Package 'PTAk'

February 6, 2019
Version 1.3-34
Date 2019-02-06
Title Principal Tensor Analysis on k Modes
Author Leibovici \& Sabatier (1998) <doi:10.1016/S0024-3795(97)81516-
9>, Didier G. Leibovici (2010)doi:10.18637/jss.v034.i10
Maintainer Didier G. Leibovici GeotRYcs@gmail.com
Depends tensor
Imports graphics, stats, utils
Description A multiway method to decompose a tensor (array) of any order, as a generalisation of SVD also supporting non-identity metrics and penalisations. 2-way SVD with these extensions is also available. The package includes also some other multiway methods: PCAn (Tucker-n) and PARAFAC/CANDECOMP with these extensions.

License GPL (>=2)

URL http://c3s2i.free.fr/
NeedsCompilation no
Repository CRAN
Date/Publication 2019-02-06 16:13:22 UTC

R topics documented:

APSOLU3 2
APSOLUk 3
CANDPARA 5
CauRuimet 6
CONTRACTION 9
COS2-CTR 11
datasets 13
FCA2 14
FCAk 16
FCAmet 18
howtoPTAk 19
INITIA 20
PCAn 21
plot.PTAk 23
preprocessings 25
PROJOT 26
PTA3 28
PTAk 31
PTAk-internal 34
REBUILD 35
SINGVA 36
summary.PTAk 38
SVDgen 40
TENSELE 43
Index 45
APSOLU3 Associated 3-modes Principal Tensors of a 3-modes Principal Tensor

Description

Computes all the 2-modes solutions associated to the given Principal Tensor of the given tensor.

Usage

```
APSOLU3(X, solu,pt3=NULL,nbPT2=1,
                smoothing=FALSE, smoo=list(NA),
                        verbose=getOption("verbose"),file=NULL, ...)
```


Arguments

$X \quad$ a tensor (as an array) of order 3, if non-identity metrics are used X is a list with data as the array and met a list of metrics
solu a PTAk object
pt3 a number identifying in solu the Principal Tensor to use or the last (if NULL)
nbPT2
integer, if 1 all solutions will be computed otherwise at maximum nbPT2 solutions
smoothing see SVDgen
smoo see PTA3
verbose control printing
file output printed at the prompt if NULL, or printed in the given 'file'
any other arguments passed to SVDGen or other functions

Details

For each component of the identified Principal Tensor given in solu, an SVD of the contracted product of X and the component is done. This gives all the associated Principal Tensors which updates solu supposed to contain Principal Tensors of X.

Value

an updated PTAk object

Note

Usually (i.e. as in PTA3 and PTAk) the principal tensor used is the first Principal Tensor of X (and is the last updated in solu). If it is another Principal Tensor, the obtained associated solutions do not stricto sensu refer to the SVD-kmodes decomposition (because the orthogonality is defined in the whole tensor space not necessarily on each component space) but are still meaningful.

Author(s)

Didier G. Leibovici

References

Leibovici D and Sabatier R (1998) A Singular Value Decomposition of a k-ways array for a Principal Component Analysis of multi-way data, the PTA-k. Linear Algebra and its Applications, 269:307-329

See Also

PTA3, APSOLUk

APSOLUk

Associated k-modes Principal Tensors of a k-modes Principal Tensor

Description

Computes all the (k-1)-modes associated solutions to the given Principal Tensor of the given tensor. Calls recursively PTAk.

Usage

```
APSOLUk(X, solu,nbPT,nbPT2=1,
    smoothing=FALSE, smoo=list(NA),
    minpct=0.1,ptk=NULL,
                verbose=getOption("verbose"),file=NULL,
                        modesnam=NULL, ...)
```


Arguments

X	a tensor (as an array) of order k, if non-identity metrics are used X is a list with data as the array and met a list of metrics
solu	a PTAk object
nbPT	a number or a vector of dimension ($k-2$)
nbPT2	integer, if 0 no 2-modes solutions will be computed, 1 means all, >1 otherwise
smoothing	see SVDgen
smoo	see PTA3
minpct	numerical 0-100 to control of computation of future solutions at this level and below
ptk	a number identifying in solutions the Principal Tensor to use or the last (if NULL)
verbose	control printing
file	output printed at the prompt if NULL, or printed in the given 'file'
modesnam	character vector of the names of the modes, if NULL "mo 1" ..."mo k"
	any other arguments passed to PTAk or other functions

Details

For each component of the identified Principal Tensor given in solutions, a PTA-($k-1$)modes of the contracted product of X and the component is done. This gives all the associated Principal Tensors which updates solutions supposed to contain a Principal Tensors of X at the first place. For full description of arguments see PTAk.

Value

an updated PTAk object

Note

Usually (i.e. as in PTA3 and PTAk) the principal tensor used is the first Principal Tensor of X (and is the last updated in solutions). If it is another Principal Tensor, the obtained associated solutions do not stricto sensu refer to the SVD-kmodes decomposition (because the orthogonality is defined in the whole tensor space not necessarily on each component space) but are still meaningful. This function is usually called by PTAk but can be used on its own to carry on a PTAk analysis if x is the projected (of the original data) on the orthogonal of all the kmodes Principal Tensor. In other words the ptk rank-one tensor in solutions should be the first best rank-one tensor approximating X for this decomposition analysis to be called PTA-kmodes.

Author(s)

Didier G. Leibovici

References

Leibovici D and Sabatier R (1998) A Singular Value Decomposition of a k-ways array for a Principal Component Analysis of multi-way data, the PTA-k. Linear Algebra and its Applications, 269:307-329.

See Also
PTAk
CANDPARA

Description

Performs the identical models known as PARAFAC or CANDECOMP model.

Usage

```
    CANDPARA(X, dim=3, test=1E-8,Maxiter=1000,
                    smoothing=FALSE, smoo=list(NA),
                        verbose=getOption("verbose"),file=NULL,
                        modesnam=NULL,addedcomment="")
```


Arguments

$X \quad$ a tensor (as an array) of order k, if non-identity metrics are used X is a list with data as the array and met a list of metrics.
dim a number specifying the number of rank-one tensors
test control of convergence
Maxiter maximum number of iterations allowed for convergence
smoothing see SVDgen
smoo see PTA3
verbose control printing
file output printed at the prompt if NULL, or printed in the given 'file'
modesnam character vector of the names of the modes, if NULL "mo 1" ..."mo k"
addedcomment character string printed after the title of the analysis

Details

Looking for the best rank-one tensor approximation (LS) the three methods described in the package are equivalent. If the number of tensors looked for is greater then one the methods differs: PTA-kmodes will look for best approximation according to the orthogonal rank (i.e. the rankone tensors are orthogonal), PCA-kmodes will look for best approximation according to the space ranks (i.e. the ranks of all (simple) bilinear forms, that is the number of components in each space), PARAFAC/CANDECOMP will look for best approximation according to the rank (i.e. the rank-one tensors are not necessarily orthogonal). For sake of comparisons the PARAFAC/CANDECOMP method and the PCA-nmodes are also in the package but complete functionnality of the use these methods and more complete packages may be checked at the www site quoted below.

Value

a CANDPARA (inherits from PTAk) object

Note

The use of metrics (diagonal or not) and smoothing extends flexibility of analysis. This program runs slow! A PARAFAC orthogonal can be done with PTAk looking only for k-modes Principal Tensors i.e. with the options nbPT=c (rep $(0, \mathrm{k}-2), \mathrm{dim}), \mathrm{nbPT} 2=0$. It is identical to look in any PTAK decomposition only for the k modes solution but obviously with unecessary computations.

Author(s)

Didier G. Leibovici

References

Caroll J.D and Chang J.J (1970) Analysis of individual differences in multidimensional scaling via n-way generalization of 'Eckart-Young' decomposition. Psychometrika 35,283-319.

Harshman R.A (1970) Foundations of the PARAFAC procedure: models and conditions for 'an explanatory' multi-mode factor analysis. UCLA Working Papers in Phonetics, 16,1-84.

Kroonenberg P (1983) Three-mode Principal Component Analysis: Theory and Applications. DSWO press. Leiden.(related references in http://three-mode.leidenuniv.nl)
Leibovici D and Sabatier R (1998) A Singular Value Decomposition of a k-ways array for a Principal Component Analysis of multi-way data, the PTA-k. Linear Algebra and its Applications, 269:307-329.
CauRuimet Robust estimation of within group varinace-covariance

Description

Gives a robust estimate of an unknown within group covariance, aiming either to look for dense groups or to sparse groups (outliers) according to local variance and weighting function choice.

Usage

```
CauRuimet(Z,ker=1,m0=1,withingroup=TRUE,
    loc=substitute(apply(Z,2,mean,trim=.1)),matrixmethod=TRUE, Nrandom=3000)
```


Arguments

Z
ker either numerical or a function: if numerical the weighting function is $e^{(-k e r t)}$, otherwise ker=function(t$)\{$ return(expression) $\}$ is a positive decreasing function.
m0
is a graph of neighbourhood or another proximity matrix, the hadamard product of the proximities will be operated
withingroup logical, if TRUE the aim is to give a robust estimate for dense groups, if FALSE the aim is to give a robust estimate for outliers
loc
matrixmethod if TRUE (only with withingroup) uses some matrix computation rather than double looping as suggests the formula below

Nrandom if Nrandom < dim(Z)[1]) uses only a Nrandom sample from rows of Z and m0 if applicable.

Details

When withingroup is TRUE, local(defined by the weighting) variance formula is returned, aiming at finding dense groups:

$$
W_{l}=\frac{\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} m 0_{i j} \operatorname{ker}\left(d_{S^{-}}^{2}\left(Z_{i}, Z_{j}\right)\right)\left(Z_{i}-Z_{j}\right)^{\prime}\left(Z_{i}-Z_{j}\right)}{\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} m 0_{i j} \operatorname{ker}\left(d_{S^{-}}^{2}\left(Z_{i}, Z_{j}\right)\right)}
$$

where $d_{S^{-}}^{2}(.,$.$) is the squared euclidian distance with S^{-}$the inverse of a robust sample covariance (i.e. using loc instead of the mean) ; if FALSE robust Total weighted variance or if m0 not 1 Global weighted variance, is returned:

$$
\begin{gathered}
W_{o}=\frac{\sum_{i=1}^{n} \operatorname{ker}\left(d_{S^{-}}^{2}\left(Z_{i}, \tilde{Z}\right)\right)\left(Z_{i}-\tilde{Z}\right)^{\prime}\left(Z_{i}-\tilde{Z}\right)}{\sum_{i=1}^{n} \operatorname{ker}\left(d_{S^{-}}^{2}\left(Z_{i}, \tilde{Z}\right)\right)} \\
W_{g}=\frac{\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} m 0_{i j} \cdot \operatorname{ker}\left(d_{S^{-}}^{2}\left(Z_{i}, Z_{j}\right)\right)\left(Z_{i}-\tilde{Z}\right)^{\prime}\left(Z_{j}-\tilde{Z}\right)}{\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} m 0_{i j} \operatorname{ker}\left(d_{S^{-}}^{2}\left(Z_{i}, Z_{j}\right)\right)}
\end{gathered}
$$

where \tilde{Z} is the vector loc.
If m 0 is a graph of neighbourhood and ker is the function returning 1 (no proximity due to distance is used) the function will return (when withingroup=TRUE) the local variance-covariance matrix as define in Lebart(1969).

Value

a matrix

Note

As mentioned by Caussinus and Ruiz a good strategy to reveal dense groups with generalised PCA would be to reveal outliers first using the metric W_{o}^{-1} and remove them before using the metric W_{l}^{-1}. Based on theoretical considerations they recommand for the choice of ker, with the decreasing function $e^{(-k e r t)}$: a lower bound of 1 if withingroup and something fairly small say in the interval [0.05;0.3] otherwise.

Author(s)

Didier G. Leibovici

References

Caussinus, H and Ruiz, A (1990) Interesting Projections of Multidimensional Data by Means of Generalized Principal Components Analysis. COMPSTAT90, Physica-Verlag, Heidelberg,121-126.
Faraj, A (1994) Interpretation tools for Generalized Discriminant Analysis.In: New Approches in Classification and Data Analysis, Springer-Verlag, 286-291, Heidelberg.
Lebart, L (1969) Analyse statistique de la contiguit<e9>e.Publication de l'Institut de Statistiques Universitaire de Paris, XVIII,81-112.

Leibovici D (2008) Spatio-temporal Multiway Decomposition using Principal Tensor Analysis on k-modes: the R package PTAk . to be submitted soon at Journal of Statisticcal Software.

See Also

SVDgen

Examples

```
data(iris)
    iris2 <- as.matrix(iris[,1:4])
    dimnames(iris2)[[1]] <- as.character(iris[,5])
D2 <- CauRuimet(iris2,ker=1,withingroup=TRUE)
D2 <- Powmat(D2,(-1))
iris2 <- sweep(iris2,2,apply(iris2,2,mean))
res <- SVDgen(iris2,D2=D2,D1=1)
plot(res,nb1=1,nb2=2, cex=0.5)
summary(res,testvar=0)
# the same in a demo function
# source(paste(R.home(),"/library/PTAk/demo/CauRuimet.R", sep=""))
# demo.CauRuimet(ker=4,withingroup=TRUE,openX11s=FALSE)
# demo.Cauruimet(ker=0.15,withingroup=FALSE,openX11s=FALSE)
```


CONTRACTION Contraction of two tensors

Description

Computes the contraction product of two tensors as a generalisation of matrix product.

Usage

CONTRACTION(X,z, Xwiz=NULL,zwiX=NULL, rezwiX=FALSE, usetensor=TRUE)
CONTRACTION.list(X,zlist, moins=1, zwiX=NULL, usetensor=TRUE, withapply=FALSE)

Arguments

X
z

Xwiz

zwiX
moins
rezwiX
usetensor if TRUE uses tensor (add-on package)
withapply if TRUE (only for vectors in zlist uses apply

Details

Like two matrices contract according to the appropriate dimensions (columns matching rows) when one performs a matrix product, this operation does pretty much the same thing for tensors(array) and specified contraction dimensions given by Xwiz and zwiX which should match. The function is actually written like: transforms both tensors as matrices with the "matching tensor product" of their contraction dimensions in columns (for higher order tensor) and rows (the other one), performs the matrix product and rebuild the result as a tensor(array). Without using tensor, if Xwiz and/or zwiX are not specified the functions tries to match all z dimensions onto the dimensions of X where X is the higher order tensor (if it is not the case in the arguments the function swaps them).

Value

A tensor of dimension $c(\operatorname{dim}(X)[-X w i z], \operatorname{dim}(z)[-z w i X])$ if X has got a bigger order than z.

Note

This operation generalises the matrix product to the contracted product of any two tensors(arrays), and should theoretically perform the tensor product if no matching (no contraction) but has not been implemented. I recently put the option of using tensor which does exactly the same thing faster as well as it is from C. When using tensor if Xwiz or zwiX are NULL they are replaced by the full possibilities.

Author(s)

Didier G. Leibovici

References

Leibovici D and Sabatier R (1998) A Singular Value Decomposition of a k-ways array for a Principal Component Analysis of multi-way data, the PTA-k. Linear Algebra and its Applications, 269:307-329.

Schwartz L (1975) Les Tenseurs. Herman, Paris.

See Also

PTAk, APSOLUk

Examples

```
library(tensor)
    z <- array(1:12,c(2,3,2))
    X <- array(1:48,c(3,4,2,2))
    Xcz <- CONTRACTION(X,z,Xwiz=c(1, 3,4),zwiX=c(2,3,1))
    dim(Xcz) # 4
    Xcz1 <- CONTRACTION(X,z,Xwiz=c(3,4),zwiX=c(1,3))
    dim(Xcz1) # 3,4,3
    Xcz2 <- CONTRACTION(X,z,Xwiz=c(3,4),zwiX=c(3,1))
    Xcz1[,,1]
    Xcz2[,,1]
    #######
    sval0 <- list(list(v=c(1,2,3,4)),list(v=rep(1,3)),list(v=c(1,3)))
    tew <- array(1:24,c(4,3,2))
        CONTRACTION.list(tew, sval0,moins=1)
            #this is equivalent to the following which may be too expensive for big datasets
        CONTRACTION(tew,TENSELE(sval0,moins=1),Xwiz=c(2,3))
    ##
        CONTRACTION.list(tew,sval0,moins=c(1,2)) #must be equal to
        CONTRACTION(tew,sval0[[3]]$v,Xwiz=3)
```


Description

After a FCA2, a SVDgen, a FCAk or a PTAk computes the traditional guides for interpretations used in PCA and correspondence analysis: COS2 or the percentage of variability rebuilt by the component and CTR or the amount of contribution towards that component.

Usage

COS2 (solu, mod=1, solnbs=2:4)
CTR (solu, mod=1, solnbs=1:4)

Arguments

solu an object inheriting from class PTAk, representing a generalised singular value decomposition
$\bmod \quad$ an integer representing the mode number entry, 1 is row, 2 columns, ...
solnbs a vector of integers representing the tensor numbers in the listing summary

Details

Classical measures helping to interpret the plots in PCA, FCA and in PTAk as well. The sum of the COS2 across all the components needed to rebuild fully the tensor analysed) would make 1000 and the sum pf the CTR across the entry mode would be 1000 .

Value

a matrix whose columns are the COS2 or CTR as per thousands (\% $\%$) for the mode considered

Author(s)

Didier G. Leibovici

References

Escoufier Y (1985) L'Analyse des correspondances : ses propriétés et ses extensions. ISI 45th session Amsterdam.

Leibovici $\mathrm{D}(1993)$ Facteurs à Mesures Répétées et Analyses Factorielles : applications à un suivi Epidémiologique. Université de Montpellier II. PhD Thesis in Mathématiques et Applications (Biostatistiques).
Leibovici DG (2010) Spatio-temporal Multiway Decomposition using Principal Tensor Analysis on k-modes:the R package PTAk. Journal of Statistical Software, 34(10), 1-34. http://www. jstatsoft.org/v34/i10/

See Also

PTAk, FCA2, FCAk, summary. FCAk, plot. PTAk

Examples

```
    data(crimerate)
    cri.FCA2 <- FCA2(crimerate)
        summary(cri.FCA2)
        plot(cri.FCA2, mod = c(1,2), nb1 = 2, nb2 = 3) # unscaled
        plot(cri.FCA2, mod = c(1,2), nb1 = 2, nb2 = 3, coefi =
            list(c(0.130787,0.130787),c(0.104359,0.104359)) ) # symmetric-map biplot
        CTR(cri.FCA2, mod = 1, solnbs = 2:4)
        CTR(cri.FCA2, mod = 2, solnbs = 2:4)
    COS2(cri.FCA2, mod = 2, solnbs = 2:4)
    ##### useful fonctions
    ##selecting and sorting out dimensions positive and negative sides
    "ctrcos2" <-function(Ta, mod=1, dim=2, NegPos=TRUE, select=c("avg",12,"none"),nbdig=2,
    cos2min=333){
dim=c(dim, dim+1)
ctr=CTR(Ta,mod=mod,solnbs=dim); cos2=COS2(Ta,mod=mod, solnbs=dim)
val=round(Ta[[mod]]$v[dim,][1,],digits=nbdig)
oo=order(ctr[,1],decreasing=TRUE)
if(NegPos)oo=order(val,decreasing=TRUE)
out=cbind(ctr[oo,1],\operatorname{cos2[oo,1],val[oo])}
colnames(out)=c("ctr","cos2",paste0("dim",dim[1]))
if(select[1]=="none") sout=0
if(select[1]=="avg") sout= 1000/length(val)
if(is.numeric(select[1])) sout=select[1]
return(out[ out[,1]>=sout | out[,2]>=cos2min, ])
}#ctrcos2
## plot ctr cos2
"plotctrcos2"<-function(sol,mod12=c(1,2),dim=2, ratio2avg=TRUE, col=c(1,2),pch=c("-","o"),
posi=c(2,3),reposi=TRUE, cos2min=333,select="avg",\ldots.){
### ctrcos2 ini Ta,mod=1,dim=2, NegPos=TRUE, select=c("avg",12,"none"), nbdig=2, cos2min=333
pre<-function(mod=1,soldim=2, ...){
diim=length(sol[[mod]]$v[1,])
ctrov= ctrcos2(sol,dim= soldim,mod=mod,...)
x=ctrov[,1]*sign(ctrov[,3])
if(ratio2avg)x=round(x/(1000/diim),2)
y=ctrov[,2]
lab=rownames(ctrov)
len=dim(ctrov)[1]
return(list("x"=x,"y"=y,"len"=len,"lab"=lab))
}
if(length(col)<length(mod12))col=rep(col,length(mod12))
if(length(pch)<length(mod12))pch=rep(pch,length(mod12))
x=NULL;y=NULL;coul=NULL;pchl=NULL;lab=NULL;poslab=NULL
for(m in mod12){
prep=pre(mod=m, soldim=dim,...)
x=c(x,prep$x);y=c(y,prep$y);
    coul=c(coul,rep(col[m],prep$len));pchl=c(pchl,rep(pch[m],prep$len))
```

```
repos=rep(posi[m],prep$len); if(reposi)repos=sample(1:4,prep$len, replace=TRUE)
lab=c(lab,prep$lab);poslab=c(poslab,repos)
}
summsol=summary(sol)
if(match("FCA2" ,class(sol),nomatch=0)>0) xlabe=paste0( "Global pct ",
round(summsol[dim,4],2), " FCA pct",round(summsol[dim,5],2)) else
xlabe=paste0( " local pxt",round(summsol[dim,4],2), " Global pct", round(summsol[dim,5],2))
dimi=paste0("dim",dim)
if(ratio2avg)ctrlab="CTR (signed ctr /(uniform ctr))" else ctrlab="CTR (signed)"
if(!is.null(cos2min))cos2lab=paste("COS2 (> ",cos2min,")")else cos2lab= "COS2"
plot(x,y,xlab=ctrlab, main=paste(dimi, xlabe ),ylab= cos2lab,col=coul,
    pch=pchl,ylim=c(min}(y),1050),xlim=c(min(x-0.5),\operatorname{max}(x+0.5))
abline(v=0, col=4,lty=2)
abline(v=1, col=3,lty=2)
abline(v=-1,col=3,lty=2)
text(x,y,lab,pos=poslab, col=coul)
return(cbind(x,y,lab,coul,pchl,poslab))
}#plotctrcos2
ctrcos2(cri.FCA2,mod=1)
ctrcos2(cri.FCA2,mod=2)
    plotctrcos2(cri.FCA2)
```

 datasets data used for demo in SVDgen, PTA3

Description

The crimerate dataset provides crime rates per 100,000 people in seven categories for each of the fifty states (USA) in 1977. The timage12 dataset is an image from fMRI analysis (one brain slice), it is a t-statistic image over 12 subjects of the activation (verbal) parameter. The Zone_climTUN is an object of class Map representing montly (12) measurements in Tunisia of 10 climatic indicators. The grid of 2599 cells was stored previously as a shapefile and read using read. shape.

Usage

data(crimerate)
data(timage12)
data(Zone_climTUN)

Format

crimerate is a matrix of 50×7 for the crimerate data.
timage 12 is a matrix 91×109 for timage 12 data.

Source

crimerate comes from SAS. The timage 12 comes from FMRIB center, University of Oxford. The Zone_climTUN comes from WorldCLIM database 2000 see references along with description of the indicators in Leibovici et al.(2007).

References

Leibovici D, Quillevere G, Desconnets JC (2007). A Method to Classify Ecoclimatic Arid and Semi-Arid Zones in Circum-Saharan Africa Using Monthly Dynamics of Multiple Indicators. IEEE Transactions on Geoscience and Remote Sensing, 45(12), 4000-4007.

```
FCA2
Correspondence Analysis for 2-way tables
```


Description

Performs a particular SVDgen data as a ratio Observed/Expected under complete independence with metrics as margins of the contingency table (in frequencies).

Usage

```
FCA2(X, nbdim =NULL, minpct = 0.01, smoothing = FALSE,
            smoo = rep(list(function(u) ksmooth(1:length(u), u, kernel = "normal",
            bandwidth = 3, x.points = (1:length(u)))$y), length(dim(X))),
        verbose = getOption("verbose"), file = NULL, modesnam = NULL,
    addedcomment = "", chi2 = FALSE, E = NULL, ...)
```


Arguments

X	a matrix table of positive values
nbdim	a number of dimension to retain, if NULL the default value of maximum possible number of dimensions is kept
minpct	numerical 0-100 to control of computation of future solutions at this level and below see SVDgen
smoothing	see SVDgen
smoo	control printing
ferbose	output printed at the prompt if NULL, or printed in the given 'file'
modesnam	character vector of the names of the modes, if NULL "mo 1" ..."mo k"
addedcomment	character string printed if printt after the title of the analysis
chi2	print the chi2 information when computing margins in FCAmet if not NULL is a matrix with the same dimensions as X with the same margins
E	any other arguments passed to SVDGen or other functions
. .	

Details

Gives the SVD-2modes decomposition of the $1+\chi^{2} / N$ of the contingency table of full count $N=$ $\sum X_{i j}$, i.e. complete independence + lack of independence (including marginal independences) as shown for example in Lancaster(1951)(see reference in Leibovici(1993 or 2000)). Noting $P=$ X / N, a SVD of the (3)-uple is done, that is :

$$
\left(\left(D_{I}^{-1} \otimes D_{J}^{-1}\right) . . P, \quad D_{I}, \quad D_{J}\right)
$$

where the metrics are diagonals of the corresponding margins. For full description of arguments see PTAk. If E is not NULL an FCAk-modes relatively to a model is done (see Escoufier(1985) and therin reference Escofier(1984) for a 2-way derivation), e.g. for a three way contingency table $k=3$ the 4-tuple data and metrics is:

$$
\left(\left(D_{I}^{-1} \otimes D_{J}^{-1} \otimes D_{K}^{-1}\right)(P-E), \quad D_{I}, \quad D_{J}, \quad D_{K}\right)
$$

If E was the complete independence (product of the margins) then this would give an AFCk but without looking at the marginal dependencies (i.e. for a three way table no two-ways lack of independence are looked for).

Value

a FCA2 (inherits FCAk and PTAk) object

Author(s)

Didier G. Leibovici

References

Escoufier Y (1985) L'Analyse des correspondances : ses propriétés et ses extensions. ISI 45th session Amsterdam.
Leibovici $\mathrm{D}(1993)$ Facteurs à Mesures Répétées et Analyses Factorielles : applications à un suivi Epidémiologique. Université de Montpellier II. PhD Thesis in Mathématiques et Applications (Biostatistiques).
Leibovici D (2000) Multiway Multidimensional Analysis for Pharmaco-EEG Studies.http: //www. fmrib.ox.ac.uk/analysis/techrep/tr00dl2/tr00dl2.pdf

Leibovici DG (2010) Spatio-temporal Multiway Decomposition using Principal Tensor Analysis on k-modes:the R package PTAk. Journal of Statistical Software, 34(10), 1-34. http://www. jstatsoft.org/v34/i10/

See Also

PTAk, FCAmet, summary. FCAk

Examples

```
data(crimerate)
cri.FCA2 <- FCA2(crimerate)
summary(cri.FCA2)
```

```
    plot(cri.FCA2, mod = c(1,2), nb1 = 2, nb2 = 3) # unscaled
plot(cri.FCA2, mod = c(1,2), nb1 = 2, nb2 = 3, coefi =
    list(c(0.130787,0.130787),c(0.104359,0.104359)) )# symmetric-map biplot
CTR(cri.FCA2, mod = 1, solnbs = 2:4)
CTR(cri.FCA2, mod = 2, solnbs = 2:4)
COS2(cri.FCA2, mod = 2, solnbs = 2:4)
```


Description

Performs a particular PTAk data as a ratio Observed/Expected under complete independence with metrics as margins of the multiple contingency table (in frequencies).

```
Usage
FCAk(X, nbPT=3, nbPT2=1,minpct=0.01,
            smoothing=FALSE, smoo=rep(list(
                        function(u)ksmooth(1:length(u),u,kernel="normal",
                        bandwidth=3,x.points=(1:length(u)))$y),length(dim(X))),
                verbose=getOption("verbose"),file=NULL,
                modesnam=NULL, addedcomment="", chi2=TRUE,E=NULL, ...)
```


Arguments

X	a multiple contingency table (array) of order k
nbPT	a number or a vector of dimension $(k-2)$
nbPT2	if 0 no 2-modes solutions will be computed, $1=$ all, >1 otherwise
minpct	numerical $0-100$ to control of computation of future solutions at this level and below
smoothing	see SVDgen
smoo	see SVDgen
verbose	control printing
file	output printed at the prompt if NULL, or printed in the given 'file',
modesnam	character vector of the names of the modes, if NULL "mo 1" ..."mo k"
addedcomment	character string printed if printt after the title of the analysis
chi2	print the chi2 information when computing margins in FCAmet
E	if not NULL is an array with the same dimensions as X
...	any other arguments passed to SVDGen or other functions

Details

Gives the SVD-kmodes decomposition of the $1+\chi^{2} / N$ of the multiple contingency table of full count $N=\sum X_{i j k \ldots,}$, i.e. complete independence + lack of independence (including marginal independences) as shown for example in Lancaster(1951)(see reference in Leibovici(2000)). Noting $P=X / N$, a PTAk of the $(k+1)$-uple is done, e.g. for a three way contingency table $k=3$ the 4-uple data and metrics is:

$$
\left(\left(D_{I}^{-1} \otimes D_{J}^{-1} \otimes D_{K}^{-1}\right) P, \quad D_{I}, \quad D_{J}, \quad D_{K}\right)
$$

where the metrics are diagonals of the corresponding margins. For full description of arguments see PTAk. If E is not NULL an FCAk-modes relatively to a model is done (see Escoufier(1985) and therin reference Escofier(1984) for a 2-way derivation), e.g. for a three way contingency table $k=3$ the 4-tuple data and metrics is:

$$
\left(\left(D_{I}^{-1} \otimes D_{J}^{-1} \otimes D_{K}^{-1}\right)(P-E), \quad D_{I}, \quad D_{J}, \quad D_{K}\right)
$$

If E was the complete independence (product of the margins) then this would give an AFCk but without looking at the marginal dependencies (i.e. for a three way table no two-ways lack of independence are looked for).

Value

a FCAk (inherits PTAk) object

Author(s)

Didier G. Leibovici

References

Escoufier Y (1985) L'Analyse des correspondances : ses propri<e9>t<e9>s et ses extensions. ISI 45th session Amsterdam.
Leibovici $\mathrm{D}(1993)$ Facteurs $<e 0>$ Mesures $R<e 9>p<e 9>t<e 9>e s$ et Analyses Factorielles : applications $<e 0>$ un suivi $<e 9>$ pid $<e 9>$ miologique. Universit<e9> de Montpellier II. PhD Thesis in Math<e9>matiques et Applications (Biostatistiques).
Leibovici D (2000) Multiway Multidimensional Analysis for Pharmaco-EEG Studies.http: //www. fmrib.ox.ac.uk/analysis/techrep/tr00dl2/tr00dl2.pdf
Leibovici D (2008) Spatio-temporal Multiway Decomposition using Principal Tensor Analysis on k-modes:the R package PTAk . to be submitted soon at Journal of Statisticcal Software.

See Also

PTAk, FCAmet, summary. FCAk

Examples

\# try the demo
\# demo.FCAk()

FCAmet \quad Tool used in Generalisation of Correspondence Analysis for k-way tables

Description

Computes the ratio Observed/Expected under complete independence with margins of the multiple contingency table (in frequencies) and gives chi2 statistic of lack of complete independence.

Usage

FCAmet (X, chi2=FALSE, E=NULL, No0margins=TRUE)

Arguments

$X \quad$ a multiple contingency table (array) of order k
chi2 if TRUE prints the chi2 statistic information
E if not NULL represent a model which would be used for an FCAk relatively to a model

No0margins if TRUE, prevents zero margins in replacing cells involved by the min of the non-zero margins /nb of zero cells

Value

a list with
data an array (X/count (-E))/Indepen where Indepen is the array obtained from he products of the margins
met a list wherein each entry is the vector of the corresponding margins i.e. apply (X, i, sum $) /$ count count is the total sum $\operatorname{sum}(X)$.

Note

The statistics and metrics do not depend on E. The statistic given measure only the lack of independence.

Author(s)

Didier G. Leibovici

See Also

FCAk

Description

A mini guide to handle PTAk model decomposition

Usage

howtoPTAk()

Details

The PTAk decomposition aims at building an approximation of a given multiway data, represented as a tensor, based on a variance criterion. This approximation is given by a set of rank one tensors, orthogonal to each other, in a nested algorithm process and so controlling the level of approximation by the amount of variability extracted and represented by the sum of squares of the singular values (associated to the rank one tensors). In that respect it offers a way of generalising PCA to tensors of order greater than 2 .

The reference in JSS provides details about preparing a dataset and running a general PTAk and particularities for spatio-temporal data.

The license is GPL-3, support can be provided via http://c3s2i.free.fr, donations via Paypal to c3s2i@free.fr are welcome.

Author(s)

Didier G. Leibovici

References

Leibovici D and Sabatier R (1998) A Singular Value Decomposition of a k-ways array for a Principal Component Analysis of multi-way data, the PTA-k. Linear Algebra and its Applications, 269:307-329 Leibovici D.G. (accepted in 2009) Spatio-temporal Multiway Decompositions using Principal Tensor Analysis on k-modes: the R-package PTAk. Journal of Statistical Software, vol x issue x , http://www.jstatsoft.org

See Also
PTA3, PTAk ,FCAk

INITIA

Initialisation used in SINGVA

Description

Gives the first Tucker1 components of a given tensor.

Usage

INITIA(X, modesnam=NULL, method="svds", dim=1, . . .)

Arguments

X	a tensor (as an array) of order k
modesnam	a character vector of the names of the modes
method	uses either the inbuilt SVD method="svd" or a power algorithm giving only the first method="Presvd" or any other function given applying to the column space of a matrix and returning a list with v (in columns vectors as in svd) and d. The method method="svds" performs alike method="svd" but on a sum of tables instead of the Tucker1 approach.
dim	default 1 in each space otherwise specify the number of dimensions e.g. $c(2,3 \ldots, 2)$ (with "Presvd" dim is obviously 1)
\ldots	extra arguments of the method method: the first argument is fixed (see details).

Details

Computes the first (or dim) right singular vector (or other summaries) for every representation of the tensor as a matrix with $\operatorname{dim}(X)[i]$ columns, $i=1 \ldots k$.

Value

a list (of length k) of lists with arguments:

v	the singular vectors in rows
modesnam	a character object naming the mode, "m i" otherwise
n	labels of mode i entries as given in dimnames of the data, can be NULL
d	the corresponding first singular values

Note

The collection these eigenvectors, is known as the Tucker1 solution or initialisation related to PCA3modes or PCA-nmodes models. If a function is given it may include dim as argument.

Author(s)

Didier G. Leibovici

References

Kroonenberg P.M (1983) Three-mode Principal Component Analysis: Theory and Applications. DSWO Press, Leiden.

Leibovici D and Sabatier R (1998) A Singular Value Decomposition of a k-ways array for a Principal Component Analysis of multi-way data, the PTA-k. Linear Algebra and its Applications, 269:307-329.

See Also

SINGVA, PTAk
PCAn Principal Component Analysis on n modes

Description

Performs the Tuckern model using a space version of RPVSCC (SINGVA).

Usage

```
PCAn(X, dim=c(2, 2, 2, 3), test=1E-12,Maxiter=400,
smoothing=FALSE,smoo=list(NA),
    verbose=getOption("verbose"),file=NULL,
            modesnam=NULL,addedcomment="")
```


Arguments

X	a tensor (as an array) of order k, if non-identity metrics are used X is a list with data as the array and met a list of metrics
dim	a vector of numbers specifying the dimensions in each space test control of convergence
maxiter maximum number of iterations allowed for convergence	
smoo	see SVDgen
verbose	see PTA3
file	control printing
modesnam	character vector of the names of the modes, if NULL "mo $1 " . . . " m o ~ k " ~$
addedcomment	character string printed after the title of the analysis

Details

Looking for the best rank-one tensor approximation (LS) the three methods described in the package are equivalent. If the number of tensors looked for is greater then one the methods differs: PTA-kmodes will "look" for "best" approximation according to the orthogonal rank (i.e. the rankone tensors are orthogonal), PCA-kmodes will look for best approximation according to the space ranks (i.e. the rank of every bilinear form, that is the number of components in each space), PARAFAC/CANDECOMP will look for best approximation according to the rank (i.e. the rank-one tensors are not necessarily orthogonal). For the sake of comparisons the PARAFAC/CANDECOMP method and the PCA-nmodes are also in the package but complete functionnality of the use these methods and more complete packages may be fetched at the www site quoted below.
Recent work from Tamara G Kolda showed on an example that orthogonal rank decompositions are not necesseraly nested. This makes PTA-kmodes a model with nested decompositions not giving the exact orthogonal rank. So PTA-kmodes will look for best approximation according to orthogonal tensors in a nested approximmation process.

Value

a PCAn (inherits PTAk) object

Note

The use of metrics (diagonal or not) and smoothing extend flexibility of analysis.

Author(s)

Didier G. Leibovici

References

Caroll J.D and Chang J.J (1970) Analysis of individual differences in multidimensional scaling via n-way generalization of "Eckart-Young" decomposition. Psychometrika 35,283-319.

Harshman R.A (1970) Foundations of the PARAFAC procedure: models and conditions for "an explanatory" multi-mode factor analysis. UCLA Working Papers in Phonetics, 16,1-84.

Kroonenberg P (1983) Three-mode Principal Component Analysis: Theory and Applications. DSWO press. Leiden.(related references in http://three-mode.leidenuniv.nl/)

Leibovici D and Sabatier R (1998) A Singular Value Decomposition of a k-ways array for a Principal Component Analysis of multi-way data, the PTA-k. Linear Algebra and its Applications, 269:307-329.

Kolda T.G (2003) A Counterexample to the Possibility of an Extension of the Eckart-Young LowRank Approximation Theorem for the Orthogonal Rank Tensor Decomposition. SIAM J. Matrix Analysis, 24(2):763-767, Jan. 2003.

Description

Screeplot of singular values or superposed plot of modes for one or two components (1 dimensional scatterplot with spread labels or scatterplot on two dimensions).

Usage

```
\#\# S3 method for class 'PTAk'
plot(x, labels = TRUE, mod = 1, nb1 = 1, nb2 = NULL,
    coefi = list(NULL, NULL), xylab = TRUE, ppch = (1:length(solution)),
    lengthlabels \(=2\), scree \(=\) FALSE, ordered \(=\) TRUE,
        nbvs \(=40\), RiskJack \(=\) NULL, method \(=" "\),ZoomInOut=NULL, Zlabels=NULL, Zcol=NULL,
        poslab=c \((2,1,3,3), \ldots)\)
RiskJackplot(x, nbvs = 1:20, mod = NULL, max = NULL, rescaled=TRUE, ...)
```


Arguments

x
labels
mod
nb1 number identifying the Principal Tensor to display on the vertical axe, can be checked using summary. PTAk
nb2 as nb1 to be displayed on the horizontal axe, if NULL the horizontal axe will be used as Index (see plot.default)
coefi coefficients to multiply components for all modes (not just the one in mod) for rescaling or changing signs purposes; each element of the list correspond to nb1 and nb 2 and are vectors of dimentions the tensor order
xylab logical to display axes labels
ppch a vector of length at least length(mod) used for pch=
lengthlabels a number or a vector of numbers of characters in labels to be used for display
scree logical to display a screeplot of squared singular values as percent of total variation
ordered logical used when displaying the screeplot with sorted values (TRUE) or the order is given by output listing from summary. PTAk
nbvs a maximum number of singular values to display on the screeplot or a vector of ranks
is the number of singular values to be considered as giving the perfect fit, NULL is the max possible in x

rescaled	boolean to rescale the y axis to 0-100
RiskJack	if not NULL is a integer, scree is TRUE and ordered is TRUE, plots on top of the scree plot a Risk plot with nbvs $=1$:RiskJack. It is possible to use directly the function RiskJackplot: the default maximum dimension (argument max) is length(solution[[k]][["d"]]).
method	default is "", a value "FCA" is to be used only if solution is after an FCA with SVDgen
ZoomInOut	list used as [[1]] for xlim and [[2]] for ylim in xy-plots instead of max and min range
Zlabels	used as labels instead of $x[[\bmod]] \$ n$, it is a list with the same length as all modes. For example on 3 modes changing the labels of the second mode only will have to set Zlabels=list(NULL, rep("a", length(x[[2]]\$n)), NULL)
Zcol	list of vectors of colours for Zlabels
poslab	integer or vector for 'pos' parameter, position of labels
	plot arguments can be passed (except xlim, ylim, ylab, pch, xaxt for component plot, and xlab, ylab for screeplot). For example to have normed plot one can use asp=1

Details

Plot components of one or two Principal Tensors, modes are superposed if more than one is asked, or gives a screeplot. As it is using plot. default at some point some added features can be used in the ... part, especially xlab= may be useful when nb2=NULL. Plots are superposed as they correspond to the same Principal Tensor and so this gives insight to interpretation of it, but careful is recommended as only overall interpretation, once the Principal Tensor has been rebuilt mentally (i.e. product of signs ...) to work out oppositions or associations. The risk plot on top of a screeplot is an approximation of the Jacknife estimate of the MSE in the choice of number of dimensions (see Besse et al.(1997)).

Note

This function is used all for FCAk, and CANDPARA, PCAn objjects notheless for this last object other interesting plots known as jointplots have not been implemented.

Author(s)

Didier G. Leibovici

References

Besse, P Cardot, H and Ferraty, F (1997) Simultaneous non-parametric regressions of unbalanced longitudinal data. Computational Statistics and Data Analysis, 24:255-270.
Leibovici D (2000) Multiway Multidimensional Analysis for Pharmaco-EEG Studies.(submitted) http://c3s2i.free.fr/cv/recentpub.html

See Also

PTAk, PTA3, FCAk,SVDgen

Examples

\# see the demo function source(paste(R.home(),"/ library/PTAk/demo/PTA3.R", sep="")); \# or source(paste(R.home(),"/ library/PTAk/demo/PTAk.R", sep=""));
\# demo.PTA3()

```
preprocessings Few useful functions for preprocessing arrays
```


Description

Choices of centering or detrending and scaling are important preprocessings for multiway analysis.

Usage

```
    Multcent(dat,bi=c(1, 2),by=3,
            centre=mean,
                        centrebyBA=c(TRUE,FALSE), scalebyBA=c(TRUE,FALSE))
    IterMV(n=10, dat,Mm=c(1,3),Vm=c(2,3),
        fFUN=mean, usetren=FALSE,
                            tren=function(x) smooth.spline(as.vector(x),df=5)$y,
                        rsd=TRUE)
    Detren(dat,Mm=c(1, 3),rsd=TRUE,
            tren=function(x)smooth.spline(as.vector(x),df=5)$y )
    Susan1D(y, x=NULL, sigmak=NULL , sigmat=NULL,
        ker=list(function(u)return(exp(-0.5*u**2))))
```


Arguments

dat array
bi vector defining the "centering, bicentering or multi-centering" one wants to operate crossed with by
by number or vector defining the entries used "with" in the other operations
centre function used as FUN in applying "multi-centering"
centrebyBA a bolean vector for "centering" with centre Before and After according to by
scalebyBA idem as centrebyBA, for scaling operation
$\mathrm{n} \quad$ number of iterations between "centering" and scaling
Mm margins to performs Detren or fFUN on
Vm margins to scale
fFUN function to use as FUN if usetren is FALSE
usetren logical, to use Detren
tren function to use in Detren

rsd	logical passed into Detren (only) to detrend or not
y	vector (length n)
x	vector of same length, if NULL it is $1: n$
sigmak	parameter related to kernel bandwidth with y values (default is $1 / 2 *$ range
sigmat	parameter related to kernel bandwidth with x values (default value is $8 * n \wedge\{-1 / 5\}$, with a minimum number of neigbours set as one apart)
ker	a list of two kernels list("t"=function " k "=function) for each weightings (if only one given it is used for both)

Details

Multcent performs in order "centering" by by; "multicentering" for every bi with by; then scale (standard deviation) to one by by.
IterMV performs an iterative "detrending" and scaling according to te margins defined (see Leibovici(2000) and references in it).

Detren detrends (or smooths if rsd is FALSE) the data accoding to th margins given.
Susan1D performs a non-linear kernel smoothing of y against \times (both reordered in the function according to orders of x) with an usual kernel (t) as for kernel regression and a kernel (t) for the values of y (the product of the kernels constitutes the non-linear weightings. This function is adapted from SUSAN algorithm (see references).

Author(s)

Didier G. Leibovici

References

Smith S.M. and J.M. Brady (1997) SUSAN - a new approach to low level image processing. International Journal of Computer Vision, 23(1):45-78, May 1997.

Description

Orthogonal-tensoriel projection of a tensor according to a rank-1 tensor, or a to bigger structure defined by kronecker product of matrices.

Usage

PROJOT (X , solu, numo=1, bortho=TRUE, Or tho=TRUE, metrics=NULL)

Arguments

bortho list of logicals saying if the structures are othogonal or not.

X
solu
numo

Ortho
metrics
a tensor(as an array) of any order
an object like a solutions. PTAk object with at least v
a vector of numbers or a list of vectors (length the order of the tensor) identifying for each space the structure to project onto, if NULL for a specific space then no projection is done for this space
list of logicals telling the projectors on each space to be on the structure or on its orthogonal.

Details

This function computes the tensorial orthogonal projection of X onto the tensorial structure defined by solu and numo. For each space (involved in the tensorial product where from X belongs), one defined the projector onto solu[[i]]\$v[numo,] (or on its orthogonal if Ortho[[i]]==TRUE), then the result is the image of X by the tensorial product of the projectors, i.e.

$$
\left(P_{S 1} \otimes P_{S 2} \otimes \ldots \otimes P_{S k}\right)(X)
$$

Value

A tensor with dimensions as X

Note

For PTA-kmodes the projection used is only on rank-one tensors (Principal Tensors), i.e. numo is a number. The code here can be used for any structure (on each spaces) and constitutes the projector onto a tensorial structure, and can define the PTAIV-kmodes (PTAk on Instrumental Variables Leibovici(1993). (see other references for tensorial product of linear operators in Leibovici(2000) e.g. Dauxois et al.(1994))

Author(s)

Didier G. Leibovici GeotRycs@gmail.com

References

Leibovici $\mathrm{D}(1993)$ Facteurs $<e 0>$ Mesures $R<e 9>p<e 9>t<e 9>e s$ et Analyses Factorielles : applications <e0> un suivi <e9>pid<e9>miologique. Universit<e9> de Montpellier II. PhD Thesis in Math<e9>matiques et Applications (Biostatistiques).
Leibovici D (2000) Multiway Multidimensional Analysis for Pharmaco-EEG Studies. http: //www. fmrib.ox.ac.uk/analysis/techrep/tr00dl2/tr00dl2.pdf

See Also

PTAk

Examples

```
don <- array(1:360,c(5,4,6,3))
    don <- don + rnorm(360,10,2)
    ones <- list(list(v=rep(1,5)),list(v=rep(1,4)),list(v=rep(1,6)),list(v=rep(1,3)))
    donfc <- PROJOT(don,ones)
    apply(donfc,c(2, 3,4),mean)
    apply(donfc,c(1),mean)
    # implementation de PTAIVk with obvious settings
    PTAIVk <- function(X,STruct,...)
        {X <- PROJOT(X$data,STruct, numo=Struct[[1]]$numo,Ortho=Struct[[1]]$Ortho,metrics=X$met)
            PTAk(X,...)
            }
```

PTA3

Description

Performs a truncated SVD-3modes analysis with or without specific metrics, penalised or not.

Usage

PTA3 ($\mathrm{X}, \mathrm{nbPT}=2, \mathrm{nbPT} 2=1$, smoothing=FALSE, smoo=list(function(u)ksmooth(1:length(u), u,kernel="normal", bandwidth=4, x. points=(1:length(u)))\$y, function(u) smooth.spline ($u, d f=3$) \$y,
NA),
minpct=0.1, verbose=getOption("verbose"), file=NULL, modesnam=NULL, addedcomment="", ...)

Arguments

X
a tensor (as an array) of order 3, if non-identity metrics are used X is a list with data as the array and met a list of metrics
nbPT a number specifying the number of 3modes Principal Tensors requested
nbPT2 if 0 no 2 -modes solutions will be computed, $1=$ all, >1 otherwise
smoothing logical to consider smoothing or not
smoo a list of length 3 with lists of functions operating on vectors component for the appropriate dimension (see details)

minpct	numerical $0-100$ to control of computation of future solutions at this level and below
verbose	control printing
file	output printed at the prompt if NULL, or printed in the given 'file'
modesnam	character vector of the names of the modes, if NULL "mo 1 "..."mo k'
addedcomment	character string printed after the title of the analysis
\ldots	any other arguments passed to SVDGen or other functions

Details

According to the decomposition described in Leibovici(1993) and Leibovici and Sabatier(1998) the function gives a generalisation of the SVD (2 modes) to 3 modes. It is the same algorithm used for PTAk but simpler as the recursivity implied by the k modes analysis is reduced only to one level i.e for every 3-modes Principal Tensors, 3 SVD are performed for every contracted product with one the three components of the 3-modes Principal Tensors (see APSOLU3, PTAk).

Recent work from Tamara G Kolda showed on an example that orthogonal rank decompositions are not necesseraly nested. This makes PTA-3modes a model with nested decompositions not giving the exact orthogonal rank. So PTA-3modes will look for best approximation according to orthogonal tensors in a nested approximmation process. PTA3 decompositions is "a" generalisation of SVD but not the ...
With the smoothing option smoo contain a list of (lists) of functions to apply on vectors of component (within the algorithm, see SVDgen). For a given dimension (1,2, or 3) a list of functions is given. If this list consists only of one function (no list needed) this function will be used at any level all the time : if one want to smooth only for the first Principal Tensor, put list (function, NA). Now you start to understand this list will have a maximum length of nbPT and the corresponding function will be used for the corresponding 3mode Principal Tensor. To smooth differently the associated solutions one have to put another level of nested lists otherwise the function given at the 3 mode level will be used for all. These rules are te same for PTAk.

Value

a PTAk object

Note

The use of metrics (diagonal or not) allows flexibility of analysis like in 2 modes e.g. correspondence analysis, discriminant analysis, robust analysis. Smoothing option extends the analysis towards functional data analysis, and or outliers "protection" is theoretically valid for tensors belonging to a tensor product of separable Hilbert spaces (e.g. Sobolev spaces) (see references in PTAk, SVDgen).

Author(s)

Didier G. Leibovici

References

Leibovici $\mathrm{D}(1993)$ Facteurs $<e 0>$ Mesures $R<e 9>p<e 9>t<e 9>$ es et Analyses Factorielles : applications <e0> un suivi <e9>pid<e9>miologique. Universit<e9> de Montpellier II. PhD Thesis in Math<e9>matiques et Applications (Biostatistiques).
Leibovici D and Sabatier R (1998) A Singular Value Decomposition of a k-ways array for a Principal Component Analysis of multi-way data, the PTA-k. Linear Algebra and its Applications, 269:307-329.

Kolda T.G (2003) A Counterexample to the Possibility of an Extension of the Eckart-Young LowRank Approximation Theorem for the Orthogonal Rank Tensor Decomposition. SIAM J. Matrix Analysis, 24(2):763-767, Jan. 2003.

See Also

SVDgen, FCAk, PTAk, summary.PTAk

Examples

```
# example using Zone_climTUN dataset
#
# library(maptools)
# library(RColorBrewer)
# Yl=brewer.pal(11,"PuOr")
# data(Zone_climTUN)
## in fact a modified version of plot.Map was used
# plot(Zone_climTUN,ol=NA,auxvar=Zone_climTUN$att.data$PREC_OCTO)
##indicators 84 +3 to repeat
# Zone_clim<-Zone_climTUN$att.data[,c(2:13,15:26,28:39,42:53,57:80,83:95,55:56)]
# Zot <-Zone_clim[,85:87] ;temp <-colnames(Zot)
# Zot <- as.matrix(Zot)%x%t(as.matrix(rep(1,12)))
# colnames(Zot) <-c(paste(rep(temp [1],12),1:12),paste(rep(temp [2],12),1:12),
# paste(rep(temp [3],12),1:12))
# Zone_clim <-cbind(Zone_clim[,1:84],Zot)
# Zone3w <- array(as.vector(as.matrix(Zone_clim)),c(2599,12,10))
## preprocessing
#Zone3w<-Multcent(dat=Zone3w, bi=NULL, by=3, centre=mean,
# centrebyBA=c(TRUE,FALSE),scalebyBA=c(TRUE,FALSE))
# Zone3w.PTA3<-PTA3(Zone3w,nbPT=3,nbPT2=3)
## summary and plot
# summary(Zone3w.PTA3)
#plot(Zone3w.PTA3,mod=c(2,3),nb1=1,nb2=11,lengthlabels=5, coefi=list(c(1,1,1),c(1,-1,-1)))
#plot(Zone_climTUN,ol=NA, auxvar=Zone3w.PTA3[[1]]$v[1,],nclass=30)
#plot(Zone_climTUN,ol=NA, auxvar=Zone3w.PTA3[[1]]$v[11,],nclass=30)
###############
cat(" A little fun using iris3 and matching randomly 15 for each iris sample!","\n")
cat(" then performing a PTA-3modes. If many draws are done, plots")
cat(" show the stability of the first and third Principal Tensors.","\n")
cat("iris3 is centered and reduced beforehand for each original variables.","\n")
# demo function
# source(paste(R.home(),"/library/PTAk/demo/PTA3.R",sep=""))
```

\# demo.PTA3(bootn=10, show=5,openX11s=FALSE)

PTAk Principal Tensor Analysis on k modes

Description

Performs a truncated SVD-kmodes analysis with or without specific metrics, penalised or not.

Usage

```
PTAk(X,nbPT=2, nbPT2=1, minpct=0.1,
                smoothing=FALSE,
                        smoo=list(NA),
                        verbose=getOption("verbose"),file=NULL,
                        modesnam=NULL,addedcomment="", ...)
```


Arguments

$\mathrm{X} \quad$ a tensor (as an array) of order k, if non-identity metrics are used X is a list with data as the array and met a list of metrics
nbPT integer vector of length $(k-2)$ specifying the maximum number of Principal Tensors requested for the $(3, \ldots, k-1, k)$ modes levels (see details), if it is not a vector every levels would have the same given nbPT value
nbPT2 if 0 no 2 -modes solutions will be computed, $1=$ all, >1 otherwise
minpct numerical 0-100 to control of computation of future solutions at this level and below
smoothing see PTA3, SVDgen
smoo see PTA3
verbose control printing
file output printed at the prompt if NULL, or printed in the given 'file'
modesnam character vector of the names of the modes, if NULL mo 1 ...mo k
addedcomment character string printed if printt after the title of the analysis
... any other arguments passed to other functions

Details

According to the decomposition described in Leibovici(1993) and Leibovici and Sabatier(1998) the function gives a generalisation of the SVD (2 modes) to k modes. The algorithm is recursive, calling APSOLUk which calls PTAk for $(k-1)$. nbPT, nbPT2 and minpct control the number of Principal Tensors desired. For example $\mathrm{nbPT}=\mathrm{c}(2,4,3)$ means a tensor of order 5 is analysed, the maximum number of 5 -modes PT is set to 3 , for each of them one sets a maximum of 4 associated 4-modes (for each of the five components), for each of these later a maximum of 2 associated 3-modes PT is asked
(for each of the four components). Then nbPT2 complete for 2-modes associated or not. Overall minpct controls to carry on the algorithm at any level and lower, i.e. stops if $100\left(\mathrm{vs}^{2} / s s x\right)<$ minpct (where $v s$ is the singular value, and ssx is the total sum of squares of the tensor X or the "metric transformed" X). Putting a 0 at a given level in nbPT obviously automatically puts 0 in nbPT at lower levels. Putting high values in nbPT allows control only on minpct helping to reach the full decomposition. All these controls allow to truncate the full decomposition in a level-controlled fashion. Notice the full decomposition always contains any possible choice of truncation, i.e. the solutions are not dependant on the truncation scheme (Generalised Eckart-Young Theorem).
Recent work from Tamara G Kolda showed on an example that orthogonal rank decompositions are not necesseraly nested. This makes PTA-kmodes a model with nested decompositions not giving the exact orthogonal rank. So PTA-kmodes will look for best approximation according to orthogonal tensors in a nested approximmation process.

Value

a PTAk object which consist of a list of lists. Each mode has a list in which is listed:

\$v	matrix of components for the given mode
\$iter	vector of iterations numbers where maximum was reach
\$test	vector of test values at maximum
\$modesnam	name of the mode
\$v	matrix of components for the given mode

The last mode list has also some additional information on the analysis done:

\$d	vector of singular values
\$pct	percentage of sum of squares for each quared singular value
\$ssX	vector of local sum of squares i.e. of the current tensor with the rescursive algorithm
\$vsnam	vector of names given to the singular value according to a recursive data depen- dent scheme
\$datanam	data reference
\$method	call applied: could be PTAk or CANDPARA or PCAn or even SVDgen, with parameters choices the addedcomment (repeated) given in the call
\$addedcomment	

You will notice that methods other than PTAk may not have all list elements but the essential ones such as: $\$ \mathrm{v}, \$ \mathrm{~d}, \$ \mathrm{ssX}$, and may also have additional ones like $\$$ coremat for PCAn (the core array).

Note

The use of metrics (diagonal or not) allows flexibility of analysis like in 2 modes e.g. correspondence analysis, discriminant analysis, robust analysis. Smoothing option extending the analysis towards functional data analysis is theoretically valid for Principal Tensors belonging to a tensor product of separable Hilbert spaces (e.g. Sobolev spaces) see Leibovici and El Maach (1997).

Author(s)

Didier G. Leibovici

References

Leibovici $\mathrm{D}(1993)$ Facteurs $<e 0>$ Mesures $R<e 9>p<e 9>t<e 9>e s$ et Analyses Factorielles : applications <e0> un suivi <e9>pid<e9>miologique. Universit<e9> de Montpellier II. PhD Thesis in Math<e9>matiques et Applications (Biostatistiques).
Leibovici D and El Maache H (1997) Une d<e9>composition en Valeurs Singuli<e8>res d'un $<e 9>l<e 9>m e n t$ d'un produit Tensoriel de k espaces de Hilbert $S<e 9>$ parables. Compte Rendus de l'Acad<e9>mie des Sciences tome 325, s<e9>rie I, Statistiques (Statistics) \& Probabilit<e9>s (Probability Theory): 779-782.
Leibovici D and Sabatier R (1998) A Singular Value Decomposition of a k-ways array for a Principal Component Analysis of multi-way data, the PTA-k. Linear Algebra and its Applications, 269:307-329.
Leibovici D (2008) Spatio-temporal Multiway Decomposition using Principal Tensor Analysis on k-modes:the R package PTAk . to be submitted soon at Journal of Statisticcal Software.
Leibovici D (2008) A Simple Penalised algorithm for SVD and Multiway functional methods. (to be submitted)
Kolda T.G (2003) A Counterexample to the Possibility of an Extension of the Eckart-Young LowRank Approximation Theorem for the Orthogonal Rank Tensor Decomposition. SIAM J. Matrix Analysis, 24(2):763-767, Jan. 2003.

See Also

REBUILD, FCAk, PTA3 summary.PTAk

Examples

```
    # don <- array((1:3)%x%rnorm(6*4)%x%(1:10),c(10,4,6,3))
don <- array(1:360,c(5,4,6,3))
don <- don + rnorm(360,1,2)
dimnames(don) <- list(paste("s",1:5, sep=""), paste("T",1:4, sep=""),
            paste("t",1:6, sep=""),c("young","normal","old"))
    # hypothetic data on learning curve at different age and period of year
ones <-list(list(v=rep(1,5)),list(v=rep(1,4)),list(v=rep(1,6)),list(v=rep(1, 3)))
don <- PROJOT(don,ones)
don.sol <- PTAk(don,nbPT=1,nbPT2=2,minpct=0.01,
            verbose=TRUE,
                modesnam=c("Subjects","Trimester", "Time", "Age"),
                addedcomment="centered on each mode")
don.sol[[1]] # mode Subjects results and components
don.sol[[2]] # mode Trimester results and components
```

```
don.sol[[3]] # mode Time results and components
don.sol[[4]] # mode Age results and components with additional information on the call
    summary(don.sol,testvar=2)
    plot(don.sol,mod=c(1, 2, 3,4),nb1=1,nb2=NULL,
        xlab="Subjects/Trimester/Time/Age",main="Best rank-one approx" )
    plot(don.sol,mod=c(1, 2, 3,4),nb1=4,nb2=NULL,
        xlab="Subjects/Trimester/Time/Age",main="Associated to Subject vs1111")
# demo function
    # demo.PTAk()
```

PTAk-internal Internal PTAk functions

Description

Internal PTAk functions

Usage

Ginv(A)
PPMA(X, test=1E-10, pena=list(function(u)ksmooth(1:length(u), u,kernel="normal", bandwidth=3, x.points=(1:length(u)))\$y ,NA) ,ini=mean,vsmin=1E-20,Maxiter=2000, ...)
Powmat(A, pw,eltw=FALSE)
RaoProd(A, B)
REBUILDPCAn(solu)
RESUM(solb, sola=NULL, numass=NULL, verbose=getOption("verbose"), file=NULL , summary=FALSE, testvar=0.1, with=TRUE)
$\operatorname{svdsmooth}(X, \operatorname{nomb}=\min (\operatorname{dim}(X))$, smooth=list(function(u)ksmooth(1:length(u), u, kernel="normal", bandwidth=3,x.points=(1:length(u)))\$y),vsmin=1E-16, ...)
toplist(li)
svd.p(X,...)

Arguments

These functions are not supposed to be called directly.
a matrix
*est a zero limit number
pena list of functions to be used as smoother
ini initialisation method over the dual dimension
vsmin zero limit for singular value

Maxiter	limit number of iteration
A	a matrix
pw	power value number
eltw	boolean to perform power elementwise or matrix power
B	a matrix
solb	an object inheriting from class PTAk
sola	an object inheriting from class PTAk
solu	an object inheriting from class PTAk
numass	position number of the associated solution, NULL is equivalent to the last in sola boolean playing a verbose role
verbose	string pointing a destination of file output file
bummary	boolean to show the summary or not threshold control for minimum percent of variability explained
with	boolean expression to give a supplementary selection criterion nomb
integer giving the number of components to fit	

Author(s)

Didier G. Leibovici

See Also
PTAk

REBUILD
Build an approximation of the tensor of any order

Description

Gives the approximation of a previously analysed tensor using its given decomposition.

Usage

REBUILD(solutions, nTens=1:2, testvar=1, redundancy=FALSE)

Arguments

solutions	a PTAk object
nTens	a vector of identifying positions (numbers given in summary) for the choice of Principal Tensors to use
testvar	control within nTens used Principal Tensor with minimum percent of variability explained
redundancy	logical to take into account (within nTens) PT tested redundant during analysis (seealso RESUM) if TRUE.

Details

The function rebuilds the Principal Tensors, i.e. rank-one tensors of order the order of the tensor analysed, and add them up to build an approximation of the tensor analysed (according to the method used see method). This constitutes a best Least Squares (ordinary or "weighted" if metrics are used) approximation of datanam for a given orthogonal-rank r (number of principal tensors used), if and only if the singular values used are the r highest.

Value

A tensor with dimensions as solutions[[k]][["datanam"]].

Note

This function can be called for PARAFAC/CANDECOMP and PCAn. A specific rebuilt is implemented for this last one.

Author(s)

Didier G. Leibovici

See Also

PTAk

SINGVA Optimisation algorithm RPVSCC

Description

Computes the best rank-one approximation using the RPVSCC algorithm.

Usage

SINGVA(X, test=1E-12, PTnam="vs111", Maxiter=2000, verbose=getOption("verbose"),file=NULL, smoothing=FALSE, smoo=list(NA), modesnam=NULL, Ini="svds", sym=NULL)

Arguments

X
test numerical value to stop optimisation
PTnam character giving the name of the k-modes Principal Tensor
Maxiter if iter $>$ Maxiter prompts to carry on or not, then do it every other 200 iterations
verbose control printing
file output printed at the prompt if NULL, or printed in the given 'file'
smoothing
smoo
modesnam
Ini
sym description of the symmetry of the tensor e.g. $\mathrm{c}(1,1,3,4,1)$ means the second mode and the fifth are identical to the first

Details

The algorithm termed RPVSCC in Leibovici(1993) is implemented to compute the first Principal Tensor (rank-one tensor with its singular value) of the given tensor X. According to the decomposition described in Leibovici(1993) and Leibovici and Sabatier(1998), the function gives a generalisation to k modes of the best rank-one approximation issued from SVD whith 2 modes. It is identical to the PCA-kmodes if only 1 dimension is asked in each space, and to PARAFAC/CANDECOMP if the rank of the approximation is fixed to 1 . Then the methods differs, PTA-kmodes will look for best approximation according to the orthogonal rank (i.e. the rank-one tensors (of the decomposition) are orthogonal), PCA-kmodes will look for best approximation according to the space ranks (i.e. ranks of every bilinear form deducted from the original tensor, that is the number of components in each space), PARAFAC/CANDECOMP will look for best approximation according to the rank (i.e. the rank-one tensors are not necessarily orthogonal).

Recent work from Tamara G Kolda showed on an example that orthogonal rank decompositions are not necesseraly nested. This makes PTA-kmodes a model with nested decompositions not giving the exact orthogonal rank. So PTA-kmodes will look for best approximation according to orthogonal tensors in a nested approximmation process.

Value

a PTAk object (without datanam method)

Note

The algorithm was derived in generalising the transition formulae of SVD (Leibovici 1993), can also be understood as a generalisation of the power method (De Lathauwer et al. 2000). In this paper they also use a similar algorithm to build bases in each space, reminiscent of three-modes and n-modes PCA (Kroonenberg(1980)), i.e. defining what they called a rank-(R1,R2,...Rn) approximation (called here space ranks, see PCAn). RPVSCC stands for Recherche de la Premi<e8>re V aleur S inguli<e $8>$ re par C ontraction $C o m p l<e a>t e . ~$

Author(s)

Didier G. Leibovici

References

Kroonenberg P (1983) Three-mode Principal Component Analysis: Theory and Applications. DSWO press. Leiden.(related references in http://three-mode.leidenuniv.nl)
Leibovici $\mathrm{D}(1993)$ Facteurs $<e 0>$ Mesures $R<e 9>p<e 9>t<e 9>e s$ et Analyses Factorielles : applications <e0> un suivi <e9>pid<e9>miologique. Universit<e9> de Montpellier II. PhD Thesis in Math<e9>matiques et Applications (Biostatistiques).
Leibovici D and Sabatier R (1998) A Singular Value Decomposition of a k-ways array for a Principal Component Analysis of multi-way data, the PTA-k. Linear Algebra and its Applications, 269:307-329.
De Lathauwer L, De Moor B and Vandewalle J (2000) On the best rank-1 and rank-(R1,R2,..,Rn) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21,4:1324-1342.
Kolda T.G (2003) A Counterexample to the Possibility of an Extension of the Eckart-Young LowRank Approximation Theorem for the Orthogonal Rank Tensor Decomposition. SIAM J. Matrix Analysis, 24(2):763-767, Jan. 2003.

See Also

INITIA, PTAk, PCAn, CANDPARA
summary.PTAk Summary of a PTA-k modes analysis

Description

Print a summary listing of the decomposition obtained.

Usage

\#\# S3 method for class 'PTAk'
summary (object,testvar=1,dontshow="*", ...)
\#\# S3 method for class 'FCAk'
summary (object,testvar=0.5, dontshow="*", ...)

Arguments

object	an object inheriting from class PTAK, representing a generalised singular value decomposition
testvar	control within nTens used Principal Tensor with minimum percent of variability explained
dontshow	boolean criterion to remove Principal Tensors from the summary, or default is a character "*" equivalent to the criterion:
	!substr (solution[[length(solution)]][["vsnam"]],1,1)=="*"

Details

The function prints a listing of the decomposition with historical order (instead of traditional singular value order). It is useful before any plots or reconstruction, a screeplot (using plot.PTAK) will be also useful. It is useful before any plots r reconstruction, a screeplot (using plot.PTAk) will be also useful. summary. FCAk is alike summary. PTAk but testvar operates on the variability of the lack of complete independence.

Value

prints on the prompt with an invisible return of the summary table

Note

At the moment can be used for PCAn, CANDPRA, better summaries will be in the next release.

Author(s)

Didier G. Leibovici <GeotRYcs@gmail. com>

References

Leibovici D (2000) Multiway Multidimensional Analysis for Pharmaco-EEG Studies.(submitted) http://c3s2i.free.fr/cv/recentpub.html

See Also

```
plot.PTAk
```


Examples

```
data(crimerate)
crimerate.mat <- sweep(crimerate,2,apply(crimerate,2,mean))
crimerate.mat <- sweep(crimerate.mat,2,sqrt(apply(crimerate,2,var)),FUN="/")
cri.svd <- SVDgen(crimerate.mat)
summary(cri.svd,testvar=0)
    plot(cri.svd,scree=TRUE)
    par(new=TRUE)
    RiskJackplot(cri.svd,nbvs=1:7,mod=NULL,max=NULL,rescaled=TRUE,
            axes=FALSE,ann=FALSE)
    par(new=FALSE)
    # or equivalently
    plot(cri.svd,scree=TRUE,type="b",lty=3,RiskJack=1) #set mod=NULL or c(1,2)
    ###
        data(crimerate)
        criafc <- FCAmet(crimerate,chi2=TRUE)
        cri.afc <- SVDgen(criafc$data,criafc$met[[2]],criafc$met[[1]])
        summary(cri.afc)
        plot(cri.afc,scree=TRUE)
        plot(cri.afc, scree=TRUE, type="b",lty=3,RiskJack=1,method="FCA")
```


Description

Computes the generalised Singular Value Decomposition, i.e. with non-identity metrics. A smooth approximation can be asked to constraint the components (u and v) to be smooth.

Usage

```
SVDgen(Y, D2 = 1, D1 = 1, smoothing = FALSE, nomb = NULL,
    smoo = list(function(u)ksmooth( 1:length(u), u, kernel = "normal",
                        bandwidth = 3, x.points = (1:length(u)))$y))
```


Arguments

Y a matrix $n \times p$
D2 metric in R^{p} either a vector $(p \times 1)$ or a matrix $(p \times p)$
D1 metric in R^{n} either a vector $(n \times 1)$ or a matrix $(n \times n)$
smoothing logical if TRUE the smoothing methods in smoo are used
nomb numeric number of components to extract (typically when smoothing is used less components are used as the screeplot becomes flatter faster)
smoo list of lists of smoothing functions on a vector of the approriate dimension; if on one dimension it is NA no smoothing will be done for this one; if the length of a list is one the function is used for all components. If only one list in the list it will be used for both dimensions.

Details

The function computes the decomposition $X=U L^{1 / 2} V^{\prime}$ where $U^{\prime} D_{1} U=I d_{p}$ and $V^{\prime} D_{2} V=I d_{p}$ and the diagonal matrix L containing no zeros squared singular values. If smoothing a constraint on Least Squares solution is used, then the above decomposition becomes an approximation (unless X belongs to the space defined by the constraints). A Power Method algorithm to compute each principal tensor is used wherein Alternated Least Squares are always followed by a smoothed version of the updated vectors. If a Spline smoothing was used the algorithm would be equivalent to use the traditional penalised least squares at each iteration and could be called Penalised Power Method or Splined Alternated Least Squares Algorithm (SALSA is already an acronym used by Besse and Ferraty (1995) in where a similar idea is developped: but smoothing operates only on variables, and is model based as the Alternating operates on the whole approximation i.e. given the choice of the dimension reduction).

Value

a PTAk object

Note

SVDgen makes use of a non-identity version svd (inbuilt) or svdksmooth which outputs like the inbuilt svd. The smoothing option is also implemented in PTA-kmodes, FCA-kmodes, PCAn and CANDECOMP/PARAFAC. The use of metrics (diagonal or not) allows flexibility of analysis like e.g. correspondence analysis, discriminant analysis, robust analysis. Smoothing option extends the analysis towards functional data analysis, and or outliers protection.
This smoothing penalising approach is theoretically valid for Principal Tensors (here order 2) belonging to a tensor product of separable Hilbert spaces (e.g. Sobolev spaces) see Leibovici and El Maach (1997), and in fact only valid for projection onto this space : this includes polynomial fitting, spline basis fitting ... As you are penalysing the alternating optimisation criterion you also need the to get a robust fit at each iteration to be able to reach stationarity and declare optimisation done. If the smoother is not linear one looses orthogonality of the corresponding components but they are usually not too much correlated and preserving one mode to be unsmoothed insured orthogonality of the whole decomposition. Alternatively keepOr tho insures (as a third step optimisation for each iteration) orthogonality with the previous component (but then the solution is approximatively in the space of constraints).
The flexibility of this function smoothing constraint should be carefully used. The function offers also the choice to change of smoothing (method or parameters) as the number of components grows as in Ramsay and Silverman (1997).

Author(s)

Didier G. Leibovici GeotRYcs@gmail.com

References

Leibovici D and El Maache H (1997) Une décomposition en Valeurs Singulières d'un élément d'un produit Tensoriel de k espaces de Hilbert Séparables. Compte Rendus de l'Académie des Sciences tome 325, série I, Statistiques (Statistics) \& Probabilités (Probability Theory): 779-782.

Besse P and Ferraty F (1995) Curvilinear fixed effect model. Computational Statistics, 10:339-351.
Leibovici D (2008) A Simple Penalised algorithm for SVD and Multiway functional methods. (to be submitted)
Ramsay J.O. and Silverman B.W. (1997) Functional Data Analysis. Springer Series in Statistics.

See Also

PTAk,PCAn, CANDPARA

Examples

```
#library(stats)
    #library(tensor)
    # on smoothing
```

```
data(longley)
long <- as.matrix(longley[,1:7])
long.svd <- SVDgen(long,smoothing=FALSE)
    summary.PTAk(long.svd,testvar=0)
        # X11(width=4,height=4)
    plot.PTAk(long.svd, scree=TRUE,RiskJack=0, type="b",lty=3)
long.svdo <- SVDgen(long,smoothing=TRUE,
    smoo=list(function(u)ksmooth(1:length(u),
            u,kernel="normal",bandwidth=3,x.points=(1:length(u)))$y,NA))
    summary.PTAk(long.svdo,testvar=0)
    # X11(width=4,height=4)
    plot.PTAk(long.svdo, scree=TRUE,RiskJack=0, type="b",lty=3)
###using polynomial fitting
    polyfit <- function(u,deg=length(u)/5)
            {n<- length(u);time <- rep(1,n);
            for(e in 1:deg)time<-cbind(time,(1:n)^e);return(lm.fit(time,u)$fitted.values)}
bsfit<-function(u,deg=42)
            {n <- length(u);time <- rep(1,n);
            return(lm.fit(bs(time,df=deg),u)$fitted.values)}
###
    long.svdo2 <- SVDgen(long,nomb=4,smoothing=TRUE,smoo=list(polyfit,NA))
        long.svdo2[[1]]$v[1:3,]
long.svdo[[1]]$v[1:3,]
# orthogonality may be lost with non-projective smoother
        ####
comtoplot <- function(com=1,solua=long.svd,solub=long.svdo,openX11s=FALSE,...)
            {
    if(openX11s)X11(width=4,height=4)
    yla <- c(round((100*(solua[[2]]$d[com])^2)/
            solua[[2]]$ssX[1],4),
            round((100*(solub[[2]]$d[com])^2)/solua[[2]]$ssX[1],4))
limi <- range(c(solua[[1]]$v[com,], solub[[1]]$v[com,]))
    plot(solua,nb1=com, mod=1, type="b",lty=3,lengthlabels=4, cex=0.4,
        ylimit=limi,ylab="",...)
mtext(paste("vs",com,":",yla[1],"%"), 2, col=2,line=2)
    par(new=TRUE)
    plot.PTAk(solub,nb1=com,mod=1, labels=FALSE, type="b",lty=1,
    lengthlabels=4, cex=0.6,ylimit=limi,ylab="",main=paste("smooth vs",com,":",yla[2],"%"),...)
    par(new=FALSE)
} ####
    comtoplot(com=1)
```

```
data(crimerate)
    crimerate.mat <- sweep(crimerate, 2, apply(crimerate, 2,mean))
    crimerate.mat <- sweep(crimerate.mat,2,sqrt(apply(crimerate.mat,2,var)),FUN="/")
        metW <- Powmat(CauRuimet(crimerate.mat),(-1))
        # inverse of the within "group" (to play a bit more you could set m0 relating
        # the neighbourhood of states (see CauRuimet)
    cri.svd <- SVDgen(crimerate.mat,D2=1,D1=1)
    summary(cri.svd,testvar=0)
        plot(cri.svd, scree=TRUE,RiskJack=4, type="b",lty=3)
    cri.svdo <- SVDgen(crimerate.mat,D2=metW,D1=1)
        summary(cri.svdo,testvar=0)
        plot(cri.svdo,scree=TRUE,RiskJack=5, type="b",lty=3)
    # X11(width=8,height=4)
    par(mfrow=c(1, 2))
        plot(cri.svd,nb1=1,nb2=2,mod=1, lengthlabels=3)
        plot(cri.svd,nb1=1,nb2=2,mod=2,lengthlabels=4,main="canonical")
        # X11(width=8,height=4)
    par(mfrow=c(1, 2))
plot(cri.svdo,nb1=1,nb2=2,mod=1, lengthlabels=3)
plot(cri.svdo,nb1=1,nb2=2,mod=2, lengthlabels=4,
                main=expression(paste("metric ",Wg^{-1})))
###########
# demo function
    # when ima is NULL it uses the dataset timage12 but you can put any array
    # demo.SVDgen(ima=NULL,snr=3,openX11s=TRUE)
```

TENSELE Elementary Tensor product

Description

Computes the Tensor Product of a list of vectors (or matrices) according to a given order.

Usage

TENSELE(T,moins=NULL, asarray=TRUE,order=NULL,id=NULL)

Arguments

T
moins
asarray
order
a list like a PTAk object and minimally just contains v
if not NULL, vector of indexes (in the list T) to skip
logical to specify the output form TRUE gives an array, FALSE gives a vector
if not NULL vector of length length(T), NULL is equivalent to length $(T): 1$ as the function makes indexes in order run slowest to fastest
when T is a list of matrices, can be either a vector of length (T) giving indexes of the vectors for each space (following order) or a list of vectors of indexes.

Details

The tensor product of the vectors (or matrices) in the list T is computed, skipping or not the indexes in moins, the output tensor is either in tensor form or in vector form. The way the tensor product is done follows order.

Value

According to asarray the value is either an array, or a vector representing the tensor product of the vectors (not in moins), the dimension in order[1] running the slowest.

Author(s)

Didier G. Leibovici

See Also

REBUILD

Index

*Topic algebra
APSOLU3, 2
APSOLUk, 3
CANDPARA, 5
CONTRACTION, 9
COS2-CTR, 11
FCA2, 14
FCAk, 16
howtoPTAk, 19
INITIA, 20
PCAn, 21
PROJOT, 26
PTA3, 28
PTAk, 31
SINGVA, 36
summary.PTAk, 38
TENSELE, 43
*Topic array
APSOLU3, 2
APSOLUk, 3
CANDPARA, 5
CONTRACTION, 9
COS2-CTR, 11
FCA2, 14
FCAk, 16
howtoPTAk, 19
INITIA, 20
PCAn, 21
PROJOT, 26
PTA3, 28
PTAk, 31
SINGVA, 36
summary.PTAk, 38
TENSELE, 43
$*$ Topic datasets datasets, 13
*Topic hplot
plot.PTAk, 23
*Topic misc

PTAk-internal, 34
$*$ Topic models
COS2-CTR, 11
FCA2, 14
FCAk, 16
FCAmet, 18
PCAn, 21
REBUILD, 35
*Topic multivariate
APSOLU3, 2
APSOLUk, 3
CANDPARA, 5
CauRuimet, 6
COS2-CTR, 11
FCA2, 14
FCAk, 16
FCAmet, 18
howtoPTAk, 19
INITIA, 20
PCAn, 21
plot.PTAk, 23
preprocessings, 25
PROJOT, 26
PTA3, 28
PTAk, 31
REBUILD, 35
SINGVA, 36
summary.PTAk, 38
SVDgen, 40
*Topic principal components analysis
COS2-CTR, 11
$*$ Topic robust
CauRuimet, 6
*Topic smooth
preprocessings, 25
SINGVA, 36
SVDgen, 40
APSOLU3, 2, 29
APSOLUk, 3, 3, 10

```
CANDPARA, 5, 38,41
CauRuimet,6
CONTRACTION, }
COS2 (COS2-CTR), 11
COS2-CTR,11
crimerate (datasets), 13
CTR (COS2-CTR), 11
datasets,13
Detren (preprocessings), 25
FCA2, 11, 12, 14
FCAk, 11, 12, 15, 16, 18, 19, 24, 30, 33
FCAmet, 14-17, 18
Ginv (PTAk-internal), 34
howtoPTAk, 19
INITIA, 20,38
IterMV (preprocessings), 25
Multcent (preprocessings), 25
PCAn, 21, 38,41
plot.default, 23
plot.PTAk, 12, 23, 39
Powmat (PTAk-internal), 34
PPMA (PTAk-internal), 34
preprocessings,25
PROJOT, 26
PTA3, 2-5, 19, 21, 24, 28, 31, 33, 37
PTAk, 2-6, 10-12, 15, 17, 19, 21, 22, 24, 27,
        29, 30, 31, 32, 35-38, 41
PTAk-internal,34
RaoProd (PTAk-internal), 34
REBUILD, 33, 35, 44
REBUILDPCAn (PTAk-internal), 34
RESUM (PTAk-internal), 34
RiskJackplot (plot.PTAk), 23
SINGVA, 21,36
summary.FCAk, 12, 15, 17
summary.FCAk (summary.PTAk), 38
summary.PTAk, 23, 30, 33, 38
Susan1D (preprocessings), 25
svd.p(PTAk-internal), 34
SVDgen, 2, 4, 5, 8, 11, 14, 16, 21, 24, 29-31,
    37,40
```

svdsmooth (PTAk-internal), 34
TENSELE, 9, 43
timage12 (datasets), 13
toplist (PTAk-internal), 34
Zone_climTUN (datasets), 13

