Package 'PASSED'

July 21, 2020
Title Calculate Power and Sample Size for Two Sample Mean Tests
Version 1.0-3
Date 2020-07-21
Description Power calculations are a critical component of any research study to determine the minimum sample size necessary to detect differences between multiple groups. Here we present an 'R' package, 'PASSED', that performs power and sample size calculations for the test of two-sample means or ratios with data following beta, gamma (Chang et al. (2011), doi:10.1007/s00180-010-0209-1), normal, Poisson (Gu et al. (2008), doi:10.1002/bimj.200710403), binomial, geometric, and negative binomial (Zhu and Lakkis (2014), doi:10.1002/sim.5947) distributions.
Depends R (>=3.6)
License GPL (>=2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Imports betareg, stats, rootSolve
Suggests knitr, rmarkdown, MKmisc
NeedsCompilation no
Author Jinpu Li [aut, cre],
Ryan Knigge [aut],
Emily Leary [aut]
Maintainer Jinpu Li lijinp@health.missouri.edu
Repository CRAN
Date/Publication 2020-07-21 20:40:13 UTC

R topics documented:

power_Beta 2
power_Binomial 3
power_Gamma 4
power_Geometric 5
power_NegativeBinomial 6
power_Normal 8
power_Poisson 911Index
power_Beta Power Calculations for Test of Two Beta Means

Description

Compute the power for a test of two sample means with beta distributions, or determine the minimum sample size to obtain a target power.

Usage

power_Beta(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05, mu1 $=$ NULL, sd1 $=$ NULL, mu2 $=$ NULL, equal. sample $=$ TRUE, trials $=100$, equal. precision $=$ TRUE, sd2 $=$ NULL, link.type = c("logit", "probit", "cloglog", "cauchit", "log", "loglog"))

Arguments

n1 sample size in group 1, or sample size in each group if equal. sample $=$ TRUE
n2 sample size in group 2
power power of test (1 minus Type II error probability)
sig.level significance level (Type I error probability)
mu1 sample mean of group 1
sd1 standard deviation for group 1
mu2 sample mean of group 2
equal.sample equal sample sizes for two groups, see details
trials number of trials in simulation
equal.precision
equal dispersion parameter assumption in simulation
sd2 standard deviation for group 2. Only applicable when equal.precision $=$ FALSE
link.type type of link used in the beta regression, see details

Details

Exactly one of the parameters $\mathrm{n} 1, \mathrm{n} 2$ and power must be passed as NULL, and that parameter is determined from the others.

This function allows you to set the number of trials in the simulation to control the result accuracy, and type of link used in the beta regression. You can choose one of the following: "logit", "probit", "cloglog", "cauchit", "log", "loglog".

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with method and note elements.

Examples

\# calculate power
power_Beta(mu1 $=0.5$, mu2 $=0.80$, sd1 $=0.25, \mathrm{n} 1=60$)
\# calculate sample size for both groups
power_Beta(mu1 = 0.5, mu2 = 0.80, sd1 = 0.25, power=0.8)

```
power_Binomial Power Calculations for Two-Sample Test for Proportions
```


Description

Compute power of test, or determine parameters to obtain target power for equal and unequal sample sizes.

Usage

power_Binomial(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05, p1 $=0.5, \mathrm{p} 2=0.5$, equal.sample $=$ TRUE, alternative $=c(" t w o . s i d e d ", "$ one.sided" $)$)

Arguments

n1 sample size in group 1, or sample size in each group if equal.sample $=$ TRUE
n2 sample size in group 2
power power of test (1 minus Type II error probability)
sig.level significance level (Type I error probability)
p1 probability in group 1
p2 probability in group 2
equal.sample equal sample sizes for two groups, see details
alternative one- or two-sided test

Details

Exactly one of the parameters $\mathrm{n} 1, \mathrm{n} 2, \mathrm{p} 1, \mathrm{p} 2$, power, and sig.level must be passed as NULL, and that parameter is determined from the others. Notice that p1, p2, sig. level have non-NULL defaults, so NULL must be explicitly expressed if you want to compute them.

If equal. sample $=$ TRUE is used, N in output will denote the number in each group.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with note and method elements.

Examples

```
# calculate power, equal sizes
power_Binomial(n1 = 100, p1 = 0.5, p2 = 0.7)
# calculate power, unequal sizes
power_Binomial(n1 = 150, n2 = 100, p1 = 0.5, p2 = 0.7)
# calculate n2
power_Binomial(n1 = 100, p1 = 0.5, p2 = 0.7, power = 0.9, equal.sample = FALSE)
```

power_Gamma Power Calculations for Test of Two Gamma Means

Description

Compute the power for a test of two sample means with Gamma distributions, or determine parameters to obtain a target power.

Usage

power_Gamma(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05, mu1 $=$ NULL, mu2 $=$ NULL, gmu1 $=$ NULL, gmu2 = NULL, trials $=100, M=10000$, equal.sample $=$ TRUE, equal.shape $=$ NULL)

Arguments

n1
n2
power
sig.level
mu
mu2 arithmetic mean of group 2
gmu1 geometric mean of group 1
gmu2 geometric mean of group 2
trials number of trials in simulation
equal.sample
equal.shape

M number of simulations used in CAT method, see Chang (2011)
equal sample sizes for two groups, see details
sample size in group 1, or sample size in each group if equal.sample $=$ TRUE sample size in group 2
power of test (1 minus Type II error probability)
significance level (Type I error probability)
arithmetic mean of group 1
assume the shape parameters are equal for two groups, see details

Details

Exactly one of the parameters $\mathrm{n} 1, \mathrm{n} 2$, and power must be passed as NULL, and that parameter is determined from the others. Notice that sig. level has non-NULL defaults, so NULL must be explicitly passed if you want to compute it.

If equal. sample $=$ TRUE is used, N in output will denote the number in each group.
The equal shape parameter assumption will be tested automatically; otherwise it could be set manually with equal. shape.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with method element.

References

Chang et al. (2011). Testing the equality of several gamma means: a parametric bootstrap method with applications. Computational Statistics, 26:55-76.

Examples

\# Calculate power, equal sizes
power_Gamma($\mathrm{n} 1=50, \mathrm{mu} 1=1, \mathrm{mu} 2=1.5, \mathrm{gmu}=0.6, \mathrm{gmu} 2=0.6, \mathrm{M}=100)$

```
power_Geometric Power Calculation for Comparing Two Geometric Rates.
```


Description

Compute sample size or power for comparing two geometric rates.

Usage

power_Geometric(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
mu1 $=$ NULL, mu2 = NULL, duration $=1$, equal. sample $=$ TRUE,
alternative = c("two.sided", "one.sided"), approach = 3)

Arguments

n1
sample size in group 1, or sample size in each group if equal. sample $=$ TRUE
n2 sample size in group 2
power power of test (1 minus Type II error probability)
sig.level significance level (Type I error probability)
mu1 expected rate of events per time unit for group 1
mu2
expected rate of events per time unit for group 2

duration	(average) treatment duration
equal.sample	equal sample sizes for two groups, see details
alternative	one- or two-sided test
approach	1,2 , or 3; see Zhu and Lakkis (2014).

Details

Exactly one of the parameters $\mathrm{n} 1, \mathrm{n} 2$, and power must be passed as NULL, and that parameter is determined from the others.

If equal . sample $=$ TRUE is used, N in output will denote the number in each group.
Since the geometric distribution is a special case of negative binomial distribution, we used the algorithm for negative binomial distribution with setting theta $=1$. See power.nb.test for more details.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with note and method elements.

Examples

```
    # calculate power, equal sizes
    power_Geometric(n1 = 100, mu1 = 0.3, mu2 = 0.6)
    # calculate power, unequal sizes
    power_Geometric(n1 = 180, n2 = 140, mu1 = 0.3, mu2 = 0.5)
    # calculate n
    power_Geometric( mu1 = 0.3, mu2 = 0.4, power = 0.8)
```

```
power_NegativeBinomial
```

 Power Calculation for Comparing Two Negative Binomial Rates

Description

Compute sample size or power for comparing two negative binomial rates.

Usage

power_NegativeBinomial(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05, mu1 $=$ NULL, mu2 $=$ NULL, duration $=1$, theta $=$ NULL, equal. sample $=$ TRUE, alternative = c("two.sided", "one.sided"), approach = 3)

Arguments

n1
n2 sample size in group 2
power power of test (1 minus Type II error probability)
sig.level significance level (Type I error probability)
mu1 expected rate of events per time unit for group 1
mu2 expected rate of events per time unit for group 2
duration
theta
equal.sample
alternative
approach $\quad 1,2$, or 3; see Zhu and Lakkis (2014).

Details

Exactly one of the parameters $n 1, n 2$, and power must be passed as NULL, and that parameter is determined from the others.

If equal. sample $=$ TRUE is used, N in output will denote the number in each group.

The computations are based on the formulas given in Zhu and Lakkis (2014). See power.nb.test for more details.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with note and method elements.

References

H. Zhu and H. Lakkis (2014). Sample size calculation for comparing two negative binomial rates. Statistics in Medicine, 33:376-387.

Examples

```
# calculate power, equal sizes
power_NegativeBinomial(n1 = 20, mu1 = 1, mu2 = 2, theta = 0.8)
# calculate power, unequal sizes
power_NegativeBinomial(n1 = 80, n2 = 40, mu1 = 1, mu2 = 2, theta = 0.8)
# calculate n
power_NegativeBinomial( mu1 = 1, mu2 = 2, theta = 0.8, power = 0.8)
```


Description

Compute power of t test, or determine parameters to obtain target power.

Usage

```
power_Normal(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
delta = NULL, sd1 = 1, sd2 = 1, equal.sample = TRUE,
alternative = c("two.sided", "one.sided"),
type = c("two.sample", "one.sample", "paired"),
df.method = c("welch", "classical"), strict = FALSE)
```


Arguments

n1 sample size in group 1, or sample size in each group if equal.sample $=$ TRUE
n2 sample size in group 2
power power of test (1 minus Type II error probability)
sig.level significance level (Type I error probability)
delta true difference in means
sd1 standard deviation for group 1
sd2 standard deviation for group 2
equal.sample equal sample sizes for two groups, see details
alternative one- or two-sided test
type Type of t test
df.method Method for calculating the degrees of default. Possibilities are welch (the default) or classical.
strict Use strict interpretation in two-sided case

Details

Exactly one of the parameters $\mathrm{n} 1, \mathrm{n} 2$, delta, sd1, sd2, power, and sig. level must be passed as NULL, and that parameter is determined from the others. Notice that sd1, sd2, sig. level have non-NULL defaults, so NULL must be explicitly expressed if you want to compute them.

If equal . sample $=$ TRUE is used, N in output will denote the number in each group.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with note and method elements.

Note

'uniroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.

Examples

\# Calculate power, equal sizes
power_Normal(n1 = 150, delta = 5, sd1 = 20, sd2 = 10)
\# Calculate power, unequal sizes
power_Normal(n1 = 150, delta $=5$, $\mathrm{n} 2=120$, sd1 = 10)
\# Calculate n 1 , equal sizes
power_Normal(delta $=5$, power $=0.9$, sd1 = 10, sd2 = 12)
power_Poisson Power Calculations for Test of Two Poisson Ratios

Description

Compute the power for a test of two sample means with Poisson distributions, or determine parameters to obtain a target power.

Usage

power_Poisson(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05, lambda1 = NULL, lambda2 = NULL, t1 = 1, t2 = 1, RR0 = 1, equal.sample = TRUE, alternative = c("two.sided", "one.sided"))

Arguments

n1
n2
power power of test (1 minus Type II error probability)
sig.level significance level (Type I error probability)
lambda1 Poisson rate for group 1
lambda2 Poisson rate for group 2
t1 observed time period for group 1
t2 observed time period for group 2
RR0 the ratio of lambda2 and lambda1 under null hypothesis
equal.sample
equal sample sizes for two groups, see details
alternative one- or two-sided test

Details

Exactly one of the parameters n1, n2, lambda1, lambda2, power, and sig. level must be passed as NULL, and that parameter is determined from the others. Notice that sig.level has non-NULL defaults, so NULL must be explicitly passed if you want to compute them.

If equal. sample $=$ TRUE is used, n 2 would be ignored and N in output denotes the number in each group.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with method element.

Note

'uniroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.

References

Gu et al. (2008). Testing the ratio of two poisson rates. Biometrical Journal: Journal of Mathematical Methods in Biosciences. 50:283-298.

Examples

```
# Calculate power, equal sizes
power_Poisson(lambda1 = 0.0005, lambda2 = 0.003, n1 = 2000, t1 = 2, t2 = 2)
# Calculate sample size, equal sizes
power_Poisson(lambda1 = 0.0005, lambda2 = 0.003, power = 0.8, t1 = 2, t2 = 2)
# Calculate sample size for group 2, unequal sizes
power_Poisson(n1 = 2000, lambda1 = 0.0005, lambda2 = 0.003, power = 0.8,
t1 = 2, t2 = 2, equal.sample = FALSE)
```


Index

```
power.nb.test, 6,7
power_Beta,2
power_Binomial,3
power_Gamma,4
power_Geometric,5
power_NegativeBinomial,6
power_Normal, 8
power_Poisson,9
rnegbin, }
```

