel? If TRUE, several criteria must be met:

• A parallel backend must be registered
• Objects required by FUN must be loaded into each cluster.
• Packages required by FUN must be loaded into each cluster. See vignettes.
• FUN must be thread safe.

gsPoints integer that specifies how many initial points to try when searching for the opti-
mum of the acquisition function. Increase this for a higher chance to find global
optimum, at the expense of more time.

convThresh convergence threshold passed to factr when the optim function (L-BFGS-B)
is called. Lower values will take longer to converge, but may be more accurate.

acqThresh number 0-1. Represents the minimum percentage of the global optimal utility
required for a local optimum to be included as a candidate parameter set in the
next scoring function. If 1.0, only the global optimum will be used as a candidate
parameter set. If 0.5, only local optimums with 50 percent of the utility of the
global optimum will be used.

errorHandling If FUN returns an error, how to proceed. All errors are stored in scoreSummary.
Can be one of 3 options: "stop" stops the function running and returns results.
"continue" keeps the process running. Passing an integer will allow the process
to continue until that many errors have occured, after which the results will be
returned.

plotProgress Should the progress of the Bayesian optimization be printed? Top graph shows
the score(s) obtained at each iteration. The bottom graph shows the estimated
utility of each point. This is useful to display how much utility the Gaussian
Process is assuming still exists. If your utility is approaching 0, then you can be
confident you are close to an optimal parameter set.

verbose Whether or not to print progress to the console. If 0, nothing will be printed. If
1, progress will be printed. If 2, progress and information about new parameter-
score pairs will be printed.

... Other parameters passed to DiceKriging::km(). All FUN inputs and scores
are scaled from 0-1 before being passed to km. FUN inputs are scaled within
bounds, and scores are scaled by 0 = min(scores), 1 = max(scores).

Value

A bayesOpt object, containing information about the process.

6 bayesOpt

Vignettes

It is highly recommended to read the GitHub for examples. There are also several vignettes available
from the official CRAN Listing.

References

Jasper Snoek, Hugo Larochelle, Ryan P. Adams (2012) Practical Bayesian Optimization of Machine
Learning Algorithms

Examples

Example 1 - Optimization of a continuous single parameter function
scoringFunction <- function(x) {

a <- exp(-(2-x)^2)*1.5
b <- exp(-(4-x)^2)*2
c <- exp(-(6-x)^2)*1
return(list(Score = a+b+c))

}

bounds <- list(x = c(0,8))

Results <- bayesOpt(
FUN = scoringFunction

, bounds = bounds
, initPoints = 3
, iters.n = 2
, gsPoints = 10

)

Not run:
Example 2 - Hyperparameter Tuning in xgboost
library("xgboost")

data(agaricus.train, package = "xgboost")

Folds <- list(
Fold1 = as.integer(seq(1,nrow(agaricus.train$data),by = 3))

, Fold2 = as.integer(seq(2,nrow(agaricus.train$data),by = 3))
, Fold3 = as.integer(seq(3,nrow(agaricus.train$data),by = 3))

)

scoringFunction <- function(max_depth, min_child_weight, subsample) {

dtrain <- xgb.DMatrix(agaricus.train$data,label = agaricus.train$label)

Pars <- list(
booster = "gbtree"

, eta = 0.01
, max_depth = max_depth
, min_child_weight = min_child_weight
, subsample = subsample
, objective = "binary:logistic"

https://github.com/AnotherSamWilson/ParBayesianOptimization
https://CRAN.R-project.org/package=ParBayesianOptimization

changeSaveFile 7

, eval_metric = "auc"
)

xgbcv <- xgb.cv(
params = Pars

, data = dtrain
, nround = 100
, folds = Folds
, prediction = TRUE
, showsd = TRUE
, early_stopping_rounds = 5
, maximize = TRUE
, verbose = 0

)

return(
list(

Score = max(xgbcv$evaluation_log$test_auc_mean)
, nrounds = xgbcv$best_iteration

)
)

}

bounds <- list(
max_depth = c(2L, 10L)

, min_child_weight = c(1, 100)
, subsample = c(0.25, 1)

)

ScoreResult <- bayesOpt(
FUN = scoringFunction

, bounds = bounds
, initPoints = 3
, iters.n = 2
, iters.k = 1
, acq = "ei"
, gsPoints = 10
, parallel = FALSE
, verbose = 1

)

End(Not run)

changeSaveFile Change Save File Location

Description

Use this to change the saveFile parameter in a pre-existing bayesOpt object.

8 getBestPars

Usage

changeSaveFile(optObj, saveFile = NULL)

Arguments

optObj An object of class bayesOpt

saveFile A filepath stored as a character. Must include the filename and extension as a
.RDS.

Value

The same optObj with the updated saveFile.

getBestPars Get the Best Parameter Set

Description

Returns the parameter set which resulted in the maximum score from FUN.

Usage

getBestPars(optObj, N = 1)

Arguments

optObj An object of class bayesOpt

N The number of parameter sets to return

Details

If N > 1, a data.table with N rows is returned, order by score decreasing. If N = 1, a list of parameters
is returned.

getLocalOptimums 9

getLocalOptimums Get Local Optimums of the Acquisition Function From a bayesOpt
Object Returns all local optimums of the acquisition function, no mat-
ter the utility. gsPoints points in the parameter space are randomly
initialized, and the L-BFGS-B method is used to find the closest local
optimum to each point. dbscan is then used to cluster points together
which converged to the same optimum - only unique optimums are re-
turned.

Description

Get Local Optimums of the Acquisition Function From a bayesOpt Object

Returns all local optimums of the acquisition function, no matter the utility.

gsPoints points in the parameter space are randomly initialized, and the L-BFGS-B method is used
to find the closest local optimum to each point. dbscan is then used to cluster points together which
converged to the same optimum - only unique optimums are returned.

Usage

getLocalOptimums(
optObj,
bounds = optObj$bounds,
acq = optObj$optPars$acq,
kappa = optObj$optPars$kappa,
eps = optObj$optPars$eps,
convThresh = optObj$optPars$convThresh,
gsPoints = optObj$optPars$gsPoints,
parallel = FALSE,
verbose = 1

)

Arguments

optObj an object of class bayesOpt. The following parameters are all defaulted to the
options provided in this object, but can be manually specified.

bounds Same as in bayesOpt()

acq Same as in bayesOpt()

kappa Same as in bayesOpt()

eps Same as in bayesOpt()

convThresh Same as in bayesOpt()

gsPoints Same as in bayesOpt()

parallel Same as in bayesOpt()

verbose Should warnings be shown before results are returned prematurely?

10 print.bayesOpt

Value

A data table of local optimums, including the utility (gpUtility), the utility relative to the max utility
(relUtility), and the steps taken in the L-BFGS-B method (gradCount).

plot.bayesOpt Plot a bayesOpt object

Description

Returns 2 stacked plots - the top shows the results from FUN at each iteration. The bottom shows
the utility from each point before the search took place.

Usage

S3 method for class 'bayesOpt'
plot(x, ...)

Arguments

x An object of class bayesOpt

... Passed to ggarrange() when plots are stacked.

Value

an object of class ggarrange

print.bayesOpt Print a bayesOpt object

Description

Print a bayesOpt object

Usage

S3 method for class 'bayesOpt'
print(x, ...)

Arguments

x Object of class bayesOpt

... required to use S3 method

Value

NULL

updateGP 11

updateGP Update Gaussian Processes in a bayesOpt Object

Description

To save time, Gaussian processes are not updated after the last iteration in addIterations(). The
user can do this manually, using this function if they wish.

Usage

updateGP(optObj, bounds = optObj$bounds, verbose = 1, ...)

Arguments

optObj an object of class bayesOpt

bounds The bounds to scale the parameters within.

verbose Should the user be warned if the GP is already up to date?

... passed to DiceKriging::km()

Value

a bayesOpt object with updated Gaussian Processes.

Index

addIterations, 2

bayesOpt, 3

changeSaveFile, 7

getBestPars, 8
getLocalOptimums, 9

plot.bayesOpt, 10
print.bayesOpt, 10

updateGP, 11

12

	addIterations
	bayesOpt
	changeSaveFile
	getBestPars
	getLocalOptimums
	plot.bayesOpt
	print.bayesOpt
	updateGP
	Index

