
Package ‘OneArmPhaseTwoStudy’
November 13, 2017

Type Package

Title Planning, Conducting, and Analysing Single-Arm Phase II Studies

Version 1.0.3

Date 2017-11-13

Author Marius Wirths

Maintainer Johannes Krisam <krisam@imbi.uni-heidelberg.de>

Description Purpose of this package is it to plan, monitor and evaluate
oncological phase II studies. In general this kind of studies are single-arm
trials with planned interim analysis and binary endpoint. To meet the resulting
requirements, the package provides functions to calculate and evaluate 'Simon's
two-stage designs' and 'so-called' 'subset designs'. If you are unfamiliar with
this package a good starting point is to take a closer look at the functions
getSolutions() and getSolutionsSub1().The web-based tool (<https://imbi.shinyapps.io/phaseII-
app/>)
extends the functionality of our R package by means of a proper dealing with over-
and underrunning.
The R function binom.test of the 'stats' R package and the package 'binom' might be
helpful to assess the performance of the corresponding one-stage design as a reference.

License GPL (>= 2)

Depends methods, stats, Rcpp (>= 0.9.11), R (>= 3.1.0)

LinkingTo Rcpp

RcppModules simon, sub1

RoxygenNote 6.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2017-11-13 11:54:38 UTC

R topics documented:
getCE . 2
getCP . 3

1

2 getCE

getCP_simon . 5
getD_distributeToOne . 5
getD_equally . 6
getD_none . 7
getD_proportionally . 8
getN2 . 9
getP . 11
getSolutions . 11
getSolutionsSub1 . 12
get_CI . 14
get_conditionalPower . 15
get_confidence_set . 16
get_p_exact_subset . 17
get_p_KC . 18
get_r2_flex . 18
get_UMVUE_GMS . 19
get_UMVUE_GMS_subset_second_only . 20
get_UMVUE_GMS_subset_second_total . 21
plot_confidence_set . 21
plot_simon_study_state . 22
plot_sub1_study_state . 23
Rcpp Modules simon . 24
Rcpp Modules sub1 . 25
setSimonParams . 25
setSub1Params . 26
setupSimon . 27
setupSub1Design . 27
toDataframe . 28

Index 29

getCE Calculates the conditional error.

Description

Calculates the conditional error at the interim analysis for a given Simon’s design with "k" re-
sponses.

Usage

getCE(design, k)

getCP 3

Arguments

design a dataframe containing all critical values for a Simon’s two-stage design defined
by the colums "r1", "n1", "r", "n" and "p0".

• r1 = critical value for the first stage (more than "r1" responses needed to
proceed to the second stage).

• n1 = number of patients enrolled in the first stage.
• r = critical value for the whole trial (more than "r" responses needed at the

end of the study to reject the null hypothesis).
• n = number of patients enrolled in the whole trial.
• p0 = response probability under the null hypothesis

k number of responses observed at the interim analysis.

Examples

design <- getSolutions()$Solutions[1,]
conditional_error <- getCE(design, 4)

getCP Calculates the conditional power.

Description

Calculates the conditional power for a given Simon’s two-stage design in the interim analysis if the
number of patients which should be enrolled in the second stage is altert to "n2".

Usage

getCP(n2, p1, design, k, mode = 0, alpha = 0.05)

Arguments

n2 number of patients to be enrolled in the second stage of the study.

p1 response probability under the alternative hypothesis

design a dataframe containing all critical values for a Simon’s two-stage design defined
by the colums "r1", "n1", "r", "n" and "p0".

• r1 = critical value for the first stage (more than r1 responses needed to
proceed to the second stage).

• n1 = number of patients enrolled in the first stage.
• r = critical value for the whole trial (more than r responses needed at the

end of the study to reject the null hypothesis).
• n = number of patients enrolled in the whole trial.
• p0 = response probability under the null hypothesis.

k number of responses observed at the interim analysis.

4 getCP

mode a value out of {0,1,2,3} dedicating the methode spending the "rest alpha" (dif-
ference between nominal alpha level and actual alpha level for the given design).

• 0 = "rest alpha" is not used.
• 1 = "rest alpha" is spent proportionally.
• 2 = "rest alpha" is spent equally.
• 3 = "rest alpha" is spent only to the worst case scenario (minimal number of

responses at the interim analysis so that the study can proceed to the second
stage).

alpha overall significance level the trial was planned for.

References

Englert S., Kieser M. (2012): Adaptive designs for single-arm phase II trials in oncology. Pharma-
ceutical Statistics 11,241-249.

See Also

getN2

Examples

#Calculate a Simon's two-stage design
design <- getSolutions()$Solutions[3,] #minimax-design for the default values.

#Assume 3 responses were observed in the interim analysis.
#Therefore the conditional power is only about 0.55.
#In order to raise the conditional power to 0.8 "n2" has to be increased.

#get the current "n2"
n2 <- design$n - design$n1

#set k to 3 (only 3 responses observed so far)
k = 3

#get the current conditional power
cp <- getCP(n2, design$p1, design, k, mode = 1, alpha = 0.05)
cp

#increase n2 until the conditional power is larger than 0.8
while(cp < 0.8){
n2 <- n2 + 1
Assume we spent the "rest alpha" proportionally (in the planning phase)
therefore we set "mode = 1".
cp <- getCP(n2, design$p1, design, k, mode = 1, alpha = 0.05)
}

n2

getCP_simon 5

getCP_simon Returns the conditional power.

Description

Returns the conditional power when "k" responses where observed out of "numPat" Patients for the
given Simon’s tow stage design.

Usage

getCP_simon(k, numPat, r1, n1, r, n, p1)

Arguments

k number of observed responses

numPat number of enrolled patients.

r1 critical value for the first stage.

n1 sample size for the first stage.

r critical value for the subset endpoint.

n overall sample size.

p1 response rate under the alternative hypothesis.

Examples

#Calculate a Simon's two-stage design
design <- getSolutions()$Solutions[3,] #minimax-design for the default values.
#Assume 3 out of 20 patients had a response.
getCP_simon(3,20,design$r1, design$n1, design$r, design$n, design$p1)

getD_distributeToOne Get the conditional errors.

Description

Calculates the conditional error for all possible outcomes at the interim analysis (different number
of responses) spending the "rest alpha" (difference between nominal alpha level and actual alpha
level) only to increase the worst case (smallest conditional error value that is not equal to 0).

Usage

getD_distributeToOne(design, alpha)

6 getD_equally

Arguments

design a dataframe containing all critical values for a Simon’s two-stage design defined
by the colums "r1", "n1", "r", "n" and "p0".

• r1 = critical value for the first stage (more than r1 responses needed to
proceed to the second stage).

• n1 = number of patients enrolled in the first stage.
• r = critical value for the whole trial (more than r responses needed at the

end of the study to reject the null hypothesis).
• n = number of patients enrolled in the whole trial.
• p0 = response probability under the null hypothesis.

alpha overall significance level the trial was planned for.

References

Englert S., Kieser M. (2012): Adaptive designs for single-arm phase II trials in oncology. Pharma-
ceutical Statistics 11,241-249.

See Also

getD_proportionally, getD_equally, getD_none

Examples

#Calculate a Simon's two-stage design
design <- getSolutions()$Solutions[3,] #minimax-design for the default values.

ce_toOne <- getD_distributeToOne(design, 0.05)
ce_toOne

getD_equally Get the conditional errors equally.

Description

Calculates the conditional error for all possible outcomes at the interim analysis (different number
of responses) spending the "rest alpha" (difference between nominal alpha level and actual alpha
level) equally.

Usage

getD_equally(design, alpha)

getD_none 7

Arguments

design a dataframe containing all critical values for a Simon’s two-stage design defined
by the colums r1, n1, r, n and p0.

• r1 = critical value for the first stage (more than r1 responses needed to
proceed to the second stage).

• n1 = number of patients enrolled in the first stage.
• r = critical value for the whole trial (more than r responses needed at the

end of the study to reject the null hypothesis).
• n = number of patients enrolled in the whole trial.
• p0 = response probability under the null hypothesis.

alpha overall significance level the trial was planned for.

References

Englert S., Kieser M. (2012): Adaptive designs for single-arm phase II trials in oncology. Pharma-
ceutical Statistics 11,241-249.

See Also

getD_proportionally, getD_distributeToOne, getD_none

Examples

#Calculate a Simon's two-stage design
design <- getSolutions()$Solutions[3,] #minimax-design for the default values.

ce_equally <- getD_equally(design, 0.05)
ce_equally

getD_none Get the conditional errors.

Description

Calculates the conditional error for all possible outcomes at the interim analysis (different number
of responses) using no "rest alpha" spending (difference between nominal alpha level and actual
alpha level).

Usage

getD_none(design)

8 getD_proportionally

Arguments

design a dataframe containing all critical values for a Simon’s two-stage design defined
by the colums "r1", "n1", "r", "n" and "p0".

• r1 = critical value for the first stage (more than r1 responses needed to
proceed to the second stage).

• n1 = number of patients enrolled in the first stage.

• r = critical value for the whole trial (more than r responses needed at the
end of the study to reject the null hypothesis).

• n = number of patients enrolled in the whole trial.

• p0 = response probability under the null hypothesis.

References

Englert S., Kieser M. (2012): Adaptive designs for single-arm phase II trials in oncology. Pharma-
ceutical Statistics 11,241-249.

See Also

getD_proportionally, getD_equally, getD_distributeToOne

Examples

#Calculate a Simon's two-stage design
design <- getSolutions()$Solutions[3,] #minimax-design for the default values.

ce_toOne <- getD_none(design)
ce_toOne

getD_proportionally Get the conditional errors proportionally.

Description

Calculates the conditional error for all possible outcomes at the interim analysis (different number
of responses) spending "rest alpha" (difference between nominal alpha level and actual alpha level)
proportionally.

Usage

getD_proportionally(design, alpha)

getN2 9

Arguments

design a dataframe containing all critical values for a Simon’s two-stage design defined
by the colums "r1", "n1", "r", "n" and "p0".

• r1 = critical value for the first stage (more than "r1" responses needed to
proceed to the second stage).

• n1 = number of patients enrolled in the first stage.
• r = critical value for the whole trial (more than "r" responses needed at the

end of the study to reject the null hypothesis).
• n = number of patients enrolled in the whole trial.
• p0 = response probability under the null hypothesis.

alpha overall significance level the trial was planned for.

References

Englert S., Kieser M. (2012): Adaptive designs for single-arm phase II trials in oncology. Pharma-
ceutical Statistics 11,241-249.

See Also

getD_equally, getD_distributeToOne, getD_none

Examples

#Calculate a Simon's two-stage design
design <- getSolutions()$Solutions[3,] #minimax-design for the default values.

ce_prop <- getD_proportionally(design, 0.05)
ce_prop

getN2 Calculates the number of patients which should be enrolled in the sec-
ond stage.

Description

Calculates the number of patients which should be enrolled in the second stage if the conditional
power should be altert to "cp".

Usage

getN2(cp, p1, design, k, mode = 0, alpha = 0.05)

10 getN2

Arguments

cp conditional power to which the number of patients for the second stage should
be adjusted.

p1 response probability under the alternative hypothesis.

design a dataframe containing all critical values for a Simon’s two-stage design defined
by the colums r1, n1, r, n and p0.

• r1 = critical value for the first stage (more than r1 responses needed to
proceed to the second stage).

• n1 = number of patients enrolled in the first stage.
• r = critical value for the whole trial (more than r responses needed at the

end of the study to reject the null hypothesis).
• n = number of patients enrolled in the whole trial.
• p0 = response probability under the null hypothesis.

k number of responses observed at the interim analysis.

mode a value out of {0,1,2,3} dedicating the methode spending the "rest alpha" (dif-
ference between nominal alpha level and actual alpha level for the given design).

• 0 = "rest alpha" is not used.
• 1 = "rest alpha" is spent proportionally.
• 2 = "rest alpha" is spent equally.
• 3 = "rest alpha" is spent only to the worst case scenario (minimal number of

responses at the interim analysis so that the study can proceed to the second
stage).

alpha overall significance level the trial was planned for.

References

Englert S., Kieser M. (2012): Adaptive designs for single-arm phase II trials in oncology. Pharma-
ceutical Statistics 11,241-249.

Examples

#Calculate a Simon's two-stage design
design <- getSolutions()$Solutions[3,] #minimax-design for the default values.

#Assume we only observed 3 responses in the interim analysis.
#Therefore the conditional power is only about 0.55.
#In order to raise the conditional power to 0.8 "n2" has to be increased.

#set k to 3 (only 3 responses observed so far)
k = 3

Assume we spent the "rest alpha" proportionally in the planning phase
there for we set "mode = 1".
n2 <- getN2(cp = 0.8, design$p1, design, k, mode = 1, alpha = 0.05)
n2

getP 11

getP Calculates the p-value (binomial test).

Description

Helper-function for the function getCP

Usage

getP(l, pi0, n2)

Arguments

l number of responses

pi0 response probability under the null hypothesis

n2 number of enrolled patients

See Also

getCP

getSolutions Returns designs for a given "simon"-object (see setupSimon)

Description

getSolutions uses a "simon"-object to calculate two-stage designs as they were described by Simon.

Usage

getSolutions(simon = setupSimon(), useCurtailment = FALSE,
curtail_All = FALSE, cut = 0, replications = 10000, upperBorder = 0)

Arguments

simon a "simon"-object which will be used to calculate designs.

useCurtailment boolean value determining whether (non-)stochastic curtailment is used.

curtail_All boolean value; if true the effect of (non-)stochastic curtailment will be calculated
for different cut points in 0.05 steps starting with the value of the parameter
"cut".

cut sets the "cut point" used to calculate the effect of (non-)stochastic curtailment.
A study is stopped if the conditional power falls below the value of "cut".

replications number of simulations to estimate the effect of (non-)stochastic curtailment.

upperBorder maximal possible value for n. If set to sero (default) the programm will aproxi-
mate a upper border automaticly.

12 getSolutionsSub1

References

Simon, R. (1989): Optimal two-stage designs for phase II clinical trials. Controlled Clinical Trials
10,1-10.

Kunz C.U., Kieser M (2012): Curtailment in single-arm two-stage phase II oncology trials. Bio-
metrical Journal 54, 445-456

See Also

setupSimon

Examples

Example 1: Using the default values
designs <- getSolutions()
designs <- designs$Solutions
designs

Example 2: Setting up a "simon"-object, then calculate designs
simon <- setupSimon(alpha = 0.1, beta = 0.2, p0 = 0.3, p1 = 0.5)
designs <- getSolutions(simon)$Solutions
designs

Esample 3: Calculating designs and simulating the influence of
stochastic curtailment for each design.
simon <- setupSimon(alpha = 0.1, beta = 0.2, p0 = 0.3, p1 = 0.5)
designs <- getSolutions(simon, useCurtailment = TRUE, curtail_All = TRUE, cut = 0.3)
#List containing the found designs, the influence of stochastic curtailment
and the regarding stopping rules.
designs

getSolutionsSub1 Calculates designs for a given "sub1"-object.

Description

By iterating over all possible values for "r1", "n1", "r", "s" and "n" designs for a given "sub1"-object
are found. Proceeding to the second stage of the study more than "r1" responses among the first "n1"
patients in the subset endpoint are needed. Rejecting the null hypothesis more than "r" responses
in the subset endpoint or more than "s" responses in the superset endpoint among "n" patients are
needed.

Usage

getSolutionsSub1(sub1 = setupSub1Design(), skipS = TRUE, skipR = TRUE,
skipN1 = TRUE, lowerBorder = 0, upperBorder = 0,
useCurtailment = FALSE, curtailAll = FALSE, cut = 0,
replications = 1000)

getSolutionsSub1 13

Arguments

sub1 a "sub1"-object which will be used to calculate fitting designs
skipS boolean value; skips the iteration over "s" at certian points to improve calcula-

tion speed (finds less designs)
skipR boolean value; skips the iteration over "r" at certian points to improve calculation

speed (finds less designs)
skipN1 boolean value; skips the iteration over "n1" at certian points to improve calcula-

tion speed (finds less designs and it is impossible to determine the optimalization
criteria of the found designs)

lowerBorder sets a minimal value for "n" (number of patients to be recruited)
upperBorder sets a maximal value for "n" (number of patients to be recruited)
useCurtailment determines if the effect of (non-)stochastic curtailment should also be calculated

for the found designs
curtailAll boolean value; if true the effect of (non-)stochastic curtailment will be calculated

for different cut points in 0.05 steps starting with the value of the parameter
"cut".

cut sets the "cut point" used to calculate the effect of (non-)stochastic curtailment.
A study is stopped if the conditional power falls below the value of "cut".

replications number of simulations to estimate the effect of (non-)stochastic curtailment.

References

Kunz C.U., Kieser M (2012): Curtailment in single-arm two-stage phase II oncology trials. Bio-
metrical Journal 54, 445-456

See Also

setupSub1Design

Examples

Example 1: Using the default values
sub1 <- setupSub1Design()
getSolutionsSub1(sub1)

Example 2: Setting up a "sub1"-object, then calculating designs
sub1 <- setupSub1Design(alpha = 0.1, beta = 0.2, pc0 = 0.3, pt0 = 0.4)
designs <- getSolutionsSub1(sub1)$Solutions
designs

Example 2: Calculating designs and simulating the influence of stochastic curtailment
for each design.
sub1 <- setupSub1Design(alpha = 0.1, beta = 0.2, pc0 = 0.3, pt0 = 0.4)
designs <- getSolutionsSub1(sub1, useCurtailment = TRUE, curtailAll = TRUE, cut = 0.3)
#Contains the found designs, the influence of stochastic curtailment
#and the regarding stopping rules .
designs

14 get_CI

get_CI Calculates the confidence interval.

Description

Calculates the two sided 1-2*alpha confidence interval based on the work from Koyama and Chen.

Usage

get_CI(k, r1, n1, n, alpha = 0.05, precision = 4)

Arguments

k overall observed responses (must be larger than r1).

r1 critical value for the first stage.

n1 sample size for the first stage.

n overall sample size.

alpha determining the two sided 1-2*alpha confidence interval.

precision gives the precision (in decimal numbers) to which the confidence interval should
be calculated (should be less than 10).

References

Koyama T and Chen H (2008): Proper inference from Simon’s two-stage designs. Statistics in
Medicine, 27(16):3145-3154.

Examples

#Calculate a Simon's two-stage design
design <- getSolutions()$Solutions[3,] #minimax-design for the default values.

#Assume 9 responses were observed in the whole trial.
k = 9

ci <- get_CI(k, design$r1, design$n1, design$n)

get_conditionalPower 15

get_conditionalPower Calculates the conditional power.

Description

Calculates the conditional power of a given subset design.

Usage

get_conditionalPower(t, u, enrolled, r1, n1, r, s, n, pc1, pt1,
sub1 = setupSub1Design())

Arguments

t observed responses in the subset endpoint.

u observed responses in the superset endpoint.

enrolled number of patients enrolled so far.

r1 critical value for the first stage.

n1 sample size for the first stage.

r critical value for the subset endpoint.

s critical value for the superset endpoint.

n overall sample size.

pc1 the response probability under the alternative hypothesis for the subset endpoint.

pt1 the response probability under the alternative hypothesis for the superset end-
point.

sub1 "sub1"-object used to calculate the p value in c++ .

See Also

setupSub1Design

Examples

#Setup "sub1"-object
sub1 <- setupSub1Design(pc0 = 0.5, pt0 = 0.6)

#Calculate a subset design
design <- getSolutionsSub1(sub1, skipN1 = FALSE)$Solutions[4,]

t <- 5
u <- 7
enrolled <- 10

con_p <- get_conditionalPower(t, u, enrolled, design$r1,
design$n1, design$r, design$s, design$n, design$pc1, design$pt1, sub1)

16 get_confidence_set

get_confidence_set Calculates the confidence set.

Description

The p-value of Subset Designs depends on two endpoints e.g. the superset endpoint and the subset
endpoint. Therefore the confidence interval for the response rate of the subset endpoint depends on
the response rate of the superset endpoint and vice versa. This results in a conficence "area" which
is called the confidence set. "get_conficence_set" returns a set of points which outline the border of
the confidence set.

Usage

get_confidence_set(t, u, r1, n1, n, pc0, pt0, alpha)

Arguments

t observed responses in subset endpoint.
u observed responses in the superset endpoint.
r1 critical value for the first stage.
n1 sample size for the first stage.
n overall sample size.
pc0 the response probability under the null hypothesis for the subset endpoint.
pt0 the response probability under the null hypothesis for the superset endpoint.
alpha significance level the study was planned for.

References

Kunz, C. U. (2011), Two-stage designs for phase II trials with one or two endpoints. http://d-
nb.info/1024218457

See Also

setupSub1Design, plot_confidence_set

Examples

#Setup "sub1"-object
sub1 <- setupSub1Design(pc0 = 0.5, pt0 = 0.6)

#Calculate a subset design
design <- getSolutionsSub1(sub1, skipN1 = FALSE)$Solutions[4,]

t <- 12
u <- 13
alpha = 0.1

conf_set <- get_confidence_set(t, u, design$r1, design$n1, design$n, design$pc0, design$pt0, alpha)

get_p_exact_subset 17

get_p_exact_subset Calculates the exact p value.

Description

Calculates the exact p value for a given subset design.

Usage

get_p_exact_subset(t, u, r1, n1, n, pc0, pt0, sub1 = setupSub1Design())

Arguments

t observed responses in the subset endpoint.

u observed responses in the superset endpoint.

r1 critical value for the first stage.

n1 sample size for the first stage.

n overall sample size.

pc0 the response probability for the subset endpoint under the null hypothesis.

pt0 the response probability for the superset endpoint under the null hypothesis.

sub1 "sub1"-object used to calculate the p value in c++ .

See Also

setupSub1Design

Examples

#Setup "sub1"-object
sub1 <- setupSub1Design(pc0 = 0.5, pt0 = 0.6)

#Calculate a subset design
design <- getSolutionsSub1(sub1, skipN1 = FALSE)$Solutions[4,]

#Assuming 9 responses in the subset endpoint and 13 responses
#in the superset endpoint were observed.
t = 9
u = 13

p_val <- get_p_exact_subset(t, u, design$r1, design$n1, design$n, design$pc0, design$pt0, sub1)
p_val

18 get_r2_flex

get_p_KC Calculates the p-value.

Description

Calculates the p-value for a Simon’s two-stage design based on the work from Koyama and Chen.

Usage

get_p_KC(k, r1, n1, n, p0)

Arguments

k overall observed responses.

r1 critical value for the first stage.

n1 sample size for the first stage.

n overall sample size.

p0 response probability under the null hypothesis.

References

Koyama T and Chen H (2008): Proper inference from Simon’s two-stage designs. Statistics in
Medicine, 27(16):3145-3154.

Examples

#Calculate a Simon's two-stage design
design <- getSolutions()$Solutions[3,] #minimax-design for the default values.

#Assume 9 responses were observed in the whole trial.
k = 9

p_val <- get_p_KC(k, design$r1, design$n1, design$n, design$p0)

get_r2_flex Calculates the number of responses needed for the second stage.

Description

Calculates the number of responses needed for the second stage of a Simon’s two-stage design if
the flexible extension is chosen in the planning phase.

Usage

get_r2_flex(ce, p0, n2)

get_UMVUE_GMS 19

Arguments

ce conditional error for the second stage.

p0 probability for a response under the null hypothesis.

n2 sample size for the second stage.

See Also

getD_proportionally, getD_equally, getD_distributeToOne, getD_none

Examples

#Calculate a Simon's two-stage design
design <- getSolutions()$Solutions[3,] #minimax-design for the default values.
#Get the conditional error values using proportionally "rest"-alpha spending.
ce_df <- getD_proportionally(design, 0.05)
#Assume 5 responses were observed in the interim analysis.
ce <- ce_df[5+1,]$ce # conditional error for 5 responses is listed in the 6th row of "ce_df"
#Calculate the number of patients needed in the second stage.
n2 <- design$n - design$n1
r2 <- get_r2_flex(ce, design$p0, n2)
r2
#Assume 10 patients more should be recruited in the second stage.
#(This changes the number of needed responses.)
n2 <- n2 + 10
r2 <- get_r2_flex(ce, design$p0, n2)
r2

get_UMVUE_GMS Calculates the "uniformly minimal variance unbiased estimator".

Description

Calculates the "uniformly minimal variance unbiased estimator" (UMVUE) for the true response
rate based on the approach of Grishick, Mosteller and Savage.

Usage

get_UMVUE_GMS(k, r1, n1, n)

Arguments

k overall observed responses.

r1 critical value for the first stage.

n1 sample size for the first stage.

n overall sample size.

20 get_UMVUE_GMS_subset_second_only

References

Girshick MA, Mosteller F, and Savage LJ (1946): Unbiased estimates for certain binomial sampling
problems with applications. Annals of Mathematical Statistics, 17(1):13-23.

Examples

#Calculate a Simon's two-stage design
design <- getSolutions()$Solutions[3,] #minimax-design for the default values.

#Assume 9 responses were observed in the whole trial.
k = 9

umvue <- get_UMVUE_GMS(k, design$r1, design$n1, design$n)

get_UMVUE_GMS_subset_second_only

Calculates the "uniformly minimal variance unbiased estimator".

Description

Calculates the "uniformly minimal variance unbiased estimator" (UMVUE) for the true response
rate only for the superset endpoint (response rate superset endpoint minus response rate subset
endpoint) in a subset design.

Usage

get_UMVUE_GMS_subset_second_only(t, u, r1, n1, n)

Arguments

t observed responses in the subset endpoint.
u observed responses in the superset endpoint.
r1 critical value for the first stage.
n1 sample size for the first stage.
n overall sample size.

Examples

#Setup "sub1"-object
sub1 <- setupSub1Design(pc0 = 0.5, pt0 = 0.6)

#Calculate a subset design
design <- getSolutionsSub1(sub1, skipN1 = FALSE)$Solutions[4,]

#Assume 9 responses in the subset endpoint and 13 responses in the superset endpoint were observed.
t = 9
u = 13
umvue_second <- get_UMVUE_GMS_subset_second_only(t, u, design$r1, design$n1, design$n)

get_UMVUE_GMS_subset_second_total 21

get_UMVUE_GMS_subset_second_total

Calculates the "uniformly minimal variance unbiased estimator".

Description

Calculates the "uniformly minimal variance unbiased estimator" (UMVUE) for the true response
rate for the superset endpoint.

Usage

get_UMVUE_GMS_subset_second_total(t, u, r1, n1, n)

Arguments

t observed responses in the subset endpoint.

u observed responses in the superset endpoint.

r1 critical value for the first stage.

n1 sample size for the first stage.

n overall sample size.

Examples

#Setup "sub1"-object
sub1 <- setupSub1Design(pc0 = 0.5, pt0 = 0.6)

#Calculate a subset design
design <- getSolutionsSub1(sub1, skipN1 = FALSE)$Solutions[4,]

#Assume 9 responses in the subset endpoint and 13 responses in the superset endpoint were observed.
t = 9
u = 13
umvue_second <- get_UMVUE_GMS_subset_second_total(t, u, design$r1, design$n1, design$n)

plot_confidence_set Plots the "confidence set" according to the observed responses.

Description

Plots the "confidence set" which can be received by invoking "get_confidence_set". Also the "uni-
formly minimal variance unbiased estimator" and the acceptance area are included in the plot.

Usage

plot_confidence_set(t, u, r1, n1, n, pc0, pt0, alpha)

22 plot_simon_study_state

Arguments

t observed responses in the subset endpoint.

u observed responses in the superset endpoint.

r1 critical value for the first stage.

n1 sample size for the first stage.

n overall sample size.

pc0 the response probability for the subset endpoint under the null hypothesis.

pt0 the response probability for the superset endpoint under the null hypothesis.

alpha overall significance level the trial was planned for.

References

Kunz, C. U. (2011), Two-stage designs for phase II trials with one or two endpoints. http://d-
nb.info/1024218457

See Also

get_confidence_set, get_UMVUE_GMS_subset_second_total, get_UMVUE_GMS

Examples

#Setup "sub1"-object
sub1 <- setupSub1Design(pc0 = 0.5, pt0 = 0.6)

#Calculate a subset design
design <- getSolutionsSub1(sub1, skipN1 = FALSE)$Solutions[4,]

#Assume 11 responses in the subset endpoint and 12 responses in the superset endpoint were observed.
t = 10
u = 12

plot_confidence_set(t, u, design$r1, design$n1, design$n, design$pc0, design$pt0, 0.1)

plot_simon_study_state

Plots the study state of a given Simon’s two-stage design.

Description

Plots the study state of a given Simon’s two-stage design displaying the already enrolled patients
and the stopping rules.

Usage

plot_simon_study_state(sr, enrolledPat = data.frame(ep1 = logical()), r1, n1,
r, n)

plot_sub1_study_state 23

Arguments

sr dataframe containing the stopping rules for the given Simon’s two-stage design
defined by two columns named "Enrolled_patients" and "Needed_responses_ep1".
This way each row defines when the study has to be stopped for futility.

enrolledPat dataframe defined by a boolean vector in one column named "ep1" indicating
which patient had a response.

r1 critical value for the first stage.

n1 sample size for the first stage.

r critical value for the subset endpoint.

n overall sample size.

Examples

#Calculate a Simon's two-stage design
design <- getSolutions()$Solutions[3,] #minimax-design for the default values.
#Define the stopping rules according to the chosen design
sr <- data.frame(Enrolled_patients = c(design$n1, design$n),
Needed_responses_ep1 = c(design$r1, design$r))
#Simulate 18 random generated outcomes.
enrolledPat <- data.frame(ep1 = rbinom(18,1, design$p1))
#Plot study state
plot_simon_study_state(sr, enrolledPat, design$r1, design$n1, design$r, design$n)

plot_sub1_study_state Plots the study state of a given subset design.

Description

Plots the study state of a given subset design displaying the already enrolled patients and the stop-
ping rules for the given study.

Usage

plot_sub1_study_state(sr, enrolledPat = data.frame(ep1 = logical(), ep2 =
logical()), r1, n1, r, s, n)

Arguments

sr dataframe containing the stopping rules for the given subset design defined by 3
columns named "Enrolled_patients", "Needed_responses_ep1" and "Needed_responses_ep2".
This way each row defines when the study has to be stopped for futility.

enrolledPat dataframe defined by two boolean vectors named "ep1" and "ep2" indicating
which patient had a response in the subset and superset endpoint.

r1 critical value for the first stage.

n1 sample size for the first stage.

24 Rcpp Modules simon

r critical value for the subset endpoint.

s critical value for the superset endpoint.

n overall sample size.

See Also

getSolutionsSub1

Examples

#Calculate a subset design.
sub1 <- setupSub1Design(alpha = 0.1, beta = 0.2, pc0 = 0.3, pt0 = 0.4)
design <- getSolutionsSub1(sub1)$Solutions[10,]
#Define the stopping rules according to the chosen design.
sr <- data.frame(Enrolled_patients = c(design$n1, design$n),
Needed_responses_ep1 = c(design$r1, design$r), Needed_responses_ep2 = c(0,design$s))
#Simulate 14 random generated outcomes.
tmp_ep1 <- rbinom(14,1, design$pc1)
tmp_ep2 <- tmp_ep1 | rbinom(14,1, design$pt1)
enrolledPat <- data.frame(ep1 = tmp_ep1, ep2 = tmp_ep2)
#Plot study state.
plot_sub1_study_state(sr, enrolledPat, design$r1, design$n1, design$r, design$s, design$n)

Rcpp Modules simon Functions and Objects created by Rcpp for the "Simon’s two-stage
design"

Description

The functions and objects of the "simon module" are accessible from R via the Rcpp Modules
mechanism which creates them based on the declaration in the C++ files. The whole implemented
functionality of the "simon module" is used by the functions implemented in this package. There-
fore there is no need for the user to access the functions of the module directly.

References

https://CRAN.R-project.org/package=Rcpp

See Also

setupSimon, getSolutions

https://CRAN.R-project.org/package=Rcpp

Rcpp Modules sub1 25

Rcpp Modules sub1 Functions and Objects created by Rcpp for the "subset design"

Description

The functions and objects of the "sub1 module" are accessible from R via the Rcpp Modules mech-
anism which creates them based on the declaration in the C++ files. The whole implemented func-
tionality of the "sub1 module" is used by the functions implemented in this package. Therefore
there is no need for the user to access the functions of the module directly.

References

https://CRAN.R-project.org/package=Rcpp

See Also

setupSub1Design, getSolutionsSub1

setSimonParams Sets the parameters for a given "simon"-object.

Description

Sets the parameters for a given "simon"-object.

Usage

setSimonParams(s, alpha = 0.05, beta = 0.05, p0 = 0.1, p1 = 0.3)

Arguments

s a "simon"-object which is generated by the function setupSimon.

alpha the maximal type I error rate.

beta the maximal type II error rate.

p0 the response probability under the null hypothesis.

p1 the response probability under the alternative hypothesis.

See Also

setupSimon

https://CRAN.R-project.org/package=Rcpp

26 setSub1Params

Examples

#Create "simon"-object.
simon <- setupSimon()
#Change parameters.
setSimonParams(simon, alpha = 0.1, beta = 0.2, p0 = 0.25, p1 = 0.45)
#Calculate designs for the given "simon"-object.
designs <- getSolutions(simon)$Solutions
designs

setSub1Params Sets the parameters for a given "sub1"-object.

Description

Sets the parameters for a given "sub1"-object.

Usage

setSub1Params(sub1, alpha = 0.1, beta = 0.1, pc0 = 0.6, pt0 = 0.7,
pc1 = 0.8, pt1 = 0.9)

Arguments

sub1 a "sub1"-object which is generated by the function setupSub1Design.

alpha the maximal type I error rate.

beta the maximal type II error rate.

pc0 the response probability for the subset endpoint under the null hypothesis.

pt0 the response probability for the superset endpoint under the null hypothesis.

pc1 the response probability for the subset endpoint under the alternative hypothesis.

pt1 the response probability for the superset endpoint under the alternative hypoth-
esis.

See Also

setupSub1Design

Examples

#Create "sub1"-object.
sub1 <- setupSub1Design()
#Change parameters.
setSub1Params(sub1, beta = 0.2, pc0 = 0.5, pt0 = 0.6)
#Calculate designs for the given "sub1"-object.
designs <- getSolutionsSub1(sub1)$Solutions
designs

setupSimon 27

setupSimon Creates a "simon"-object.

Description

Creates a "simon"-object which can be used in the function getSolutions to identify possible
designs.

Usage

setupSimon(alpha = 0.05, beta = 0.05, p0 = 0.1, p1 = 0.3)

Arguments

alpha the maximal type I error rate.

beta the maximal type II error rate.

p0 the response probability under the null hypothesis.

p1 the response probability under the alternative hypothesis.

Examples

#Create a "simon"-object
simon <- setupSimon()
#Calculate designs for the given "simon"-object.
designs <- getSolutions(simon)$Solutions
designs

setupSub1Design Creates a "sub1"-object.

Description

Creates a "sub1"-object which can be used in the function getSolutionsSub1 to identify possible
designs.

Usage

setupSub1Design(alpha = 0.1, beta = 0.1, pc0 = 0.6, pt0 = 0.7,
pc1 = 0.8, pt1 = 0.9)

28 toDataframe

Arguments

alpha the maximal type I error rate.

beta the maximal type II error rate.

pc0 the response probability for the subset endpoint under the null hypothesis.

pt0 the response probability for the superset endpoint under the null hypothesis.

pc1 the response probability for the subset endpoint under the alternative hypothesis.

pt1 the response probability for the superset endpoint under the alternative hypoth-
esis.

Examples

#Create "sub1"-object.
sub1 <- setupSub1Design()
#Calculate designs for the given "sub1"-object.
designs <- getSolutionsSub1(sub1)$Solutions
designs

toDataframe Helper function for getSolutions and getSolutionsSub1.

Description

Transfers the found designs of a "design"-object to a dataframe. This function is a helper-function
used in getSolutions and getSolutionsSub1 to structure the found designs for a given parameter
set specified in a "sub1"-object or "simon"-object. The return value is a list containing a dataframe
for the found designs and multiple dataframes containing the results for (non-)stochastic curtail-
ment, if present.

Usage

toDataframe(designObject, useCurtailment = F)

Arguments

designObject either a "sub1"-object or a "simon"-object containing the designs for a given
parameter set specified inside the "designObject".

useCurtailment boolean value dedicating the use of (non-)stochastic curtailment. This parameter
indicates if that information should also gathered.

Index

get_CI, 14
get_conditionalPower, 15
get_confidence_set, 16, 22
get_p_exact_subset, 17
get_p_KC, 18
get_r2_flex, 18
get_UMVUE_GMS, 19, 22
get_UMVUE_GMS_subset_second_only, 20
get_UMVUE_GMS_subset_second_total, 21,

22
getCE, 2
getCP, 3, 11
getCP_simon, 5
getD_distributeToOne, 5, 7–9, 19
getD_equally, 6, 6, 8, 9, 19
getD_none, 6, 7, 7, 9, 19
getD_proportionally, 6–8, 8, 19
getN2, 4, 9
getP, 11
getSolutions, 11, 24, 27, 28
getSolutionsSub1, 12, 24, 25, 28

plot_confidence_set, 16, 21
plot_simon_study_state, 22
plot_sub1_study_state, 23

Rcpp Modules simon, 24
Rcpp Modules sub1, 25
Rcpp_SimonDesign-class (Rcpp Modules

simon), 24
Rcpp_Sub1Design-class (Rcpp Modules

sub1), 25

setSimonParams, 25
setSub1Params, 26
setupSimon, 11, 12, 24, 25, 27
setupSub1Design, 13, 15–17, 25, 26, 27
SimonDesign (Rcpp Modules simon), 24
Sub1Design (Rcpp Modules sub1), 25

toDataframe, 28

29

	getCE
	getCP
	getCP_simon
	getD_distributeToOne
	getD_equally
	getD_none
	getD_proportionally
	getN2
	getP
	getSolutions
	getSolutionsSub1
	get_CI
	get_conditionalPower
	get_confidence_set
	get_p_exact_subset
	get_p_KC
	get_r2_flex
	get_UMVUE_GMS
	get_UMVUE_GMS_subset_second_only
	get_UMVUE_GMS_subset_second_total
	plot_confidence_set
	plot_simon_study_state
	plot_sub1_study_state
	Rcpp Modules simon
	Rcpp Modules sub1
	setSimonParams
	setSub1Params
	setupSimon
	setupSub1Design
	toDataframe
	Index

