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Abstract

The OSTSC package is a powerful oversampling approach for classifying univariant, but multinomial time
series data. This vignette provides a brief overview of the over-sampling methodology implemented by the
package. A tutorial of the OSTSC package is provided. We begin by providing three test cases for the user
to quickly validate the functionality in the package. To demonstrate the performance impact of OSTSC,
we then provide two medium size imbalanced time series datasets. Each example applies a TensorFlow
implementation of a Long Short-Term Memory (LSTM) classifier - a type of a Recurrent Neural Network
(RNN) classifier - to imbalanced time series. The classifier performance is compared with and without
oversampling. Finally, larger versions of these two datasets are evaluated to demonstrate the scalability of the
package. The examples demonstrate that the OSTSC package improves the performance of RNN classifiers
applied to highly imbalanced time series data. In particular, OSTSC is observed to increase the AUC of
LSTM from 0.543 to 0.784 on a high frequency trading dataset consisting of 30,000 time series observations.

Introduction

A significant number of learning problems involve the accurate classification of rare events or outliers from
time series data. For example, the detection of a flash crash, rogue trading, or heart arrhythmia from an
electrocardiogram. Due to the rarity of these events, machine learning classifiers for detecting these events
may be biased towards avoiding false positives. This is because any potential for false positives is greatly
exaggerated by the number of negative samples in the data set.

Class imbalance problems are most easily addressed by treating the observations as conditionally independent.
Then standard statistical techniques, such as oversampling the minority class or undersampling the majority
class, or both, are applicable. More (2016) compared a batch of resampling techniques’ classification
performances on imbalanced datasets. Besides the conventional resampling approaches, More showed how
ensemble methods retain as much original information from the majority class as possible when performing
undersampling. Ensemble methods perform well and have gained popularity in the data mining literature.
Dubey et al. (2014) studied an ensemble system of feature selection and data sampling from an imbalanced
Alzheimer’s Disease Neuroimaging Initiative dataset.
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However the imbalanced time series classification problem is more complex when the time dimension needs
to be accounted for. Not only is the assumption that the observations are conditionally independent too
strong, but also the predictors may be cross-correlated too. The sample correlation structure may weaken or
be entirely lost under application of the conventional resampling approaches described above.

There are two existing research directions for imbalanced time series classification. One is to preserve the
covariance structure during oversampling proposed by Cao et al. (2011). Another is to conduct undersampling
with various learning algorithms, proposed by Liang and Zhang (2012). Both approaches are limited to binary
classification and do not consider the more general problem of multi-classification.

A key assertation by Cao, Tan, and Pang (2014) is that a time series sampling scheme should preserve the
covariance structure. When the observations are conditionally dependent, this approach has been shown to
outperform other sampling approaches such as undersampling the majority class, oversampling the minority
class, and SMOTE. Our R package Over Sampling for Time Series Classification (OSTSC) is built
on this idea. OSTSC first implements Enhanced Structure Preserving Oversampling (EPSO) of the minority
class. It then uses a nearest neighbor method from the SMOTE family to generate synthetic positives.
Specifically, it uses an Adaptive Synthetic Sampling Approach for Imbalanced Learning (ADASYN). Note
that other packages such as Siriseriwan (2017) already implement SMOTE sampling techniques, including
ADASYN. However an implementation of ADASYN has been provided in OSTSC for compatibility with the
format required for use with EPSO and TensorFlow.

For examining the performance of oversampling for times series classification, RNNs are preferred (Graves
(2013)). Recently Dixon (2017) applied RNNs to imbalanced times series data used in high frequency trading.
The RNN classifier predicts a price-flip in the limit order book based on a sequence of limit order book depths
and market orders. The approach uses standard under-sampling of the majority class to improve the classifier
performance. OSTSC provides a uni-variate sample of this data and demonstrates the application of EPSO
and ADASYN to improve the performance of the RNN. The RNN is implemented in ‘TensorFlow’ (Abadi et
al. (2016)) and made available in R by using a wrapper for ‘Keras’ (Allaire and Chollet (2017)), a high-level
API for ‘TensorFlow’.

The current version of the package currently only supports univariant classification of time series. The
extension to multi-features requires tensor computations which are not implemented here.

Overview

This vignette provides a brief description of the sampling methodologies implemented. We introduce the
OSTSC package and illustrate its application using various examples. For validation purposes only, we first
apply OSTSC to three small built-in toy datasets. These datasets are not sufficiently large to demonstrate
the methodology. However, they can be used to quickly verify that the OSTSC function generates a balanced
dataset.

For demonstrating the effect of OSTSC on LSTM performance, we provide two medium size datasets that
can be computed with moderate computation. Finally, to demonstrate scalability, we evaluate OSTSC on
two larger datasets. The reader is advised that the total amount of computation in this case is significant.
We would therefore expect a user to test the OSTSC functionality on the small or medium size datasets,
but reserve running the larger dataset examples on a higher performance machine. The medium and large
datasets are not built-in to keep the package size within 5MB.

Background

ESPO is used to generate a large percentage of the synthetic minority samples from univariate labeled time
series under the modeling assumption that the predictors are Gaussian. EPSO estimates the covariance
structure of the minority-class samples and applies a spectral filter to reduce noise. ADASYN is a nearest
neighbor interpolation approach which is subsequently applied to the EPSO samples (Cao et al. (2013)).
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More formally, given the time series of positive labeled predictors P =
{

x11, x12, ..., x1|P |

}

and the negative

time series N =
{

x01, x02, ..., x0|N |

}

, where |N | ≫ |P |, xij ∈ R
n×1, the new samples are generated by the

following steps:

1. Removal of the Common Null Space

Let qij = LT
s xij represent xij in a lower-dimensional signal space, where Ls consists of eigenvectors in the

signal space.

2. ESPO

Let

Wp =
1

|P |

|P |
∑

j=1

(q1j − q̄1)(q1j − q̄1)T .

and let D̂ = V T WpV be the eigendecomposition with the diagonal matrix D̂ of regularized eigenvalues
{

d̂1, ..., d̂n

}

, sorted in descending order, and with orthogonal eigenvector matrix V . Then we generate a

synthetic positive sample from

b = D̂1/2V T z + q̄1.

z is drawn from a zero-mean mixed Gaussian distribution and q̄1 is the corresponding positive-class mean
vector. The oversampling is repeated until all (|N | − |P |)r required synthetic samples are generated, where
r ∈ [0, 1] is the integration percentage of synthetic samples contributed by ESPO, which is chosen empirically.
The remaining (1 − r) percentage of the samples are generated by the interpolation procedure described next.

3. ADASYN

Given the transformed positive data Pt = {q1i} and negative data Nt = {q0j}, each sample q1i is replicated
Γi = |Si:k−NN

⋂

Nt| /Z times, where Si:k−NN is this sample’s kNN in the entire dataset, Z is a normalization

factor so that
∑|Pt|

i=1
Γi = 1.

See Cao et al. (2013) for further technical details of this approach.

Functionality

The package imports ‘parallel’ (R Core Team (2017)), ‘doParallel’ (Microsoft Corporation and Weston
(2017b)), ‘doSNOW’ (Microsoft Corporation and Weston (2017a)) and ‘foreach’ (Revolution Analytics and
Weston (2015)) for multi-threaded execution on shared memory architectures. Parallel execution is strongly
suggested for datasets consisting of at least 30,000 observations. OSTSC also imports ‘mvrnorm’ from ‘MASS’
(Venables and Ripley (2002)) to generate random vectors from the multivariate normal distribution, and
‘rdist’ from ‘fields’ (Douglas Nychka et al. (2015)) in order to calculate the Euclidean distance between
vectors and matrices.

This vignette displays some simple examples below. For calling the RNN and examining the classifier’s
performance, ‘keras’ (Allaire and Chollet (2017)), ‘dummies’ (Brown (2012)) and ‘pROC’ (Robin et al. (2011))
are required.

Examples

Data loading & oversampling

The OSTSC package provides three small built-in datasets for verification that OSTSC has correctly installed
and generates balanced time series. The first two examples use OSTSC to balance binary data while the
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third balances multinomial data.

The synthetically generated control dataset

The dataset Dataset_Synthetic_Control is a time series of sensor measurements of human body motion
generated by Alcock et al. (1999). We introduce the following labeling: Class 1 represents the ‘Normal’ state,
while Class 0 represents one of ‘Cyclic’, ‘Increasing trend’, ‘Decreasing trend’, ‘Upward shift’ or ‘Downward
shift’ (Pham and Chan (1998)). Users load the dataset by calling data().

data(Dataset_Synthetic_Control)

train.label <- Dataset_Synthetic_Control$train.y

train.sample <- Dataset_Synthetic_Control$train.x

test.label <- Dataset_Synthetic_Control$test.y

test.sample <- Dataset_Synthetic_Control$test.x

Each row of the dataset is a sequence of observations. The sequence is of length 60 and there are 300
observations.

dim(train.sample)

## [1] 300 60

The imbalance ratio of the training data is 1:5.

table(train.label)

## train.label

## 0 1

## 250 50

We now provide a simple example demonstrating oversampling of the minority data to match the number
of observations of the majority class. The output ‘MyData’ stores the samples (a.k.a. features) and labels.
There are ten parameters in the OSTSC function, the details of which can be found in the help documentation.
Calling the OSTSC function requires the user to provide at least the labels and sample data - the other
parameters have default values. It is important to note that the labels are separated from the samples.

MyData <- OSTSC(train.sample, train.label, parallel = FALSE)

over.sample <- MyData$sample

over.label <- MyData$label

The positive and negative observations are now balanced. Let us check the (im)balance of the new dataset.

table(over.label)

## over.label

## 0 1

## 250 250

The minority class data is oversampled to produce a balanced feature set. The minority-majority formation
uses a one-vs-rest strategy. For this binary dataset, the Class 1 data has been oversampled to yield the same
number of observations as Class 0.

dim(over.sample)

## [1] 500 60

The automatic diatoms identification dataset
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The dataset Dataset_Adiac is generated from a pilot study identifying diatoms (unicellular algae) from
images by Jalba, Wilkinson, and Roerdink (2004) originally has 37 classes. For the purpose of demonstrating
OSTSC we selected only one class as the positive class (Class 1) and all others are set as the negative class
(Class 0) to form a highly imbalanced dataset. Users load the dataset into R by calling data().

data(Dataset_Adiac)

train.label <- Dataset_Adiac$train.y

train.sample <- Dataset_Adiac$train.x

test.label <- Dataset_Adiac$test.y

test.sample <- Dataset_Adiac$test.x

The training dataset consists of 390 observations of a 176 length sequence.

dim(train.sample)

## [1] 390 176

The imbalance ratio of the training data is 1:29.

table(train.label)

## train.label

## 0 1

## 377 13

The OSTSC function generates a balanced dataset:

MyData <- OSTSC(train.sample, train.label, parallel = FALSE)

over.sample <- MyData$sample

over.label <- MyData$label

table() provides a summary of the balanced dataset.

table(over.label)

## over.label

## 0 1

## 377 377

The high frequency trading dataset

The OSTSC function provides support for multinomial classification. The user specifies which classes should
be oversampled. Typically, oversampling is first applied to the minority class - the class with the least number
of observations. The dataset Dataset_HFT300 is extracted from a real high frequency trading datafeed (Dixon
(2017)). It contains a feature representing instantaneous liquidity imbalance using the best bid to ask ratio.
The data is labeled so that Y = 1 for a next event mid-price up-tick, Y = −1 for a down-tick, and Y = 0 for
no mid-price movement.
Users load the dataset into the R environment by calling data().

data(Dataset_HFT300)

train.label <- Dataset_HFT300$y

train.sample <- Dataset_HFT300$x

The sequence length is set to 10 and 300 sequence observations are randomly drawn for this example dataset.

dim(train.sample)

## [1] 300 10
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The imbalance ratio of the three class dataset is 1:48:1.

table(train.label)

## train.label

## -1 0 1

## 6 288 6

This example demonstrates the case when there are two minority classes and both are over-sampled. The
oversampling is processed using a one-vs-rest strategy, which means that each minority class is oversampled
to the same count as the sum of the count of all other classes. This results in a slight imbalance in the total
number of labels.

MyData <- OSTSC(train.sample, train.label, parallel = FALSE)

over.sample <- MyData$sample

over.label <- MyData$label

We observe the ratio of the classes after oversampling.

table(over.label)

## over.label

## -1 0 1

## 294 288 294

The above examples illustrate how OSTSC oversamples small datasets. In the next section, we demonstrate
and evaluate the oversampled data on two medium size datasets.

Applying OSTSC to medium size datasets

The Electrical Devices dataset

The dataset Dataset_ElectricalDevices is a sample collected from the ‘Powering the Nation’ study (Lines
et al. (2011)). This study seeks to reduce the UK’s carbon footprint by collecting behavioural data on how
consumers use electricity within the home. Each class represent a signal from a different electrical device.
Classes 5 and 6 in the original dataset are set as the negative and positive respectively. The dataset is split
into training and testing feature vectors and labels.

ElectricalDevices <- Dataset_ElectricalDevices()

train.label <- ElectricalDevices$train.y

train.sample <- ElectricalDevices$train.x

test.label <- ElectricalDevices$test.y

test.sample <- ElectricalDevices$test.x

vali.label <- ElectricalDevices$vali.y

vali.sample <- ElectricalDevices$vali.x

Each row in the data represents a sequence of length 96.

dim(train.sample)

## [1] 2200 96

The imbalance ratio of the training data is 1:21.

table(train.label)

## train.label

## 0 1

## 2100 100
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After oversampling with OSTSC, the positive and negative observations are balanced.

MyData <- OSTSC(train.sample, train.label, parallel = FALSE)

over.sample <- MyData$sample

over.label <- MyData$label

table(over.label)

## over.label

## 0 1

## 2100 2100

An LSTM classifier is used as the basis for performance assessment of oversampling with OSTSC. We use
‘keras’ (Allaire and Chollet (2017)) to configure the architecture, hyper-parameters and learning schedule of
the LSTM classifier for sequence classification.

As a baseline for OSTSC, we assess the performance of LSTM trained on the unbalanced and balanced data.
All performances are evaluated out-of-sample unless stated otherwise. Note that for the multi-classification
examples, each F1 history is shown separately but is evaluated on the same validation set during training.
The procedure for applying Keras is next outlined:

1. One-hot encode the categorical label vectors as binary class matrices using ‘dummy()’ function. Then
transform the feature matrices to tensors for LSTM.

library(keras)

library(dummies)

train.y <- dummy(train.label)

test.y <- dummy(test.label)

train.x <- array(train.sample, dim = c(dim(train.sample),1))

test.x <- array(test.sample, dim = c(dim(test.sample),1))

vali.y <- dummy(vali.label)

vali.x <- array(vali.sample, dim = c(dim(vali.sample),1))

over.y <- dummy(over.label)

over.x <- array(over.sample, dim = c(dim(over.sample),1))

2. Initialize a sequential model, add layers and then compile it. Train the LSTM classifier on both of the
imbalanced and the oversampled data.

K <- backend()

metric_f1_0 <- function(y_true, y_pred) { # positive is 0

true_positives <- K$sum(y_true*y_pred, axis=K$cast(0,dtype='int32'))[1]

possible_positives <- K$sum(y_true,axis=K$cast(0,dtype='int32'))[1]

recall <- true_positives / (possible_positives + K$epsilon())

predicted_positives<- K$sum(y_pred,axis=K$cast(0,dtype='int32'))[1]

precision <- true_positives / (predicted_positives + K$epsilon())

return(2*((precision*recall)/(precision+recall+ K$epsilon())))

}

metric_f1_1 <- function(y_true, y_pred) { # positive is 1

true_positives <- K$sum(y_true*y_pred, axis=K$cast(0,dtype='int32'))[2]

possible_positives <- K$sum(y_true,axis=K$cast(0,dtype='int32'))[2]

recall <- true_positives / (possible_positives + K$epsilon())

predicted_positives<- K$sum(y_pred,axis=K$cast(0,dtype='int32'))[2]

precision <- true_positives / (predicted_positives + K$epsilon())

return(2*((precision*recall)/(precision+recall+ K$epsilon())))

}
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metric_f1_2 <- function(y_true, y_pred) { # positive is 2

true_positives <- K$sum(y_true*y_pred, axis=K$cast(0,dtype='int32'))[3]

possible_positives <- K$sum(y_true,axis=K$cast(0,dtype='int32'))[3]

recall <- true_positives / (possible_positives + K$epsilon())

predicted_positives<- K$sum(y_pred,axis=K$cast(0,dtype='int32'))[3]

precision <- true_positives / (predicted_positives + K$epsilon())

return(2*((precision*recall)/(precision+recall+ K$epsilon())))

}

LossHistory <- R6::R6Class("LossHistory",

inherit = KerasCallback,

public = list(

losses = NULL,

f1_0s = NULL,

f1_1s = NULL,

f1_2s = NULL,

val_f1_0s= NULL,

val_f1_1s= NULL,

val_f1_2s= NULL,

on_epoch_end = function(epoch, logs = list()) {

self$losses <- c(self$losses, logs[["loss"]])

self$f1_0s <- c(self$f1_0s, logs[["f1_score_0"]])

self$f1_1s <- c(self$f1_1s, logs[["f1_score_1"]])

self$f1_2s <- c(self$f1_2s, logs[["f1_score_2"]])

self$val_f1_0s <- c(self$val_f1_0s, logs[["val_f1_score_0"]])

self$val_f1_1s <- c(self$val_f1_1s, logs[["val_f1_score_1"]])

self$val_f1_2s <- c(self$val_f1_2s, logs[["val_f1_score_2"]])

}

))

model <- keras_model_sequential()

model %>%

layer_lstm(10, input_shape = c(dim(train.x)[2], dim(train.x)[3])) %>%

#layer_dropout(rate = 0.1) %>%

layer_dense(dim(train.y)[2]) %>%

layer_dropout(rate = 0.1) %>%

layer_activation("softmax")

history <- LossHistory$new()

model %>% compile(

loss = "categorical_crossentropy",

optimizer = optimizer_adam(lr = 0.005),

metrics = c("accuracy",'f1_score_0' = metric_f1_0, 'f1_score_1' = metric_f1_1)

)

lstm.before <- model %>% fit(

x = train.x,

y = train.y,

validation_data=list(vali.x,vali.y),

batch_size = 256,

callbacks = list(history),

epochs = 50
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)

model.over <- keras_model_sequential()

model.over %>%

layer_lstm(10, input_shape = c(dim(over.x)[2], dim(over.x)[3])) %>%

#layer_dropout(rate = 0.1) %>%

layer_dense(dim(over.y)[2]) %>%

layer_dropout(rate = 0.1) %>%

layer_activation("softmax")

history.over <- LossHistory$new()

model.over %>% compile(

loss = "categorical_crossentropy",

optimizer = optimizer_adam(lr = 0.005),

metrics = c("accuracy",'f1_score_0' = metric_f1_0, 'f1_score_1' = metric_f1_1)

)

lstm.after <- model.over %>% fit(

x = over.x,

y = over.y,

validation_data=list(vali.x,vali.y),

batch_size = 256,

callbacks = list(history.over),

epochs = 50

)

3. From the training history, Figures 1 and 2 compare the F1 scores of the two models without and with
oversampling. Figure 3 compares the losses of the two models.

In addition to the training history, Figures 4 and 5 compare the confusion matrices of the two models without
and with oversampling. Figure 6 compares the receiver operating characteristic (ROC) curves of the models.
The final out-of-sample F1 scores of the two trained models are also shown below for comparison.

pred.label <- model %>% predict_classes(test.x)

pred.label.over <- model.over %>% predict_classes(test.x)

## The class 1 F1 score without oversampling: 0.6712329

## The class 0 F1 score without oversampling: 0.9817768

## The class 1 F1 score with oversampling: 0.7368421

## The class 0 F1 score with oversampling: 0.9847793

The Electrocardiogram dataset

The dataset Dataset_ECG was originally created by Goldberger et al. (2000) and records heartbeats from
patients with severe congestive heart failure. The dataset was pre-processed to extract heartbeat sequences
and add labels by Chen et al. (2015). The vignettes uses 5,000 randomly selected heartbeat sequences.

ECG <- Dataset_ECG()

train.label <- ECG$train.y

train.sample <- ECG$train.x

test.label <- ECG$test.y

test.sample <- ECG$test.x

vali.label <- ECG$vali.y

vali.sample <- ECG$vali.x
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F1 of the LSTM classifier on Electrical Devices dataset
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Figure 1: The F1 scores (class 1) of the LSTM classifier trained on the unbalanced and balanced Electrical
Devices dataset. Both metrics are evaluated at the end of each epoch.
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F1 of the LSTM classifier on Electrical Devices dataset
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Figure 2: The F1 scores (class 0) of the LSTM classifier trained on the unbalanced and balanced Electrical
Devices dataset. Both metrics are evaluated at the end of each epoch.
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Loss of the LSTM classifier on Electrical Devices dataset
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Figure 3: The losses of the LSTM classifier trained on the unbalanced and balanced Electrical Devices dataset.
Both metrics are evaluated at the end of each epoch.
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Figure 4: Normalized confusion matrix of LSTM applied to the Electrical Devices dataset without oversam-
pling.
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Figure 5: Normalized confusion matrix of LSTM applied to the Electrical Devices dataset with oversampling.
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False Positive Rate
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Figure 6: ROC curves comparing the effect of oversampling on the performance of LSTM applied to the
Electrical Devices dataset.

Each row in the data represents a sequence of length 140.

dim(train.sample)

## [1] 2296 140

This experiment uses 3 classes of the dataset to ensure a high degree of imbalance: the imbalance ratio is
32:1:2.

table(train.label)

## train.label

## 0 1 2

## 2100 66 130

Let us check that the data is balanced after oversampling.

MyData <- OSTSC(train.sample, train.label, parallel = FALSE)

over.sample <- MyData$sample

over.label <- MyData$label

table(over.label)

## over.label

## 0 1 2

## 2100 2230 2166

We evaluate the effect of oversampling on the performance of LSTM following Steps 1-3 above. First the
data is transformed. During configuring and training the model, the F1 scores and losses are measured at the
end of each epoch using the same validation set.

library(keras)

library(dummies)
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train.y <- dummy(train.label)

test.y <- dummy(test.label)

train.x <- array(train.sample, dim = c(dim(train.sample),1))

test.x <- array(test.sample, dim = c(dim(test.sample),1))

vali.y <- dummy(vali.label)

vali.x <- array(vali.sample, dim = c(dim(vali.sample),1))

over.y <- dummy(over.label)

over.x <- array(over.sample, dim = c(dim(over.sample),1))

model <- keras_model_sequential()

model %>%

layer_lstm(10, input_shape = c(dim(train.x)[2], dim(train.x)[3])) %>%

#layer_dropout(rate = 0.1) %>%

layer_dense(dim(train.y)[2]) %>%

layer_dropout(rate = 0.1) %>%

layer_activation("softmax")

history <- LossHistory$new()

model %>% compile(

loss = "categorical_crossentropy",

optimizer = optimizer_adam(lr = 0.001),

metrics = c("accuracy",'f1_score_0' = metric_f1_0, 'f1_score_1' = metric_f1_1,

'f1_score_2' = metric_f1_2)

)

lstm.before <- model %>% fit(

x = train.x,

y = train.y,

validation_data=list(vali.x,vali.y),

batch_size = 256,

callbacks = list(history),

epochs = 50

)

model.over <- keras_model_sequential()

model.over %>%

layer_lstm(10, input_shape = c(dim(over.x)[2], dim(over.x)[3])) %>%

#layer_dropout(rate = 0.1) %>%

layer_dense(dim(over.y)[2]) %>%

layer_dropout(rate = 0.1) %>%

layer_activation("softmax")

history.over <- LossHistory$new()

model.over %>% compile(

loss = "categorical_crossentropy",

optimizer = optimizer_adam(lr = 0.001),

metrics = c("accuracy",'f1_score_0' = metric_f1_0, 'f1_score_1' = metric_f1_1,

'f1_score_2' = metric_f1_2)

)

lstm.after <- model.over %>% fit(

x = over.x,

y = over.y,

validation_data=list(vali.x,vali.y),

batch_size = 256,

callbacks = list(history.over),

epochs = 50
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)

Keeping the number of epoches fixed, Figures 7, 8 and 9 respectively compare the F1 scores of three different
classes of the two models without and with oversampling. Figure 10 compares the losses of the two models.
From the losses and F1 scores, we note that the model has not yet been adequately trained after 50 epoches.
We are trying to demonstrate the utility of OSTSC with only a modest amount of computation. The user
can of course choose to increase the number of epoches, but will this require more computation. The user
should refer to the larger dataset examples below for comparative evaluations which use more epoches for
training LSTM.

F1 of the LSTM classifier on Electrocardiogram dataset
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Figure 7: The F1 scores (class 2) of the LSTM classifier trained on the unbalanced and balanced Electrocar-
diogram dataset. Both metrics are evaluated at the end of each epoch.

In addition to the training history, Figures 11 and 12 compare the confusion matrices of the two models
without and with oversampling. Figure 13 compares the receiver operating characteristic (ROC) curves of
the models. The final F1 scores of the two trained models, using the same validation set, are also shown
below for comparison.

pred.label <- model %>% predict_classes(test.x)

pred.label.over <- model.over %>% predict_classes(test.x)

## The class 2 F1 score without oversampling: 0.36

## The class 1 F1 score without oversampling: 0.64

## The class 0 F1 score without oversampling: 0.9698858

## The class 2 F1 score with oversampling: 0.6969697
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F1 of the LSTM classifier on Electrocardiogram dataset
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Figure 8: The F1 scores (class 1) of the LSTM classifier trained on the unbalanced and balanced Electrocar-
diogram dataset. Both metrics are evaluated at the end of each epoch.
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F1 of the LSTM classifier on Electrocardiogram dataset
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Figure 9: The F1 scores (class 0) of the LSTM classifier trained on the unbalanced and balanced Electrocar-
diogram dataset. Both metrics are evaluated at the end of each epoch.
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Loss of the LSTM classifier on Electrocardiogram dataset
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Figure 10: The losses of the LSTM classifier trained on the unbalanced and balanced Electrocardiogram
dataset. Both metrics are evaluated at the end of each epoch.
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## The class 1 F1 score with oversampling: 0.5909091

## The class 0 F1 score with oversampling: 0.9784483
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Figure 11: Normalized confusion matrices of LSTM applied to the Electrocardiogram dataset without
oversampling.
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Figure 12: Normalized confusion matrix of LSTM applied to the Electrocardiogram dataset with oversampling.

Evaluating OSTSC on the large datasets

The evaluation of oversampling uses larger datasets: the MHEALTH and HFT datasets. The purpose of this
evaluation is to demonstrate how OSTSC performs at scale. We increase the data sizes by a factor of up to
10x. The evaluation of each dataset takes approximately three hours on a 1.7 GHz four-core laptop with
8GM of RAM.

The MHEALTH dataset

The dataset Dataset_MHEALTH benchmarks techniques for human behavioral analysis applied to multimodal
body sensing (Banos et al. (2014)). In this experiment, only Subjects 1-5 and Feature 12 (the x coordinate of
the magnetometer reading from the left-ankle sensor) are used. The dataset is labeled with a dichotonomous
response (Banos et al. (2015)). Class 11 (Running) is set as the positive and the remaining states are the
negative. The dataset is split into training and testing feature vectors and labels.

MHEALTH <- Dataset_MHEALTH()

train.label <- MHEALTH$train.y

train.sample <- MHEALTH$train.x

test.label <- MHEALTH$test.y

test.sample <- MHEALTH$test.x

vali.label <- MHEALTH$vali.y

vali.sample <- MHEALTH$vali.x

Each row in the data represents a sequence of length 30.
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Figure 13: ROC curves of LSTM applied to the Electrocardiogram dataset, with and without oversampling.

dim(train.sample)

## [1] 10250 30

Class 1 represents the positive data and class 0 represents the negative. The imbalance ratio of the train
dataset is 1:40.

table(train.label)

## train.label

## 0 1

## 10000 250

After oversampling, the positive and negative observations are balanced.

MyData <- OSTSC(train.sample, train.label, parallel = FALSE)

over.sample <- MyData$sample

over.label <- MyData$label

table(over.label)

## over.label

## 0 1

## 10000 10000

We are concerned more here with the comparative performance without and with oversampling and less
with the absolute gain (which is subject to further parameter tuning). Keeping the number of epoches
fixed, Figures 14 and 15 compare the F1 scores of the two models without and with oversampling, Figure 16
compares the losses of the two models, Figures 17 and 18 compare the confusion matrices of the two models
without and with oversampling, and Figure 19 compares the ROC curves of the models. The final F1 scores
of the two trained models, using the same validation set, are also shown below for comparison.
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train.y <- dummy(train.label)

test.y <- dummy(test.label)

train.x <- array(train.sample, dim = c(dim(train.sample),1))

test.x <- array(test.sample, dim = c(dim(test.sample),1))

vali.y <- dummy(vali.label)

vali.x <- array(vali.sample, dim = c(dim(vali.sample),1))

over.y <- dummy(over.label)

over.x <- array(over.sample, dim = c(dim(over.sample),1))

model <- keras_model_sequential()

model %>%

layer_lstm(10, input_shape = c(dim(train.x)[2], dim(train.x)[3])) %>%

layer_dropout(rate = 0.2) %>%

layer_dense(dim(train.y)[2]) %>%

layer_dropout(rate = 0.2) %>%

layer_activation("softmax")

history <- LossHistory$new()

model %>% compile(

loss = "categorical_crossentropy",

optimizer = "adam",

metrics = c("accuracy",'f1_score_0' = metric_f1_0, 'f1_score_1' = metric_f1_1)

)

lstm.before <- model %>% fit(

x = train.x,

y = train.y,

validation_data=list(vali.x,vali.y),

callbacks = list(history),

epochs = 50

)

model.over <- keras_model_sequential()

model.over %>%

layer_lstm(10, input_shape = c(dim(over.x)[2], dim(over.x)[3])) %>%

layer_dropout(rate = 0.1) %>%

layer_dense(dim(over.y)[2]) %>%

layer_dropout(rate = 0.1) %>%

layer_activation("softmax")

history.over <- LossHistory$new()

model.over %>% compile(

loss = "categorical_crossentropy",

optimizer = "adam",

metrics = c("accuracy",'f1_score_0' = metric_f1_0, 'f1_score_1' = metric_f1_1)

)

lstm.after <- model.over %>% fit(

x = over.x,

y = over.y,

validation_data=list(vali.x,vali.y),

callbacks = list(history.over),

epochs = 50

)

pred.label <- model %>% predict_classes(test.x)

pred.label.over <- model.over %>% predict_classes(test.x)
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F1 of the LSTM classifier on MHEALTH dataset
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Figure 14: The F1 scores (class 1) of the LSTM classifier trained on the unbalanced and balanced MHEALTH
dataset. Both metrics are evaluated at the end of each epoch.
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F1 of the LSTM classifier on MHEALTH dataset
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Figure 15: The F1 scores (class 0) of the LSTM classifier trained on the unbalanced and balanced MHEALTH
dataset. Both metrics are evaluated at the end of each epoch.
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Loss of the LSTM classifier on MHEALTH dataset
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Figure 16: The losses of the LSTM classifier trained on the unbalanced and balanced MHEALTH dataset.
Both metrics are evaluated at the end of each epoch.
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## The class 1 F1 score without oversampling: 0.4496487

## The class 0 F1 score without oversampling: 0.985566

## The class 1 F1 score with oversampling: 0.493992

## The class 0 F1 score with oversampling: 0.9762516
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Figure 17: Normalized confusion matrix of LSTM applied to the MHEALTH dataset without oversampling.
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Figure 18: Normalized confusion matrix of LSTM applied to the MHEALTH dataset with oversampling.

The high frequency trading dataset

The dataset Dataset_HFT has already been introduced in the Data loading & oversampling section. The
purpose of this example is to demonstrate the application of oversampling to a large sized dataset consisting
of 30,000 observations instead of 300. For control, the imbalance ratio of the dataset is configured to be the
same as the smaller dataset. We split the training, validating and testing data by a ratio of 20:3:7.

HFT <- Dataset_HFT()

label <- HFT$y

sample <- HFT$x

train.label <- label[1:20000]

train.sample <- sample[1:20000, ]

test.label <- label[23001:30000]

test.sample <- sample[23001:30000, ]

vali.label <- label[20001:23000]

vali.sample <- sample[20001:23000, ]

The imbalance ratio of the training data is 1:48:1.

table(train.label)

## train.label

## -1 0 1
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Figure 19: ROC curves of LSTM applied to the MHEALTH dataset, with and without oversampling.

## 383 19269 348

After oversampling the data is balanced.

MyData <- OSTSC(train.sample, train.label, parallel = FALSE)

over.sample <- MyData$sample

over.label <- MyData$label

table(over.label)

## over.label

## -1 0 1

## 19617 19269 19652

We increase the number of epoches to 100. Figures 20, 21 and 22 compare the F1 scores of the two models
without and with oversampling. Figure 23 compares the losses of the two models. Figures 24 and 25 compare
the confusion matrices of the two models without and with oversampling. Figure 26 compares the ROC
curves of the models. The final F1 scores of the two trained models, using the same validation set, are also
shown below for comparison.

train.y <- dummy(train.label)

test.y <- dummy(test.label)

train.x <- array(train.sample, dim = c(dim(train.sample),1))

test.x <- array(test.sample, dim = c(dim(test.sample),1))

vali.y <- dummy(vali.label)

vali.x <- array(vali.sample, dim = c(dim(vali.sample),1))

over.y <- dummy(over.label)

over.x <- array(over.sample, dim = c(dim(over.sample),1))

model <- keras_model_sequential()

model %>%

layer_lstm(10, input_shape = c(dim(train.x)[2], dim(train.x)[3])) %>%
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layer_dropout(rate = 0.1) %>%

layer_dense(dim(train.y)[2]) %>%

layer_dropout(rate = 0.1) %>%

layer_activation("softmax")

history <- LossHistory$new()

model %>% compile(

loss = "categorical_crossentropy",

optimizer = "adam",

metrics = c("accuracy",'f1_score_0' = metric_f1_0, 'f1_score_1' = metric_f1_1,

'f1_score_2' = metric_f1_2)

)

lstm.before <- model %>% fit(

x = train.x,

y = train.y,

validation_data=list(vali.x,vali.y),

callbacks = list(history),

epochs = 100

)

model.over <- keras_model_sequential()

model.over %>%

layer_lstm(10, input_shape = c(dim(train.x)[2], dim(train.x)[3])) %>%

layer_dropout(rate = 0.1) %>%

layer_dense(dim(train.y)[2]) %>%

layer_dropout(rate = 0.1) %>%

layer_activation("softmax")

history.over <- LossHistory$new()

model.over %>% compile(

loss = "categorical_crossentropy",

optimizer = "adam",

metrics = c("accuracy",'f1_score_0' = metric_f1_0, 'f1_score_1' = metric_f1_1,

'f1_score_2' = metric_f1_2)

)

lstm.after <- model.over %>% fit(

x = over.x,

y = over.y,

validation_data=list(vali.x,vali.y),

callbacks = list(history.over),

epochs = 100

)

pred.label <- model %>% predict_classes(test.x)

pred.label.over <- model.over %>% predict_classes(test.x)

## The class 1 F1 score without oversampling: 0.1538462

## The class 0 F1 score without oversampling: 0.9757571

## The class -1 F1 score without oversampling: 0.1826923

## The class 1 F1 score with oversampling: 0.2854311

## The class 0 F1 score with oversampling: 0.9007458

## The class -1 F1 score with oversampling: 0.2810127

The comparative results are similar to the MHEALTH dataset - oversampling improves the performance and
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F1 of the LSTM classifier on HFT dataset
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Figure 20: The F1 scores (class 1) of the LSTM classifier trained on the unbalanced and balanced HFT
dataset. Both metrics are evaluated at the end of each epoch.
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F1 of the LSTM classifier on HFT dataset
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Figure 21: The F1 scores (class 0) of the LSTM classifier trained on the unbalanced and balanced HFT
dataset. Both metrics are evaluated at the end of each epoch.
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F1 of the LSTM classifier on HFT dataset
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Figure 22: The F1 scores (class -1) of the LSTM classifier trained on the unbalanced and balanced HFT
dataset. Both metrics are evaluated at the end of each epoch.
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Loss of the LSTM classifier on HFT dataset
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Figure 23: The losses of the LSTM classifier trained on the unbalanced and balanced HFT dataset. Both
metrics are evaluated at the end of each epoch.
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Figure 24: Normalized confusion matrices of LSTM applied to the HFT dataset without oversampling.
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Figure 25: Normalized confusion matrix of LSTM applied to the HFT dataset with oversampling.

31



False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

0 0.2 0.4 0.6 0.8 1

0
0

.2
0

.4
0

.6
0

.8
1

AUC: 0.543

AUC: 0.784

Before Oversampling

After Oversampling

Figure 26: ROC curves of LSTM applied to the HFT dataset with and without oversampling.

the comparative gain from using OSTSC only increases with more training observations and more epoches.

Summary

The OSTSC package is a powerful oversampling approach for classifying univariant, but multinomial time series
data. This vignette provides a brief overview of the over-sampling methodology implemented by the package.
We first provide three examples for the user to verify correct package installation and reproduceability of the
results. Using a ‘TensorFlow’ implementation of an LSTM architecture, we compared the classifier with and
without oversampling. We then repeated the evaluation on two medium size datasets which demonstrate the
performance gains from using OSTSC and do not require significant computation. Finally, two large datasets
are evaluated to demonstrate the scalability of the package. The examples serve to demonstrate that the
OSTSC package improves the performance of RNN classifiers applied to highly imbalanced time series data.
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