Package 'PUlasso'

April 28, 2019

Type Package

Title High-Dimensional Variable Selection with Presence-Only Data
Version 3.2.3
Date 2019-4-25
Description Efficient algorithm for solving PU (Positive and Unlabeled) problem in low or high dimensional setting with lasso or group lasso penalty. The algorithm uses Maximization-
Minorization and (block) coordinate descent. Sparse calculation and parallel computing are supported for the computational speed-up. See Hyebin Song, Garvesh Raskutti (2018) arXiv:1711.08129.

License GPL-2
Imports Rcpp (>=0.12.8), methods, Matrix, doParallel, foreach, ggplot2

Depends $R(>=2.10)$
LinkingTo Rcpp, RcppEigen, Matrix
RoxygenNote 6.1.1
Suggests testthat, knitr, rmarkdown
VignetteBuilder knitr
URL https://arxiv.org/abs/1711.08129

BugReports https://github.com/hsong1/PUlasso/issues
NeedsCompilation yes
Author Hyebin Song [aut, cre],
Garvesh Raskutti [aut]
Maintainer Hyebin Song hsong56@wisc.edu
Repository CRAN
Date/Publication 2019-04-28 07:00:03 UTC

R topics documented:

PUlasso-package . 2
cv.grpPUlasso . 3
deviances . 5
grpPUlasso . 5
simulPU . 7
Index 8

PUlasso-package PUlasso: An efficient algorithm to solve Positive and Unlabeled(PU) problem with lasso or group lasso penalty

Description

The package efficiently solves PU problem in low or high dimensional setting using MaximizationMinorization and (block) coordinate descent. It allows simultaneous feature selection and parameter estimation for classification. Sparse calculation and parallel computing are supported for the further computational speed-up. See Hyebin Song, Garvesh Raskutti (2018) <https://arxiv.org/abs/ 1711.08129>.

Details

Main functions: grpPUlasso, cv.grpPUlasso, coef, predict

Author(s)

Hyebin Song, hsong@stat.wisc.edu, Garvesh Raskutti, raskutti@stat.wisc.edu.

See Also

Useful links:

- https://arxiv.org/abs/1711.08129
- Report bugs at https://github.com/hsong1/PUlasso/issues

Examples

```
data("simulPU")
fit<-grpPUlasso(X=simulPU$X,z=simulPU$z,py1=simulPU$truePY1)
## Not run:
cvfit<-cv.grpPUlasso(X=simulPU$X,z=simulPU$z,py1=simulPU$truePY1)
## End(Not run)
coef(fit,lambda=fit$lambda[10])
predict(fit,newdata = head(simulPU$X), lambda= fit$lambda[10],type = "response")
```

```
cv.grpPUlasso Cross-validation for PUlasso
```


Description

Do a n-fold cross-validation for PUlasso.

Usage

```
cv.grpPUlasso(X, z, py1, initial_coef = NULL, group = 1:p,
    penalty \(=\) NULL, lambda \(=\) NULL, nlambda \(=100\),
    lambdaMinRatio \(=\) ifelse \((\mathrm{N}<\mathrm{p}, 0.05,0.005)\), maxit \(=\) ifelse(method ==
    "CD", 1000, N * 10), weights = NULL, eps = 1e-04, inner_eps = 0.01,
    verbose \(=\) FALSE, stepSize \(=\) NULL, stepSizeAdjustment \(=\) NULL,
    batchSize \(=1\), updateFrequency \(=N\), samplingProbabilities \(=\) NULL,
    method = c("CD", "GD", "SGD", "SVRG", "SAG"), nfolds = 10,
    fitInd = 1:nfolds, nCores = 1, trace = c("none", "param", "fVal",
    "all"))
```


Arguments

$X \quad$ Input matrix; each row is an observation. Can be a matrix or a sparse matrix.
z Response vector representing whether an observation is labeled or unlabeled.
py1 True prevalence $\operatorname{Pr}(\mathrm{Y}=1)$
initial_coef A vector representing an initial point where we start PUlasso algorithm from.
group A vector representing grouping of the coefficients. For the least ambiguity, it is recommended if group is provided in the form of vector of consecutive ascending integers.
penalty penalty to be applied to the model. Default is sqrt(group size) for each of the group.
lambda A user supplied sequence of lambda values. If unspecified, the function automatically generates its own lambda sequence based on nlambda and lambdaMinRatio.
nlambda The number of lambda values.
lambdaMinRatio Smallest value for lambda, as a fraction of lambda.max which leads to the intercept only model.
maxit Maximum number of iterations.
weights observation weights. Default is 1 for each observation.
eps Convergence threshold for the outer loop. The algorithm iterates until the maximum change in coefficients is less than eps in the outer loop.
inner_eps Convergence threshold for the inner loop. The algorithm iterates until the maximum change in coefficients is less than eps in the inner loop.
verbose A logical value. if TRUE, the function prints out the fitting process.

stepSize | A step size for gradient-based optimization. if NULL, a step size is taken to be |
| :--- |
| stepSizeAdj/mean(Li) where Li is a Lipschitz constant for ith sample |

stepSizeAdjustment
A step size adjustment. By default, adjustment is 1 for GD and SGD, $1 / 8$ for
SVRG and $1 / 16$ for SAG.
batchSize

updateFrequency \quad| A batch size. Default is 1. |
| :--- |

Value

cvm Mean cross-validation error
cvsd Estimate of standard error of cvm
cvcoef Coefficients for each of the fitted CV models
cvstdcoef Coefficients in a standardized scale for each of the fitted CV models
lambda The actual sequence of lambda values used.
lambda.min Value of lambda that gives minimum cvm.
lambda.1se The largest value of lambda such that the error is within 1 standard error of the minimum cvm.

PUfit A fitted PUfit object for the full data

Examples

```
data("simulPU")
fit<-cv.grpPUlasso(X=simulPU$X,z=simulPU$z,py1=simulPU$truePY1)
```

deviances Deviance

Description

Calculate deviances at provided coefficients

Usage

deviances(X, z, py1, coefMat, weights = NULL)

Arguments

X	Input matrix
z	Response vector
py1	True prevalence $\operatorname{Pr}(\mathrm{Y}=1)$
coefMat	A coefficient matrix whose column corresponds to a set of coefficients
weights	observation weights. Default is 1 for each observation.

Value

deviances

Examples

```
data("simulPU")
    coef0<-replicate(2,runif(ncol(simulPU$X)+1))
    deviances(simulPU$X,simulPU$z,py1=simulPU$truePY1,coefMat = coef0)
```

grpPUlasso Solve PU problem with lasso or group lasso penalty.

Description

Fit a model using PUlasso algorithm over a regularization path. The regularization path is computed at a grid of values for the regularization parameter lambda.

Usage

grpPUlasso(X, z, py1, initial_coef = NULL, group = 1:ncol(X), penalty $=$ NULL, lambda $=$ NULL, nlambda = 100, lambdaMinRatio $=$ ifelse $(\mathrm{N}<\mathrm{p}, 0.05,0.005)$, maxit $=$ ifelse(method == "CD", 1000, N * 10), maxit_inner = 1e+05, weights = NULL, eps = 1e-04, inner_eps = 0.01, verbose = FALSE, stepSize = NULL, stepSizeAdjustment = NULL, batchSize = 1, updateFrequency $=\mathrm{N}$, samplingProbabilities = NULL, method = c("CD", "GD", "SGD", "SVRG", "SAG"), trace = c("none", "param", "fVal", "all"))

Arguments

X	Input matrix; each row is an observation. Can be a matrix or a sparse matrix.
z	Response vector representing whether an observation is labeled or unlabeled.
py1	True prevalence $\operatorname{Pr}(\mathrm{Y}=1)$
initial_coef	A vector representing an initial point where we start PUlasso algorithm from.
group	A vector representing grouping of the coefficients. For the least ambiguity, it is recommended if group is provided in the form of vector of consecutive ascending integers.
penalty	penalty to be applied to the model. Default is sqrt(group size) for each of the group.
lambda	A user supplied sequence of lambda values. If unspecified, the function automatically generates its own lambda sequence based on nlambda and lambdaMinRatio.
nlambda	The number of lambda values.
lambdaMinRatio	Smallest value for lambda, as a fraction of lambda.max which leads to the intercept only model.
maxit	Maximum number of iterations.
maxit_inner	Maximum number of iterations for a quadratic sub-problem for CD. observation weights. Default is 1 for each observation
eps	Convergence threshold for the outer loop. The algorithm iterates until the maximum change in coefficients is less than eps in the outer loop.
inner_eps	Convergence threshold for the inner loop. The algorithm iterates until the maximum change in coefficients is less than eps in the inner loop.
verbose	A logical value. if TRUE, the function prints out the fitting process.
stepSize	A step size for gradient-based optimization. if NULL, a step size is taken to be stepSizeAdj/mean(Li) where Li is a Lipschitz constant for ith sample
stepSizeAdjustment	
	A step size adjustment. By default, adjustment is 1 for GD and SGD, $1 / 8$ for SVRG and $1 / 16$ for SAG.
batchSize updateFrequency	A batch size. Default is 1.
	An update frequency of full gradient for method =="SVRG"
samplingProbabilities	
	sampling probabilities for each of samples for stochastic gradient-based optimization. if NULL, each sample is chosen proportionally to Li .
method	Optimization method. Default is Coordinate Descent. CD for Coordinate Descent, GD for Gradient Descent, SGD for Stochastic Gradient Descent, SVRG for Stochastic Variance Reduction Gradient, SAG for Stochastic Averaging Gradient.
trace	An option for saving intermediate quantities. All intermediate standardizedscale parameter estimates(trace=="param"), objective function values at each iteration(trace=="fVal"), or both(trace=="all") are saved in optResult. Since this is computationally very heavy, it should be only used for decently small-sized dataset and small maxit. A default is "none".

Value

coef A p by length(lambda) matrix of coefficients
std_coef A p by length(lambda) matrix of coefficients in a standardized scale
lambda The actual sequence of lambda values used.
nullDev Null deviance defined to be $2 *$ (logLik_sat -logLik_null)
deviance Deviance defined to be $2 *$ (logLik_sat $-\operatorname{logLik}($ model $)$)
optResult A list containing the result of the optimization. fValues, subGradients contain objective function values and subgradient vectors at each lambda value. If trace $=$ TRUE, corresponding intermediate quantities are saved as well.
iters Number of iterations(EM updates) if method $=$ "CD". Number of steps taken otherwise.

Examples

```
data("simulPU")
fit<-grpPUlasso(X=simulPU$X,z=simulPU$z,py1=simulPU$truePY1)
```

```
simulPU simulated PU data
```


Description

A simulated data for the illustration. Covariates x_{i} are drawn from $N\left(\mu, I_{5 \times 5}\right)$ or $N\left(-\mu, I_{5 \times 5}\right)$ with probability 0.5 . To make the first two variables active, $\mu=\left[\mu_{1}, \ldots, \mu_{2}, 0,0,0\right]^{T}, \theta=\left[\theta_{0}, \ldots, \theta_{2}, 0,0,0\right]^{T}$ and we set $\mu_{i}=1.5, \theta_{i} \sim \operatorname{Unif}[0.5,1]$ Responses y_{i} is simulated via $P_{\theta}(y=1 \mid x)=1 / \exp \left(-\theta^{T} x\right)$. 1000 observations are sampled from the sub-population of $\operatorname{positives}(\mathrm{y}=1)$ and labeled, and another 1000 observations are sampled from the original population and unlabeled.

Usage

simulPU

Format

A list containing model matrix X, true response y, labeled/unlabeled response vector z, and a true positive probability truePY1.

Index

*Topic Group
PUlasso-package, 2
*Topic Lasso,
PUlasso-package, 2
*Topic Lasso
PUlasso-package, 2
*Topic PUlearning,
PUlasso-package, 2
*Topic datasets
simulPU, 7
cv.grpPUlasso, 3
deviances, 5
grpPUlasso, 5
PUlasso (PUlasso-package), 2
PUlasso-package, 2
simulPU, 7

