Package ‘PAWL’

February 19, 2015
Type Package
Title Implementation of the PAWL algorithm
Version 0.5
Date 2012-11-15
Author Luke Bornn, Pierre E. Jacob
Maintainer Pierre Jacob <pierre. jacob.work@gmail.com>

Description Implementation of the Parallel Adaptive Wang-Landau
algorithm. Also implemented for comparison: parallel adaptive
Metropolis-Hastings,SMC sampler.

Depends methods, mvtnorm, foreach, reshape, ggplot2
License GPL (>=2)

LazyLoad yes

Repository CRAN

Date/Publication 2012-11-15 13:08:48

NeedsCompilation yes

R topics documented:

PAWL-package e 2
adaptiveMHo 3
binning L. 4
ConvertResults L 5
createAdaptiveRandomWalkProposal, 6
createMixtureTarget L e 7
createTrimodalTarget 8
getFrequencies e 9
IceFloe e 10
normalizeweight. 10
PaWl . L e e e 11
PlotAllVar e e e 12
PlotComplvsComp2 e e 13
PlotDensComplvsComp2 14

2 PAWL-package
PlotFH 14
PlotHist 15
PlotHistBin 16
PlotLogTheta e 16
PlotNbins 17
Pollution e 18
preexplorationAMH L 18
proposal L e 19
) 0T 20
SMCPATAMELETS .« . v ¢ v v v e e v e e e e e e e e e e e e e e e e e e e 21
TATZEL . . . e e e e e e 22
tUNINGPATAMELETS v v v v v e e e e e e e e e e e e e e e e e e 23
Index 25
PAWL-package PARALLEL ADAPTIVE WANG-LANDAU
Description
The package implements the Parallel Adaptive Wang-Landau algorithm on various examples. The
provided demos allow to reproduce the figures of the article.
Details
Package: PAWL
Type: Package
Version: 1.0
Date: 2011-08-11
License: GPL (>=2)
LazyLoad: yes
Depends: mvtnorm
Suggests: ggplot2
The main function is pawl. It takes algorithmic parameters in arguments (see the help of the pawl
function), as well a target distribution. Look at the demos to learn how to specify a target distribu-
tion.
Author(s)
Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>
Examples

demo(discreteexample)
demo(gaussianexample)
demo(mixture2kexample)

adaptiveMH 3

adaptiveMH Adaptive Metropolis-Hastings

Description
Adaptive Metropolis-Hastings algorithm, with parallel chains. The adaptation is such that it targets
an acceptance rate.

Usage

adaptiveMH(target, AP, proposal, verbose)

Arguments

target Object of class target: specifies the target distribution. See the help of target.
If the target is discrete, target must contain the slots dproposal, rproposal
and proposalparam that specify the proposal kernel in the Metropolis-Hastings
step. Otherwise the default is an adaptive gaussian random walk.

AP Object of class "tuningparameters”: specifies the number of chains, the num-
ber of iterations, and what should be stored during along the run. See the help
of tuningparameters.

proposal Object of class "proposal”: specifies the proposal distribution to be used to pro-
pose new values and to compute the acceptance rate. See the help of proposal.
If this is not specified and the target is continuous, then the default is an adaptive
gaussian random walk.

verbose Object of class "logical”: if TRUE (default) then prints some indication of
progress in the console.

Value

The function returns a list holding various information:

finalchains The last point of each chain.
acceptrates The vector of acceptance rates at each step.
sigma The vector of the standard deviations used by the MH kernel along the iterations.

If the proposal was adaptive, this allows to check how the adaptation behaved.
allchains If asked in the tuning parameters, the chain history.
alllogtarget If asked in the tuning parameters, the associated log density evaluations.
meanchains If asked in the tuning parameters, the mean (component-wise) of each chain.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

preexplorationAMH

4 binning

binning Class "binning”

Description

This class holds all the parameters of the Parallel Adaptive Wang-Landau algorithm that are related
to the bins: it includes the functions that take points and return the point locations with respect to
the bins, parameters related to the number of bins, the split mechanism, the adaptation rate of the
stochastic approximation schedule, etc.

Objects from the Class

Objects should created by calls of the function binning. Examples are provided that should help
understanding this class. Essentially it is a list of parameters, most of which have a reasonable
default value so you do not need to think about it too much.

Important slots

position: Object of class "function”: should be a function taking points and associated log
density values, and returning a "reaction coordinate", that is, a value that will be associated
with bins. Typically, it can be the log density itself, or one component of a d-dimensional
point. See the example below.

binrange: Object of class "numeric”: it should be a vector of size 2, holding the minimum and the
maximum on the reaction coordinate scale. The bins are going to be between those two (inner
bins), while a bin will go from - infinity to the minimum, and a bin will go from maximum to
+ infinity (outer bins).

ncuts: Object of class "numeric”: how many cuts will be made in the bin range specified by the
previous argument. This induce the number of initial bins. Bins are automatically created by
the following line:
bins <- c(-Inf, seq(from = binrange[1], to = binrange[2], length.out = ncuts))
There are then (ncuts +1) bins. The default for ncuts is 9, resulting in 10 bins.

Optional slots

bins: Object of class "numeric”: you can specify the bins directly, in which case you do not need
to specify binrange.

name: Object of class "character”: ... if you want to name the instance (default is "unspecified").

autobinning: Object of class "logical”: activate or not the splitting mechanism, to create new
inner bins automatically. This does not create new bins outside the specified bin range, it just
add new bins inside to help reaching the Flat Histogram criteria more quickly.

desiredfreq: Object of class "numeric”: you can specify the desired frequency of each bin. The
default is 1 / nbins in each bin, where nbins is the number of bins. Note that if autobinning is
enable, when a bin is split into two bins, the desired frequencies of the new bins are equal to
half of the desired frequency of the former bin.

ConvertResults 5

useLearningRate: Object of class "logical”: active or not the stochastic approximation sched-
ule. That is, if it is not activated, then no schedule are used in the update of theta (the penalty
associated to the bins). Default is TRUE.

useFH: Object of class "logical”: active or not the Flat Histogram checks. If it is not activated,
then the stochastic approximation decreases at each step. Default is TRUE, unless useLearn-
ingRate is FALSE, in which case there is no point checking for Flat Histograms.

fhthreshold: Object of class "numeric”: specifies the threshold to accept Flat Histogram. The
default is 0.5. Smaller values make the Flat Histogram criterion harder to reach.

minSimEffort: Object of class "numeric”: specifies the minimum number of iterations after a
Flat Histogram, for a new Flat Histogram criterion to be accepted. It prevents the criterion to
be accepted at every iteration when using a large number of parallel chains. Default is 200.

learningrate: Object of class "function”: specifies the learning rate, that is, the rate at which
the stochastic schedule decreases. It should be a function defined on [0, + infty[such that it is
not integrable but its square is integrable, e.g. t -> 1/t for instance. The default is t -> t*-0.6.

splitThreshold: Object of class "numeric”: specifies the threshold to split a bin into two new
bins. The defaultis 0.1 (read 10%), which means that a bin is split if at least 90% of the points
in that bin are on the half right (or left) side of the bin. Larger values (e.g. 25%) result in more
splits, and hence more final bins.

Methods
show signature(object = "binning"): provides a little summary of a binning object when
called (or when print is called).
Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

Examples

showClass("binning")
getPos <- function(points, logdensity) points
positionbinning <- binning(position = getPos,

name = "position”,
binrange = c(-4, 9),
ncuts = 4,

autobinning = TRUE,
uselLearningRate = TRUE)

ConvertResults Convert Results

Description

Convert results from pawl and adaptiveMH. The result is a data set that is more convenient to use
with "ggplot2"” functions.

6 createAdaptiveRandomWalkProposal

Usage
ConvertResults(results, verbose)
Arguments
results Object of class "1ist": either the output of pawl or of adaptiveMH.
verbose Object of class "logical”: if TRUE (default) then prints some indication of
progress in the console.
Details

Essentially it concatenates the parallel chains in a single column, and adds a column with the as-
sociated log density values. If more than 1000 parallel chains are used, the function can take some
time to return its output.

Value

The function returns an object of class "data. frame”, with columns for the chain indices, the chain
values, the iteration indices, and the associated log density values.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

adaptiveMH, pawl

createAdaptiveRandomWalkProposal
Adaptive Random Walk proposal distribution for MCMC algorithms

Description

Create the adaptive gaussian random walk proposal that is used as a default in adaptiveMH and
pawl, whenever the target distribution is continuous.

Usage

createAdaptiveRandomWalkProposal (nchains, targetdimension, adaptiveproposal, adaptationrate, sign

createMixtureTarget 7

Arguments
nchains Object of class "numeric”: it should be an integer representing the desired num-
ber of parallel chains.
targetdimension
Object of class "numeric”: it should be an integer representing the dimension
of the target distribution.
adaptiveproposal

Object of class "logical”: specifies whether an adaptive proposal (Robbins-
Monroe type of adaptation) should be used. Default is FALSE.

adaptationrate Object of class "function”: specifies the rate at which the adaptation of the
proposal is performed. It should be a function defined on [0, + infty[such that it
is not integrable but its square is integrable, e.g. t -> 1/t for instance. The default
is t ->t"-0.6.

sigma_init Object of class "numeric”: it should be a positive real number specifying the
standard deviation of the proposal distribution at the first iteration. If the pro-
posal is adaptive, it acts as a starting point for the adaptation. If it is not adaptive,
then this value is used throughout all the iterations. Default is 1.
Value
The function returns an object of class proposal-class, to be used in calls to adaptiveMH and
pawl.
Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

proposal-class, adaptiveMH, pawl

createMixtureTarget Mixture target distribution

Description
Create the posterior distribution of the parameters of a mixture of univariate gaussian distributions,
with a fixed (known) number of components.

Usage

createMixtureTarget(mixturesample, mixturesize, ncomponents, mixtureparameters)

8 create TrimodalTarget

Arguments

All the arguments are optional, since if none is given, a mixture distribution
with 4 components will be created, as in Jasra, Holmes, Stephens, "MCMC and
label switching problem in Bayesian mixture models", published in Statistical
Science (2005).

Object of class "vector”: data set to be used. If not provided, a synthetic data
set is generated.

mixturesample Object of class "numeric”: represents the data set size if a data set is to be

generated.

ncomponents Object of class "numeric"”: represents the fixed number of components to be
used.

mixtureparameters

Object of class "1ist": provides the parameters to be used if a data set has to be
generated. The parameters include the number of components, the component
weights, means and variances.

Value

The function returns an object of class target-class, with a name, a dimension, a function giving
the log density, a function to generate sample from the distribution, parameters of the distribution,
and a function to draw init points for the MCMC algorithms. The log density involves a likelihood
and a prior, and the prior is as in Richardson and Green, "On Bayesian analysis of mixtures with an
unknown number of components", published in JRSS B, 1997.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

References

Jasra, Holmes, Stephens, "MCMC and label switching problem in Bayesian mixture models", pub-
lished in Statistical Science (2005). Richardson and Green, "On Bayesian analysis of mixtures with
an unknown number of components", published in JRSS B, 1997.

See Also

target-class, createTrimodalTarget

createTrimodalTarget Trimodal target distribution

Description

Create the trimodal distribution as in Liang, Liu and Caroll, 2007: Stochastic approximation in
Monte Carlo computation.

getFrequencies 9

Usage

createTrimodalTarget()

Details

This distribution is a mixture of three bivariate Gaussian distributions. Their covariance matrices are
such that an adaptive MCMC algorithm which proposal variance adapts to one of the component,
will likely fail to explore the others.

Value

The function returns an object of class target, with a name, a dimension, a function giving the log
density, a function to generate sample from the distribution, parameters of the distribution, and a
function to draw init points for the MCMC algorithms.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

References

Liang, Liu and Caroll: Stochastic approximation in Monte Carlo computation. Published in JASA,
2007.

See Also

target, createMixtureTarget

getFrequencies Observed Frequencies in each bin.

Description

This function provides a convenient way to check whether the target frequencies have been reached.
Since new bins can be created during the algorithm, this function aggregates them in the right way
so that the user can know if the initial bins (on which the desired frequencies were specified) have
been visited enough.

Usage
getFrequencies(results, binning)
Arguments
results Object of class "1ist": either the output of pawl or of adaptiveMH.
binning Object of class binning: the binning on which the frequencies have to be com-

puted.

10 normalizeweight

Value

The function is supposed to be used for the lines that it prints in the console. However it also returns
a vector of sampling frequencies corresponding to the initial bins.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

pawl

IceFloe Image of ice floes

Description

This data represents a binary matrix, representing an image of ice floes.

Usage

IceFloe

Format

A matrix containing 40 rows and 40 columns

Source

Banfield, J. and Raftery, A. (1992). Ice floe identification in satellite images using mathematical
morphology and clustering about principal curves. Journal of the American Statistical Association,
87(417):7-16.

normalizeweight Normalize weights

Description

Simple function that normalize vectors (ie takes log weights and returns normalized weights, in the
SMC context).

Usage

normalizeweight(log_weights)

pawl 11

Arguments

log_weights Object of class "numeric": areal-valued vector.

Details

Simple function that takes log weights (ie any real-valued vector), computes the exponential of it,
divides it by its sum and returns it.

Value

The function returns an object of class "data. frame”, with columns for the chain indices, the chain
values, the iteration indices, and the associated log density values.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

smc

pawl Parallel Adaptive Wang-Landau

Description

Implements the Parallel Adaptive Wang-Landau algorithm.

Usage
pawl(target, binning, AP, proposal, verbose)
Arguments
target Object of class target: specifies the target distribution. See the help of target.
If the target is discrete, target must contain the slots dproposal, rproposal
and proposalparam that specify the proposal kernel in the Metropolis-Hastings
step. Otherwise the default is an adaptive gaussian random walk.
binning Object of class binning, defining the initial bins used by the Wang-Landau
algorithm. The binning object also contains some parameters specifying if the
automatic binning mechanism is active or not, for instance.
AP Object of class tuningparameters: specifies the number of chains, the number

of iterations, and what should be stored during along the run. See the help of
tuningparameters.

12 PlotAllVar

proposal Object of class proposal: specifies the proposal distribution to be used to pro-
pose new values and to compute the acceptance rate. See the help of proposal.
If this is not specified and the target is continuous, then the default is an adaptive
gaussian random walk.

verbose Object of class "logical”: if TRUE (default) then prints some indication of
progress in the console.

Value

The function returns a list holding various information:

finalchains The last point of each chain.
acceptrates The vector of acceptance rates at each step.
sigma The vector of the standard deviations used by the MH kernel along the iterations.

If the proposal was adaptive, this allows to check how the adaptation behaved.
allchains If asked in the tuning parameters, the chain history.
alllogtarget If asked in the tuning parameters, the associated log density evaluations.

meanchains If asked in the tuning parameters, the mean (component-wise) of each chain.
logthetahistory
If asked in the tuning parameters, all the log theta penalties.

and other quantities, that you can browse by calling "names(results)” where "results” is the
output of the function.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

adaptiveMH, binning

PlotAllvar Trace plot of all the variables

Description

This function takes the result of adaptiveMH or of pawl, and draws a trace plot for each component
of the chains

Usage
PlotAllVar(results)

Arguments

results Object of class "1ist": either the output of pawl or of adaptiveMH.

PlotComp1vsComp2 13

Value

The function returns a ggplot2 object.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

ggplot

PlotComp1vsComp?2 Plot one component versus another in a scatter plot

Description
This function takes the result of adaptiveMH or of pawl, and component indices, and draws a cloud
of points with the first component on the x-axis and the second on the y-axis.

Usage

PlotComplvsComp2(results, compl, comp2)

Arguments
results Object of class "1ist": either the output of pawl or of adaptiveMH.
comp1 Object of class "numeric”: specifies the index of the component to plot on the
X-axis.
comp?2 Object of class "numeric”: specifies the index of the component to plot on the
y-axis.
Value

The function returns a ggplot2 object.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

ggplot

14 PlotFH

PlotDensComplvsComp2 Plot one component versus another in a density plot

Description

This function takes the result of adaptiveMH or of pawl, and component indices, and draws a 2D
density plot with the first component on the x-axis and the second on the y-axis.

Usage

PlotDensComplvsComp2(results, compl, comp2)

Arguments
results Object of class "1ist": either the output of pawl or of adaptiveMH.
comp1 Object of class "numeric”: specifies the index of the component to plot on the
X-axis.
comp2 Object of class "numeric”: specifies the index of the component to plot on the
y-axis.
Value

The function returns a ggplot2 object.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

ggplot

PlotFH Plot of the Flat Histogram occurrences

Description

This function takes the result of pawl, and draws a plot of the occurrences of the Flat Histogram
criteria along the iterations.

Usage

PlotFH(results)

PlotHist 15

Arguments

results Object of class "1ist": either the output of pawl or of adaptiveMH.

Value

The function returns a ggplot2 object.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

ggplot

PlotHist Plot a histogram of one component of the chains

Description
This function takes the result of adaptiveMH or of pawl, and a component index, and draws a
histogram of it.

Usage

PlotHist(results, component)

Arguments
results Object of class "1ist": either the output of pawl or of adaptiveMH.
component Object of class "numeric”: specifies the index of the component to plot on the
X-axis.
Value

The function returns a ggplot2 object.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

ggplot

16 PlotLogTheta

PlotHistBin Plot a histogram of the binning coordinate

Description

This function takes the result of adaptiveMH or of pawl, and a binning object, and draws a his-
togram of the chains according to the binning coordinate.

Usage

PlotHistBin(results, binning)

Arguments
results Object of class "1ist": either the output of pawl or of adaptiveMH.
binning Object of class binning, defining the initial bins used by the Wang-Landau
algorithm.
Value

The function returns a ggplot2 object.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

ggplot

PlotLogTheta Plot of the log theta penalties

Description

This function takes the result of pawl, and draws a trace plot of the log theta penalties along the
iterations.

Usage
PlotLogTheta(results)

Arguments

results Object of class "1ist": either the output of pawl or of adaptiveMH.

PlotNbins 17

Value

The function returns a ggplot2 object.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

ggplot

PlotNbins Plot of the increase of the number of bins along the iterations

Description

This function takes the result of pawl, and draws a plot of the increase of the number of bins along
the iterations.

Usage

PlotNbins(results)
Arguments

results Object of class "1ist": either the output of pawl or of adaptiveMH.
Value

The function returns a ggplot2 object.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

ggplot

18 preexplorationAMH

Pollution Pollution Data

Description
This data contains 1 response (mortality, normalized to have mean zero) along with 15 pollution-
related explanatory variables.

Usage

Pollution

Format

A matrix containing 60 rows and 16 columns

Source

McDonald, G.C. and Schwing, R.C. (1973) ’Instabilities of regression estimates relating air pollu-
tion to mortality’, Technometrics, vol.15, 463-482.

preexplorationAMH Pre exploration Adapative Metropolis-Hastings

Description

This function takes a target distribution, an integer representing the number of parallel chains, and
an integer representing a number of iterations, and runs adaptive Metropolis-Hastings algorithm
using them. The chains are then used to create a range called SuggestedRange, to be used to bin the
state space according to the energy levels. The energy is here defined as minus the log density of
the target distribution.

Usage

preexplorationAMH(target, nchains, niterations, proposal, verbose)

Arguments
target Object of class "target”: this argument describes the target distribution. See
target for details.
nchains Object of class "numeric”: specifies the number of parallel chains.
niterations Object of class "numeric”: specifies the number of iterations.
proposal Object of class "proposal”: specifies the proposal distribution to be used to pro-

pose new values and to compute the acceptance rate. See the help of proposal.
If this is not specified and the target is continuous, then the default is an adaptive
gaussian random walk.

proposal 19

verbose Object of class "logical”: if TRUE (default) then prints some indication of
progress in the console.
Details

The adaptive Metropolis-Hastings algorithm used in the function is described in more details in the
help page of adaptiveMH

Value

The function returns a list holding the following entries:
LogEnergyRange This holds the minimum and maximum energy values seen by the chains during
the exploration.

LogEnergyQtile Returns the first 10% quantile of the energy values seen by the chains during the
exploration.

SuggestedRange This holds the suggested range, that is, the first 10% quantile and the maximum
value of the energy values seen during the exploration. This can be passed as
the binrange argument of the binning class, see the trimodal example.

finalchains The last point of each chain.

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

adaptiveMH

proposal Class "proposal”

Description

This class holds a proposal distribution to be used in a Metropolis-Hastings kernel.

Objects from the Class

Objects should created by calls of the function proposal.

Important slots

rproposal: Object of class "function”:

dproposal: Object of class "function”:

20 smc

Optional slots

proposalparam: Object of class "list":
adaptiveproposal: Object of class "logical”:
adaptationrate: Object of class "function”:

sigma_init: Object of class "numeric”:

Methods

show signature(object = "proposal”): provides a little summary of a proposal object when
called (or when print is called).

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

smc Sequential Monte Carlo

Description

Sequential Monte Carlo samplers, using a sequence of tempered distributions.

Usage

smc(target, AP, verbose)

Arguments
target Object of class target: specifies the target distribution. See the help of target.
The target must be defined on a continuous state space.
AP Object of class "smcparameters”: specifies the number of particles, the ESS
threshold, the sequence of distributions, etc. See the help of smcparameters.
verbose Object of class "logical”: if TRUE (default) then prints some indication of
progress in the console.
Value

The function returns a list holding various information:

particles a matrix with rows representing particles and columns components of each par-
ticle.

weights a vector of weights associated to each particle. See also the convenience function
normalizeweight.

ESSarray a vector of the ESS computed at each iteration.

resamplingtimes

a vector indicating the iteration at which resampling was performed.

smcparameters 21

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

smcparameters

smcparameters SMC Tuning Parameters

Description

This class holds parameters for the Sequential Monte Carlo sampler.

Objects from the Class

Objects can be created by calls of the function "smcparameters”.

Slots

nparticles: Object of class "numeric”: an integer representing the desired number of particles.
temperatures: Objectof class "numeric”: a vector of temperatures, default being "seq(from = 0.01, to = 1, length.o

nmoves: Object of class "numeric”: number of move steps to be performed after each resampling
step, default being 1.

ESSthreshold: Object of class "numeric”: resampling occurs when the Effective Sample Size
goes below "ESSthreshold” multiplied by the number of particles "nparticles”.

movetype: Object of class "character”: type of Metropolis-Hastings move step to be performed;
can be either set to "independent” or "randomwalk”, default being "independent”.

movescale: Object of class "numeric”: if movetype is set to "randomwalk”, this parameter spec-
ifies the amount by which the estimate of the standard deviation of the target distribution is
multiplied; the product being used to propose new points in the random-walk MH step. De-
fault is 10%, ie a new point is proposed from a Normal distribution, centered on the latest
point, with standard deviation equal to 10% of the standard deviation of the already-generated
chain.

resamplingscheme: Object of class "character”: type of resampling to be used; either "multi-
nomial", "residual” or "systematic", the default being "systematic".

Methods

show signature(object = "smcparameters”): provides a little summary of a binning object
when called (or when print is called).

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

22 target

See Also

smc

Examples

showClass("smcparameters”)

smcparam<- smcparameters(nparticles=5000,
temperatures = seq(from = 0.0001, to = 1, length.out= 100),
nmoves = 5, ESSthreshold = 0.5, movetype = "randomwalk"”,
movescale = 0.1)

target Class: target distribution

Description

This class represents target distributions, that is, probability distributions from which we want to
sample using MCMC or Wang-Landau.

Objects from the Class

Objects should created by calls of the function target. Examples are provided that should help
implementing any continuous probability distributions.

Important slots

dimension: Object of class "numeric”: should be an integer specifying the dimension of the state
space on which the target distribution is defined.

logdensity: Object of class "function” : should be a function taking n points in the state space
and parameters, and returning a vector of n real values. See the example below. This function
is in most cases the most time-consuming part in a MCMC algorithm, so make sure it runs
reasonably fast!

rinit: Object of class "function” : this function should take an integer as argument, say n. Then
the function should return a matrix of dimension n times d (where d is the dimension of the
state space), representing n points in the state space. These n points will be used as starting
points of a parallel MCMC algorithm.

Optional slots

parameters: Object of class "list” : you can put anything in that list (and nothing, which is
the defaults), the important thing is that calls to logdensity(x, parameters)return sensible
values. For example, for a gaussian target distribution, you can put the mean and the variance
in the parameters list (see example below). If need be, you can put a whole data set in there.

type: Object of class "character” : could be "continuous" or "discrete"; default is "continuous".

name: Object of class "character” : ... if you want to name your distribution (default is "unspeci-
fied").

tuningparameters 23

generate: Object of class "function” : does not have to be specified, but if it is specified it
should be a function to generate from the distribution (like rnorm is to the standard normal
distribution).

Methods

show signature(object = "target"): provides a little summary of a target object when called
(or when print is called).

Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

Examples

showClass("target"”)
starting points for MCMC algorithms
rinit <- function(size) rnorm(size)
target log density function: a gaussian distribution N(mean = 2, sd = 3)
parameters <- list(mean = 2, sd = 3)
logdensity <- function(x, parameters) dnorm(x, parameters$mean, parameters$sd, log = TRUE)
creating the target object
gaussiantarget <- target(name = "gaussian”, dimension = 1,
rinit = rinit, logdensity = logdensity,
parameters = parameters)
print(gaussiantarget)

tuningparameters MCMC Tuning Parameters

Description

This class holds tuning parameters for the Metropolis-Hastings and Wang-Landau algorithms.

Objects from the Class

Objects can be created by calls of the function "tuningparameters”.

Slots
nchains: Object of class "numeric”: it should be an integer representing the desired number of
parallel chains.

niterations: Object of class "numeric”: it should be an integer representing the desired number
of iterations.

computemean: Object of class "logical”: specifies whether the mean of all chains should be
computed at each iteration (useful if the chains are not to be stored).

computemeanburnin: Object of class "numeric": if computemean is set to TRUE, specifies after
which iteration the mean of the chain has to be computed. Default is 0 (no burnin).

24 tuningparameters

saveeverynth: Object of class "numeric”: specifies when the chains are to be stored: for instance
at every iteration (=1), every 10th iteration (=10), etc. Default is -1, meaning the chains are
not stored.
Methods
show signature(object = "tuningparameters”): provides a little summary of a binning ob-
ject when called (or when print is called).
Author(s)

Luke Bornn <bornn@stat.harvard.edu>, Pierre E. Jacob <pierre.jacob.work @ gmail.com>

See Also

adaptiveMH preexplorationAMH pawl

Examples

showClass("tuningparameters")
mhparameters <- tuningparameters(nchains = 10, niterations = 1000, adaptiveproposal = TRUE)

Index

xTopic \textasciitildekwd1
adaptiveMH, 3
ConvertResults, 5
normalizeweight, 10
pawl, 11
preexplorationAMH, 18
smc, 20

+Topic \textasciitildekwd2
adaptiveMH, 3
ConvertResults, 5
normalizeweight, 10
pawl, 11
preexplorationAMH, 18
smc, 20

*Topic classes
binning, 4
proposal, 19
smcparameters, 21
target, 22
tuningparameters, 23

xTopic datasets
IceFloe, 10
Pollution, 18

+Topic package
PAWL-package, 2

adaptiveMH, 3, 5-7, 9, 12-17, 19, 24

binning, 4,9,11, 12, 16
binning,ANY-method (binning), 4
binning-class (binning), 4
binning-method (binning), 4
binning-methods (binning), 4

ConvertResults, 5
createAdaptiveRandomWalkProposal, 6
createMixtureTarget, 7, 9
createTrimodalTarget, 8, 8

getFrequencies, 9

25

ggplot, 13-17

IceFloe, 10
icefloe (IceFloe), 10

normalizeweight, 10, 20

PAWL (PAWL-package), 2

pawl, 5-7,9, 10, 11, 12-17, 24
PAWL-package, 2
PlotAllvar, 12
PlotComplvsComp2, 13
PlotDensComplvsComp2, 14
PlotFH, 14

PlotHist, 15

PlotHistBin, 16
PlotLogTheta, 16
PlotNbins, 17

Pollution, 18

pollution (Pollution), 18
preexplorationAMH, 3, 18, 24
proposal, 3, 12, 18, 19
proposal,ANY-method (proposal), 19
proposal-class (proposal), 19

show,binning-method (binning), 4
show, proposal-method (proposal), 19
show, smcparameters-method
(smcparameters), 21
show, target-method (target), 22
show, tuningparameters-method
(tuningparameters), 23
smc, 11,20, 22
smcparameters, 20, 21, 21
smcparameters,ANY-method
(smcparameters), 21

smcparameters-class (smcparameters), 21

target, 3,9, 11, 18, 20, 22
target,ANY-method (target), 22
target-class (target), 22

26

tuningparameters, 3, 11,23

tuningparameters, ANY-method
(tuningparameters), 23

tuningparameters-class
(tuningparameters), 23

INDEX

	PAWL-package
	adaptiveMH
	binning
	ConvertResults
	createAdaptiveRandomWalkProposal
	createMixtureTarget
	createTrimodalTarget
	getFrequencies
	IceFloe
	normalizeweight
	pawl
	PlotAllVar
	PlotComp1vsComp2
	PlotDensComp1vsComp2
	PlotFH
	PlotHist
	PlotHistBin
	PlotLogTheta
	PlotNbins
	Pollution
	preexplorationAMH
	proposal
	smc
	smcparameters
	target
	tuningparameters
	Index

