Package ‘PBSmapping’

March 15, 2019
Version 2.72.1
Date 2019-03-14
Title Mapping Fisheries Data and Spatial Analysis Tools

Author Jon T. Schnute [aut],
Nicholas Boers [aut],
Rowan Haigh [aut, cre],
Alex Couture-Beil [ctb],
Denis Chabot [ctb],
Chris Grandin [ctb],
Angus Johnson [ctb],
Paul Wessel [ctb],
Franklin Antonio [ctb],
Nicholas J. Lewin-Koh [ctb],
Roger Bivand [ctb]

Maintainer Rowan Haigh <rowan.haigh@dfo-mpo.gc.ca>
Copyright 2003-2019, Fisheries and Oceans Canada
Depends R (>=3.5.0)

Suggests foreign, maptools, deldir

SystemRequirements C++11

NeedsCompilation yes

Description This software has evolved from fisheries research conducted at the
Pacific Biological Station (PBS) in 'Nanaimo', British Columbia, Canada. It
extends the R language to include two-dimensional plotting features similar
to those commonly available in a Geographic Information System (GIS).
Embedded C code speeds algorithms from computational geometry, such as
finding polygons that contain specified point events or converting between
longitude-latitude and Universal Transverse Mercator (UTM) coordinates.
Additionally, we include 'C++' code developed by Angus Johnson for the
'Clipper' library, data for a global shoreline, and other data sets in the
public domain. Under the user's R library directory ".libPaths()’,
specifically in './PBSmapping/doc’, a complete user's guide is offered and
should be consulted to use package functions effectively.

License GPL (>=2)

2 R topics documented:

URL https://github.com/pbs-software/pbs-mapping,
https://github.com/pbs-software/pbs-mapx,
http://www.angusj.com/delphi/clipper.php

Repository CRAN

Date/Publication 2019-03-15 09:13:49 UTC

R topics documented:

addBubbles e e e 3
addCompass e e e e e e e e e 5
addLabels L 7
addLines e e e e e 8
addPoints e 10
addPolys e e 11
addStipples L L 12
appendPolys L e e 14
becBathymetry 15
calcArea L. e 16
calcCentroid L e 17
calcConvexHull e 18
calcGCdist. e 19
calcLength e e 21
calcMidRange e 22
calcSummary e 23
calcVoronoi L e 24
clipLines 26
clipPolys e e e 27
closePolys e 28
combineEvents e 29
combinePolys e 30
convCP . . . L e 31
convDP 32
convLP . . .o 34
convUL e e 35
dividePolys 36
EventData e 37
extractPolyData L 38
findCells e 39
findPolys e 41
fixBound e e e 42
fixPOS . . . e 44
ImportEvents L. e e e e 45
importGSHHS o 46
IMPOrtLOCS e e e e e e e 48
importPolys 49

importShapefile 50

https://github.com/pbs-software/pbs-mapping
https://github.com/pbs-software/pbs-mapx
http://www.angusj.com/delphi/clipper.php

addBubbles 3

ISCONVEX . . v oo ot e e e e 51
isIntersecting L e e e e e 52
joinPolys L 53
locateEvents L e 56
locatePolys e 57
LocationSet 58
makeGrid e 59
makeProps. 61
makeTopography L 62
nepacLL 64
PBSmapping 65
PBSprint. e e 66
placeHoles e 66
plotLines L 68
plotMap 70
plotPoints 72
PlotPoOlys e e e e 74
PolyData e e e 76
PolySet e 78
PIINt . . . o 80
pythagoras L 81
refocusWorld oL 82
rotatePolys L L e e 83
SUMMATY . . o v vt v e e e e e e e e e e e e e e e e e e 85
surveyData 87
thickenPolys L 88
thinPolys e 89
towData L e 90
towTracks 91
Index 93
addBubbles Add Bubbles to Maps
Description

Add bubbles proportional to some EventData’s Z column (e.g., catch or effort) to an existing plot,
where each unique EID describes a bubble.

Usage

n on

addBubbles(events, type=c("perceptual”,”surface”,”volume"),

z.max=NULL, min.size = @, max.size=0.8, symbol.zero="+",
symbol. fg=rgh(0,0,0,0.6), symbol.bg=rgh(0,0,0,0.3),
legend.pos="bottomleft"”, legend.breaks=NULL,
show.actual=FALSE, legend.type=c("nested”,"horiz","vert"),
legend. title="Abundance”, legend.cex=0.8, ...)

4 addBubbles

Arguments

events EventData to use (required).

type scaling option for bubbles where "perceptual” emphasizes large z-values, "volume”
emphasizes small z-values, and "surface” lies in between.

Z.max maximum value for z (default = max (events$Z)); determines the largest bubble;
keeps the same legend for different maps.

min.size minimum size (inches) for a bubble representing min(events$Z). The legend
may not actually include a bubble of this size because the calculated legend.breaks
does not include the min(events$Zz).

max.size maximum size (inches) for a bubble representing z.max. A legend bubble may
exceed this size when show. actual is FALSE (on account of using pretty(...)).

symbol.zero symbol to represent z-values equal to 0.

symbol.fg bubble outline (border) colour.

symbol.bg bubble interior (fill) colour. If a vector, the first element represents min (legend.breaks)
and the last element represents max (legend.breaks); colours are interpolated
for values of events$Z between those boundaries. For values outside of those
boundaries, interiors remain unfilled.

legend. pos position for the legend.

legend.breaks break values for categorizing the z-values. The automatic method should work
if zeroes are present; otherwise, you can specify your own break values for the
legend. If a single number, specifies the number of breaks; if a vector, specifies
the breaks.

show.actual logical; if FALSE, legend values are obtained using pretty(...), and conse-
quently, the largest bubble may be larger than z. max. If TRUE, the largest bubble
in the legend will correspond to z.max.

legend. type display format for legend.
legend.title title for legend.
legend. cex size of legend text.

additional arguments for points function that plots zero-value symbols.

Details

Modified from (and for the legend, strongly inspired by) Tanimura et al. (2006) by Denis Chabot to
work with PBSmapping.

Furthermore, Chabot’s modifications make it possible to draw several maps with bubbles that all
have the same scale (instead of each bubble plot having a scale that depends on the maximum z-
value for that plot). This is done by making z.max equal to the largest z-value from all maps that
will be plotted.

The user can also add a legend in one of four corners (see legend) or at a specific c(X,Y) position.
If legend. pos is NULL, no legend is drawn.

addCompass 5

Author(s)

Denis Chabot, Research Scientist
Maurice-Lamontagne Institute, Fisheries & Oceans Canada (DFO), Mont-Joli QC
Last modified Rd: 2013-04-10

References

Tanimura, S., Kuroiwa, C., and Mizota, T. (2006) Proportional symbol mapping in R. Journal of
Statistical Software 15(5).

See Also

addPolys, surveyData

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- common code for both examples below
data(nepaclL,surveyData,envir=.PBSmapEnv)
surveyData$Z <- surveyData$catch

#--- plot a version that only varies the size
plotMap(nepaclLL, xlim=c(-131.8,-127.2), ylim=c(50.5,52.7),
col="gainsboro",plt=c(.08,.99,.08,.99))
addBubbles(surveyData, symbol.bg=rgb(.9,.5,0,.6),
legend. type="nested”, symbol.zero="+", col="grey")

#--- plot a version that uses different symbol colours
plotMap(nepacLL, xlim=c(-131.8,-127.2), ylim=c(50.5,52.7),
col="gainsboro"”,plt=c(.08,.99,.08,.99))
subset <- surveyDatal[surveyData$Z <= 1000,]
addBubbles(subset, symbol.bg=c("red”, "yellow”, "green"),
legend. type="horiz", legend.breaks=pretty(range(subset$z), n=11),
symbol.zero=FALSE, col="grey"”, min.size=0.1, max.size=0.4)
par(oldpar)
»

addCompass Add Compass to Map

Description
Add a compass rose to an existing map, similar to those found on nautical charts showing both true
north and magnetic north.

Usage

addCompass(X, Y, rot="magN", cex=1,
col.compass=c("gainsboro”,"blue"”,"yellow”,"black”), ...)

https://profils-profiles.science.gc.ca/en/profile/denis-chabot?wbdisable=true

6 addCompass

Arguments
X Longitude coordinate (degrees N) for centroid of compass rose.
Y Latitude coordinate (degrees W) for centroid of compass rose.
rot Rotation (degrees) counterclockwise from O degrees (true North). See Details.
cex Character expansion to use in the display.
col.compass Colours for compass rose components (in order):
1=background compass, 2=rotated arms, 3=central button, 4=pch (broder).
Additional parameters to pass to the text function.
Details

The basic idea comes from Jim Lemon (see References), but is modified here to reflect a compass
rose used on BC nautical charts.

The default rotation ("magN") is a calculation of the initial bearing of a great-circle arc from the
compass position to the north geomagnetic pole using the function calcGCdist.

Value

No valule returned.

Author(s)

Rowan Haigh, Program Head — Offshore Rockfish

Pacific Biological Station (PBS), Fisheries & Oceans Canada (DFO), Nanaimo BC
opus locus: Institute of Ocean Sciences (I0S), Sidney BC

Last modified Rd: 2016-04-04

References
[R-sig-Geo] How to display a compass rose on a map

Magnetic North, Geomagnetic and Magnetic Poles

See Also

addBubbles, addLabels, addPoints, addStipples, calcGCdist

Examples

local(envir=.PBSmapEnv,expr={
data(nepaclLL,envir=.PBSmapEnv)
par (mfrow=c(1,1),mar=c(3,4,0.5,0.5))
plotMap(nepacLL, xlim=c(-134.5,-124.5), ylim=c(48,55), plt=NULL,
col="lightyellow”, cex.axis=1.2, cex.lab=1.5)
addCompass(-132, 49.5, cex=1.5)
»

mailto:rowan.haigh@dfo-mpo.gc.ca
https://stat.ethz.ch/pipermail/r-sig-geo/2010-February/007564.html
http://wdc.kugi.kyoto-u.ac.jp/poles/polesexp.html

addLabels 7

addLabels Add Labels to an Existing Plot

Description

Add the label column of data to the existing plot.

Usage

addLabels (data, xlim = NULL, ylim = NULL, polyProps = NULL,
placement = "DATA", polys = NULL, rollup = 3,

cex = NULL, col = NULL, font = NULL, ...)
Arguments
data EventData or PolyData to add (required).
x1lim range of X-coordinates.
ylim range of Y-coordinates.
polyProps PolyData specifying which labels to plot and their properties. par parameters
passed as direct arguments supersede these data.
placement one of "DATA", "CENTROID", "MEAN_RANGE", or "MEAN_XY".
polys PolySet to use for calculating label placement.
rollup level of detail at which to process polys, and it should match that in data. 1 =
PIDs only, 2 = outer contours only, and 3 = no roll-up.
cex vector describing character expansion factors (cycled by EID or PID).
col vector describing colours (cycled by EID or PID).
font vector describing fonts (cycled by EID or PID).
additional par parameters for the text function.
Details

If data is EventData, it must minimally contain the columns EID, X, Y, and label. Since the EID
column does not match a column in polys, set placement = "DATA". The function plots each
label at its corresponding X/Y coordinate.

If data is PolyData, it must minimally contain the columns PID and label. If it also contains X and
Y columns, set placement = "DATA" to plot labels at those coordinates. Otherwise, set placement
to one of "CENTROID", "MEAN_RANGE", or "MEAN_XY". When placement != "DATA", supply a
PolySet polys. Using this PolySet, the function calculates a centroid, mean range, or mean X/Y
coordinate for each polygon, and then links those PolyData with data by PID/SID to determine
label coordinates.

If data contains both PID and EID columns, the function assumes it is PolyData and ignores the
EID column.

For additional help on the arguments cex, col, and font, please see par.

8 addLines

Value

EventData or PolyData with X and Y columns that can subsequently reproduce the labels on the plot.
Modify this data frame to tweak label positions.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

addPoints, calcCentroid, calcMidRange, calcSummary, EventData, plotPoints, PolyData.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- create sample PolyData to label Vancouver Island
labelData <- data.frame(PID=33, label="Vancouver Island");
#--- load data
if (!is.null(version$language) && (version$language == "R"))

data(nepaclLL,envir=.PBSmapEnv)

#--- plot the map
plotMap(nepacLL,xlim=c(-129,-122.6),ylim=c(48,51.1),col="1lemonchiffon")
#--- add the labels
addLabels(labelData,placement="CENTROID",polys=nepaclLL,cex=1.2,col=2,font=2)
par(oldpar)

»

addLines Add a PolySet to an Existing Plot as Polylines

Description

Add a PolySet to an existing plot, where each unique (PID, SID) describes a polyline.

Usage
addLines (polys, xlim = NULL, ylim = NULL,
polyProps = NULL, 1ty = NULL, col = NULL, arrows = FALSE, ...)
Arguments
polys PolySet to add (required).
x1lim range of X-coordinates.

ylim range of Y-coordinates.

https://academic.macewan.ca/boersn/

addLines 9

polyProps PolyData specifying which polylines to plot and their properties. par parameters
passed as direct arguments supersede these data.

1ty vector of line types (cycled by PID).

col vector of colours (cycled by PID).

arrows Boolean value; if TRUE, add arrows using the arrows function and consider the

arguments angle, length, and code.

additional par parameters for the 1ines function.

Details

The plotting routine does not connect the last vertex of each discrete polyline to the first vertex of
that polyline. It clips polys to x1im and ylim before plotting.

For additional help on the arguments 1ty and col, please see par.

Value

PolyData consisting of the PolyProps used to create the plot.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

calcLength, clipLines, closePolys, convLP, fixBound, fixP0S, locatePolys, plotLines,
thinPolys, thickenPolys.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- create a PolySet to plot
polys <- data.frame(PID=rep(1,4),P0S=1:4,X=c(0,1,1,0),Y=c(0,0,1,1))
polys <- as.PolySet(polys, projection=1)
#--- plot the PolySet
plotLines(polys, xlim=c(-.5,1.5), ylim=c(-.5,1.5), projection=1)
#--- add the PolySet to the plot (in a different style)
addLines(polys, 1lwd=5, col=3)
par(oldpar)

»

https://academic.macewan.ca/boersn/

10 addPoints

addPoints Add EventData/PolyData to an Existing Plot as Points

Description

Add EventData/PolyData to an existing plot, where each unique EID describes a point.

Usage
addPoints (data, xlim = NULL, ylim = NULL, polyProps = NULL,
cex = NULL, col = NULL, pch = NULL, ...)
Arguments
data EventData or PolyData to add (required).
x1lim range of X-coordinates.
ylim range of Y-coordinates.
polyProps PolyData specifying which points to plot and their properties. par parameters
passed as direct arguments supersede these data.
cex vector describing character expansion factors (cycled by EID or PID).
col vector describing colours (cycled by EID or PID).
pch vector describing plotting characters (cycled by EID or PID).
additional par parameters for the points function.
Details

This function clips data to x1im and ylim before plotting. It only adds PolyData containing X and
Y columns.

For additional help on the arguments cex, col, and pch, please see par.

Value

PolyData consisting of the PolyProps used to create the plot.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

combineEvents, convDP, findPolys, locateEvents, plotPoints.

https://academic.macewan.ca/boersn/

addPolys 11

Examples

local(envir=.PBSmapEnv, expr={
oldpar = par(no.readonly=TRUE)
#--- load the data (if using R)
if (!is.null(version$language) && (version$language=="R"))
data(nepaclLL,surveyData,envir=.PBSmapEnv)
#--- plot a map
plotMap(nepacLL, xlim=c(-136, -125), ylim=c(48, 57))

#--- add events
addPoints(surveyData, col=1:7)
par(oldpar)
b
addPolys Add a PolySet to an Existing Plot as Polygons
Description

Add a PolySet to an existing plot, where each unique (PID, SID) describes a polygon.

Usage

addPolys (polys, xlim = NULL, ylim = NULL, polyProps = NULL,
border = NULL, 1ty = NULL, col = NULL, colHoles = NULL,

density = NA, angle = NULL, ...)
Arguments

polys PolySet to add (required).

x1lim range of X-coordinates.

ylim range of Y-coordinates.

polyProps PolyData specifying which polygons to plot and their properties. par parameters
passed as direct arguments supersede these data.

border vector describing edge colours (cycled by PID).

1ty vector describing line types (cycled by PID).

col vector describing fill colours (cycled by PID).

colHoles vector describing hole colours (cycled by PID). The default, NULL, should be
used in most cases as it renders holes transparent. colHoles is designed solely to
eliminate retrace lines when images are converted to PDF format. If colHoles is
specified, underlying information (i.e., previously plotted shapes) will be oblit-
erated. If NA is specified, only outer polygons are drawn, consequently filling
holes.

density vector describing shading line densities (lines per inch, cycled by PID).

angle vector describing shading line angles (degrees, cycled by PID).

additional par parameters for the polygon function.

12 addStipples

Details

The plotting routine connects the last vertex of each discrete polygon to the first vertex of that
polygon. It supports both borders (border, 1ty) and fills (col, density, angle). It clips polys to
x1lim and ylim before plotting.

For additional help on the arguments border, 1ty, col, density, and angle, please see polygon
and par.

Value

PolyData consisting of the PolyProps used to create the plot.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

addLabels, addStipples, clipPolys, closePolys, fixBound, fixPOS, locatePolys, plotLines,
plotMap, plotPoints, plotPolys, thinPolys, thickenPolys.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- create a PolySet to plot
polys <- data.frame(PID=rep(1,4),P0S=1:4,X=c(0,1,1,0),Y=c(0,0,1,1))
polys <- as.PolySet(polys, projection=1)
#--- plot the PolySet
plotPolys(polys,xlim=c(-.5,1.5),ylim=c(-.5,1.5),density=0,projection=1)
#--- add the PolySet to the plot (in a different style)
addPolys(polys,col="green",border="blue”,lwd=3)
par(oldpar)

»

addStipples Add Stipples to an Existing Plot

Description

Add stipples to an existing plot.

Usage

addStipples (polys, xlim=NULL, ylim=NULL, polyProps=NULL,
side=1, density=1, distance=4, ...)

https://academic.macewan.ca/boersn/

addStipples 13

Arguments
polys PolySet that provides the stipple boundaries (required).
x1lim range of X-coordinates.
ylim range of Y-coordinates.
polyProps PolyData specifying which polygons to stipple and their properties. par param-
eters passed as direct arguments supersede these data.
side one of -1, @, or 1, corresponding to outside, both sides, or inside, respectively.
density density of points, relative to the default.
distance distance to offset points, measured as a percentage of the absolute difference in
x1lim.
additional par parameters for the points function.
Details

This function locates stipples based on the PolySet polys and does not stipple degenerate lines.

Value

PolyData consisting of the PolyProps used to create the plot.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

addPoints, addPolys, plotMap, plotPoints, plotPolys, points, PolySet.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- load the data (if using R)
if (!is.null(version$language) && (version$language=="R"))

data(nepaclLL,envir=.PBSmapEnv)

#--- plot a map
plotMap(nepaclLL,xlim=c(-128.66,-122.83),ylim=c(48.00,51.16))
#--- add stippling
addStipples(nepacLL,col="purple”,pch=20,cex=0.25,distance=2)
par(oldpar)

»

https://academic.macewan.ca/boersn/

14 appendPolys

appendPolys Append a Two-Column Matrix to a PolySet

Description
Append a two-column matrix to a PolySet, assigning PID and possibly SID values automatically or
as specified in its arguments.

Usage
appendPolys (polys, mat, PID = NULL, SID = NULL, isHole = FALSE)

Arguments
polys existing PolySet; if NULL, creates a new PolySet (required).
mat two-column matrix to append (required).
PID new polygon’s PID.
SID new polygon’s SID.
isHole Boolean value; if TRUE, mat represents a hole.
Details

If the PID argument is NULL, the appended polygon’s PID will be one greater than the maximum
within polys (if defined); otherwise, it will be 1.

If polys contains an SID column and the SID argument equals NULL, this function uses the next
available SID for the corresponding PID.

If polys does not contain an SID column and the caller passes an SID argument, all existing poly-
gons will receive an SID of 1. The new polygon’s SID will match the SID argument.

If isHole = TRUE, the polygon’s POS values will appropriately represent a hole (reverse order of
POS).

If (PID, SID) already exists in the PolySet, the function will issue a warning and duplicate those
identifiers.

Value

PolySet containing mat appended to polys. The function retains attributes from polys.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

addPolys, clipPolys, closePolys, convLP, fixBound, fixPOS, joinPolys, plotMap, plotPolys.

https://academic.macewan.ca/boersn/

bcBathymetry 15

Examples

local(envir=.PBSmapEnv, expr={
#--- create two simple matrices
a <- matrix(data=c(0,0,1,0,1,1,0,1),ncol=2,byrow=TRUE);
b <- matrix(data=c(2,2,3,2,3,3,2,3), ncol=2,byrow=TRUE);
#--- build a PolySet from them
polys <- appendPolys(NULL, a);
polys <- appendPolys(polys, b);
#--- print the result
print (polys);
»

bcBathymetry Data: Bathymetry Spanning British Columbia’s Coast

Description

Bathymetry data spanning British Columbia’s coast.

Usage

data(bcBathymetry)

Format

Three-element list: x = vector of horizontal grid line locations, y = vector of vertical grid line
locations, z = (x by y) matrix containing water depths measured in meters. Positive values indicate
distance below sea level and negative values above it.

contour and contourLines expect data in this format. convCP converts the output from contourLines
into a PolySet.
Note

In R, the data must be loaded using the data function.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2008-09-03

Source

Bathymetry data acquired from the Scripps Institution of Oceanography at the University of San
Diego.

Using their online form, we requested bathymetry data for the complete nepacLL region. At forty
megabytes, the data were not suitable for distribution in our mapping package. Therefore, we
reduced the data to the range —140° < x < —122° and 47° < y < 61°.

https://academic.macewan.ca/boersn/

16 calcArea

References

Smith, W.H.F. and Sandwell, D.T. (1997) Global seafloor topography from satellite altimetry and
ship depth soundings. Science 277, 1957-1962.
http://topex.ucsd.edu/WWW_html/mar_topo.html

See Also

contour, contourlLines, convCP, nepacLL, nepacLLhigh.

calcArea Calculate the Areas of Polygons

Description

Calculate the areas of polygons found in a PolySet.

Usage

calcArea (polys, rollup = 3)

Arguments
polys PolySet to use.
rollup level of detail in the results; 1 = PIDs only, by summing all the polygons with
the same PID, 2 = outer contours only, by subtracting holes from their parent,
and 3 = no roll-up.
Details

If rollup equals 1, the results contain an area for each unique PID only. When it equals 2, they
contain entries for outer contours only. Finally, setting it to 3 prevents roll-up, and they contain
areas for each unique (PID, SID).

Outer polygons have positive areas and inner polygons negative areas. When polygons are rolled
up, the routine sums the positive and negative areas and consequently accounts for holes.

If the PolySet’s projection attribute equals "LL", the function projects the PolySet in UTM first.
If the PolySet’s zone attribute exists, it uses it for the conversion. Otherwise, it computes the mean
longitude and uses that value to determine the zone. The longitude range of zone i is —186 + 6i° <
x < —180 + 6i°.

Value

PolyData with columns PID, SID (may be missing), and area. If the projection equals "LL" or
"UTM", the units of area are square kilometres.

http://topex.ucsd.edu/WWW_html/mar_topo.html

calcCentroid 17

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

calcCentroid, calcLength, calcMidRange, calcSummary, locatePolys.

Examples

local(envir=.PBSmapEnv, expr={
#--- load the data (if using R)

if (!is.null(version$language) && (version$language == "R"))
data(nepaclLL,envir=.PBSmapEnv)
#--- convert LL to UTM so calculation makes sense

attr(nepacLL, "zone") <- 9
nepacUTM <- convUL (nepacLL)
#--- calculate and print the areas
print(calcArea(nepacUTM))

»

calcCentroid Calculate the Centroids of Polygons

Description

Calculate the centroids of polygons found in a PolySet.

Usage

calcCentroid (polys, rollup = 3)

Arguments
polys PolySet to use.
rollup level of detail in the results; 1 = PIDs only, 2 = outer contours only, and 3 =
no roll-up. When rollup equals 1 and 2, the function appropriately adjusts for
polygons with holes.
Details

If rollup equals 1, the results contain a centroid for each unique PID only. When it equals 2, they
contain entries for outer contours only. Finally, setting it to 3 prevents roll-up, and they contain a
centroid for each unique (PID, SID).

https://academic.macewan.ca/boersn/

18 calcConvexHull

Value

PolyData with columns PID, SID (may be missing), X, and Y.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

calcArea, calclLength, calcMidRange, calcSummary, locateEvents, locatePolys.

Examples

local(envir=.PBSmapEnv,expr={
#--- load the data (if using R)
if (!is.null(version$language) && (version$language=="R"))
data(nepaclLL,envir=.PBSmapEnv)
#--- calculate and print the centroids for several polygons
print(calcCentroid(nepacLL[is.element(nepacLL$PID,c(33,39,47)),1))

b

calcConvexHull Calculate the Convex Hull for a Set of Points

Description

Calculate the convex hull for a set of points.

Usage
calcConvexHull (xydata, keepExtra=FALSE)

Arguments

xydata a data frame with columns X and Y containing spatial coordinates.

keepExtra logical: if TRUE, retain any additional columns from the input data frame xydata.
Details

This routine uses the function chull() in the package grDevices. By default, it ignores all columns
other than X and Y; however, the user can choose to retain additional columns in xydata by speci-
fying keepExtra=TRUE.

Value

PolySet with columns PID, POS, X, Y, and additional columns in xydata if keepExtra=TRUE.

https://academic.macewan.ca/boersn/

calcGCdist

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

19

addPoints, addPolys, calcArea, calcCentroid, calcMidRange, calcSummary, locateEvents,
plotMap, plotPoints, plotPolys.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
data(surveyData,envir=.PBSmapEnv)
#--- plot the convex hull, and then plot the points
plotMap(calcConvexHull (surveyData),col="moccasin")
addPoints(surveyData,col="blue",pch=17,cex=.6)

par(oldpar)
»

calcGCdist

Calculate Great-Circle Distance

Description

Calculate the great-circle distance between geographic (LL) coordinates. Also calculate the initial
bearing of the great-circle arc (at its starting point).

Usage

calcGCdist(lon1, latl, lon2, lat2, R=6371.2)

Arguments

lon1
lat1
lon2
lat2
R

Longitude coordinate (degrees) of the start point.
Latitude coordinate(degrees) of the start point.
Longitude coordinate(degrees) of the end point.
Latitude coordinate(degrees) of the end point.

Mean radius (km) of the Earth.

https://academic.macewan.ca/boersn/

20 calcGCdist

Details

The great-circle distance is calculated between two points along a spherical surface using the short-
est distance and disregarding topography.

Method 1: Haversine Formula
a = sin®((g2 — ¢1)/2) + cos(d1) cos(d2) sin®(Az — A1) /2)

c=2atan2(v/a, V1 — a)
d= Rc

where

¢ = latitude (in radians),

A = longitude (in radians),

R =radius (km) of the Earth,

a = square of half the chord length between the points,
¢ = angular distance in radians,

d = great-circle distance (km) between two points.

Method 2: Spherical Law of Cosines

d = acos(sin(¢1) sin(¢z2) + cos(¢p1) cos(pz) cos(Aa — A1))R

The initial bearing (aka forward azimuth) for the start point can be calculated using:

0 = atan2(sin(A2 — A1) cos(¢2), cos(¢1) sin(ga) — sin(¢1) cos(¢z2) cos(Az — A1))

Value

A list obect containing:

a — Haversine a = square of half the chord length between the points,

¢ — Haversine ¢ = angular distance in radians,

d — Haversine d = great-circle distance (km) between two points,

d2 — Law of Cosines d = great-circle distance (km) between two points,
theta — Initial bearing 6 (degrees) for the start point.

Note
If one uses the north geomagnetic pole as an end point, 6 crudely approximates the magnetic decli-
nation.

Author(s)

Rowan Haigh, Program Head — Offshore Rockfish

Pacific Biological Station (PBS), Fisheries & Oceans Canada (DFO), Nanaimo BC
opus locus: Institute of Ocean Sciences (I0S), Sidney BC

Last modified Rd: 2017-06-22

mailto:rowan.haigh@dfo-mpo.gc.ca

calcLength 21

References

http://www.movable-type.co.uk/scripts/latlong.html

See Also

addCompass, calcArea, calcCentroid, calcLength

Examples

local(envir=.PBSmapEnv,expr={
#-- Distance between southern BC waters and north geomagnetic pole
print(calcGCdist(-126.5,48.6,-72.7,80.4))

»

calcLength Calculate the Length of Polylines

Description

Calculate the length of polylines found in a PolySet.

Usage

calcLength (polys, rollup = 3, close = FALSE)

Arguments
polys PolySet to use.
rollup level of detail in the results; 1 = PIDs only, summing the lengths of each SID
within each PID, and 3 = no roll-up. Note: rollup 2 has no meaning in this
function and, if specified, will be reset to 3.
close Boolean value; if TRUE, include the distance between each polygon’s last and
first vertex, if necessary.
Details

If rollup equals 1, the results contain an entry for each unique PID only. Setting it to 3 prevents
roll-up, and they contain an entry for each unique (PID, SID).

If the projection attribute equals "LL", this routine uses Great Circle distances to compute the
surface length of each polyline. In doing so, the algorithm simplifies Earth to a sphere.

If the projection attribute equals "UTM" or 1, this routine uses Pythagoras’ Theorem to calculate
lengths.
Value

PolyData with columns PID, SID (may be missing), and length. If projection equals "UTM" or
"LL", lengths are in kilometres. Otherwise, lengths are in the same unit as the input PolySet.

http://www.movable-type.co.uk/scripts/latlong.html

22 calcMidRange

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

calcArea, calcCentroid, calcMidRange, calcSummary, locatePolys.

Examples

local(envir=.PBSmapEnv,expr={
#--- load the data (if using R)
if (!is.null(version$language) && (version$language=="R"))
data(nepaclLL,envir=.PBSmapEnv)
#--- calculate the perimeter of Vancouver Island
print(calcLength(nepacLL[nepacLL$PID==33, 1))
»

calcMidRange Calculate the Midpoint of the X/Y Ranges of Polygons

Description

Calculate the midpoint of the X/Y ranges of polygons found in a PolySet.

Usage

calcMidRange (polys, rollup = 3)

Arguments
polys PolySet to use.
rollup level of detail in the results; 1 = PIDs only, 2 = outer contours only, and 3 = no
roll-up.
Details

If rollup equals 1, the results contain a mean range for each unique PID only. When it equals 2,
they contain entries for outer contours only. Finally, setting it to 3 prevents roll-up, and they contain
a mean range for each unique (PID, SID).

Value

PolyData with columns PID, SID (may be missing), X, and Y.

https://academic.macewan.ca/boersn/

calcSummary 23

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

calcArea, calcCentroid, calcLength, calcSummary.

Examples

local(envir=.PBSmapEnv,expr={
#--- load the data (if using R)
if (!is.null(version$language) && (version$language=="R"))
data(nepaclLL,envir=.PBSmapEnv)
#--- calculate and print the centroids for several polygons
print(calcMidRange(nepacLL[is.element(nepacLL$PID,c(33,39,47)),1))
»

calcSummary Apply Functions to Polygons in a PolySet

Description

Apply functions to polygons in a PolySet.

Usage
calcSummary (polys, rollup = 3, FUN, ...)
Arguments
polys PolySet to use.
rollup level of detail in the results; 1 = PIDs only, by removing the SID column, and
then passing each PID into FUN, 2 = outer contours only, by making hole SIDs
equal to their parent’s SID, and then passing each (PID, SID) into FUN, and 3 =
no roll-up.
FUN the function to apply; it must accept a vector and return a vector or scalar.
optional arguments for FUN.
Details

If rollup equals 1, the results contain an entry for each unique PID only. When it equals 2, they
contain entries for outer contours only. Finally, setting it to 3 prevents roll-up, and they contain an
entry for each unique (PID, SID).

https://academic.macewan.ca/boersn/

24 calcVoronoi

Value

PolyData with columns PID, SID (may be missing), X, and Y. If FUN returns a vector of length greater
than 1 (say n), names the columns X1, X2, ..., Xn and Y1, Y2, ..., Yn.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

calcArea, calcCentroid, calcConvexHull, calcLength, calcMidRange, combineEvents, findPolys,
locateEvents, locatePolys, makeGrid, makeProps.

Examples

local(envir=.PBSmapEnv,expr={
#--- load the data (if using R)
if (!is.null(version$language) && (version$language=="R"))
data(nepaclLL,envir=.PBSmapEnv)
#--- calculate and print the centroids for several polygons
print(calcSummary(nepacLL[is.element(nepacLL$PID,c(33,39,47)),1],
rollup=3, FUN=mean))
»

calcVoronoi Calculate the Voronoi (Dirichlet) Tesselation for a Set of Points

Description

Calculate the Voronoi (Dirichlet) tesselation for a set of points.

Usage

calcVoronoi (xydata, xlim = NULL, ylim = NULL, eps = 1e-09, frac = 0.0001)

Arguments
xydata a data frame with columns X and Y containing the points.
x1lim range of X-coordinates; a bounding box for the coordinates.
ylim range of Y-coordinates; a bounding box for the coordinates.
eps the value of epsilon used in testing whether a quantity is zero.
frac used to detect duplicate input points, which meet the condition |z1 — 22| <

frac x (xmax — xmin)and |yl — 32| < frac X (ymax — ymin).

https://academic.macewan.ca/boersn/

calcVoronoi 25

Details

This routine ignores all columns other than X and Y.

If the user leaves x1im and y1lim unspecified, the function defaults to the range of the data with each
extent expanded by ten percent of the range.

This function sets the attribute projection to 1 and the attribute zone to NULL as it assumes this
projection in its calculations.

Value

PolySet with columns PID, POS, X, and Y.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

addPoints, addPolys, calcArea, calcCentroid, calcConvexHull, calcMidRange, calcSummary,
locateEvents, plotMap, plotPoints, plotPolys.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- create some EventData
events <- as.EventData(data.frame(
EID=1:200, X=rnorm(200), Y=rnorm(200)), projection=1)

#--- calculate the Voronoi tesselation
polys <- calcVoronoi(events)
#--- create PolyData to color it based on area

polyData <- calcArea(polys)

names(polyData)[is.element(names(polyData), "area”)] <- "Z"

colSeq <- seq(@.4, 0.95, length=4)

polyData <- makeProps(polyData,
breaks=quantile(polyData$z,c(9,.25,.5,.75,1)),
propName="col"”, propVals=rgb(colSeq,colSeq,colSeq))

#--- plot the tesselation

plotMap(polys, polyProps=polyData)

#--- plot the points

addPoints(events, pch=19)

par(oldpar)

»

https://academic.macewan.ca/boersn/

26 clipLines

clipLines Clip a PolySet as Polylines

Description

Clip a PolySet, where each unique (PID, SID) describes a polyline.

Usage
clipLines (polys, xlim, ylim, keepExtra = FALSE)

Arguments
polys PolySet to clip.
x1lim range of X-coordinates.
ylim range of Y-coordinates.
keepExtra Boolean value; if TRUE, tries to carry forward any non-standard columns into the
result.
Details

For each discrete polyline, the function does not connect vertices 1 and N. It recalculates the POS
values for each vertex, saving the old values in a column named 01dPOS. For new vertices, it sets
01dPOS to NA.

Value

PolySet containing the input data, with some points added or removed. A new column 0l1dPOS
records the original POS value for each vertex.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

clipPolys, fixBound.

Examples

local(envir=.PBSmapEnv, expr={
oldpar = par(no.readonly=TRUE)
#--- create a triangle to clip
polys <- data.frame(PID=rep(1, 3), P0S=1:3, X=c(0,1,0), Y=c(0,0.5,1))
#--- clip the triangle in the X direction, and plot the results
plotLines(clipLines(polys, xlim=c(0@,.75), ylim=range(polys[, "Y"1)))

https://academic.macewan.ca/boersn/

clipPolys 27

par(oldpar)
»

clipPolys Clip a PolySet as Polygons

Description

Clip a PolySet, where each unique (PID, SID) describes a polygon.

Usage

clipPolys (polys, xlim, ylim, keepExtra = FALSE)

Arguments
polys PolySet to clip.
x1lim range of X-coordinates.
ylim range of Y-coordinates.
keepExtra Boolean value; if TRUE, tries to carry forward any non-standard columns into the
result.
Details

For each discrete polygon, the function connects vertices 1 and N. It recalculates the POS values for
each vertex, saving the old values in a column named 01dPOS. For new vertices, it sets 01dPOS to
NA.

Value
PolySet containing the input data, with some points added or removed. A new column oldPOS
records the original POS value for each vertex.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

clipLines, fixBound.

https://academic.macewan.ca/boersn/

28 closePolys

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- create a triangle that will be clipped
polys <- data.frame(PID=rep(1, 3), P0S=1:3, X=c(0,1,.5), Y=c(0,0,1))
#--- clip the triangle in the X direction, and plot the results
plotPolys(clipPolys(polys,xlim=c(@,.75),ylim=range(polys[,"Y"1)),col=2)
par(oldpar)

»

closePolys Close a PolySet

Description

Close a PolySet of polylines to form polygons.

Usage

closePolys (polys)

Arguments

polys PolySet to close.

Details

Generally, run fixBound before this function. The ranges of a PolySet’s X and Y columns define
the boundary. For each discrete polygon, this function determines if the first and last points lie on
a boundary. If both points lie on the same boundary, it adds no points. However, if they lie on
different boundaries, it may add one or two corners to the polygon.

When the boundaries are adjacent, one corner will be added as follows:

* top boundary + left boundary implies add top-left corner;
* top boundary + right boundary implies add top-right corner;
* bottom boundary + left boundary implies add bottom-left corner;
* bottom boundary + right boundary implies add bottom-right corner.
When the boundaries are opposite, it first adds the corner closest to a starting or ending polygon

vertex. This determines a side (left-right or bottom-top) that connects the opposite boundaries.
Then, it adds the other corner of that side to close the polygon.

Value

PolySet identical to polys, except for possible additional corner points.

combineEvents

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

fixBound, fixPOS.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)

#--- 4 corners

polys <- data.frame(
PID = c(1, 1, 2, 2, 3, 3, 4, 4),
POS = c(1, 2, 1, 2,1, 2, 1, 2),
X =c@, 1,2, 3,01, 2, 3),
Y =c¢(1,0,0, 1,2, 3,3, 2)

plotPolys(closePolys(polys), col=2)

#--- 2 corners and 1 opposite
polys <- data.frame(

29

PID = c(1, 1, 2, 2, 3, 3, 3),
POS = c(1, 2, 1, 2, 1, 2, 3),
X =-c(o, 1, 0,1,5, 6, 1.5),
Y =c(, 0,2, 3,0, 1.5, 3))

plotPolys(closePolys(polys), col=2)

par (oldpar)

»
combineEvents Combine Measurements of Events
Description

Combine measurements associated with events that occur in the same polygon.

Usage
combineEvents (events, locs, FUN, ..., bdryOK = TRUE)
Arguments
events EventData with at least four columns (EID, X, Y, Z).
locs LocationSet usually resulting from a call to findPolys.
FUN a function that produces a scalar from a vector (e.g., mean, sum).

e optional arguments for FUN.
bdry0OK Boolean value; if TRUE, include boundary points.

https://academic.macewan.ca/boersn/

30 combinePolys

Details

This function combines measurements associated with events that occur in the same polygon.
Each event (EID) has a corresponding measurement Z. The locs data frame (usually output from
findPolys) places events within polygons. Thus, each polygon (PID, SID) determines a set of
events within it, and a corresponding vector of measurements Zv. The function returns FUN(Zv), a
summary of measurements within each polygon.

Value

PolyData with columns PID, SID (if in locs), and Z.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

findCells, findPolys, locateEvents, locatePolys, makeGrid, makeProps.

Examples

local(envir=.PBSmapEnv,expr={
#--- create an EventData data frame: let each event have Z = 1
events <- data.frame(EID=1:10, X=1:10, Y=1:10, Z=rep(1, 10))
#--- example output from findPolys where 1 event occurred in the first
#--- polygon, 3 in the second, and 6 in the third
locs <- data.frame(EID=1:10,PID=c(rep(1,1),rep(2,3),rep(3,6)),Bdry=rep(0,10))
#--- sum the Z column of the events in each polygon, and print the result
print(combineEvents(events=events, locs=locs, FUN=sum))

b

combinePolys Combine Several Polygons into a Single Polygon

Description

Combine several polygons into a single polygon by modifying the PID and SID indices.

Usage

combinePolys (polys)

Arguments

polys PolySet with one or more polygons, each with possibly several components/holes.

https://academic.macewan.ca/boersn/

convCP 31

Details

This function accepts a PolySet containing one or more polygons (PIDs), each with one or more
components or holes (SIDs). The SID column need not exist in the input. The function combines
these polygons into a single polygon by simply renumbering the PID and SID indices. The resulting
PolySet contains a single PID (with the value 1) and uses the SID value to differentiate between
polygons, their components, and holes.

Value
PolySet, possibly with the addition of an SID column if it did not already exist. The function may
also reorder columns such that PID, SID, POS, X and Y appear first, in that order.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2007-06-06

See Also

dividePolys

convCP Convert Contour Lines into a PolySet

Description

Convert output from contourLines into a PolySet.

Usage

convCP (data, projection = NULL, zone = NULL)

Arguments
data contour line data, often from the contourLines function.
projection optional projection attribute to add to the PolySet.
zone optional zone attribute to add to the PolySet.

Details

data contains a list as described below. The contourLines function create a list suitable for the
data argument.

A three-element list describes each contour. The named elements in this list include the scalar
level, the vector x, and the vector y. Vectors x and y must have equal lengths. A higher-level list
(data) contains one or more of these contours lists.

https://academic.macewan.ca/boersn/

32 convDP

Value

A list with two named elements PolySet and PolyData. The PolySet element contains a PolySet
representation of the contour lines. The PolyData element links each contour line (PID, SID) with a
level.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

contour, contourlLines, convLP, makeTopography.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- create sample data for the contourLines() function
x <- seq(-0.5, 0.8, length=50); y <- x
z <- outer(x, y, FUN = function(x,y) { sin(2xpix(x*2+y*2))*2; })
data <- contourLines(x, y, z, levels=c(0.2, 0.8))
#--- pass that sample data into convCP()
result <- convCP(data)
#--- plot the result
plotLines(result$PolySet, projection=1)
print(result$PolyData)
par(oldpar)
»

convDP Convert EventData/PolyData into a PolySet

Description

Convert EventData/PolyData into a PolySet.

Usage

convDP (data, xColumns, yColumns)

Arguments
data PolyData or EventData.
xColumns vector of X-column names.

yColumns vector of Y-column names.

https://academic.macewan.ca/boersn/

convDP 33

Details

This function expects data to contain several X- and Y-columns. For example, consider data with
columns x1, y1, x2, and y2. Suppose xColumns = c("x1", "x2") and yColumns = c("y1", "y2").
The result will contain nrow(data) polygons. Each one will have two vertices, (x1, y1) and
(x2, y2) and POS values 1 and 2, respectively. If data includes an SID column, so will the result.

If data contains an EID and not a PID column, the function uses the EIDs as PIDs.

If data contains both PID and EID columns, the function assumes it is PolyData and ignores the
EID column.

Value

PolySet with the same PIDs as those given in data. If data has an SID column, the result will
include it.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

addPoints, plotPoints.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- create sample PolyData
polyData <- data.frame(PID=c(1, 2, 3),
x1=c(1, 3, 5), yl=c(1, 3, 2),
x2=c(1, 4, 5), y2=c(2, 4, 1),
x3=c(2, 4, 6), y3=c(2, 3, 1))
#--- print PolyData
print(polyData)
#--- make a PolySet from PolyData
polys <- convDP(polyData,
xColumns=c("x1", "x2", "x3"),
yColumns=c("y1", "y2", "y3"))
#--- print and plot the PolySet
print(polys)
plotLines(polys, xlim=c(0,7), ylim=c(0,5), col=2)
par (oldpar)
»

https://academic.macewan.ca/boersn/

34 convLP

convLP Convert Polylines into a Polygon

Description

Convert two polylines into a polygon.

Usage

convLP (polyA, polyB, reverse = TRUE)

Arguments

polyA PolySet containing a polyline.

polyB PolySet containing a polyline.

reverse Boolean value; if TRUE, reverse polyB’s vertices.
Details

The resulting PolySet contains all the vertices from polyA in their original order. If reverse = TRUE,
this function appends the vertices from polyB in the reverse order (nrow(polyB):1). Otherwise,
it appends them in their original order. The PID column equals the PID of polyA. No SID column
appears in the result. The resulting polygon is an exterior boundary.

Value

PolySet with a single PID that is the same as polyA. The result contains all the vertices in polyA
and polyB. It has the same projection and zone attributes as those in the input PolySets. If an
input PolySet’s attributes equal NULL, the function uses the other PolySet’s. If the PolySet attributes
conflict, the result’s attribute equals NULL.

Author(s)
Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

addLines, appendPolys, closePolys, convCP, joinPolys, plotLines.

https://academic.macewan.ca/boersn/

convUL 35

Examples

local(envir=.PBSmapEnv, expr={
oldpar = par(no.readonly=TRUE)
#--- create two polylines
polylinel <- data.frame(PID=rep(1,2),P0S=1:2,X=c(1,4),Y=c(1,4))
polyline2 <- data.frame(PID=rep(1,2),P0S=1:2,X=c(2,5),Y=c(1,4))
#--- create two plots to demonstrate the effect of ‘reverse'
par(mfrow=c(2, 1))
plotPolys(convLP(polylinel, polyline2, reverse=TRUE), col=2)
plotPolys(convLP(polylinel, polyline2, reverse=FALSE), col=3)
par(oldpar)

»

convUL Convert Coordinates between UTM and Lon/Lat

Description

Convert coordinates between UTM and Lon/Lat.

Usage

convUL (xydata, km=TRUE, southern=NULL)

Arguments
xydata data frame with columns X and Y.
km Boolean value; if TRUE, UTM coordinates within xydata are in kilometres; oth-
erwise, metres.
southern Boolean value; if TRUE, forces conversions from UTM to longitude/latitude to
produce coordinates within the southern hemisphere. For conversions from
UTM, this argument defaults to FALSE. For conversions from LL, the function
determines southern from xydata.
Details

The object xydata must possess a projection attribute that identifies the current projection. If the
data frame contains UTM coordinates, it must also have a zone attribute equal to a number between
1 and 60 (inclusive). If it contains geographic (longitude/latitude) coordinates and the zone attribute
is missing, the function computes the mean longitude and uses that value to determine the zone. The
longitude range of zone i is —186 + 6i° < z < —180 + 6i°.

This function converts the X and Y columns of xydata from "LL" to "UTM" or vice-versa. If the data
span more than one zone to the right or left of the intended central zone, the underlying algorithm
may produce erroneous results. This limitation means that the user should use the most central
zone of the mapped region, or allow the function to determine the central zone when converting
from geographic to UTM coordinates. After the conversion, this routine adjusts the data frame’s
attributes accordingly.

36 dividePolys

Value

A data frame identical to xydata, except that the X and Y columns contain the results of the conver-
sion, and the projection attribute matches the new projection.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

References

Ordnance Survey. (2010) A guide to coordinate systems in Great Britain. Report D00659 (v2.1).
Southampton, UK.
http://www.ordnancesurvey.co.uk/oswebsite/gps/docs/A_Guide_to_Coordinate_Systems_
in_Great_Britain.pdf.

See Also

closePolys, fixBound.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- load the data
data(nepaclLL,envir=.PBSmapEnv)

#--- set the zone attribute
#--- use a zone that is most central to the mapped region
attr(nepacLL, "zone") <- 6
#--- convert and plot the result
nepacUTM <- convUL (nepacLL)
plotMap(nepacUTM)
par (oldpar)
»
dividePolys Divide a Single Polygon into Several Polygons
Description

Divide a single polygon (with several outer-contour components) into several polygons, a polygon
for each outer contour, by modifying the PID and SID indices.

Usage

dividePolys (polys)

https://academic.macewan.ca/boersn/
http://www.ordnancesurvey.co.uk/oswebsite/gps/docs/A_Guide_to_Coordinate_Systems_in_Great_Britain.pdf
http://www.ordnancesurvey.co.uk/oswebsite/gps/docs/A_Guide_to_Coordinate_Systems_in_Great_Britain.pdf

EventData 37

Arguments

polys PolySet with one or more polygons, each with possibly several components/holes.

Details

Given the input PolySet, this function renumbers the PID and SID indices so that each outer contour
has a unique PID and is followed by all of its holes, identifying them with SIDs greater than one.

Value

PolySet, possibly with the addition of an SID column if it did not already exist. The function may
also reorder columns such that PID, SID, POS, X and Y appear first, in that order.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2007-06-06

See Also

combinePolys.

EventData EventData Objects

Description
An EventData object comprises a data frame with at least three fields named EID, X, and Y; each
row specifies an event that occurs at a specific point.

PBSmapping functions that expect EventData will accept properly formatted data frames in their
place (see ’Details’).

as.EventData attempts to coerce a data frame to an object with class EventData.

is.EventData returns TRUE if its argument is of class EventData.

Usage

as.EventData(x, projection = NULL, zone = NULL)
is.EventData(x, fullValidation = TRUE)

Arguments
X data frame to be coerced or tested.
projection optional projection attribute to add to EventData, possibly overwriting an ex-
isting attribute.
zone optional zone attribute to add to EventData, possibly overwriting an existing

attribute.
fullvalidation Boolean value; if TRUE, fully test x.

https://academic.macewan.ca/boersn/

38 extractPolyData

Details

Conceptually, an EventData object describes events (EID) that take place at specific points (X,Y) in
two-dimensional space. Additional fields can specify measurements associated with these events.
In a fishery context, EventData could describe fishing events associated with trawl tows, based on
the fields:

* EID - fishing event (tow) identification number;

* X, Y - fishing location;

* Duration - length of time for the tow;

* Depth - average depth of the tow;

* Catch - biomass captured.
Like PolyData, EventData can have attributes projection and zone, which may be absent. In-

serting the string "EventData” as the class attribute’s first element alters the behaviour of some
functions, including print (if PBSprint is TRUE) and summary.

Value
The as.EventData method returns an object with classes "EventData” and "data.frame”, in that
order.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2015-04-23

See Also

PolySet, PolyData, LocationSet

extractPolyData Extract PolyData from a PolySet

Description
Extract PolyData from a PolySet. Columns for the PolyData include those other than PID, SID, POS,
0ldP0S, X, and Y.

Usage

extractPolyData (polys)

Arguments

polys PolySet to use.

https://academic.macewan.ca/boersn/

findCells 39

Details

This function identifies the PolySet’s extra columns and determines if those columns contain unique
values for each (PID, SID). Where they do, the (PID, SID) will appear in the PolyData output with
that unique value. Where they do not, the extra column will contain NAs for that (PID, SID).

Value

PolyData with columns PID, SID, and any extra columns.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

makeProps, PolyData, PolySet.

Examples

local(envir=.PBSmapEnv,expr={
#--- create a PolySet with an extra column
polys <- data.frame(PID = c(rep(1, 10), rep(2, 10)),
POS = c(1:10, 1:10),
X = c(rep(1, 10), rep(1, 10)),
Y = c(rep(1, 10), rep(1, 10)),
colour = (c(rep("green”, 10), rep("red”, 10))))
#--- extract the PolyData
print(extractPolyData(polys))
»

findCells Find Grid Cells that Contain Events

Description

Find the grid cells in a PolySet that contain events specified in EventData. Similar to findPolys,
except this function requires a PolySet resulting from makeGrid. This restriction allows this func-
tion to calculate the result with greater efficiency.

Usage

findCells (events, polys, includeBdry=NULL)

https://academic.macewan.ca/boersn/

40 findCells

Arguments
events EventData to use.
polys PolySet to use.
includeBdry numeric: determines how points on boundaries are handled:
if NULL then report all points on polygon boundaries (default behaviour);
if @ then exclude all points on polygon boundaries;
if 1 then report only the first (lowest PID/SID) polygon boundary;
if 2, ...,n then report the last (highest PID/SID) polygon boundary.
Details

The resulting data frame, a LocationSet, contains the columns EID, PID, SID (if in polys), and Bdry,
where an event (EID) occurs in a polygon (PID, SID). The Boolean (0,1) variable Bdry indicates
whether an event lies on a polygon’s edge. Note that if an event lies properly outside of all the
polygons, then a record with (EID, PID, SID) does not occur in the output. It may happen, however,
that an event occurs in multiple polygons (i.e., on two or more boundaries). Thus, the same EID can
occur more than once in the output.

If an event happens to lie at the boundary intersection of four (or two) grid cells then one EID will
be associated with four (or two) grid cells. A user can choose to manipulate this result by setting
the argument includeBdry to a numeric value that constrains the association of a boundary event
to 0 or 1 grid cell (see argument description above).

Value

LocationSet that links events with polygons.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2014-12-15

See Also

findPolys, makeGrid, combineEvents, locateEvents, locatePolys, LocationSet.

Examples

local(envir=.PBSmapEnv,expr={

oldpar = par(no.readonly=TRUE)

#--- create some EventData: points in a diagonal line

events <- data.frame(EID=1:11, X=seq(@, 2, length=11),

Y=seq(@, 2, length=11))

events <- as.EventData(events, projection=1);

#--- create a PolySet (a grid)

polys <- makeGrid (x=seq(@, 2, by=0.50), y=seq(@, 2, by=0.50), projection=1)

#--- show a picture

plotPolys(polys, xlim=range(polys$X)+c(-0.1, 0.1),
ylim=range(polys$Y)+c(-0.1, @.1), projection=1)

https://academic.macewan.ca/boersn/

findPolys 41

addPoints(events, col=2)

#--- run findCells and print the results

fc <- findCells(events, polys)

fc <- fclorder(fcEID, fcPID, fc$SID), 1]

fc$label <- paste(fc$PID, fc$SID, sep=", ")

print (fc)

#--- add labels to the graph

addLabels(as.PolyData(fc[!duplicated(paste(fcPID, fcSID)), 1,
projection=1), placement="CENTROID",
polys=as.PolySet(polys, projection=1), col=4)

par(oldpar)

»

findPolys Find Polygons that Contain Events

Description

Find the polygons in a PolySet that contain events specified in EventData.

Usage
findPolys (events, polys, maxRows = 1e+05, includeBdry=NULL)

Arguments
events EventData to use.
polys PolySet to use.
maxRows estimated maximum number of rows in the output LocationSet.
includeBdry numeric: determines how points on boundaries are handled:
if NULL then report all points on polygon boundaries (default behaviour);
if @ then exclude all points on polygon boundaries;
if 1 then report only the first (lowest PID/SID) polygon boundary;
if 2, ...,n then report the last (highest PID/SID) polygon boundary.
Details

The resulting data frame, a LocationSet, contains the columns EID, PID, SID (if in polys), and
Bdry, where an event (EID) occurs in a polygon (PID, SID) and SID does not correspond to an inner
boundary. The Boolean variable Bdry indicates whether an event lies on a polygon’s edge. Note
that if an event lies properly outside of all the polygons, then a record with (EID, PID, SID) does not
occur in the output. It may happen, however, that an event occurs in multiple polygons. Thus, the
same EID can occur more than once in the output.

If an event happens to lie at the boundary intersection of two or more polygons then one EID will
be associated with two or more polygons. A user can choose to manipulate this result by setting the
argument includeBdry to a numeric value that constrains the association of a boundary event to 0
or 1 polygon (see argument description above).

42 fixBound

Value

LocationSet that links events with polygons.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2014-12-15

See Also

combineEvents, findCells, locateEvents, locatePolys, LocationSet, makeGrid.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- create some EventData: a column of points at X = 0.5
events <- data.frame(EID=1:10, X=.5, Y=seq(@, 2, length=10))
events <- as.EventData(events, projection=1)
#--- create a PolySet: two squares with the second above the first
polys <- data.frame(PID=c(rep(1, 4), rep(2, 4)), P0S=c(1:4, 1:4),
X=c(@, 1, 1, @, @, 1, 1, @),
Y=c(o, 0, 1, 1, 1, 1, 2, 2))
polys <- as.PolySet(polys, projection=1)
#--- show a picture
plotPolys(polys, xlim=range(polys$X)+c(-0.1, 0.1),
ylim=range(polys$Y)+c(-0.1, @.1), projection=1);
addPoints(events, col=2);
#--- run findPolys and print the results
print(findPolys(events, polys))
par (oldpar)
»

fixBound Fix the Boundary Points of a PolySet

Description

The ranges of a PolySet’s X and Y columns define its boundary. This function fixes a PolySet’s
vertices by moving vertices near a boundary to the actual boundary.

Usage

fixBound (polys, tol)

https://academic.macewan.ca/boersn/

fixBound 43

Arguments
polys PolySet to fix.
tol vector (length 1 or 2) specifying a percentage of the ranges to use in defining
near to a boundary. If tol has two elements, the first specifies the tolerance for
the x-axis and the second the y-axis. If it has only one element, the function uses
the same tolerance for both axes.
Details

When moving vertices to a boundary, the function moves them strictly horizontally or vertically, as
appropriate.

Value

PolySet identical to the input, except for possible changes in the X and Y columns.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

closePolys, fixPOS, isConvex, isIntersecting, PolySet.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)

#--- set up a long horizontal and long vertical line to extend the plot's
#--- limits, and then try fixing the bounds of a line in the top-left
#--- corner and a line in the bottom-right corner
polys <- data.frame(PID=c(1, 1, 2, 2, 3, 3, 4, 4),
POS=c(1, 2, 1, 2, 1, 2, 1, 2),
X =c(0, 10, 5, 5, 0.1, 4.9, 5.1, 9.9),
Y =c(5, 5, 0, 10, 5.1, 9.9, 0.1, 4.9))
polys <- fixBound(polys, tol=0.0100001)
plotLines(polys)
par(oldpar)

b

https://academic.macewan.ca/boersn/

44 fixPOS

fixP0OS Fix the POS Column of a PolySet

Description

Fix the POS column of a PolySet by recalculating it using sequential integers.

Usage

fixPOS (polys, exteriorCCW = NA)

Arguments
polys PolySet to fix.
exteriorCCW Boolean value; if TRUE, orders exterior polygon vertices in a counter-clockwise
direction. If FALSE, orders them in a clockwise direction. If NA, maintains their
original order.
Details

This function recalculates the POS values of each (PID, SID) as either 1 to N or N to 1, depending
on the order of POS (ascending or descending) in the input data. POS values in the input must be
properly ordered (ascending or descending), but they may contain fractional values. For example,
POS = 2.5 might correspond to a point manually added between POS = 2 and POS = 3. If
exteriorCCW = NA, all other columns remain unchanged. Otherwise, it orders the X and Y columns
according to exteriorCCW.

Value
PolySet with the same columns as the input, except for possible changes to the POS, X, and Y
columns.
Author(s)
Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10
See Also

closePolys, fixBound, isConvex, isIntersecting, PolySet.

https://academic.macewan.ca/boersn/

importEvents 45

Examples

local(envir=.PBSmapEnv,expr={
#--- create a PolySet with broken POS numbering
polys <- data.frame(PID = c(rep(1, 10), rep(2, 10)),
POS = c(seq(2, 10, length = 10), seq(10, 2, length = 10)),
X = c(rep(1, 10), rep(1, 10)),
Y = c(rep(1, 10), rep(1, 10)))
#--- fix the POS numbering
polys <- fixP0OS(polys)
#--- print the results
print(polys)
»

importEvents Import EventData from a Text File

Description

Import a text file and convert into EventData.

Usage

importEvents(EventData, projection=NULL, zone=NULL)

Arguments
EventData filename of EventData text file.
projection optional projection attribute to add to EventData.
zone optional zone attribute to add to EventData.

Value

An imported EventData.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2008-08-25

See Also

importPolys, importLocs, importGSHHS, importShapefile

https://academic.macewan.ca/boersn/

46 importGSHHS

importGSHHS Import Data from a GSHHS Database

Description

Import data from a GSHHS database and convert data into a PolySet with a PolyData attribute.

Usage

importGSHHS (gshhsDB, x1lim, ylim, maxLevel=4, n=0, useWest=FALSE)

Arguments
gshhsDB path name to binary GSHHS database. If unspecified, looks for gshhs_f.b in
the root of the PBSmapping library directory.
x1lim range of X-coordinates (for clipping). The range should be between 0 and 360.
ylim range of Y-coordinates (for clipping).
maxLevel maximum level of polygons to import: 1 (land), 2 (lakes on land), 3 (islands in
lakes), or 4 (ponds on islands); ignored when importing lines.
n minimum number of vertices that must exist in a line/polygon in order for it to
be imported.
useWest logical: if TRUE, convert the X-coordinates (longitude) to °W (western hemi-
sphere -180 to 0).
Details

This routine requires a binary GSHHG (Global Self-consistent, Hierarchical, High-resolution Ge-
ography) database file. The GSHHG database has been released in the public domain and may be
downloaded from

http://www.soest.hawaii.edu/pwessel/gshhg/.

At the time of writing, the most recent binary database was the archive file called gshhg-bin-2.3.4.zip.

The archive contains multiple binary files that contain geographical coordinates for shorelines
(gshhs), rivers (wdb_rivers), and borders (wdb_borders). The latter two come from World Data-

Bank II (WDBII):
http://meta.wikimedia.org/wiki/Geographical_data#CIA_World_DataBank_II_and_derivates
The five resolutions available are:

full (f), high (h), intermediate (i), low (1), and coarse (c).

This routine returns a PolySet object with an associated PolyData attribute. The attribute contains
four fields: (a) PID, (b) SID, (c) Level, and (d) Source. Each record corresponds to a line/polygon
in the PolySet. The Level indicates the line’s/polygon’s level (1=land, 2=lake, 3=island, 4=pond).
The Source identifies the data source (1=WVS, 0=CIA (WDBII)).

Value

A PolySet with a PolyData attribute.

http://www.soest.hawaii.edu/pwessel/gshhg/
http://meta.wikimedia.org/wiki/Geographical_data#CIA_World_DataBank_II_and_derivates

importGSHHS 47

Note

The function calls a C routine, also called importGSHHS, which returns a set of map coordinates that
is not always predictably laid out. This issue stems from how the world is divided at the Greenwich
meridian and at the International Date Line. The unpredictability occurs when user-specified X-
limits span either of the longitudinal meridians — (0°, 360°) or (-180°, 180°).

This version of the R function attempts to stitch together the overlapping edges of gshhs that run
from -20° to 360° (see example map 5 below). At present, no attempt has been made to deal with
the overlap at the International Date Line where Russia overlaps the Aleutian Islands of Alaska. To
some extent, the C-code can deal with this, but not in all cases.

Therefore, the user will likely experience some limitations when using importGSHHS. The solution
is to import the whole dataset with this function using x1im=c (@, 360), and then apply the function
refocusWorld with user-desired X-limits. The Y-limits are generally not problematic unless the
user wants to focus on either pole.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2015-02-16

See Also

importEvents, importLocs, importPolys, importShapefile

Examples

Not run:

useWest=FALSE

useVers=c("2.2.0","2.2.3","2.3.0","2.3.4") # GSHHG versions

mapswitch = 5

for (i in c("land”,"rivers”,"borders"))

if (exists(i)) eval(parse(text=paste@("rm(",i,")")))

switch(mapswitch,

1. Canada-———=——=—=———=———=— -
{vN=4; useWest=T; xlim=c(-150,-50)+360;ylim=c(40,75)},

2. NW Canada & America--------—=—=—=—=———————————————————
{VvN=4; useWest=T;xlim=c(-136,-100)+360;ylim=c(40,75)},

3. Black Sea (user Ivailo)---------------"--—-———c——
{VvN=4; x1lim=c(27.5, 34.3); ylim=c(40.9, 46.7)},

4. W Europe, NW Africa (user Uli)-------------————--u—-
{VN=4; x1im=c(-20,10); ylim=c(20,50)},

5. W Europe + Iceland--------—=—-——=—————————————
{vN=4; xlim=c(-25, 20); ylim=c(40, 68)},

6. New Zealand----------=-————————————-—mm
{vN=4; xlim=c(163, 182); ylim=c(-48,-34)},

7. Australia----—-------------
{vN=4; x1im=c(112,155); ylim=c(-44,-10)},

{vN=4; x1im=c(127,148); ylim=c(30,47)},
9. Central America------------------—---——---——--————-——-

https://academic.macewan.ca/boersn/

48

#10.
#11.
#12.
#13.
#14.
#15.
#16.
#17.
#18.
#19.

#20.

)
db=pas
gshhg
land

rivers
border

if(exi
plot
co
if(!
if(!

3

End

importLocs

{VvN=4; useWest=T; xlim=c(-95,-60)+360;ylim=c(-10,25)},
North Pacific-------------"--"--" oo
{vN=4; useWest=T; x1lim=c(150,220); ylim=c(45,80)},
Pacific Ocean-------=-=——-—=—————————————— -
{vN=4; x1lim=c(112,240); ylim=c(-48,80)},

North Atlantic (world coordinates)--------------------
{VvN=4; x1im=c(285,360); ylim=c(40,68)},

North Atlantic (western hemisphere coordinates)-------
{vN=4; x1lim=c(-75,0); ylim=c(40,68)},

Atlantic Ocean-----==—=—=—=——————=———-———— -
{vN=4; x1im=c(285,380); ylim=c(-50,68)7},

Northern hemisphere---------------------———-——— -
{vN=4; x1im=c(-180,180); ylim=c(0,85)},

{vN=4; x1im=c(0,180); ylim=c(0,80)3},

North America---------=—=-—=—=————————————m -
{vN=4; x1lim=c(-180,0); ylim=c(0,80)},

International date line------------—-—-—-————————————-
{VvN=4; x1lim=c(45,315); ylim=c(0,80)3},

Indian Ocean—-————=====—=—=—— == - -
{vN=4; x1im=c(20,130); ylim=c(-40,40)},

Moose County ("400 miles north of everywhere"”)--------
{vN=4; x1im=c(272.5,280.5); ylim=c(43,47.5)}

te@("gshhg-bin-",useVers[vN]) # database version folder
= paste@("C:/Ruser/GSHHG/",db,"/") # directory with binary files
= importGSHHS (paste@(gshhg, "gshhs_i.b"),
xlim=x1im,ylim=ylim,maxLevel=4, 6 useWest=useWest)
= importGSHHS (paste@(gshhg, "wdb_rivers_i.b"),
xlim=x1lim,ylim=ylim,useWest=useWest)
s = importGSHHS (paste@(gshhg, "wdb_borders_i.b"),
xlim=x1lim,ylim=ylim,useWest=useWest,maxLevel=1)
sts("land”)){
Map(land,xlim=xlim-ifelse(useWest,360,0),ylim=ylim,
1="1emonchiffon"” 6 bg="aliceblue")
is.null(rivers)) addLines(rivers,col="blue")
is.null(borders)) addLines(borders,col="red",1lwd=2)

(Not run)

importL

ocs Import LocationSet from a text file

Description

Import a text file and convert into a LocationSet.

Usage

importLocs(LocationSet)

importPolys 49

Arguments

LocationSet filename of LocationSet text file.

Value

An imported LocationSet.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2007-06-06

See Also

importPolys, importEvents, importGSHHS, importShapefile

importPolys Import PolySet from a text file

Description

Import a text file and convert into a PolySet with optional PolyData attribute.

Usage
importPolys(PolySet, PolyData=NULL, projection=NULL, zone=NULL)

Arguments
PolySet filename of PolySet text file.
PolyData optional filename of PolyData text file.
projection optional projection attribute to add to EventData.
zone optional zone attribute to add to EventData.

Value

An imported PolySet with optional PolyData attribute.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2007-06-06

See Also

importEvents, importLocs, importGSHHS, importShapefile

https://academic.macewan.ca/boersn/
https://academic.macewan.ca/boersn/

50 importShapefile
importShapefile Import an ESRI Shapefile
Description
Import an ESRI shapefile (. shp) into either a PolySet or EventData.
Usage
importShapefile (fn, readDBF=TRUE, projection=NULL, zone=NULL,
minverts=3, placeholes=FALSE, show.progress=FALSE)
Arguments
fn character - file name of the shapefile to import; specifying the extension is
optional.
readDBF logical — if TRUE, import the associated ".dbf" (database containing feature
attributes) and add as an attribute to the output PolySet | EventData object.
projection character — optional projection attribute to override the internally derived
value.
zone numeric — optional zone attribute to override the default value of NULL.
minverts numeric — minimum number of vertices required for a polygon representing a
hole to be retained (does not affect solids).
placeholes logical —if TRUE then for every PID identify solids and holes, and place holes

under appropriate solids.

show.progress logical — if TRUE, display on the command console the progress of placing
holes under solids.

Details

This routine imports an ESRI shapefile (. shp) into either a PolySet or EventData, depending on
the type of shapefile. It supports types 1 (Point), 3 (PolyLine), and 5 (Polygon) and imports type 1
into EventData and types 3 and 5 into a PolySet. In addition to the shapefile (. shp), it requires
the related index file (. shx).

If a database containing feature attributes (.dbf) exists, it also imports this database by default.
For EventData, it binds the database columns to the EventData object. For a PolySet, it saves
the database in a PolyData object and attaches that object to the PolySet in an attribute named
“PolyData”.

If a . prj file exists, this information is attached as an attribute. If the first 3 characters are ‘GEO’,
then a geographic projection is assumed and projection="LL". If the first 4 characters are ‘PROJ’,
and ‘UTM’ occurs elsewhere in the string, then the Universal Transverse Mercator projection is
assumed and projection="UTM". Otherwise, projection=1.

If an . xml file exists, this information is attached as an attribute.

isConvex 51

Shapes of numeric shape type 5 exported from ArcView in geographic projection identify solids
as polygons with vertices following a clockwise path and holes as polygons that follow a counter-
clockwise path. Unfortuantely, either the export from ArcView or the import using a C-routine
from the package maptools often does not report solids followed by their holes. We employ a new
R function placeHoles to do this for us. Ideally, this routine should be rendered in C, but for now
we use this function if the user sets the argument placeholes=TRUE. Depending on the size and
complexity of your shapefile, the computation may take a while.

Value

For points, EventData with columns EID, X, and Y, possibly with other columns from the attribute
database. For polylines and polygons, a PolySet with columns PID, SID, POS, X, Y and attribute
projection. Other attributes that may or may not be attached: parent.child (boolean vector
from original input), shpType (numeric shape type: 1, 3, or 5), prj (projection information from
.prj file, xml (metadata from an . xml file), PolyData (data from the attribute database .dbf), and
zone (UTM zone).

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB

Rowan Haigh, Program Head — Offshore Rockfish

Pacific Biological Station (PBS), Fisheries & Oceans Canada (DFO), Nanaimo BC
opus locus: Institute of Ocean Sciences (I0S), Sidney BC

Last modified Rd: 2018-09-07

See Also

importGSHHS, importEvents, importLocs, importPolys, placeHoles

isConvex Determine Whether Polygons are Convex

Description

Determine whether polygons found in a PolySet are convex.

Usage

isConvex (polys)

Arguments

polys PolySet to use.

https://academic.macewan.ca/boersn/
mailto:rowan.haigh@dfo-mpo.gc.ca

52 isIntersecting

Details

Convex polygons do not self-intersect. In a convex polygon, only the first and last vertices may
share the same coordinates (i.e., the polygons are optionally closed).

The function does not give special consideration to holes. It returns a value for each unique (PID,
SID), regardless of whether a contour represents a hole.

Value

PolyData with columns PID, SID (may be missing), and convex. Column convex contains Boolean
values.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

isIntersecting, PolySet.

Examples

local(envir=.PBSmapEnv,expr={
#--- load the data (if using R)
if (!is.null(version$language) && (version$language=="R"))
data(nepaclLL,envir=.PBSmapEnv)

#--- calculate then print the polygons that are convex
p <- isConvex(nepaclLL);
#--- nepacLL actually contains no convex polygons
print(p[p$convex,])
»
isIntersecting Determine Whether Polygons are Self-Intersecting
Description

Determine whether polygons found in a PolySet are self-intersecting.

Usage

isIntersecting (polys, numericResult = FALSE)

Arguments

polys PolySet to use.

numericResult Boolean value; if TRUE, returns the number of intersections.

https://academic.macewan.ca/boersn/

joinPolys 53

Details

When numericResult = TRUE, this function counts intersections as the algorithm processes them.
It counts certain types (i.e., those involving vertices and those where an edge retraces over an edge)
more than once.

The function does not give special consideration to holes. It returns a value for each unique (PID,
SID), regardless of whether a contour represents a hole.

Value

PolyData with columns PID, SID (may be missing), and intersecting. If numericResult is TRUE,
intersecting contains the number of intersections. Otherwise, it contains a Boolean value.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

isConvex, PolySet.

Examples

local(envir=.PBSmapEnv,expr={
#--- load the data (if using R)
if (!is.null(version$language) && (version$language=="R"))
data(nepaclLL,envir=.PBSmapEnv)
#--- calculate then print the polygons that are self-intersecting
p <- isIntersecting(nepacLL, numericResult = FALSE)
print(p[p$intersecting,])

»

joinPolys Join One or Two PolySets using a Logic Operation

Description

Join one or two PolySets using a logic operation.

Usage

joinPolys(polysA,polysB=NULL,operation="INT")

https://academic.macewan.ca/boersn/

54 JjoinPolys

Arguments
polysA PolySet to join.
polysB optional second PolySet with which to join.
operation one of "DIFF”, "INT", "UNION", or "XOR", representing difference, intersection,
union, and exclusive-or, respectively.
Details

This function interfaces with the Clipper library, specifically version 6.2.1 released 2014-10-31
(http://www.angusj.com/delphi/clipper.php), developed by Angus Johnson. Prior to 2013-
03-23, joinPolys used the General Polygon Clipper library (http://www.cs.man.ac.uk/aig/
staff/alan/software/) by Alan Murta at the University of Manchester. We keep this historic
reference to GPC because joinPolys remains faithful to Murta’s definition of a generic polygon,
which we describe below.

Murta (2004) defines a generic polygon (or polygon set) as zero or more disjoint boundaries of
arbitrary configuration. He relates a boundary to a contour, where each may be convex, concave or
self-intersecting. In a PolySet, the polygons associated with each unique PID loosely correspond
to a generic polygon, as they can represent both inner and outer boundaries. Our use of the term
generic polygon includes the restrictions imposed by a PolySet. For example, the polygons for a
given PID cannot be arranged arbitrarily.

If polysB is NULL, this function sequentially applies the operation between the generic polygons
in polysA. For example, suppose polysA contains three generic polygons (A, B, C). The function
outputs the PolySet containing ((A op B) op C).

If polysB is not NULL, this function applies operation between each generic polygon in polysA
and each one in polysB. For example, suppose polysA contains two generic polygons (A, B) and
polysB contains two generic polygons (C, D). The function’s output is the concatenation of A C,
B op C, A op D, B op D, with PIDs 1 to 4, respectively. Generally there are n times m comparisons,
where n = number of polygons in polysA and m = number of polygons in polysB. If polysB
contains only one generic polygon, the function maintains the PIDs from polysA. It also maintains
them when polysA contains only one generic polygon and the operation is difference. Otherwise,
if polysA contains only one generic polygon, it maintains the PIDs from polysB.

Value

If polysB is NULL, the resulting PolySet contains a single generic polygon (one PID), possibly with
several components (SIDs). The function recalculates the PID and SID columns.

If polysB is not NULL, the resulting PolySet contains one or more generic polygons (PIDs), each
with possibly several components (SIDs). The function recalculates the SID column, and depending
on the input, it may recalculate the PID column.

Author(s)
Angus Johnson, Computer Programmer
Nicholas M. Boers, Associate Professor — Computer Science

MacEwan University, Edmonton AB
Last modified Rd: 2015-03-31

http://www.angusj.com/delphi/clipper.php
http://www.cs.man.ac.uk/aig/staff/alan/software/
http://www.cs.man.ac.uk/aig/staff/alan/software/
http://www.angusj.com/delphi/clipper.php
https://academic.macewan.ca/boersn/

joinPolys 55

References

Murta, A. (2004) A General Polygon Clipping Library. Accessed: July 29, 2004.
http://www.cs.man.ac.uk/aig/staff/alan/software/gpc.html

See Also

addPolys, appendPolys, clipPolys, closePolys, fixBound, fixP0OS, locatePolys, plotMap,
plotPoints, thickenPolys, thinPolys

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- load the data (if using R)
if (!is.null(version$language) && (version$language=="R"))
data(nepaclLL,envir=.PBSmapEnv)

Example 1. Cut a triangle out of Vancouver Island
par (mfrow=c(1,1))
#--- create a triangle to use in clipping
polysB <- data.frame(PID=rep(1, 3), P0S=1:3,
X=c(-127.5, -124.5, -125.6), Y = c(49.2, 50.3, 48.6))
#--- intersect nepacLL with the single polygon, and plot the result
plotMap(joinPolys(nepaclLL, polysB), col="cyan")

#--- add nepaclLL in a different line type to emphasize the intersection
addPolys(nepacLL, border="purple”, 1lty=3, density=0)
box ()

Example 2. Cut Texada and Lasqueti Islands out of Boxes
xlim = list(box1=c(-124.8,-124),box2=c(-124,-123.9))
ylim = list(box1=c(49.4,49.85), box2=c(49.85,49.9))
Xlim = extendrange(xlim); Ylim=extendrange(ylim)
polyA = as.PolySet(data.frame(
PID = rep(1:2,each=4), POS = rep(1:4,2),
X = as.vector(sapply(xlim, function(x){x[c(1,1,2,2)1})),
Y = as.vector(sapply(ylim, function(x){x[c(1,2,2,1)1}))
), projection="LL")
data(nepacLLhigh,envir=.PBSmapEnv)
polyB = nepacLLhigh[is.element(nepacLLhigh$PID,c(736,1912)),]
polyC = joinPolys(polyA, polyB, "DIFF")
par (mfrow=c(2,2),cex=1,mgp=c(2,0.5,0))
plotMap(polyA,col="1lightblue”, x1lim=X1im,ylim=Y1im)
addPolys(polyB,col="gold");
text(mean(X1im)-0.05,Y1im-0.04, "Boxes (A,B) and Isles (C,D)")
labs = calcCentroid(polyA)
labs[1,c("X","Y")] = labs[2,c("X","Y")]+c(-0.1,-0.05)
text(labs[,"X"],labs[,"Y"],c("A","B"),font=2)
plotMap(polyC[is.element (polyC$PID,1),],col="pink",xlim=X1im,ylim=Y1im)
text(mean(X1im)-0.05,Y1im-0.04,"Box A \"DIFF\" 1Isle C")
plotMap(polyC[is.element (polyC$PID,3),]1,col="green",xlim=X1lim,ylim=Y1lim)
text(mean(X1im)-0.05,Y1im-0.04,"Box A \"DIFF\" 1Isle D")
plotMap(polyC[is.element(polyC$PID,c(1,3)),]1,col="cyan",xlim=X1lim,ylim=Y1lim)

http://www.cs.man.ac.uk/aig/staff/alan/software/gpc.html

56 locateEvents

text(mean(X1im)-0.05,Y1im-0.04,"Box A \"DIFF\" 1Isles (C,D)")
par(oldpar)
1)

locateEvents Locate Events on the Current Plot

Description

Locate events on the current plot (using the locator function).

Usage
locateEvents (EID, n = 512, type = "p", ...)
Arguments
EID vector of event IDs (optional).
n maximum number of events to locate.
type one of "n”, "p", "1", or "o". If "p" or "0", then the points are plotted; if "1" or
"0", then the points are joined by lines.
additional par parameters for the locator function.
Details

This function allows its user to define events with mouse clicks on the current plot via the locator
function. The arguments n and type are the usual parameters of the locator function. If EID is not
missing, then n = length(EID).

On exit from locator, suppose the user defined m events. If EID was missing, then the output
data frame will contain m events. However, if EID exists, then the output data frame will contain
length(EID) events, and both X and Y will be NA for events EID[(m+1) :n]. The na.omit function
can remove rows with NAs.

Value
EventData with columns EID, X, and Y, and projection attribute equal to the map’s projection. The
function does not set the zone attribute.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2007-06-06

See Also

addPoints, combineEvents, convDP, EventData, findCells, findPolys, plotPoints.

https://academic.macewan.ca/boersn/

locatePolys 57

Examples

#--- define five events on the current plot, numbering them 10 to 14
Not run: events <- locateEvents(EID = 10:14)

locatePolys Locate Polygons on the Current Plot

Description

Locate polygons on the current plot (using the locator function).

Usage
locatePolys (pdata, n = 512, type = "0", ...)
Arguments
pdata PolyData (optional) with columns PID and SID (optional), with two more op-
tional columns n and type.
n maximum number of points to locate.
type one of "n", "p”, "1", or "o". If "p" or "0", then the points are plotted; if "1" or
"0", then the points are joined by lines.
additional par parameters for the locator function.
Details

This function allows its user to define polygons with mouse clicks on the current plot via the
locator function. The arguments n and type are the usual parameters for the locator function,
but the user can specify them for each individual (PID, SID) in a pdata object.

If a pdata object exists, the function ignores columns other than PID, SID, n, and type. If pdata
includes n, then an outer boundary has n > @ and an inner boundary has n < @.

On exit from locator, suppose the user defined m vertices for a given polygon. For that polygon,
the X and Y columns will contain NAs where POS = (m+1) :n for outer-boundaries and POS =
(In|-m):1 for inner-boundaries. The na.omit function can remove rows with NAs.

If a pdata object does not exist, the output contains only one polygon with a PID equal to 1. One
inner-boundary polygon (POS goes from n to 1) can be generated by supplying a negative n.

n.n

If type = "0" or type = "1", the function draws a line connecting the last and first vertices.

Value

PolySet with projection attribute equal to the map’s projection. The function does not set the
zone attribute.

58 LocationSet

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2007-06-06

See Also
addPolys, appendPolys, clipPolys, closePolys, findCells, findPolys, fixPQOS, joinPolys,

plotMap, plotPolys, thickenPolys, thinPolys.

Examples

#--- define one polygon with up to 5 vertices on the current plot
Not run: polys <- locatePolys(n = 5)

LocationSet LocationSet Objects

Description

A LocationSet comprises a data frame that summarises which EventData points (EID) lie in which
PolySet polygons (PID) or (PID, SID). Events not located in target polygons are not reported. If an
event lies on a polygon boundary, an additional LocationSet field called Bdry is set to TRUE. One
event can also occur in multiple polygons.

PBSmapping functions that expect LocationSet’s will accept properly formatted data frames in
their place (see "Details’).

as.LocationSet attempts to coerce a data frame to an object with class LocationSet.

is.LocationSet returns TRUE if its argument is of class LocationSet.

Usage

as.LocationSet(x)
is.LocationSet(x, fullValidation = TRUE)

Arguments

X data frame to be coerced or tested.

fullvalidation Boolean value; if TRUE, fully test x.

https://academic.macewan.ca/boersn/

makeGrid 59

Details

A PolySet can define regional boundaries for drawing a map, and EventData can give event points
on the map. Which events occur in which regions? Our function findPolys resolves this problem.
The output lies in a LocationSet, a data frame with three or four columns (EID, PID, SID, Bdry),
where SID may be missing. One row in a LocationSet means that the event EID occurs in the
polygon (PID, SID). The boundary (Bdry) field specifies whether (Bdry=T) or not (Bdry=F) the
event lies on the polygon boundary. If SID refers to an inner polygon boundary, then EID occurs
in (PID, SID) only if Bdry=T. An event may occur in multiple polygons. Thus, the same EID can
occur in multiple records. If an EID does not fall in any (PID, SID), or if it falls within a hole, it does
not occur in the output LocationSet. Inserting the string "LocationSet” as the first element of a
LocationSet’s class attribute alters the behaviour of some functions, including print (if PBSprint
is TRUE) and summary.

Value
The as.LocationSet method returns an object with classes "LocationSet” and "data.frame”,
in that order.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2015-04-23

See Also

PolySet, PolyData, EventData

makeGrid Make a Grid of Polygons

Description

Make a grid of polygons, using PIDs and SIDs according to the input arguments.

Usage
makeGrid(x, y, byrow=TRUE, addSID=TRUE,
projection=NULL, zone = NULL, type="rectangle")
Arguments

X numeric — vector of X-coordinates (of length m).

y numeric — vector of Y-coordinates (of length n).

https://academic.macewan.ca/boersn/

60 makeGrid

byrow logical — if TRUE and type='rectangle', increment PID along X (column-
wise);
—if TRUE and type="hexagon', create flat-topped hexagons contiguous by col-
umn and increment PID by column;
—if FALSE and type="hexagon', create pointy-topped hexagons contiguous by
row and increment PID by row.

addsID logical —if TRUE, include an SID field in the resulting PolySet, incremented by
the alternative dimension used by PID.

projection character — optional projection attribute to add to the PolySet.

zone numeric — optional zone attribute to add to the PolySet.

type character — type of regular tesselation; choices: "rectangle” or "hexagon”.
Details

This function makes a grid of polygons, labeling them according to byrow and addSID.
For rectangular tesselations (grid cells), the variables ¢ and j indicate column and row numbers,
respectively, where the lower-left cell of the grid is (1, 1):

* byrow = TRUE and addSID = FALSE implies PID =4 4 (j — 1) x (m — 1)

* byrow = FALSE and addSID = FALSE implies PID=j + (i — 1) x (n — 1)

* byrow = TRUE and addSID = TRUE implies PID = %, SID = j

* byrow = FALSE and addSID = TRUE implies PID = j, SID =1
For hexagonal tesselations (grid cells), 7 indicates columns for flat-topped hexagons and rows for
pointy-topped hexagons. The reverse is true for j. Stemming from their six-sided nature, hexagons
will adjoin along a long-edge by row when their orientation is such that one vertex is higher than

all the others. Hexagons will adjoin along a long-edge by column when their orientation shows two
uppermost vertices.

Value

PolySet with columns PID, SID (if addSID=TRUE), POS, X, and Y.
The PolySet is a set of rectangular grid cells when type="rectangle’, with vertices:

(@i, 95), (Tit1,Y5)s (i1, Yja1)s (T, Y1)
The PolySet is a set of hexagonal grid cells when type="hexagon'.

Author(s)
Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB

Rowan Haigh, Program Head — Offshore Rockfish

Pacific Biological Station (PBS), Fisheries & Oceans Canada (DFO), Nanaimo BC
locus opus: Institute of Ocean Sciences (I0S), Sidney BC

Last modified Rd: 2019-01-04

See Also

addPolys, clipPolys, combineEvents, findCells, findPolys, thickenPolys.

https://academic.macewan.ca/boersn/
mailto:rowan.haigh@dfo-mpo.gc.ca

makeProps 61

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
##--- make a 10 x 10 grid
polyGrid <- makeGrid(x=0:10, y=0:10)
##--- plot the grid
plotPolys(polyGrid, density=0, projection=1)
par(oldpar)
»

makeProps Make Polygon Properties

Description

Append a column for a polygon property (e.g., border or 1ty) to PolyData based on measurements
in the PolyData’s Z column.

Usage

makeProps(pdata, breaks, propName="col"”,propVals=1: (length(breaks)-1))

Arguments
pdata PolyData with a Z column.
breaks either a vector of cut points or a scalar denoting the number of intervals that Z is
to be cut into.
propName name of the new column to append to pdata.
propVals vector of values to associate with Z breaks.
Details

This function acts like the cut function to produce PolyData suitable for the polyProps plotting ar-
gument (see addLabels, addLines, addPoints, addPolys, addStipples, plotLines, plotMap,plotPoints,
and plotPolys). The Z column of pdata is equivalent to the data vector x of the cut function.

Value

PolyData with the same columns as pdata plus an additional column propName.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

https://academic.macewan.ca/boersn/

62 makeTopography

See Also

addLabels, addLines, addPoints, addPolys, addStipples, plotLines, plotMap, plotPoints,
plotPolys, PolyData, PolySet.

Examples

local(envir=.PBSmapEnv,expr={
#--- create a PolyData object
pd <- data.frame(PID=1:10, Z=1:10)

#--- using 3 intervals, create a column named ‘col' and populate it with
#--- the supplied values
makeProps(pdata=pd, breaks=3, propName="col", propVals=c(1:3))

»

makeTopography Make Topography Data from Online Source

Description
Make topography data suitable for the contour and contourLines functions using freely available
global seafloor topography data.

Usage
makeTopography (dat, digits=2, func=NULL)

Arguments
dat data.frame — data with three optionally-named columns: x, y, and z. The
columns must appear in that order.
digits numeric — integer indicating the precision to be used by the function round on
(x,y) values.
func function — to summarize z if (x,y) points are duplicated. Defaults to mean ()
if no function is specified.
Details

Suitable data can be obtained through the acquisition form at:
http://topex.ucsd.edu/cgi-bin/get_data.cgi.

The function read. table will import dowloaded ASCII files into R/S, creating objects suitable for
the argument dat in makeTopography.

When creating data for regions with longitude values spanning -180° to 0°, consider subtracting
360 from the result’s longitude coordinates (x).

When creating bathymetry data, consider negating the result’s elevations (z) to give depths positive
values.

Combinations of (x,y) do not need to be complete (z[x,y]1=NA) or unique (z[x,y] = func(z[x,y])).

http://topex.ucsd.edu/cgi-bin/get_data.cgi

makeTopography 63

Value

List with elements x, y, and z. Elements x and y are vectors, while z is a matrix with rownames
x and colnames y. The functions contour and contourlLines expect data conforming to this list
format.

Author(s)

Rowan Haigh, Program Head — Offshore Rockfish

Pacific Biological Station (PBS), Fisheries & Oceans Canada (DFO), Nanaimo BC
opus locus: Institute of Ocean Sciences (I0S), Sidney BC

Last modified Rd: 2018-09-10

See Also

contour in graphics,
contourLines in grDevices, and
convCP in PBSmapping.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- Example 1: Sample data frame and conversion.
file <- data.frame(X=c(1,1,2,2),Y=c(3,4,3,4),2=c(5,6,7,8))
print(makeTopography(file))

#--- Example 2: Aleutian Islands bathymetry

isob <- c(100,500,1000,2500,5000)

icol <- rgh(0,0,seq(255,100,len=1length(isob)),max=255)

afile <- paste(system.file(package="PBSmapping"),
"/Extra/aleutian.txt”,sep="")

aleutian <- read.table(afile, header=FALSE, col.names=c("x","y","z"))

aleutian$x <- aleutian$x - 360

aleutian$z <- -aleutian$z

alBathy <- makeTopography(aleutian)

alCL <- contourLines(alBathy,levels=isob)

alCP <- convCP(alCL)

alPoly <- alCP$PolySet

attr(alPoly, "projection”) <- "LL"

plotMap(alPoly, type="n", cex.axis=1.2, cex.lab=1.5)

addLines(alPoly,col=icol)

data(nepacLL,envir=.PBSmapEnv)

addPolys(nepaclLL,col="gold")

legend(x="topleft"”,bty="n",col=icol,lwd=2,legend=as.character(isob))

par(oldpar)

»

mailto:rowan.haigh@dfo-mpo.gc.ca

64 nepacLL

nepacLL Data: Shorelines of the NE Pacific Ocean and of the World

Description

PolySet of polygons for the shorelines of the northeast Pacific Ocean and of the world, both in
normal and high resolution.

Usage

data(nepacLL)
data(nepacLLhigh)
data(worldLL)
data(worldLLhigh)

Format

Data frame consisting of 4 columns: PID = primary polygon ID, POS = position of each ver-
tex within a given polygon, X = longitude coordinate, and Y = latitude coordinate. Attributes:
projection = "LL".

Note

In R, the data must be loaded using the data function.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2015-01-22

Source

Polygon data from the GSHHG (Global Self-consistent, Hierarchical, High-resolution Geography)
Database.

Download the native binary files of shoreline polygons, rivers, and borders contained in the latest
zip archive (version 2.3.4) at http://www.soest.hawaii.edu/pwessel/gshhg/.

nepacLL <- importGSHHS("gshhs_h.b", xlim=c(-190,-110), ylim=c(34,72),
level=1, n=15, xoff=-360)

nepacLLhigh <- importGSHHS("gshhs_f.b", xlim=c(-190,-110),
ylim=c(34,72), level=1, n=0, xoff=-360)
nepacLLhigh <- thinPolys(nepaclLLhigh, tol=0.1, filter=3)

worldLL <- importGSHHS("gshhs_1.b", xlim=c(-20,360), ylim=c(-90,90),
level=1, n=15, xoff=0)

https://academic.macewan.ca/boersn/
http://www.soest.hawaii.edu/pwessel/gshhg/

PBSmapping 65

worldLL <- .fixGSHHSWorld(worldLL)

worldLLhigh <- importGSHHS("gshhs_i.b", xlim=c(-20,360),
ylim=c(-90,90), level=1, n=15, xoff=0)
worldLLhigh <- .fixGSHHSWorld(worldLLhigh)

References

Wessel, P. and Smith, W.H.F. (1996) A global, self-consistent, hierarchical, high-resolution shore-
line database. Journal of Geophysical Research 101, 8741-8743.
http://www.soest.hawaii.edu/pwessel/gshhg/Wessel+Smith_1996_JGR.pdf

See Also

Data:
bcBathymetry, surveyData, towData

Functions:
importGSHHS, importShapefile, plotMap, plotPolys, addPolys, clipPolys, refocusWorld,
thickenPolys, thinPolys

PBSmapping PBS Mapping: Draw Maps and Implement Other GIS Procedures

Description

This software has evolved from fisheries research conducted at the Pacific Biological Station (PBS)
in Nanaimo, British Columbia, Canada. It extends the R language to include two-dimensional
plotting features similar to those commonly available in a Geographic Information System (GIS).
Embedded C code speeds algorithms from computational geometry, such as finding polygons that
contain specified point events or converting between longitude-latitude and Universal Transverse
Mercator (UTM) coordinates. It includes data for a global shoreline and other data sets in the
public domain.

For a complete user’s guide, see the file PBSmapping-UG. pdf in the R directory . . ./library/PBSmapping/doc.

PBSmapping includes 10 demos that appear as figures in the User’s Guide. To see them, run the
function .PBSfigs().

More generally, a user can view all demos available from locally installed packages with the func-
tion runDemos () in our related (and recommended) package PBSmodelling.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2008-09-03

http://www.soest.hawaii.edu/pwessel/gshhg/Wessel+Smith_1996_JGR.pdf
https://academic.macewan.ca/boersn/

66 placeHoles

PBSprint Specify Whether to Print Summaries

Description
Specify whether PBS Mapping should print object summaries or not. If not, data objects are dis-
played as normal.

Usage

PBSprint

Details

If PBSprint = TRUE, the mapping software will print summaries rather than the data frames for
EventData, LocationSet, PolyData, and PolySet objects. If PBSprint = FALSE, it will print the
data frames.

This variable’s default value is FALSE.

Value

TRUE or FALSE, depending on the user’s preference.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2007-06-06

See Also

summary.

placeHoles Place Holes Under Solids

Description

Place secondary polygons identified as holes (inner contours) under primary polygons identified as
solids (outer contours) if the vertices of the holes lie completely within the vertices of the solids.
This operation is performed for each primary polygon until all holes have been assigned.

Usage

placeHoles(polyset, minVerts=3,
orient=FALSE, show.progress=FALSE, unique.pid=FALSE)

https://academic.macewan.ca/boersn/

placeHoles 67

Arguments
polyset a valid PBSmapping PolySet.
minVerts numeric — minimum number of vertices required for a polygon representing a
hole to be retained (does not affect solids).
orient logical — if TRUE, use each polygon’s rotation to determine its nature: clock-

wise = solid (outer contour), counter-clockwise = hole (inner contour).

show.progress logical — if TRUE, display on the command console the progress of placing
holes under solids.

unique.pid logical —if TRUE, ignore the input PIDs and redefine them from 1 to the number
of solids; this inherently destroys the previous organisation that a creator may
have intended for the PolySet.

Details

The algorithm identifies outer contours (solids) and inner contours (holes) using either the default
PBSmapping method (solids = increasing "P0S", holes = decreasing "P0S") or the rotational direc-
tion of the polygons (solids = clockwise, holes = counter-clockwise).

It then systematically starts matching holes with solids based on their vertices being completely
within the boundaries of the solid. If a hole happens to match a current solid completley (all vertices
on the boundary), then the hole is not matched to this solid because it is a hole in another solid that
creates space for the current solid.

To facilitate computation, the algorithm assumes that once a hole is located in a solid, it will not
occur in any other solid. This means that for each successive solid, the number of candidate holes
will either decrease or stay the same.

This function makes use of the PBSmapping hidden function ”.is.in"” which uses the C code
"findPolys"”. The latter only returns events found in a polygon (or on the boundary) but .is.in
evaluates all events and returns a list containing:

"e.in" — events within the polygon,

"e.out” — events outside the polygon,

"all.in" —logical value of whether all events are in the polygon,

"all.out"” —logical value of whether all events are outside the polygon,

"all.bdry" —logical value of whether all events occur on the boundary of the polygon

Value

Returns the input PolySet where holes have been arranged beneath appropriate solids for each PID
(original or redefined).

Author(s)

Rowan Haigh, Program Head — Offshore Rockfish

Pacific Biological Station (PBS), Fisheries & Oceans Canada (DFO), Nanaimo BC
locus opus: Institute of Ocean Sciences (I0S), Sidney BC

Last modified Rd: 2019-03-14

mailto:rowan.haigh@dfo-mpo.gc.ca

68

See Also

plotLines

In package PBSmapping:
findPolys, importShapefile, is.PolySet in PolySet

plotLines

Plot a PolySet as Polylines

Description

Plot a PolySet as polylines.

Usage

plotLines (polys, xlim = NULL, ylim = NULL, projection = FALSE,

Arguments
polys
xlim

ylim

projection

plt

polyProps

1ty
col
bg
axes

tckLab

tck

plt = c(0.11, ©0.98, 0.12, 0.88), polyProps = NULL,
1ty = NULL, col = NULL, bg = @, axes = TRUE,
tckLab = TRUE, tck = 0.014, tckMinor = 0.5 * tck, ...)

PolySet to plot (required).
range of X-coordinates.
range of Y-coordinates.

desired projection when PolySet lacks a projection attribute; one of "LL",
"UTM", or a numeric value. If Boolean, specifies whether to check polys for a
projection attribute.

four element numeric vector (x1, x2, y1, y2) giving the coordinates of the
plot region measured as a fraction of the figure region. Set to NULL if mai in par
is desired.

PolyData specifying which polylines to plot and their properties. par parameters
passed as direct arguments supersede these data.

vector describing line types (cycled by PID).
vector describing colours (cycled by PID).
background colour of the plot.

Boolean value; if TRUE, plot axes.

Boolean vector (length 1 or 2); if TRUE, label the major tick marks. If given a
two-element vector, the first element describes the tick marks on the x-axis and
the second element describes those on the y-axis.

numeric vector (length 1 or 2) describing the length of tick marks as a fraction
of the smallest dimension. If tckLab = TRUE, these tick marks will be automat-
ically labelled. If given a two-element vector, the first element describes the tick
marks on the x-axis and the second element describes those on the y-axis.

plotLines 69

tckMinor numeric vector (length 1 or 2) describing the length of tick marks as a fraction
of the smallest dimension. These tick marks can not be automatically labelled.
If given a two-element vector, the first element describes the tick marks on the
x-axis and the second element describes those on the y-axis.

additional par parameters, or the arguments main, sub, xlab, or ylab for the
title function.

Details

This function plots a PolySet, where each unique (PID, SID) describes a polyline. It does not connect
each polyline’s last vertex to its first. Unlike plotMap, the function ignores the aspect ratio. It clips
polys to x1im and ylim before plotting.

The function creates a blank plot when polys equals NULL. In this case, the user must supply both
x1lim and ylim arguments. Alternatively, it accepts the argument type = "n" as part of ..., which
is equivalent to specifying polys = NULL, but requires a PolySet. In both cases, the function’s
behaviour changes slightly. To resemble the plot function, it plots the border, labels, and other
parts according to par parameters such as col.

For additional help on the arguments 1ty and col, please see par.

Value

PolyData consisting of the PolyProps used to create the plot.

Note

To satisfy the aspect ratio, this plotting routine resizes the plot region. Consequently, par parameters
such as plt, mai, and mar will change. When the function terminates, these changes persist to allow
for additions to the plot.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

addLines, calcLength, clipLines, closePolys, convLP, fixBound, fixPQOS,

locatePolys, thinPolys, thickenPolys.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- create a PolySet to plot
polys <- data.frame(PID=rep(1,4),P0S=1:4,X=c(0,1,1,0),Y=c(0,0,1,1))
#--- plot the PolySet
plotLines(polys, xlim=c(-.5,1.5), ylim=c(-.5,1.5))
par(oldpar)
1)

https://academic.macewan.ca/boersn/

70

plotMap

plotMap Plot a PolySet as a Map

Description

Plot a PolySet as a map, using the correct aspect ratio.

Usage

plotMap (polys, xlim = NULL, ylim = NULL, projection = TRUE,
plt = c(0.11, .98, 0.12, 0.88), polyProps = NULL,
border = NULL, 1ty = NULL, col = NULL, colHoles = NULL,
density = NA, angle = NULL, bg = @, axes = TRUE,

tckLab = TRUE, tck = 0.014, tckMinor = 0.5 * tck, ...)
Arguments

polys PolySet to plot (required).

x1lim range of X-coordinates.

ylim range of Y-coordinates.

projection desired projection when PolySet lacks a projection attribute; one of "LL",
"UTM", or a numeric value. If Boolean, specifies whether to check polys for a
projection attribute.

plt four element numeric vector (x1, x2, y1, y2) giving the coordinates of the
plot region measured as a fraction of the figure region. Set to NULL if mai in par
is desired.

polyProps PolyData specifying which polygons to plot and their properties. par parameters
passed as direct arguments supersede these data.

border vector describing edge colours (cycled by PID).

1ty vector describing line types (cycled by PID).

col vector describing fill colours (cycled by PID).

colHoles vector describing hole colours (cycled by PID). The default, NULL, should be
used in most cases as it renders holes transparent. colHoles is designed solely to
eliminate retrace lines when images are converted to PDF format. If colHoles is
specified, underlying information (i.e., previously plotted shapes) will be oblit-
erated. If NA is specified, only outer polygons are drawn, consequently filling
holes.

density vector describing shading line densities (lines per inch, cycled by PID).

angle vector describing shading line angles (degrees, cycled by PID).

bg background colour of the plot.

axes Boolean value; if TRUE, plot axes.

plotMap 71

tckLab Boolean vector (length 1 or 2); if TRUE, label the major tick marks. If given a
two-element vector, the first element describes the tick marks on the x-axis and
the second element describes those on the y-axis.

tck numeric vector (length 1 or 2) describing the length of tick marks as a fraction
of the smallest dimension. If tckLab = TRUE, these tick marks will be automat-
ically labelled. If given a two-element vector, the first element describes the tick
marks on the x-axis and the second element describes those on the y-axis.

tckMinor numeric vector (length 1 or 2) describing the length of tick marks as a fraction
of the smallest dimension. These tick marks can not be automatically labelled.
If given a two-element vector, the first element describes the tick marks on the
x-axis and the second element describes those on the y-axis.

additional par parameters, or the arguments main, sub, xlab, or ylab for the
title function.

Details

This function plots a PolySet, where each unique (PID, SID) describes a polygon. It connects each
polygon’s last vertex to its first. The function supports both borders (border, 1ty) and fills (col,
density, angle). When supplied with the appropriate arguments, it can draw only borders or
only fills . Unlike plotLines and plotPolys, it uses the aspect ratio supplied in the projection
attribute of polys. If this attribute is missing, it attempts to use its projection argument. In the
absence of both, it uses a default aspect ratio of 1:1. It clips polys to x1im and ylim before plotting.

The function creates a blank plot when polys equals NULL. In this case, the user must supply both
x1lim and ylim arguments. Alternatively, it accepts the argument type = "n"” as part of ..., which
is equivalent to specifying polys = NULL, but requires a PolySet. In both cases, the function’s
behaviour changes slightly. To resemble the plot function, it plots the border, labels, and other
parts according to par parameters such as col.

For additional help on the arguments border, 1ty, col, density, and angle, please see polygon
and par.

Value

PolyData consisting of the PolyProps used to create the plot.

Note

To satisfy the aspect ratio, this plotting routine resizes the plot region. Consequently, par parameters
such as plt, mai, and mar will change. When the function terminates, these changes persist to allow
for additions to the plot.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

https://academic.macewan.ca/boersn/

72 plotPoints

See Also

addLabels, addPolys, addStipples, clipPolys, closePolys, fixBound, fixP0OS, locatePolys,
plotLines, plotPoints, thinPolys, thickenPolys.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- create a PolySet to plot
polys <- data.frame(PID=rep(1,4),P0S=1:4,X=c(0,1,1,0),Y=c(0,0,1,1))
#--- plot the PolySet
plotMap(polys,xlim=c(-.5,1.5),ylim=c(-.5,1.5),density=0,projection=1)
par (oldpar)

»

plotPoints Plot EventData/PolyData as Points

Description

Plot EventData/PolyData, where each unique EID or (PID, SID) describes a point.

Usage

plotPoints (data, xlim = NULL, ylim = NULL, projection = FALSE,
plt = c(@.11, 0.98, 0.12, 0.88), polyProps = NULL,
cex = NULL, col = NULL, pch = NULL, axes = TRUE,
tckLab = TRUE, tck = 0.014, tckMinor = 0.5 * tck, ...)

Arguments

data EventData or PolyData to plot (required).

xLlim range of X-coordinates.

ylim range of Y-coordinates.

projection desired projection when PolySet lacks a projection attribute; one of "LL",
"UTM", or a numeric value. If Boolean, specifies whether to check polys for a
projection attribute.

plt four element numeric vector (x1, x2, y1, y2) giving the coordinates of the
plot region measured as a fraction of the figure region. Set to NULL if mai in par
is desired.

polyProps PolyData specifying which points to plot and their properties. par parameters
passed as direct arguments supersede these data.

cex vector describing character expansion factors (cycled by EID or PID).

col vector describing colours (cycled by EID or PID).

pch vector describing plotting characters (cycled by EID or PID).

plotPoints

axes

tckLab

tck

tckMinor

Details

73

Boolean value; if TRUE, plot axes.

Boolean vector (length 1 or 2); if TRUE, label the major tick marks. If given a
two-element vector, the first element describes the tick marks on the x-axis and
the second element describes those on the y-axis.

numeric vector (length 1 or 2) describing the length of tick marks as a fraction
of the smallest dimension. If tckLab = TRUE, these tick marks will be automat-
ically labelled. If given a two-element vector, the first element describes the tick
marks on the x-axis and the second element describes those on the y-axis.

numeric vector (length 1 or 2) describing the length of tick marks as a fraction
of the smallest dimension. These tick marks can not be automatically labelled.
If given a two-element vector, the first element describes the tick marks on the
x-axis and the second element describes those on the y-axis.

additional par parameters, or the arguments main, sub, xlab, or ylab for the
title function.

This function clips data to x1im and ylim before plotting. It only adds PolyData containing X and

Y columns.

The function creates a blank plot when polys equals NULL. In this case, the user must supply both
x1limand ylim arguments. Alternatively, it accepts the argument type = "n" as part of ..., which
is equivalent to specifying polys = NULL, but requires a PolySet. In both cases, the function’s
behaviour changes slightly. To resemble the plot function, it plots the border, labels, and other
parts according to par parameters such as col.

For additional help on the arguments cex, col, and pch, please see par.

Value

PolyData consisting of the PolyProps used to create the plot.

Note

To satisfy the aspect ratio, this plotting routine resizes the plot region. Consequently, par parameters
such as plt, mai, and mar will change. When the function terminates, these changes persist to allow
for additions to the plot.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

addPoints, combineEvents, convDP, findPolys, locateEvents.

https://academic.macewan.ca/boersn/

74

Examples

local(envir=.PBSmapEnv,expr={

oldpar = par(no.readonly=TRUE)

#--- load the data (if using R)

if (!is.null(version$language) && (version$language=="R"))
data(nepacLL,surveyData,envir=.PBSmapEnv)

#--- plot a map

plotMap(nepacLL, xlim=c(-136, -125), ylim=c(48, 57))

plotPolys

#--- add events
addPoints(surveyData, col=1:7)
par(oldpar)
»
plotPolys Plot a PolySet as Polygons
Description

Plot a PolySet as polygons.

Usage

plotPolys (polys, xlim = NULL, ylim = NULL, projection = FALSE,

plt = c(0.11, 0.98, 0.12, 0.88), polyProps = NULL,
border = NULL, 1ty = NULL, col = NULL, colHoles = NULL,
density = NA, angle = NULL, bg = @, axes = TRUE,

tckLab = TRUE, tck = 0.014, tckMinor = 0.5 * tck, ...)
Arguments

polys PolySet to plot (required).

x1lim range of X-coordinates.

ylim range of Y-coordinates.

projection desired projection when PolySet lacks a projection attribute; one of "LL",
"UTM", or a numeric value. If Boolean, specifies whether to check polys for a
projection attribute.

plt four element numeric vector (x1, x2, y1, y2) giving the coordinates of the
plot region measured as a fraction of the figure region. Set to NULL if mai in par
is desired.

polyProps PolyData specifying which polygons to plot and their properties. par parameters
passed as direct arguments supersede these data.

border vector describing edge colours (cycled by PID).

1ty vector describing line types (cycled by PID).

col vector describing fill colours (cycled by PID).

plotPolys 75

colHoles vector describing hole colours (cycled by PID). The default, NULL, should be
used in most cases as it renders holes transparent. colHoles is designed solely to
eliminate retrace lines when images are converted to PDF format. If colHoles is
specified, underlying information (i.e., previously plotted shapes) will be oblit-
erated. If NA is specified, only outer polygons are drawn, consequently filling

holes.
density vector describing shading line densities (lines per inch, cycled by PID).
angle vector describing shading line angles (degrees, cycled by PID).
bg background colour of the plot.
axes Boolean value; if TRUE, plot axes.
tckLab Boolean vector (length 1 or 2); if TRUE, label the major tick marks. If given a

two-element vector, the first element describes the tick marks on the x-axis and
the second element describes those on the y-axis.

tck numeric vector (length 1 or 2) describing the length of tick marks as a fraction
of the smallest dimension. If tckLab = TRUE, these tick marks will be automat-
ically labelled. If given a two-element vector, the first element describes the tick
marks on the x-axis and the second element describes those on the y-axis.

tckMinor numeric vector (length 1 or 2) describing the length of tick marks as a fraction
of the smallest dimension. These tick marks can not be automatically labelled.
If given a two-element vector, the first element describes the tick marks on the
x-axis and the second element describes those on the y-axis.

additional par parameters, or the arguments main, sub, xlab, or ylab for the
title function.

Details

This function plots a PolySet, where each unique (PID, SID) describes a polygon. It connects each
polygon’s last vertex to its first. The function supports both borders (border, 1ty) and fills (col,
density, angle). When supplied with the appropriate arguments, it can draw only borders or only
fills. Unlike plotMap, it ignores the aspect ratio. It clips polys to x1im and ylim before plotting.

This function creates a blank plot when polys equals NULL. In this case, the user must supply both
x1im and ylim arguments. Alternatively, it accepts the argument type = "n" as part of ..., which
is equivalent to specifying polys = NULL, but requires a PolySet. In both cases, the function’s
behaviour changes slightly. To resemble the plot function, it plots the border, labels, and other
parts according to par parameters such as col.

For additional help on the arguments border, 1ty, col, density, and angle, please see polygon
and par.
Value

PolyData consisting of the PolyProps used to create the plot.

Note

To satisfy the aspect ratio, this plotting routine resizes the plot region. Consequently, par parameters
such as plt, mai, and mar will change. When the function terminates, these changes persist to allow
for additions to the plot.

76

Author(s)

PolyData

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

addLabels, addPolys, addStipples, clipPolys, closePolys, fixBound, fixP0OS, locatePolys,
plotLines, plotMap, plotPoints, thinPolys, thickenPolys.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- create a PolySet to plot
polys <- data.frame(PID=rep(1,4),P0S=1:4,X=c(0,1,1,0),Y=c(0,0,1,1))
#--- plot the PolySet
plotPolys(polys, xlim=c(-.5,1.5), ylim=c(-.5,1.5), density=0)

par(oldpar)
»

PolyData

PolyData Objects

Description

A PolyData object comprises a data frame that summarises information for each polyline/polygon
in a PolySet; each PolyData record is defined by a unique PID or (PID, SID combination).

PBSmapping functions that expect PolyData will accept properly formatted data frames in their
place (see ’Details’).

as.PolyData attempts to coerce a data frame to an object with class PolyData.

is.PolyData returns TRUE if its argument is of class PolyData.

Usage

as.PolyData(x,
is.PolyData(x,

Arguments

X

projection

zone

fullvalidation

projection = NULL, zone = NULL)
fullvalidation = TRUE)

data frame to be coerced or tested.

optional projection attribute to add to PolyData, possibly overwriting an ex-
isting attribute.

optional zone attribute to add to PolyData, possibly overwriting an existing at-
tribute.

Boolean value; if TRUE, fully test x.

https://academic.macewan.ca/boersn/

PolyData 77

Details

We define PolyData as a data frame with a first column named PID and (optionally) a second col-
umn named SID. Unlike a PolySet, where each contour has many records corresponding to the
vertices, a PolyData object must have only one record for each PID or each (PID, SID) combination.
Conceptually, this object associates data with contours, where the data correspond to additional
fields in the data frame. The R language conveniently allows data frames to contain fields of vari-
ous atomic modes ("logical”, "numeric”, "complex”, "character”, and "null"”). For example,
PolyData with the fields (PID, PName) might assign character names to a set of primary polygons.
Additionally, if fields X and Y exist (perhaps representing locations for placing labels), consider
adding attributes zone and projection. Inserting the string "PolyData"” as the class attribute’s
first element alters the behaviour of some functions, including print (if PBSprint is TRUE) and
summary.

Our software particularly uses PolyData to set various plotting characteristics. Consistent with
graphical parameters used by the R/S functions lines and polygon, column names can specify
graphical properties:

* 1ty - line type in drawing the border and/or shading lines;
¢ col - line or fill colour;

¢ border - border colour;

* density - density of shading lines;

* angle - angle of shading lines.

When drawing polylines (as opposed to closed polygons), only 1ty and col have meaning.

Value

The as.PolyData method returns an object with classes "PolyData” and "data.frame”, in that
order.

Author(s)
Nicholas M. Boers, Associate Professor — Computer Science

MacEwan University, Edmonton AB
Last modified Rd: 2015-04-23

See Also

PolySet, EventData, LocationSet

https://academic.macewan.ca/boersn/

78 PolySet

PolySet PolySet Objects

Description
A PolySet object comprises a data frame that defines a collection of polygonal contours (i.e., line
segments joined at vertices). These contours can be open-ended (polylines) or closed (polygons).

PBSmapping functions that expect PolySet’s will accept properly formatted data frames in their
place (see ’Details’).

as.PolySet attempts to coerce a data frame to an object with class PolySet.

is.PolySet returns TRUE if its argument is of class PolySet.

Usage

as.PolySet(x, projection = NULL, zone = NULL)
is.PolySet(x, fullValidation = TRUE)

Arguments
X data frame to be coerced or tested.
projection optional projection attribute to add to the PolySet, possibly overwriting an
existing attribute.
zone optional zone attribute to add to the PolySet, possibly overwriting an existing

attribute.

fullvalidation Boolean value; if TRUE, fully test x.

Details

In our software, a PolySet data frame defines a collection of polygonal contours (i.e., line segments
joined at vertices), based on four or five numerical fields:

* PID - the primary identification number for a contour;

* SID - optional, the secondary identification number for a contour;
* POS - the position number associated with a vertex;

¢ X - the horizontal coordinate at a vertex;

¢ Y - the vertical coordinate at a vertex.

The simplest PolySet lacks an SID column, and each PID corresponds to a different contour. By
analogy with a child’s “follow the dots” game, the POS field enumerates the vertices to be connected
by straight lines. Coordinates (X, Y) specify the location of each vertex. Thus, in familiar mathe-
matical notation, a contour consists of n points (z;,y;) with ¢ = 1,...,n, where i corresponds to
the POS index. A PolySet has two potential interpretations. The first associates a line segment with
each successive pair of points from 1 to n, giving a polyline (in GIS terminology) composed of the
sequential segments. The second includes a final line segment joining points n and 1, thus giving a

polygon.

PolySet 79

The secondary ID field allows us to define regions as composites of polygons. From this point
of view, each primary ID identifies a collection of polygons distinguished by secondary IDs. For
example, a single management area (PID) might consist of two fishing areas, each defined by a
unique SID. A secondary polygon can also correspond to an inner boundary, like the hole in a
doughnut. We adopt the convention that POS goes from 1 to n along an outer boundary, but from n to
1 along an inner boundary, regardless of rotational direction. This contrasts with other GIS software,
such as ArcView (ESRI 1996), in which outer and inner boundaries correspond to clockwise and
counter-clockwise directions, respectively.

The SID field in a PolySet with secondary IDs must have integer values that appear in ascending
order for a given PID. Furthermore, inner boundaries must follow the outer boundary that encloses
them. The POS field for each contour (PID, SID) must similarly appear as integers in strictly increas-
ing or decreasing order, for outer and inner boundaries respectively. If the POS field erroneously
contains floating-point numbers, fixPOS can renumber them as sequential integers, thus simplify-
ing the insertion of a new point, such as point 3.5 between points 3 and 4.

A PolySet can have a projection attribute, which may be missing, that specifies a map projection.
In the current version of PBS Mapping, projection can have character values "LL" or "UTM", refer-
ring to “Longitude-Latitude” and “Universal Transverse Mercator”. We explain these projections
more completely below. If projection is numeric, it specifies the aspect ratio r, the number of x
units per y unit. Thus, r units of x on the graph occupy the same distance as one unit of y. Another
optional attribute zone specifies the UTM zone (if projection="UTM") or the preferred zone for
conversion from Longitude-Latitude (if projection="LL").

A data frame’s class attribute by default contains the string "data.frame”. Inserting the string
"PolySet" as the class vector’s first element alters the behaviour of some functions. For example,
the summary function will print details specific to a PolySet. Also, when PBSprint is TRUE, the
print function will display a PolySet’s summary rather than the contents of the data frame.

Value

The as.PolySet method returns an object with classes "PolySet” and "data.frame”, in that
order.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2015-04-23

References
Environmental Systems Research Institute (ESRI). (1996) ArcView GIS: The Geographic Informa-
tion System for Everyone. ESRI Press, Redlands, California. 340 pp.

See Also

PolyData, EventData, LocationSet

https://academic.macewan.ca/boersn/

80 print

print Print PBS Mapping Objects

Description

This function displays information about a PBS Mapping object.

Functions 'summary.EventData', 'summary.LocationSet', 'summary.PolyData', and 'summary.PolySet'
produce an object with class 'summary.PBS"'.

Usage

S3 method for class 'EventData'

print(x, ...)

S3 method for class 'LocationSet'

print(x, ...)

S3 method for class 'PolyData’

print(x, ...)

S3 method for class 'PolySet'

print(x, ...)

S3 method for class 'summary.PBS'

print(x, ...)
Arguments

X object —a PBS Mapping object of appropriate class.

dots — additional arguments to print.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2019-03-14

See Also

In package PBSmapping:
Data structures: EventData, LocationSet, PolyData, PolySet
Functions: PBSprint, summary

Examples

local(envir=.PBSmapEnv,expr={
#--- load the data (if using R)
if (!is.null(version$language) && (version$language=="R"))
data(nepaclLL,envir=.PBSmapEnv)
#--- change to summary printing style
PBSprint <- TRUE

https://academic.macewan.ca/boersn/

pythagoras 81

#--- print the PolySet
print(nepaclLL)
»

pythagoras Data: Pythagoras’ Theorem Diagram PolySet

Description

PolySet of shapes to prove Pythagoras’ Theorem: a® + b% = 2.

Usage

data(pythagoras)

Format
4 column data frame: PID = primary polygon ID, POS = position of each vertex within a given
polyline, X = X-coordinate, and Y = Y-coordinate. Attributes: projection = 1.

Note

In R, the data must be loaded using the data function.

Author(s)
Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2008-09-03

Source

An artificial construct to illustrate the proof of Pythagoras’ Theorem using trigonometry.

See Also

addPolys, plotPolys, plotMap, PolySet.

https://academic.macewan.ca/boersn/

82 refocusWorld

refocusWorld Refocus the worldLL/worldLLhigh Data Sets

Description
Refocus the worldLL/worldLLhigh data sets, e.g., refocus them so that Eastern Canada appears to
the west of Western Europe.

Usage
refocusWorld (polys, xlim=NULL, ylim=NULL, clip.AN=TRUE)

Arguments
polys PolySet — object with one or more polygons; typically worldLL or worldLLhigh
(required).
x1lim numeric — range of X-coordinates.
ylim numeric —range of Y-coordinates.
clip.AN logical — if TRUE, clip expanded Antarctica to 'x1im' of refocused polygons
other than Antarctica and to user-defined/default 'ylim'.
Details

This function accepts a PolySet containing one or more polygons with X-coordinates that collec-
tively span approximately 360 degrees. The function effectively joins the PolySet into a cylinder
and then splits it at an arbitrary longitude according to the user-specified limits. Modifications in
the resulting PolySet are restricted to shifting X-coordinates by +/- multiples of 360 degrees, and
instead of clipping polygons, the return value simply omits out-of-range polygons.

Value

PolySet, likely a subset of the input PolySet, which retains the same PID/SID values.

Note

The Antarctic polygon is treated as a special case in that it is expanded longitudinally by duplicating
it to the West and East of the base polygon. The expanded Antarctica is then clipped to the limits
of the plot, or not if 'clip.NA=FALSE".

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB

Rowan Haigh, Program Head — Offshore Rockfish

Pacific Biological Station (PBS), Fisheries & Oceans Canada (DFO), Nanaimo BC
locus opus: Institute of Ocean Sciences (I0S), Sidney BC

Last modified Rd: 2018-10-26

https://academic.macewan.ca/boersn/
mailto:rowan.haigh@dfo-mpo.gc.ca

rotatePolys 83

See Also

joinPolys

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- load appropriate data
data(worldLL,envir=.PBSmapEnv)
#--- set limits
x1lim <- c(-100,25)
ylim <- ¢(0,90)
#--- refocus and plot the world
polys <- refocusWorld(worldLL, xlim, ylim)
plotMap(polys, xlim, ylim)
par(oldpar)

»

rotatePolys Rotate Polygons and Events

Description

Rotate a PolySet (or an EventData set) clockwise by a specified angle around a fixed point.

Usage

rotatePolys(polys, angle=40, centroid=c(500,5700),
proj.out, zone, xlim=c(-135,-121.5), ylim=c(47,56),
plot=FALSE, keep.extra=FALSE, ...)

rotateEvents(data, angle=40, centroid=c(500,5700),

proj.out, zone, plot=FALSE, keep.extra=FALSE, ...)
Arguments

polys PolySet — data frame with fields 'PID', 'SID', 'POS', 'X', 'Y', and attribute
'projection’ set to either "LL" or "UTM".

data EventData —data frame with fields 'EID', 'POS"', 'X', 'Y', and attribute 'projection’
set to either "LL" or "UTM".

angle numeric — angle between 0 and 360 degrees for map rotation in a clockwise
direction.

centroid numeric — fixed UTM point, specified in km, around which the map will be

rotated. Rotation is performed in UTM space regardless of the input and output
projections. If user specifies '"NULL' or 'NA', the centroid of the map will be
used.

84

proj.out

zone

x1lim

ylim

plot

keep.extra

Details

rotatePolys

character — desired output projection, where choices are 'LL' or 'UTM'. If
'proj.out’ is not specified, the output projection will be the same as the pro-
jection of the input object.

numeric — UTM zone used for rotation; if not supplied, the zone is set to 9.

numeric — two-element vector specifying the limits of X using units (degrees or
km) that match the input projection.

numeric — two-element vector specifying the limits of Y using units (degrees or
km) that match the input projection.

logical —if TRUE, plot the results of the rotation.

logical — if TRUE, keep the coordinates of initial and intermediate steps in the
rotation process in addition to the final rotated coordinates of the desired projec-
tion.

dots —additional arguments for 'plotMap' (in 'rotatePolys')or 'plotPoints
(in 'rotateEvents').

Map rotation returns coordinates that are no longer meaningful with respect to the original coor-
dinate system. When displaying rotated maps, the user might wish to turn off axis labels using

n.n

xaxt="n" and yaxt="n".

Value

Rotated PolySet or EventData set where 'X' and 'Y' are the rotated coordinates in the projection
specified by 'proj.out'. The returned object has an attribute list object named 'rotation’ that

contains:

* angle — angle of clockwise rotation in degrees

* radian — angle of rotation in radians: pi * (-angle)/180

* centroid — fixed point in UTM coordinates (km) around which map is rotated in UTM pro-

jection

¢ R —rotation matrix (2-dimensional)

* xylim— list object to keep track of 'x1im', 'ylim' and a bounding box 'xybox".

* projection — projection of the rotated PolySet or EventData set

* zone — zone of the rotated PolySet or EventData set

When keep.extra=TRUE, the returned object will contain additional fields calculated by the rota-

tional algorithm:

* (X0,Y0) — original coordinates of the input PolySet | EventData set

* (uX@,uY®) — original coordinates converted to UTM (only if original projection is 'LL")

* (aX,aY) — UTM coordinates adjusted by subtracting the UTM centroid

e (tX,tY) —adjusted UTM coordinates transformed by multiplying the rotational matrix

e (rX,rY) —rotated UTM coordinates re-centered by adding the UTM centroid

https://academo.org/demos/rotation-about-point/

summary 85

Note:

If proj.out="UTM", the coordinates c(rX, rY) are used as the final rotated coordinates. If
proj.out="LL", the coordinates c(rX, rY) are transformed back into projection 'LL" as the final
rotated coordinates.

Additionally, 'xylim' in the 'rotation' list attribute contains intermediary bounding box ob-
jects. For instance, if the input PolySet | EventData object has projection 'LL', the 'xylim' object
contains:

e LL —original (X,Y) limits ('x1im', 'ylim', 'xybox")

* UTM — original (X,Y) limits transformed to UTM coordinates

¢ rot —rotated UTM (X,Y) limits

* out — final projection (X,Y) limits

Note

The map rotation algorithm is not heavily tested at this time. Report any issues to the package
maintainer.

Author(s)

Rowan Haigh, Program Head — Offshore Rockfish

Pacific Biological Station (PBS), Fisheries & Oceans Canada (DFO), Nanaimo BC
locus opus: Institute of Ocean Sciences (I0S), Sidney BC

Last modified Rd: 2019-03-14

References

Academo — 2D Rotation about a point

Wikipedia — Rotation matrix

See Also

In package PBSmapping:
as.PolySet in PolySet, clipPolys, nepacLL, plotMap, plotPoints, refocusWorld, surveyData

summary Summarize PBS Mapping Objects

Description

summary method for PBS Mapping classes.

mailto:rowan.haigh@dfo-mpo.gc.ca
https://academo.org/demos/rotation-about-point/
https://en.wikipedia.org/wiki/Rotation_matrix

86 summary

Usage
S3 method for class 'EventData'
summary (object, ...)
S3 method for class 'LocationSet'
summary(object, ...)
S3 method for class 'PolyData’
summary (object, ...)
S3 method for class 'PolySet'
summary (object, ...)

Arguments
object object —a PBSmapping object: EventData, LocationSet, PolyData, or PolySet.

dots — further arguments passed to or from other methods.

Details

After creating a list of summary statistics, this function assigns the class 'summary.PBS' to the
output in order to accomplish formatted printing via print.summary.PBS.

Value

A list of summary statistics.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2019-03-14

See Also

In package PBSmapping:
EventData, LocationSet, PolyData, PolySet, PBSprint

Examples

local(envir=.PBSmapEnv,expr={
#--- load the data (if using R)
if (!is.null(version$language) && (version$language=="R"))
data(surveyData,envir=.PBSmapEnv)
print(summary(surveyData))

b

https://academic.macewan.ca/boersn/

surveyData 87

surveyData Data: Tow Information from Pacific Ocean Perch Survey

Description

EventData of Pacific ocean perch (POP) tow information (1966-89).

Usage

data(surveyData)

Format

Data frame consisting of 9 columns: PID = primary polygon ID, POS = position of each vertex
within a given polygon, X = longitude coordinate, Y = latitude coordinate, trip = trip ID, tow = tow
number in trip, catch = catch of POP (kg), effort = tow effort (minutes), depth = fishing depth
(m), and year = year of survey trip. Attributes: projection = "LL", zone = 9.

Note

In R, the data must be loaded using the data function.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2008-09-03

Source

The GFBio database, maintained at the Pacific Biological Station (Fisheries and Oceans Canada,
Nanaimo, BC V9T 6N7), archives catches and related biological data from commercial groundfish
fishing trips and research/assessment cruises off the west coast of British Columbia (BC).

The POP (Sebastes alutus) survey data were extracted from GFBio. The data extraction covers
bottom trawl surveys that focus primarily on POP biomass estimation: 1966-89 for the central BC
coast and 1970-85 for the west coast of Vancouver Island. Additionally, a 1989 cruise along the
entire BC coast concentrated on the collection of biological samples. Schnute et al. (2001) provide
a more comprehensive history of POP surveys including the subset of data presented here.

References

Schnute, J.T., Haigh, R., Krishka, B.A. and Starr, P. (2001) Pacific ocean perch assessment for
the west coast of Canada in 2001. Canadian Science Advisory Secretariat, Research Document
2001/138, 90 pp.

See Also

addPoints, combineEvents, EventData, findPolys, makeGrid, plotPoints.

https://academic.macewan.ca/boersn/

88 thickenPolys

thickenPolys Thicken a PolySet of Polygons

Description

Thicken a PolySet, where each unique (PID, SID) describes a polygon.

Usage

thickenPolys (polys, tol = 1, filter = 3, keepOrig = TRUE,
close = TRUE)

Arguments
polys PolySet to thicken.
tol tolerance (in kilometres when proj is "LL" and "UTM"; otherwise, same units as
polys).
filter minimum number of vertices per result polygon.
keepOrig Boolean value; if TRUE, keep the original points in the PolySet.
close Boolean value; if TRUE, create intermediate vertices between each polygon’s last
and first vertex, if necessary.
Details

This function thickens each polygon within polys according to the input arguments.

If keepOrig = TRUE, all of the original vertices appear in the result. It calculates the distance be-
tween two sequential original vertices, and if that distance exceeds tol, it adds a sufficient number
of vertices spaced evenly between the two original vertices so that the distance between vertices
no longer exceeds tol. If close = TRUE, it adds intermediate vertices between the last and first
vertices when necessary.

If keepOrig = FALSE, only the first vertex of each polygon is guaranteed to appear in the results.
From this first vertex, the algorithm walks the polygon summing the distance between vertices.
When this cumulative distance exceeds tol, it adds a vertex on the line segment under inspec-
tion. After doing so, it resets the distance sum, and walks the polygon from this new vertex. If
close = TRUE, it will walk the line segment from the last vertex to the first.

Value

PolySet containing the thickened data. The function recalculates the POS values for each polygon.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

https://academic.macewan.ca/boersn/

thinPolys

See Also

89

thinPolys.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)

#___

load the data (if using R)

if (!is.null(version$language) && (version$language=="R"))
data(nepacLL,envir=.PBSmapEnv)

#___

plot Vancouver Island

plotMap(nepacLL[nepacLL$PID == 33, 1)

#--- calculate a thickened version using a 30 kilometres tolerance,
#--- without keeping the original points
p <- thickenPolys(nepacLL[nepacLL$PID == 33, 1, tol = 30, keepOrig = FALSE)
#--- convert the PolySet to EventData by dropping the PID column and
#--- renaming POS to EID
p <- p[-1]; names(p)[1] <- "EID"
#--- convert the now invalid PolySet into a data frame, and then into
#--- EventData
p <- as.EventData(as.data.frame(p), projection="LL")
#--- plot the results
addPoints(p, col=2, pch=19)
par(oldpar)
»
thinPolys Thin a PolySet of Polygons
Description

Thin a PolySet, where each unique (PID, SID) describes a polygon.

Usage

thinPolys (polys, tol = 1, filter = 3)

Arguments

polys
tol

filter

Details

PolySet to thin.

tolerance (in kilometres when projis "LL" and "UTM"; otherwise, same units as
polys).

minimum number of vertices per result polygon.

This function executes the Douglas-Peuker line simplification algorithm on each polygon within

polys.

90 towData

Value

PolySet containing the thinned data. The function recalculates the POS values for each polygon.

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2013-04-10

See Also

thickenPolys.

Examples

local(envir=.PBSmapEnv,expr={
oldpar = par(no.readonly=TRUE)
#--- load the data (if using R)
if (!is.null(version$language) && (version$language=="R"))
data(nepaclLL,envir=.PBSmapEnv)

#--- plot a thinned version of Vancouver Island (3 km tolerance)
plotMap(thinPolys(nepacLL[nepacLL$PID == 33, 1, tol = 3))
#--- add the original Vancouver Island in a different line type to
#--- emphasize the difference
addPolys(nepacLL[nepacLL$PID == 33,], border=2, 1lty=8, density=0)
par(oldpar)
»
towData Data: Tow Information from Longspine Thornyhead Survey
Description

PolyData of tow information for a longspine thornyhead survey (2001).

Usage

data(towData)

Format

Data frame consisting of 8 columns: PID = primary polygon ID, POS = position of each vertex
within a given polygon, X = longitude coordinate, Y = latitude coordinate, depth = fishing depth (m),
effort = tow effort (minutes), distance = tow track distance (km), catch = catch of longspine
thornyhead (kg), and year = year of survey. Attributes: projection = "LL", zone = 9.

Note

In R, the data must be loaded using the data function.

https://academic.macewan.ca/boersn/

towTracks 91

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2008-09-03

Source

The GFBio database, maintained at the Pacific Biological Station (Fisheries and Oceans Canada,
Nanaimo, BC V9T 6N7), archives catches and related biological data from commercial groundfish
fishing trips and research/assessment cruises off the west coast of British Columbia (BC). The
longspine thornyhead (Sebastolobus altivelis) survey data were extracted from GFBio. Information
on the first 45 tows from the 2001 survey (Starr et al. 2002) are included here. Effort is time
(minutes) from winch lock-up to winch release.

References
Starr, P.J., Krishka, B.A. and Choromanski, E.M. (2002) Trawl survey for thornyhead biomass
estimation off the west coast of Vancouver Island, September 15 - October 2, 2001. Canadian
Technical Report of Fisheries and Aquatic Sciences 2421, 60 pp.

See Also

makeProps, PolyData, towTracks.

towTracks Data: Tow Track Polylines from Longspine Thornyhead Survey

Description

PolySet of geo-referenced polyline tow track data from a longspine thornyhead survey (2001).

Usage

data(towTracks)

Format

Data frame consisting of 4 columns: PID = primary polygon ID, POS = position of each ver-
tex within a given polyline, X = longitude coordinate, and Y = latitude coordinate. Attributes:
projection = "LL", zone = 9.

Note

In R, the data must be loaded using the data function.

https://academic.macewan.ca/boersn/

92 towTracks

Author(s)

Nicholas M. Boers, Associate Professor — Computer Science
MacEwan University, Edmonton AB
Last modified Rd: 2008-09-03

Source

The longspine thornyhead (Sebastolobus altivelis) tow track spatial coordinates are available at
the Pacific Biological Station (Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7). The geo-
referenced coordinates of the first 45 tows from the 2001 survey (Starr et al. 2002) are included
here. Coordinates are recorded once per minute between winch lock-up and winch release.

References

Starr, PJ., Krishka, B.A. and Choromanski, E.M. (2002) Trawl survey for thornyhead biomass
estimation off the west coast of Vancouver Island, September 15 - October 2, 2001. Canadian
Technical Report of Fisheries and Aquatic Sciences 2421, 60 pp.

See Also

addLines, calcLength, clipLines, plotLines, PolySet, towData.

https://academic.macewan.ca/boersn/

Index

*Topic 10

print, 80

+Topic aplot

addBubbles, 3
addCompass, 5
addLabels, 7
addLines, 8
addPoints, 10
addPolys, 11
addStipples, 12
plotPoints, 72

xTopic classes

EventData, 37
LocationSet, 58
PolyData, 76
PolySet, 78

xTopic datasets

bcBathymetry, 15
nepaclLL, 64
pythagoras, 81
surveyData, 87
towData, 90
towTracks, 91

xTopic documentation

EventData, 37
LocationSet, 58
PBSmapping, 65
PolyData, 76
PolySet, 78

+Topic file

importEvents, 45
importGSHHS, 46
importLocs, 48
importPolys, 49
importShapefile, 50

+Topic hplot

plotLines, 68
plotMap, 70
plotPolys, 74

93

«Topic iplot

locateEvents, 56
locatePolys, 57

«Topic logic

joinPolys, 53

«Topic manip

appendPolys, 14
calcArea, 16
calcCentroid, 17
calcConvexHull, 18
calcGCdist, 19
calcLength, 21
calcMidRange, 22
calcSummary, 23
calcVoronoi, 24
cliplLines, 26
clipPolys, 27
closePolys, 28
combineEvents, 29
combinePolys, 30
convCP, 31
convDP, 32
convLP, 34
convUL, 35
dividePolys, 36
extractPolyData, 38
findCells, 39
findPolys, 41
fixBound, 42
fixPQS, 44
isConvex, 51
isIntersecting, 52
joinPolys, 53
makeGrid, 59
makeProps, 61
makeTopography, 62
placeHoles, 66
refocusWorld, 82
rotatePolys, 83

94

thickenPolys, 88
thinPolys, 89
xTopic methods
summary, 85
+Topic sysdata
PBSprint, 66

addBubbles, 3, 6

addCompass, 5, 21

addLabels, 6,7, 12,61, 62,72, 76

addLines, 8, 34, 61, 62, 69, 92

addPoints, 6, 8, 10, 13, 19, 25, 33, 56, 61, 62,
73,87

addPolys, 5, 11, 13, 14, 19, 25, 55, 58, 60-62,
65,72,76,81

addStipples, 6, 12,12, 61, 62,72, 76

appendPolys, 14, 34, 55, 58

arrows, 9

as.EventData (EventData), 37

as.LocationSet (LocationSet), 58

as.PolyData (PolyData), 76

as.PolySet (PolySet), 78

bcBathymetry, 15, 65

calcArea, 16, 18, 19, 21-25
calcCentroid, 8, 17,17, 19, 21-25
calcConvexHull, 18, 24, 25
calcGCdist, 6, 19
calcLength, 9, 17, 18, 21,21, 23, 24, 69, 92
calcMidRange, 8, 17-19, 22,22, 24, 25
calcSummary, 8, 17-19, 22, 23,23, 25
calcVoronoi, 24
clipLines, 9, 26, 27, 69, 92
clipPolys, 12, 14, 26, 27, 55, 58, 60, 65, 72,
76, 85
closePolys, 9, 12, 14, 28, 34, 36, 43, 44, 55,
58,69,72,76
combineEvents, 10, 24, 29, 40, 42, 56, 60, 73,
87
combinePolys, 30, 37
contour, 15, 16, 32, 62, 63
contourlLines, 15, 16, 31, 32, 62, 63
convCP, 15, 16, 31, 34, 63
convDP, 10, 32, 56, 73
convLP, 9, 14, 32, 34, 69
convUL, 35
cut, 6/

data, 15, 64, 81, 87, 90, 91

INDEX

dividePolys, 31, 36

EventData, 4, 7, 8, 10, 29, 32, 37, 3941, 50,
56, 59,72,77,79, 80, 86, 87
extractPolyData, 38

findCells, 30, 39, 42, 56, 58, 60

findPolys, 10, 24, 29, 30, 39, 40, 41, 56,
58-60, 68, 73, 87

fixBound, 9, 12, 14, 26, 27, 29, 36,42, 44, 55,
69, 72,76

fixPO0S, 9, 12, 14, 29, 43, 44, 55, 58, 69, 72,
76,79

importEvents, 45, 47,49, 51
importGSHHS, 45, 46, 49, 51, 65
importlLocs, 45, 47,48, 49, 51
importPolys, 45, 47,49, 49, 51
importShapefile, 45, 47, 49, 50, 65, 68
is.EventData (EventData), 37
is.LocationSet (LocationSet), 58
is.PolyData (PolyData), 76
is.PolySet (PolySet), 78
isConvex, 43, 44,51, 53
isIntersecting, 43, 44, 52,52

joinPolys, 14, 34,53, 58, 83

legend, 4

lines, 9,77

locateEvents, 10, 18, 19, 24, 25, 30, 40, 42,
56, 73

locatePolys, 9, 12, 17, 18, 22, 24, 30, 40, 42,
55,57,69,72,76

LocationSet, 29, 38, 40-42,58, 77, 79, 80, 86

locator, 56, 57

makeGrid, 24, 30, 39, 40, 42, 59, 87
makeProps, 24, 30, 39, 61, 91
makeTopography, 32, 62

mean, 29

na.omit, 56, 57
nepacll, 15, 16, 64, 85
nepaclLLhigh, 16
nepacLLhigh (nepacLL), 64

par, 7, 9-13, 56, 57, 6875
PBSmapping, 65
PBSmapping-package (PBSmapping), 65

INDEX

PBSprint, 38, 59, 66, 77, 79, 80, 86

placeHoles, 51, 66

plot, 69,71,73,75

plotLines, 9, 12, 34,61, 62,68,71, 72, 76, 92

plotMap, 12-14, 19, 25, 55, 58, 61, 62, 65, 69,
70,75, 76, 81, 85

plotPoints, 8, 10, 12, 13, 19, 25, 33, 55, 56,
61,62,72,72,76,85,87

plotPolys, 12-14, 19, 25, 58, 61, 62, 65, 71,
74, 81

points, 10, 13

PolyData, 7-13, 16, 18, 21, 22, 24, 30, 32, 33,
38, 39, 50, 52, 53, 57,59, 61, 62,
68-75,76, 79, 80, 86, 90, 91

polygon, 11, 12,71,75,77

PolySet, 7, 8, 11, 13-18, 21-23, 25-28,
30-34, 3744, 50-54, 57, 59, 60, 62,
64, 68-75,77,78, 80-82, 85, 86,
88-92

print, 38, 59, 77, 80, 80

pythagoras, 81

read.table, 62
refocusWorld, 65, 82, 85
rotateEvents (rotatePolys), 83
rotatePolys, 83

sum, 29
summary, 38, 59, 66, 77, 79, 80, 85
surveyData, 5, 65, 85, 87

text, 7

thickenPolys, 9, 12, 55, 58, 60, 65, 69, 72,
76, 88, 90

thinPolys, 9, 12, 55, 58, 65, 69, 72, 76, 89, 89

title, 69,71,73,75

towData, 65, 90, 92

towTracks, 91, 91

worldLL (nepacLL), 64
worldLLhigh (nepacLL), 64

	addBubbles
	addCompass
	addLabels
	addLines
	addPoints
	addPolys
	addStipples
	appendPolys
	bcBathymetry
	calcArea
	calcCentroid
	calcConvexHull
	calcGCdist
	calcLength
	calcMidRange
	calcSummary
	calcVoronoi
	clipLines
	clipPolys
	closePolys
	combineEvents
	combinePolys
	convCP
	convDP
	convLP
	convUL
	dividePolys
	EventData
	extractPolyData
	findCells
	findPolys
	fixBound
	fixPOS
	importEvents
	importGSHHS
	importLocs
	importPolys
	importShapefile
	isConvex
	isIntersecting
	joinPolys
	locateEvents
	locatePolys
	LocationSet
	makeGrid
	makeProps
	makeTopography
	nepacLL
	PBSmapping
	PBSprint
	placeHoles
	plotLines
	plotMap
	plotPoints
	plotPolys
	PolyData
	PolySet
	print
	pythagoras
	refocusWorld
	rotatePolys
	summary
	surveyData
	thickenPolys
	thinPolys
	towData
	towTracks
	Index

