The OptInterim Package

Bo Huang and Neal Thomas Pfizer Inc.

December 2, 2012

Contents

1	Inti	roduction	2
2	Ger	nerate the Optimal Designs	5
	2.1	Optimal Design Functions	5
	2.2	Example 1: Single-Arm Two-Stage Design without Interim	
		Pause	6
	2.3	Example 2: Single-Arm Two-Stage Design with Interim Pause	16
	2.4	Example 3: Two-Arm Three-Stage Design with Interim Pause	19
3	Tes	t Statistics and Decision Rules at Each Stage	23
4	Sim	ulation Studies	24
	4.1	Example 1: Optimal Settings	24
	4.2	Example 2: Differed Accrual Rates	25
	4.3	Example 3: Differed Interim Timing	26
5	Sur	vival Curves Based on the Weibull Distribution	27

Bibliography

1 Introduction

Phase II oncology trials of cytotoxic compounds measured effect by tumor shrinkage using single-group designs that compared the proportion of responders to well-established historical response rates. With many new drugs targeting molecular pathways or the immune system, such as vaccines and immunotherapies, it may not be appropriate to use tumor shrinkage to evaluate activity. Instead, decision criteria are based on overall survival or imaging endpoints such as progression-free survival (PFS) that require longer followup, as treatment differences may be delayed and poorly described by models based on the proportional hazards assumption (Hoose et al., 2010). These endpoints tend to vary more across trials than the consistently low tumor response rates observed in past trials, so two-stage designs with randomized concurrent comparisons may be needed. Ratain and Sargent (2009) argue the most promising endpoints for randomized phase II trials involve a comparison of a primary outcome measure at a single time point between the treatment and control groups. Such endpoints facilitate independent radiologic review, may reduce subtle differences in scanning frequencies, simplify patient scheduling, and can be chosen to represent clinically meaningful time points. Recent EMA draft guidelines on the evaluation of anti-cancer medicinal products (EMA, 2011), state that for some conditions, progression will be observed at a slow rate making frequent assessments a burden to the patients, so event rates at a specified fixed time might be appropriate. Similar design considerations also apply in other therapuetic areas, such as the rate of transplant rejection, which is typically reported after 6 months of treatment following organ transplantation, in studies of immune-suppression drug (French, Thomas and Wang, 2012).

 $\mathbf{29}$

Phase II trials are often designed with an interim analysis so they can be stopped early if a drug is ineffective. However, when the primary endpoint requires a longer observation period, interim analyses are challenging because of incomplete follow-up for some patients at the time of the interim analysis. Standard single-arm designs such as Simon (1989) require suspension of accrual while patient follow-up is completed. Case and Morgan (2003) presented a two-stage design for a phase II oncology trial with a long-term endpoint that does not suspend accrual while the interim analysis is conducted. They proposed to use the Kaplan-Meier or Nelson-Aalen estimators of the event probability, using methods like those in Lin et al (1996). Estimation at the time of the interim analysis includes patients with partial follow-up without necessitating trial suspension, as also proposed by Jennison and Turnbull (2000). The design minimizes either the expected sample size, expected duration of accrual, or the expected total study length under the hypothesis that the drug is ineffective. The null hypothesis for the new design is an (assumed) known event-free rate within a specified time, which has been judged to represent ineffective treatment. This is similar to the hypothesis in the Simon design, but with much longer specified times for events to occur. Schaid, Wieand, and Therneau (1990) proposed a similar design using the log rank statistic, which also incorporates patients with incomplete follow-up; the log rank statistic is not evaluated here, but could be inlcuded as a future software option.

We generalize the Simon design and Case and Morgan's extension and propose an optimal interim design with long-term time specific endpoints, which can do both single-arm and randomized two-arm comparative trials, with one interim (two-stage) or two interim (three-stage) analyses. Because designs with no pause in accrual use partial information from some patients at the interim analysis, they require more patients, so time-savings from the elimination of the accrual pause can be lost due to the need to accrue more patients. Methods are developed here for compromise designs that specify a brief pause (e.g., 2-3 months) to accumulate more information per patient and permit concentrated data collection and cleaning for the interim analysis.

Both Lin et al (1996) and Case and Morgan (2003) assume a constant accrual rate throughout the trial, which is not typical in practice. We further investigate the design properties by generalizing the accrual distribution to have different accrual rates in user-specified intervals. As noted in Case and Morgan (2003), when only partial follow-up data are available, the level of the testing procedure can depend on the assumed accrual distribution and the assumed time-to-event distribution under the null hypothesis. We evaluate an optimal design and corresponding analysis that ensure the Type I error rate is below the target level. The reduction in power or corresponding increase in sample size necessary to achieve the conservative type I error rates is also evaluated.

The theoretical derivations of the optimal designs specify a fixed time to end the first stage of accrual and to conduct the interim analysis, with corresponding projected sample size. Case and Morgan (2003) also evaluated a modified interim timing rule that ends the first stage when the projected number of patients has been accrued regardless of the planned interim time. They showed this rule has more robust statistical properties when the accrual rate is mis-specified. We also evaluate this interim timing rule and an additional rule based on the projected patient exposure at the optimal interim time. This rule not only accounts for the number of patients actually accrued, but also the length of time patients have been observed. All of the interim timing rules can be easily applied in practice.

This R package *OptInterim* was created to generate the optimal designs and resulting analyses. The package includes code to perform simulations to validate the theoretical calculations, some of which depend on asymptotic approximations. The package also has several options for evaluating a proposed design under conditions that differ from those assumed when the design was created. All these will be elaborated with examples in the subsequent sections.

2 Generate the Optimal Designs

2.1 Optimal Design Functions

```
OptimDes(B.init,m.init,alpha,beta,param,x,target=c("EDA","ETSL","ES"),
    sf=c("futility","OF","Pocock"),num.arm,r=0.5,num.stage=2,
    pause=0,control=OptimDesControl(),...)
```

OptimDes finds an optimal single-arm or two-arm design with either two stages or three stages for a time-specific event-free endpoint (e.g. 1-year OS in oncology) with potential stopping for futility, or it may be stopped for a positive efficacy outcome depending on a pre-specified alpha spending function (argument SF) at the interim(s). The design minimizes either the expected duration of accrual (EDA), expected sample size (ES), or the expected total study length (ETSL).

The design calculations assume Weibull distributions for the event-free endpoint in the treated group, and for the (assumed known, "Null") control distribution. The function *weibPmatch* (see Section 5) can be used to select Weibull parameters that yield a target event-free rate at a specified time. Estimation is based on the Kaplan-Meier or Nelson-Aalen estimators evaluated at a target time (e.g., 1 year). The treatment and control distributions and the accrual distribution affect power (and alpha level in some settings), see Huang, Talukder and Thomas (2010).

Accrual rates are specified by the user. These rates can differ across time intervals specified by the user (this generalizes the results in Case and Morgan). The accrual information is controlled by arguments B.init and m.init.

The design has the capability of allowing for a brief pause (e.g., 2-3 months) to accumulate more information per patient and permit concentrated data collection and cleaning for the interim analysis.

OptimDes assume no recovery the amount of α potentially saved at the interim analysis (analogous to non-binding in group sequential designs) to ensure control of the type I error rate.

Note: Details of *OptInterim* and all subsequent package functions can be found on the help pages.

2.2 Example 1: Single-Arm Two-Stage Design without Interim Pause

Assume the 1-year survival rate of a standard cancer therapy is 0.40 (H_0) . An improvement to 0.60 would be considered clinically significant (H_1) . Assume the survival distributions have different shapes and scales under null and the alternative, determined by the weibull parameters (1, 1.09) under H_0 and (2, 1.40) under H_1 . Type I error is 0.05. Type II error is 0.1. It is also assumed that the numbers of patients that can be enrolled in the first 5 years are 15, 20, 25, 20 and 15 respectively.

> B.init <- c(1, 2, 3, 4, 5) > m.init <- c(15, 20, 25, 20, 15) > alpha <- 0.05 > beta <- 0.1 > param <- c(1, 1.09, 2, 1.40)
> x <- 1
>
> # H0: S0=0.40 H1: S1=0.60

The optimal design *object12* minimizing the expected total study length (ETSL) after implementing *OptimDes* can then be obtained.

```
> object12 <- OptimDes(B.init,m.init,alpha,beta,param,x,
+ target="ETSL",sf="futility",num.arm=1,num.stage=2,
+ control=OptimDesControl(n.int=c(1,5)),pause=0)
```

```
> print(object12)
```

Optimal Design Results

One-Arm Two-Stage Study

Interim stopping rule: Futility only

Pause in accrual before interim analyses: 0

HO: SO=S1= 0.4 H1: S1= 0.6

Type I error(1-sided upper): 0.05 type II error: 0.1 Event-free endpoint time: 1

	target: ETSL	
EDA	ETSL	ES
2.897	3.222	56.196

Sample Size at Each Stage n1 nmax 48 75

	Each Stage	Study time at
MTSL	MDA	t1
4.750	3.750	2.484

Projected patient exposure at interim analysis: 35.94

Proportion of the total information at the interim analysis: Under Null Under Alternative 0.433 0.402

Hypothesis	Test	Boundaries	
C1L		C1U	C2U
0.452		Inf	1.645

Approximate Rates Corresponding to Test Boundaries*

Event-free rate for C1L: 0.443 Event-free rate for C2U: 0.499

Probability of stopping at an interim analysis Under the Null: 0.674 Under the Alternative: 0.059

Single-stage Design	(Exact binomial calculation)	
Single stage N	DA	SL
56.00	2.84	3.84

Single-stage Design	(Asymptotic normal	calculation)
Single stage N	DA	SL
64.0	3.2	4.2

*Note: Rates corresponding to test boundaries are a function of the non-parametric SE computed at the time of the analyses. The approximate rates are based on the asymptotic SE computed under the null and alternative hypotheses.

For single-group trials, normal approximation often produces a larger sample size than the exact test. The *OptimDes* function has the capability to apply the adjustment by Case and Morgan (2003), which is important due to the conservative nature of normal approximation in small single-group studies.

> print(object12,CMadj=TRUE)

Optimal Design Results

```
One-Arm Two-Stage Study
```

Interim stopping rule: Futility only

Pause in accrual before interim analyses: 0

HO: SO=S1= 0.4	H1: S1= 0.6		
Type I error(1- Event-free endp	sided upper): oint time: 1	0.05 type I	I error: 0.1
t	arget: ETSL		
EDA	ETSL	ES	
2.535	2.860	49.696	
Sample Si	ze at Each Sta	age	
n1	nmax		
42	66		
Study tim	e at Each Stag	ge	
t1	1	MDA	MTSL
2.174	3.2	281	4.281
Projected patie	nt exposure a	t interim an	alysis: 30.48
Proportion of t	he total info	rmation at t	he interim analysis:
Under Nu	11 Under	Alternative	
0.4	.33	0.402	
Hypothesi	s Test Boundar	ries	
C1L		C1U	C2U
0.452		Inf	1.645

```
Approximate Rates Corresponding to Test Boundaries*
      Event-free rate for C1L: 0.446
      Event-free rate for C2U: 0.506
Probability of stopping at an interim analysis
     Under the Null: 0.674
     Under the Alternative: 0.059
Single-stage Design (Exact binomial calculation)
  Single stage N
                                   DA
                                                         SL
           56.00
                                 2.84
                                                       3.84
Single-stage Design (Asymptotic normal calculation)
  Single stage N
                                   DA
                                                         SL
                                  3.2
                                                        4.2
            64.0
```

*Note: Rates corresponding to test boundaries are a function of the non-parametric SE computed at the time of the analyses. The approximate rates are based on the asymptotic SE computed under the null and alternative hypotheses.

Note: All sample sizes and times are adjusted by the exact binomial correction factor: 56/64

A plot function *plot.OptimDes* is used to display the ETSL, ES and EDA for a two-stage design relative to a single-stage design as a function of the combined stage 1 and 2 sample size. It demonstrates the tradeoff between ETSL, EDA and ES as a function of the combined sample size. Robustness of the optimal two-stage design to deviations from the target sample size can be explored. The plot often suggests a compromised design achieving nearoptimal results for both EDA and ETSL be a favorable design to the optimal one based on a single criteria. Test boundary values (C_1, C_2), and numerical values of other design parameters, can be obtained for a design selected from the plot using function *np.OptimDes*. Thus, *np.OptimDes* generates the optimal design when the total sample size is fixed.

Using the above case as an example with the optimal plot Figure 1. The optimal design is displayed as the sold circle on the plot. If investigators believe a compromised design with maximum study length ratio = 1.1 (pt = 1.1 in *np.OptimDes*) will save some patients while still producing near-optimal results, pt = 1.1 can be input into *np.OptimDes* and the adjusted "optimal" design can be created

```
> object12_np <- np.OptimDes(B.init,m.init,alpha,beta,param,x,pn=1.1,
+ target="ETSL",sf="futility",num.arm=1,num.stage=2,
```

```
+ control=OptimDesControl(n.int=c(1,5)))
```

```
> print(object12_np)
```

Optimal Design Results

```
One-Arm Two-Stage Study
```

Interim stopping rule: Futility only

Figure 1: The optimality criteria displayed for a range of maximum sample sizes. The criteria and the maximum sample sizes are expressed as ratios relative to the corresponding value in a single-stage fixed design.

Pause in accru	al before inte	rim analyses	: 0	
HO: SO=S1= 0.4	H1: S1= 0.6			
Type I error(1	-sided upper):	0.05 type I	I error: 0	.1
Lvent liee end	point time. I			
	target: ETSL			
EDA	ETSL	ES		
2.881	3.237	56.038		
Sample S	izo ot Eoch St	2.60		
n1	nmax	age		
48	71			
Study ti	me at Each Sta	ge		
t1		MDA	MTSL	
2.51	3	. 55	4.55	
Projected pati	ent exposure a	t interim an	alysis: 30	6.04
Proportion of	the total info	rmation at t	he interim	analysis:
Under N	ull Under	Alternative		
0.	466	0.432		
Hypothes	is Test Bounda	ries		
C1L		C1U	C2	2U
0.368		Inf	1.64	15

```
Approximate Rates Corresponding to Test Boundaries*
      Event-free rate for C1L: 0.434
      Event-free rate for C2U: 0.502
Probability of stopping at an interim analysis
    Under the Null: 0.644
     Under the Alternative: 0.048
Single-stage Design (Exact binomial calculation)
 Single stage N
                                   DA
                                                        SL
           56.00
                                 2.84
                                                      3.84
Single-stage Design (Asymptotic normal calculation)
                                                        SL
 Single stage N
                                   DA
                                                       4.2
            64.0
                                  3.2
```

*Note: Rates corresponding to test boundaries are a function of the non-parametric SE computed at the time of the analyses. The approximate rates are based on the asymptotic SE computed under the null and alternative hypotheses.

2.3 Example 2: Single-Arm Two-Stage Design with Interim Pause

Assume the 6-month progression-free survival (PFS) rate of a standard cancer therapy is 0.45 (H_0). An improvement to 0.60 would be considered clinically significant (H_1). Assume both the null and alternative PFS distributions follow an exponential distribution. The 1-sided type I error rate is 0.10 and type II error rate is 0.2. Prior assumption includes a fixed enrollment rate of 3 patients per month. We require a pause of 3 months at the end of Stage 1.

```
> B.init <- 1:72
> m.init <- rep(3,72)
> alpha <- 0.10
> beta <- 0.2
> x <- 6
> pnull<-.45
> palt<-.6
> param <- c(1, weibPmatch(x,pnull,shape=1),
+ 1, weibPmatch(x,palt,shape=1))
> # p0=.45, p1=.6 at x=1
>
```

The optimal design *object12P3* minimizing the expected total study length (ETSL) after implementing *OptimDes* can then be obtained.

```
> object12P3 <- OptimDes(B.init,m.init,alpha,beta,param,x,
+ target="ETSL",sf="futility",num.arm=1,num.stage=2,
+ control=OptimDesControl(n.int=c(1,5)),pause=3)
```

```
> print(object12P3)
```

Optimal Design Results

```
One-Arm Two-Stage Study
```

```
Interim stopping rule: Futility only
```

Pause in accrual before interim analyses: 3

HO: SO=S1= 0.45 H1: S1= 0.6

```
Type I error(1-sided upper): 0.1 type II error: 0.2
Event-free endpoint time: 6
```

	target: ETSL	
EDA	ETSL	ES
16.762	20.781	47.230

Stage	Each	at	Size	Sample
	nmax			n1
	71			36

_ . .

	Each Stage	Study time at
MTSL	MDA	t1
32.667	26.667	11.668

Projected patient exposure at interim analysis: 202.12

Proportion of the total information at the interim analysis: Under Null Under Alternative 0.448 0.451

Hypothesis Test	Boundaries	
C1L	C1U	C2U
0.413	Inf	1.282

Approximate Rates Corresponding to Test Boundaries*

Event-free rate for C1L: 0.489 Event-free rate for C2U: 0.529

Probability of stopping at an interim analysis Under the Null: 0.66 Under the Alternative: 0.121

Single-stage Design	(Exact binomial calculation)	
Single stage N	DA	SL
53.000	17.667	23.667

Single-stage Design	(Asymptotic normal	calculation)
Single stage N	DA	SL
58.000	19.333	25.333

*Note: Rates corresponding to test boundaries are a function

of the non-parametric SE computed at the time of the analyses. The approximate rates are based on the asymptotic SE computed under the null and alternative hypotheses.

*Note: Interim analysis time(s) are at the beginning of the accrual pause. Information/exposure are computed at the end of the pause.

2.4 Example 3: Two-Arm Three-Stage Design with Interim Pause

Because there may not be reliable information about the control rate, and there is potential for bias due to patient and investigator expectations, a design with a randomized and possibly blinded control group may be necessary. Under the same clinical background as Example 1, we consider a randomized two-arm comparative design. This requires much larger sample sizes, so we assume the enrollment rate at each of the 5 pre-specified time intervals 4 times that in the single-arm design counterpart. The survival distributions are also different. The null 1-year survival rate is 0.20 versus the alternative rate of 0.35. Because of the larger sample size, the trial is planned with two interim analyses for both futility and efficacy stopping (O'Brien-Fleming type alpha-spending function). We require a pause of 0.3 year at both interim analyses.

> B.init <- c(1, 2, 3, 4, 5)
> m.init <- 4*c(15, 20, 25, 20, 15)
> alpha <- 0.05
> beta <- 0.1
> x<-1
> #p0=.2, p1=.35 at x=1

> param <- c(1.5, 0.7281438, 1.75, 0.9725991)
>

The optimal design object23P3 minimizing the expected sample size (ES) after implementing *OptimDes* can then be obtained.

```
> object23P3 <- OptimDes(B.init,m.init,alpha,beta,param,x,</pre>
```

```
+ target="ES",sf="OF",num.arm=2,num.stage=3,
```

```
+ control=OptimDesControl(aboveMin=c(1.05,1.10)), pause=0.3)
```

```
> print(object23P3)
```

Optimal Design Results

Two-Arm Three-Stage Study: 1 : 1 randomization

Interim stopping rule: Futility plus Obrien-Fleming boundary

Pause in accrual before interim analyses: 0.3

HO: SO=S1= 0.2 H1: S1= 0.35

Type I error(1-sided upper): 0.05 type II error: 0.1 Event-free endpoint time: 1

target:	ES
---------	----

ES	ETSL	EDA
220.202	3.638	3.165

Sample	Size	at	Each	Stage	
n1			n2		nmax

Th	e OptInterim Pac	ckage		
133	231	373		
Study time at	Each Stage			
t1	±2		MDA	MTSL
1.909	3.202	5	5.483	6.483
Projected patient ex	posure at inte	rim analysi	.s: 113.36 206.	42
Proportion of the to	tal informatio	n at the in	torim analysis.	
Under Null St	age 1	Under Nu	ull Stage 2	
	0.258		0.498	
Under Alternative St	age 1 Unde	r Alternati	ve Stage 2	
	0.259		0.499	
Hypothesis Tea	st Boundaries			
C1L	C10		C2L	C2U
-0.088	3.686		0.570	2.547
C30				
1.662				
Approximate Rates Co	prresponding to	Test Bound	laries*	
Difference in	Event-free rat	e for C1L:	-0.007	
Difference in	Event-free rat	e for C1U:	0.334	
Difference in	Event-free rat	e for C2L:	0.035	
Difforence in	Euont-fron rot	o for COU.	0 165	
DITIGICA III	PAGHO TIGG TUP	6 IUI UZU.	0.100	

Difference in Event-free rate for C3U: 0.074

Probability of stopping at an interim analysis Under the Null: 0.753 Under the Alternative: 0.467

Single-stage Design	(Fisher exact calculation)	
Single stage N	DA	SL
324.000	4.067	5.067

	calculation)	normal	(Asymptotic	Design	ingle-stage	Si
SL		DA		ge N	Single stag	
4.787		3.788		.000	303	

*Note: Rates corresponding to test boundaries are a function of the non-parametric SE computed at the time of the analyses. The approximate rates are based on the asymptotic SE computed under the null and alternative hypotheses.

*Note: Interim analysis time(s) are at the beginning of the accrual pause. Information/exposure are computed at the end of the pause.

3 Test Statistics and Decision Rules at Each Stage

```
TestStage(tan,tstage,x,num.arm,num.stage,
    Y1,T1,Y0=NULL,T0=NULL,p0=NULL,
    C1L=NULL,C1U=NULL,C2L=NULL,C2U=NULL,C3U=NULL,
    printTest=TRUE,
    cen1=rep(1,length(T1)), cen0=rep(1,length(T0)))
```

The test statistic at the end of each stage is computed and compared to the decision boundaries.

For example, the following decision rules are applied in a two-stage design with early futility stopping only:

- Stage 1: Accrue n_1 patients between time 0 and time t_1 . Each patient is followed until they have an event or successfully reach time x, or until study time t_1 , whichever is first. Calculate the normalized Z-statistic by *Test2stage*, and denote it by $Z_1(x;t_1)$. If $Z_1(x;t_1) < C_1$, stop the study for futility; otherwise, continue to the next stage. The probability of stopping under the null hypothesis is approximated by $P_s = \Phi(C_1)$, where Φ is the standard normal cummulative distribution function. n_1 is a random variable determined by t_1 and the accrual distribution.
- Stage 2: Accrue n_2 additional patients between times t_1 and maximum duration of accrual (MDA). Follow all patients (both stages) until they have an event or successfully reach time x, then calculate a second Zstatistic at the end of maximum total study length (MTSL), denoted by $Z_2(x; MTSL)$, and reject H_0 if $Z_2(x; MTSL) > C_2$.

For example, if at the end of Stage 1, the test statistic $Z_1 = 3.391$, $C_1 = 0.085$. Then *Test2stage* will return

Z1 >= C1, continue to the second stage

4 Simulation Studies

SimDes(

```
object,B.init,m.init,weib0,weib1,interimRule='e1',
sim.n=1000,e1conv=1/365,CMadj=F,attainI=1,attainT=1,
FixDes="F", Rseed)
```

The *SimDes* function is a powerful function to simulate experiments to compare the true alpha level and power of two-stage or three-stage designs from function *OptimDes* with the targeted nominal values. It can also be used to assess the performance of the optimal design under mis-specification of the design parameters. For example, if the Weibull shape and scale parameters of the time to event distributions are changed, if the accrual rates deviate from the projected ones, or if the interim analysis is conducted differently from the planned one under the more realistic conditions. In addition, the function has the option to determine the timing of the interim analysis by matching the observed information to the expected time, number of patients or patient exposure (interimRule=""t1", "n1" or "e1").

4.1 Example 1: Optimal Settings

Recall that in Section 2.2 *object12* is the optimal design minimizing the ETSL. Under the expected parameter settings, 10000 simulations are conducted by matching the expected patient exposure at the interim

```
> (simout12<-SimDes(object12,sim.n=10000))</pre>
```

 alphaExact
 alphaNorm
 powerExact
 powerNorm
 eda
 etsl

 0.03440000
 0.03440000
 0.93590000
 0.93590000
 2.91227019
 3.29306377

The OptInterim Package

n2	n1	esAlt	etslAlt	edaAlt	es
NA	48.31550000	74.14560000	4.62994369	3.66122303	57.85340000
pinfoNull2	pinfoNull	aveE2	aveE	t2	t1
NA	0.43756862	NA	35.94124315	NA	2.51272885
difIntSupL	difIntFutH	difIntSupH	difIntFutL	pinfoAlt2	pinfoAlt
Inf	0.04402351	0.54862609	0.03624613	NA	0.39513649
pstopEAlt	pstopENull	pstopAlt	pstopNull	difFinFutH	difFinSupL
0.0000000	0.0000000	0.03240000	0.64320000	0.09715575	0.11040030

Details of the returned values can be found from the help pages. For instance, the estimated alpha level using an exact test for the second stage test is 0.0344.

With the Case and Morgan adjustment, the simulation results are different:

```
> (simout12adj<-SimDes(object12,sim.n=10000,CMadj=TRUE))</pre>
```

etsl	eda	powerNorm	powerExact	alphaNorm	alphaExact
2.99035420	2.59910061	0.90810000	0.90810000	0.03620000	0.03620000
n2	n1	esAlt	etslAlt	edaAlt	es
NA	42.09710000	64.89240000	4.15796241	3.20259157	50.86200000
pinfoNull2	pinfoNull	aveE2	aveE	t2	t1
NA	0.41563451	NA	30.47836723	NA	2.25961887
difIntSupL	difIntFutH	difIntSupH	difIntFutL	pinfoAlt2	pinfoAlt
Inf	0.04826665	0.54313651	0.03879866	NA	0.36920727
pstopEAlt	pstopENull	pstopAlt	pstopNull	difFinFutH	difFinSupL
0.0000000	0.00000000	0.04650000	0.63350000	0.10422928	0.11926619

4.2 Example 2: Differed Accrual Rates

Now suppose the actual numbers of patients that can be accrued in the first 5 years are different from the originally planned for the optimal design (m.init

below), then the results after 10000 simulated trials become

5)))	, 25, 25, 25	init = c(5, 5	n.n=10000,m.i	(object12,sin	2 <- SimDes	> (simout12_
	etsl	eda	powerNorm	powerExact	alphaNorm	alphaExact
	4.27519689	3.88687794	0.93860000	0.93860000	0.03630000	0.03630000
	n2	n1	esAlt	etslAlt	edaAlt	es
	NA	48.94300000	74.13090000	5.49332978	4.52550112	58.43070000
	pinfoNull2	pinfoNull	aveE2	aveE	t2	t1
	NA	0.43100668	NA	35.94104744	NA	3.53923421
	difIntSupL	difIntFutH	difIntSupH	difIntFutL	pinfoAlt2	pinfoAlt
	Inf	0.04472567	0.49299710	0.03559947	NA	0.38600320
	pstopEAlt	pstopENull	pstopAlt	pstopNull	difFinFutH	difFinSupL
	0.0000000	0.00000000	0.03340000	0.63580000	0.09715575	0.11040030

4.3 Example 3: Differed Interim Timing

If the actual interim time or sample size (depending on interimRule, interimRule="t1" below) is different from the originally planned for the optimal design (*at-tainI*=0.8 below), then the results after 10000 simulated trials become

```
> (simout12_3 <- SimDes(object12,sim.n=10000,interimRule = "t1",attainI = 0.8))</pre>
```

alphaExact	alphaNorm	powerExact	powerNorm	eda	etsl
0.02870000	0.02870000	0.89840000	0.89840000	2.59510440	2.99881349
es	edaAlt	etslAlt	esAlt	n1	n2
49.77730000	3.56572854	4.49269163	71.85510000	34.74190000	NA
t1	t2	aveE	aveE2	pinfoNull	pinfoNull2
1.98758296	NA	24.73300162	NA	0.28181398	NA
pinfoAlt	pinfoAlt2	difIntFutL	difIntSupH	difIntFutH	difIntSupL
0.24286220	NA	0.03749681	0.56656092	0.06363181	Inf
difFinSupL	difFinFutH	pstopNull	pstopAlt	pstopENull	pstopEAlt
0.11040030	0.09715575	0.62720000	0.07670000	0.00000000	0.00000000

5 Survival Curves Based on the Weibull Distribution

weibPmatch(x, p0, shape, scale)

```
weibull.plot(param, x, l.type = 1:3, l.col = c("blue", "red"), ...)
```

weibPmatch and weibull.plot are used together to determine the shape and scale parameters of the Weibull distribution for the survival curves under H_0 and H_1 . The Weibull distribution is flexible enough to cover the majority of scenarios likely to encounter in practice.

weibPmatch determines the shape or scale parameter of a Weibull distribution so it has event-free rate P_0 at time x. If the shape is specified, the scale parameter is computed, and if the scale is specified, the shape parameter is computed.

weibull.plot then plots Weibull survival curves with differences at a target time highlighted from the parameters computed from *weibPmatch*. Figure 2 is an example plot implementing the Weibull parameters input to *OptimDes* to create *object12*.

Survival curves under the Weibull distribution

Figure 2: Survival curves under the Weibull distribution

References

- Hoos A, Eggermont A, Janetzki S, Hodi FS, Ibrahim R, Anderson A, Humphrey R, Blumenstein B, Old L, Wolchok J. NA
- [2] Ratain MJ, Sargent DJ. Optimising the design of phase II oncology trials: The importance of randomization. *European Journal of Cancer* 2009; 45: 275-280.
- [3] European Medicines Agency. Guideline on the evaluation of anticancer medicinal products in man. EMA/CHMP/205/95/rev.4, 2011.
- [4] French, J., Thomas, N., and Wang, C. (2012), Using historical data with Bayesian methods in early clinical monitoring, *Statistics in Biopharmaceutical Research* 2012; 4:, 384-394.
- [5] Agresti, A. (2002). Categorical Data Analysis. Weiley
- [6] Brent, R. (1973). Algorithms for minimization without derivatives. Englewood Cliffs, Prentice Hall
- [7] Case L.D. and Morgan, T.M. (2003). Design of phase II cancer trials evaluating survival probabilities. *BMC Medical Research Methodology* **3**: 6
- [8] Food and Drug Administration (2006). Guidance for Clinical Trial Sponsors: Establishment and operation of clinical trial data monitoring committees. OMB Control No. 0910-0581
- [9] Jonker DJ et al. (2007). Abstract No. LB-1, American Association for Cancer Research
- [10] Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of American Statistical Association. 53: 457-481

- [11] Lin, D.Y., Shen, L., Ying, Z. and Breslow, N.E. (1996). Group sequential designs for monitoring survival probabilities. *Biometrics*. 52: 1033-1042
- [12] Huang B, Talukder E, Thomas N. Optimal two-stage phase II designs with long-term endpoints. *Statistics in Biopharmaceutical Research* 2010; 2(1): 51-61.
- [13] Machin, D., Campbell, M., Tan, S.B. and Tan, S.H. (2008). Sample Size Tables for Clinical Studies. *Blackwell*
- [14] Nelson, W. (1969). Hazard plotting for incomplete failure data. J Quality Technology. 1: 27-52
- [15] Rao S, Cunningham D, de Gramont A, et al (2004). Phase III doubleblind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. 22(19): 3950-3957
- [16] Schaid, D., Wieand, S., and Therneau, T. (1990). Optimal two-stage screening designs for survival comparisons. *Biometrika*. 77: 507-513
- [17] Simon, R. (1989). Optimal two-stage designs for phase II clinical trials. Controlled Clinical Trials. 10: 1-10
- [18] Van Cutsem E, Peeters M, et.al. (2007). Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. *Journal of Clinical Oncology.* 1;25(13):1658-1664.