
Package ‘NoiseFiltersR’
August 29, 2016

Type Package

Title Label Noise Filters for Data Preprocessing in Classification

Version 0.1.0

Description An extensive implementation of state-of-the-art and classical
algorithms to preprocess label noise in classification problems.

License GPL-3

LazyData TRUE

Imports RWeka, kknn, nnet, caret, e1071, rpart, randomForest, MASS,
rJava, stats, utils

Depends R (>= 3.3.0)

RoxygenNote 5.0.1

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation no

Author Pablo Morales [aut],
Julian Luengo [aut, cre],
Luis P.F. Garcia [aut],
Ana C. Lorena [aut],
Andre C.P.L.F. de Carvalho [aut],
Francisco Herrera [aut]

Maintainer Julian Luengo <julianlm@decsai.ugr.es>

Repository CRAN

Date/Publication 2016-06-24 12:34:50

R topics documented:
AENN . 2
BBNR . 3
C45ensembles . 5
CNN . 7
CVCF . 9

1

2 AENN

DROP . 10
dynamicCF . 12
edgeBoostFilter . 13
EF . 15
ENG . 17
ENN . 18
EWF . 19
GE . 21
HARF . 22
hybridRepairFilter . 24
INFFC . 26
IPF . 27
ModeFilter . 29
ORBoostFilter . 31
PF . 33
PRISM . 35
RNN . 36
saturationFilter . 38
summary.filter . 40
TomekLinks . 41

Index 43

AENN All-k Edited Nearest Neighbors

Description

Similarity-based filter for removing label noise from a dataset as a preprocessing step of classifica-
tion. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
AENN(formula, data, ...)

Default S3 method:
AENN(x, k = 5, classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

k Total number of nearest neighbors to be used.

classColumn Positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

BBNR 3

Details

AENN applies the Edited Nearest Neighbor algorithm ENN for all integers between 1 and k on the
whole dataset. At the end, any instance considered noisy by some ENN is removed.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab contains the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

References

Tomek I. (1976, June): An Experiment with the Edited Nearest-Neighbor Rule, in Systems, Man
and Cybernetics, IEEE Transactions on, vol.SMC-6, no.6, pp. 448-452.

Examples

Next example is not run in order to save time
Not run:
data(iris)
out <- AENN(Species~.-Petal.Length,iris)
print(out)
identical(out$cleanData, iris[setdiff(1:nrow(iris),out$remIdx),])

End(Not run)

BBNR Blame Based Noise Reduction

Description

Similarity-based filter for removing label noise from a dataset as a preprocessing step of classifica-
tion. For more information, see ’Details’ and ’References’ sections.

4 BBNR

Usage

S3 method for class 'formula'
BBNR(formula, data, ...)

Default S3 method:
BBNR(x, k = 3, classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

k Number of nearest neighbors to be used.

classColumn positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

Details

BBNR removes an instance ’X’ if: (i) it participates in the misclassification of other instance (i.e. ’X’
is among the k nearest neighbors of a misclassified instance and has a different class); and (ii) its
removal does not produce a misclassification in instances that, initially, were correctly classified by
’X’ (i.e. ’X’ was initially among the k nearest neighbors and had the same class).

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

References

Delany S. J., Cunningham P. (2004): An analysis of case-base editing in a spam filtering system. In
Advances in Case-Based Reasoning (pp. 128-141). Springer Berlin Heidelberg.

C45ensembles 5

Examples

Next example is not run in order to save time
Not run:
data(iris)
out <- BBNR(iris, k = 5)
print(out)
identical(out$cleanData, iris[setdiff(1:nrow(iris),out$remIdx),])

End(Not run)

C45ensembles Classical Filters based on C4.5

Description

Ensembled-based filters that use C4.5 classifier to remove label noise from a dataset as a prepro-
cessing step of classification. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
C45robustFilter(formula, data, ...)

Default S3 method:
C45robustFilter(x, classColumn = ncol(x), ...)

S3 method for class 'formula'
C45votingFilter(formula, data, ...)

Default S3 method:
C45votingFilter(x, nfolds = 10, consensus = FALSE,
classColumn = ncol(x), ...)

S3 method for class 'formula'
C45iteratedVotingFilter(formula, data, ...)

Default S3 method:
C45iteratedVotingFilter(x, nfolds = 10, consensus = FALSE,
classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

classColumn Positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

6 C45ensembles

nfolds Number of folds in which the dataset is split.

consensus Logical. If TRUE, consensus voting scheme is used. If FALSE, majority voting
scheme is applied.

Details

Full description of the methods can be looked up in the provided reference. Notice that C4.5 is
used as base classifier instead of TILDE, since a standard attribute-value classification framework
is considered (instead of the ILP classification approach of the reference).

C45robustFilter builds a C4.5 decision tree from the training data, and then removes those in-
stances misclassfied by this tree. The process is repeated until no instances are removed.

C45votingFilter splits the dataset into nfolds folds, building and testing a C4.5 tree on every
combination of nfolds-1 folds. Thus nfolds-1 votes are gathered for each instance. Removal is
carried out by majority or consensus voting schemes.

C45iteratedVotingFilter somehow combines the two previous filter, since it iterates C45votingFilter
until no more noisy instances are removed.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

Note

By means of a message, the number of noisy instances removed is displayed in the console.

References

Verbaeten S. (2002, December): Identifying mislabeled training examples in ILP classification
problems, in Proc. 12th Belgian-Dutch Conf. Mach. Learn., Utrecht, The Netherlands, pp. 71-
78.

CNN 7

Examples

Next example is not run in order to save time
Not run:
data(iris)
out1 <- C45robustFilter(Species~.-Sepal.Length, iris)
We fix a seed since next two functions create partitions of data for the ensemble
set.seed(1)
out2 <- C45votingFilter(iris, consensus = TRUE)
out3 <- C45iteratedVotingFilter(Species~., iris, nfolds = 5)
print(out1)
print(out2)
print(out3)
identical(out1$cleanData,iris[setdiff(1:nrow(iris),out1$remIdx),])
identical(out2$cleanData,iris[setdiff(1:nrow(iris),out2$remIdx),])
identical(out3$cleanData,iris[setdiff(1:nrow(iris),out3$remIdx),])

End(Not run)

CNN Condensed Nearest Neighbors

Description

Similarity-based method designed to select the most relevant instances for subsequent classification
with a nearest neighbor rule. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
CNN(formula, data, ...)

Default S3 method:
CNN(x, classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

classColumn positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

8 CNN

Details

CNN searches for a ’consistent subset’ of the provided dataset, i.e. a subset that is enough for
correctly classifying the rest of instances by means of 1-NN. To do so, CNN stores the first instance
and goes for a first sweep over the dataset, adding to the stored bag those instances which are not
correctly classified by 1-NN taking the stored bag as training set. Then, the process is iterated until
all non-stored instances are correctly classified.

Although CNN is not strictly a label noise filter, it is included here for completeness, since the origins
of noise filters are connected with instance selection algorithms.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

References

Hart P. (May, 1968): The condensed nearest neighbor rule, IEEE Trans. Inf. Theory, vol. 14, no. 5,
pp. 515-516.

See Also

RNN

Examples

Next example is not run in order to save time
Not run:
data(iris)
out <- CNN(iris)
print(out)
length(out$remIdx)
identical(out$cleanData, iris[setdiff(1:nrow(iris),out$remIdx),])

End(Not run)

CVCF 9

CVCF Cross-Validated Committees Filter

Description

Ensemble-based filter for removing label noise from a dataset as a preprocessing step of classifica-
tion. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
CVCF(formula, data, ...)

Default S3 method:
CVCF(x, nfolds = 10, consensus = FALSE,
classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

nfolds number of folds in which the dataset is split.

consensus logical. If TRUE, consensus voting scheme is used. If FALSE, majority voting
scheme is applied.

classColumn positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

Details

Full description of the method can be looked up in the provided references. Dataset is split in
nfolds folds, a base classifiers (C4.5 in this implementation) is built over every combination of
nfolds-1 folds, and then tested on the whole dataset. Finally, consensus or majority voting scheme
is applied to remove noisy instances.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

10 DROP

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

References

Verbaeten S., Van Assche A. (2003, June): Ensemble methods for noise elimination in classification
problems. Proc. 4th Int. Conf. Multiple Classifier Syst., Guildford, U.K., pp. 317-325.

Examples

Next example is not run in order to save time
Not run:
data(iris)
We fix a seed since there exists a random partition for the ensemble
set.seed(1)
out <- CVCF(Species~.-Sepal.Width, data = iris)
print(out)
identical(out$cleanData, iris[setdiff(1:nrow(iris),out$remIdx),])

End(Not run)

DROP Decremental Reduction Optimization Procedures

Description

Similarity-based filters for removing label noise from a dataset as a preprocessing step of classifi-
cation. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
DROP1(formula, data, ...)

Default S3 method:
DROP1(x, k = 1, classColumn = ncol(x), ...)

S3 method for class 'formula'
DROP2(formula, data, ...)

Default S3 method:
DROP2(x, k = 1, classColumn = ncol(x), ...)

S3 method for class 'formula'
DROP3(formula, data, ...)

DROP 11

Default S3 method:
DROP3(x, k = 1, classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

k Number of nearest neighbors to be used.

classColumn positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

Details

DROP1 goes over the dataset in the provided order, and removes those instances whose removal does
not decrease the accuracy of the 1-NN rule in the remaining dataset.

DROP2 introduces two modifications against DROP1. Regarding the order of processing instances,
DROP2 starts with those which are furthest from their nearest "enemy" (two instances are said to be
"enemies" if they belong to different classes). Moreover, DROP2 removes an instance if its removal
does not decrease the accuracy of the 1-NN rule in the original dataset (rather than the remaining
dataset as in DROP1).

DROP3 is identical to DROP2, but it includes a preprocessing step to clean the borders between classes.
It consists of applying the ENN method: any instance misclassified by its k nearest neighbors is
removed.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

References

Wilson D. R., Martinez T. R. (2000): Reduction techniques for instance-based learning algorithms.
Machine learning, 38(3), 257-286. Wilson D. R., Martinez T. R. (1997, July): Instance pruning
techniques. In ICML (Vol. 97, pp. 403-411).

12 dynamicCF

Examples

Next example is not run in order to save time
Not run:
data(iris)
trainData <- iris[c(1:20,51:70,101:120),]
out1 <- DROP1(Species~ Petal.Length + Petal.Width, data = trainData)
summary(out1, explicit = TRUE)
identical(out1$cleanData, trainData[setdiff(1:nrow(trainData),out1$remIdx),])

End(Not run)

dynamicCF Dynamic Classification Filter

Description

Ensemble-based filter for removing label noise from a dataset as a preprocessing step of classifica-
tion. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
dynamicCF(formula, data, ...)

Default S3 method:
dynamicCF(x, nfolds = 10, consensus = FALSE, m = 3,
classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.
data, x Data frame containing the tranining dataset to be filtered.
... Optional parameters to be passed to other methods.
nfolds Number of folds for the cross voting scheme.
consensus If set to TRUE, consensus voting scheme is applied. Otherwise (default), majority

scheme is used.
m Number of classifiers to make up the ensemble. It must range between 1 and 9.
classColumn Positive integer indicating the column which contains the (factor of) classes. By

default, the last column is considered.

Details

dynamicCF (Garcia et al., 2012) follows the same approach as EF, but the ensemble of classifiers
is not fixed beforehand. Namely, dynamicCF trains 9 well-known classifiers in the dataset to be
filtered, and selects for the ensemble those with the m best predictions. Then, a nfolds-folds cross
voting scheme is applied, with consensus or majority strategies depending on parameter consensus.
The nine (standard) classifiers handled by dynamicCF are SVM, 3-KNN, 5-KNN, 9-KNN, CART,
C4.5, Random Forest, Naive Bayes and Multilayer Perceptron Neural Network.

edgeBoostFilter 13

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

References

Garcia L. P. F., Lorena A. C., Carvalho A. C. (2012, October): A study on class noise detection and
elimination. In Brazilian Symposium on Neural Networks (SBRN), pp. 13-18, IEEE.

Examples

Next example is not run in order to save time
Not run:
data(iris)
trainData <- iris[c(1:20,51:70,101:120),]
We fix a seed since there exists a random partition for the ensemble
set.seed(1)
out <- dynamicCF(Species~Petal.Length + Sepal.Length, data = trainData, nfolds = 5, m = 3)
summary(out, explicit = TRUE)
identical(out$cleanData, trainData[setdiff(1:nrow(trainData),out$remIdx),])

End(Not run)

edgeBoostFilter Edge Boosting Filter

Description

Ensemble-based filter for removing label noise from a dataset as a preprocessing step of classifica-
tion. For more information, see ’Details’ and ’References’ sections.

14 edgeBoostFilter

Usage

S3 method for class 'formula'
edgeBoostFilter(formula, data, ...)

Default S3 method:
edgeBoostFilter(x, m = 15, percent = 0.05,
threshold = 0, classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

m Number of boosting iterations

percent Real number between 0 and 1. It sets the percentage of instances to be removed
(as long as their edge value exceeds the parameter threshold).

threshold Real number between 0 and 1. It sets the minimum edge value required by an
instance in order to be removed.

classColumn Positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

Details

The full description of the method can be looked up in the provided reference.

An AdaBoost scheme (Freund & Schapire) is applied with a default C4.5 tree as weak classifier.
After m iterations, those instances with larger (according to the constraints percent and threshold)
edge values (Wheway, Freund & Schapire) are considered noisy and thus removed.

Notice that making use of extreme values (i.e. percent=1 or threshold=0) any ’removing con-
straints’ can be ignored.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

EF 15

References

Freund Y., Schapire R. E. (1997): A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1), 119-139.

Wheway V. (2001, January): Using boosting to detect noisy data. In Advances in Artificial Intelli-
gence. PRICAI 2000 Workshop Reader (pp. 123-130). Springer Berlin Heidelberg.

Examples

Next example is not run in order to save time
Not run:
data(iris)
out <- edgeBoostFilter(Species~., data = iris, m = 10, percent = 0.05, threshold = 0)
print(out)
identical(out$cleanData, iris[setdiff(1:nrow(iris),out$remIdx),])

End(Not run)

EF Ensemble Filter

Description

Ensemble-based filter for removing label noise from a dataset as a preprocessing step of classifica-
tion. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
EF(formula, data, ...)

Default S3 method:
EF(x, nfolds = 4, consensus = TRUE,
classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

nfolds number of folds in which the dataset is split.

consensus logical. If TRUE, consensus voting scheme is used. If FALSE, majority voting
scheme is applied.

classColumn positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

16 EF

Details

Full description of the method can be looked up in the provided references. Dataset is split in
nfolds folds, an ensemble of three different base classifiers (C4.5, 1-KNN, LDA) is built over every
combination of nfolds-1 folds, and then tested on the other one. Finally, consensus or majority
voting scheme is applied to remove noisy instances.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

References

Brodley C. E., Friedl M. A. (1996, May): Improving automated land cover mapping by identifying
and eliminating mislabeled observations from training data. In Geoscience and Remote Sensing
Symposium, 1996. IGARSS’96.’Remote Sensing for a Sustainable Future.’, International (Vol. 2,
pp. 1379-1381). IEEE.

Brodley C. E., Friedl M. A. (1996, August): Identifying and eliminating mislabeled training in-
stances. In AAAI/IAAI, Vol. 1 (pp. 799-805).

Brodley C. E., Friedl M. A. (1999): Identifying mislabeled training data. Journal of Artificial
Intelligence Research, 131-167.

Examples

data(iris)
We fix a seed since there exists a random partition for the ensemble
set.seed(1)
out <- EF(Species~., data = iris, consensus = FALSE)
summary(out, explicit = TRUE)
identical(out$cleanData, iris[setdiff(1:nrow(iris),out$remIdx),])

ENG 17

ENG Editing with Neighbor Graphs

Description

Similarity-based filter for removing label noise from a dataset as a preprocessing step of classifica-
tion. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
ENG(formula, data, ...)

Default S3 method:
ENG(x, graph = "RNG", classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

graph Character indicating the type of graph to be constructed. It can be chosen be-
tween ’GG’ (Gabriel Graph) and ’RNG’ (Relative Neighborhood Graph). See
’References’ for more details on both graphs.

classColumn positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

Details

ENG builds a neighborhood graph which can be either Gabriel Graph (GG) or Relative Neighbor-
hood Graph (RNG) [S\’anchez et al., 1997]. Then, an instance is considered as ’potentially noisy’ if
most of its neighbors have a different class. To decide whether such an instance ’X’ is removed, let
S be the subset given by ’X’ together with its neighbors from the same class. Compute the majority
class ’C’ among the neighbors of examples in S, and remove ’X’ if its class is not ’C’.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

18 ENN

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

References

S\’anchez J. S., Pla F., Ferri F. J. (1997): Prototype selection for the nearest neighbour rule through
proximity graphs. Pattern Recognition Letters, 18(6), 507-513.

Examples

The example is not run because the graph construction is quite time-consuming.
Not run:

data(iris)
trainData <- iris[c(1:20,51:70,101:120),]
out <- ENG(Species~Petal.Length + Petal.Width, data = trainData, graph = "RNG")
print(out)
identical(out$cleanData,trainData[setdiff(1:nrow(trainData),out$remIdx),])

End(Not run)

ENN Edited Nearest Neighbors

Description

Similarity-based filter for removing label noise from a dataset as a preprocessing step of classifica-
tion. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
ENN(formula, data, ...)

Default S3 method:
ENN(x, k = 3, classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

k Number of nearest neighbors to be used.

classColumn positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

EWF 19

Details

ENN finds the k nearest neighbors for each instance, which is removed if the majority class in this
neighborhood is different from its class.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

References

Wilson D. L. (1972): Asymptotic properties of nearest neighbor rules using edited data. Systems,
Man and Cybernetics, IEEE Transactions on, (3), 408-421.

Examples

data(iris)
out <- ENN(Species~., data = iris, k = 5)
summary(out)
identical(out$cleanData, iris[setdiff(1:nrow(iris),out$remIdx),])

EWF Edge Weight Filter

Description

Similarity-based filter for removing or repairing label noise from a dataset as a preprocessing step
of classification. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
EWF(formula, data, ...)

Default S3 method:
EWF(x, threshold = 0.25, noiseAction = "remove",
classColumn = ncol(x), ...)

20 EWF

Arguments

formula A formula describing the classification variable and the attributes to be used.
data, x Data frame containing the tranining dataset to be filtered.
... Optional parameters to be passed to other methods.
threshold Real number between 0 and 1. It sets the limit between good and suspicious

instances. Its default value is 0.25.
noiseAction Character being either ’remove’ or ’hybrid’. It determines what to do with noisy

instances. By default, it is set to ’remove’.
classColumn positive integer indicating the column which contains the (factor of) classes. By

default, the last column is considered.

Details

EWF builds up a Relative Neighborhood Graph (RNG) from the dataset. Then, it identifies as ’suspi-
cious’ those instances with a significant value of itslocal cut edge weight statistic, which intuitively
means that they are surrounded by examples from a different class.

Namely, the aforementioned statistic is the sum of the weights of edges joining the instance (in
the RNG graph) with instances from a different class. Under the null hypothesis of the class label
being independent of the event ’being neighbors in the RNG graph’, the distribution of this statistic
can be approximated by a gaussian one. Then, the p-value for the observed value is computed and
contrasted with the provided threshold.

To handle ’suspicious’ instances there are two approaches (’remove’ or ’hybrid’), and the argument
’noiseAction’ determines which one to use. With ’remove’, every suspect is removed from the
dataset. With the ’hybrid’ approach, an instance is removed if it does not have good (i.e. non-
suspicious) RNG-neighbors. Otherwise, it is relabelled with the majority class among its good
RNG-neighbors.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.
• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row

number with respect to the original data frame).
• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their

row number with respect to the original data frame).
• repLab is a factor containing the new labels for repaired instances.
• parameters is a list containing the argument values.
• call contains the original call to the filter.
• extraInf is a character that includes additional interesting information not covered by previ-

ous items.

References

Muhlenbach F., Lallich S., Zighed D. A. (2004): Identifying and handling mislabelled instances.
Journal of Intelligent Information Systems, 22(1), 89-109.

GE 21

Examples

Next example is not run because EWF is time-consuming
Not run:

data(iris)
trainData <- iris[c(1:20,51:70,101:120),]
out <- EWF(Species~Petal.Length+Sepal.Length, data = trainData, noiseAction = "hybrid")
print(out)

End(Not run)

GE Generalized Edition

Description

Similarity-based filter for removing or repairing label noise from a dataset as a preprocessing step
of classification. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
GE(formula, data, ...)

Default S3 method:
GE(x, k = 5, kk = ceiling(k/2), classColumn = ncol(x),
...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

k Number of nearest neighbors to be considered.

kk Minimum size for local majority class in order to relabel an instance.

classColumn positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

Details

GE is a generalization of ENN that integrates the possibility of ’repairing’ or ’relabeling’ instances
rather than only ’removing’. For each instance, GE considers its k-1 neighbors and the instance
itself. If there are at least kk examples from the same class, the instance is relabeled with that class
(which could be its own). Otherwise, it is removed.

22 HARF

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

References

Koplowitz J., Brown T. A. (1981): On the relation of performance to editing in nearest neighbor
rules. Pattern Recognition, 13(3), 251-255.

Examples

Next example is not run in order to save time
Not run:
data(iris)
out <- GE(iris)
summary(out, explicit = TRUE)
We check that the process was correct
irisCopy <- iris
irisCopy[out$repIdx,5] <- out$repLab
cleanData <- irisCopy[setdiff(1:nrow(iris),out$remIdx),]
identical(out$cleanData,cleanData)

End(Not run)

HARF High Agreement Random Forest

Description

Ensemble-based filter for removing label noise from a dataset as a preprocessing step of classifica-
tion. For more information, see ’Details’ and ’References’ sections.

HARF 23

Usage

S3 method for class 'formula'
HARF(formula, data, ...)

Default S3 method:
HARF(x, nfolds = 10, agreementLevel = 0.7, ntrees = 500,
classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

nfolds Number of folds for the cross voting scheme.

agreementLevel Real number between 0.5 and 1. An instance is identified as noise when the
classification confidences provided by the random forest to the classes that are
not the actual class of the instance add up at least agreementLevel. Authors
obtain the best performance in (Sluban et al., 2010) when setting it between 0.7
and 0.8.

ntrees Number of trees for the random forest.

classColumn Positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

Details

Making use of a nfolds-folds cross validation scheme, instances are identified as noise and re-
moved when a random forest provides little confidence for the actual instance’s label (namely, less
than 1-agreementLevel). The value of agreementLevel allows to tune the precision and recall of
the filter, getting the best trade-off when moving between 0.7 and 0.8 (Sluban et al., 2010).

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

24 hybridRepairFilter

References

Sluban B., Gamberger D., Lavrac N. (2010, August): Advances in Class Noise Detection. In ECAI
(pp. 1105-1106).

Examples

Next example is not run in order to save time
Not run:
data(iris)
We fix a seed since there exists a random partition for the ensemble
set.seed(1)
out <- HARF(Species~., data = iris, ntrees = 100)
print(out)
identical(out$cleanData, iris[setdiff(1:nrow(iris),out$remIdx),])

End(Not run)

hybridRepairFilter Hybrid Repair-Remove Filter

Description

Ensemble-based filter for removing or repairing label noise from a dataset as a preprocessing step
of classification. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
hybridRepairFilter(formula, data, ...)

Default S3 method:
hybridRepairFilter(x, consensus = FALSE,
noiseAction = "remove", classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be processed.

... Optional parameters to be passed to other methods.

consensus If set to TRUE, consensus voting scheme is applied to identify noisy instances.
Otherwise (default), majority approach is used.

noiseAction Character which can be set to "remove", "repair" or "hybrid". The filter accord-
ingly decides what to do with the identified noise (see Details).

classColumn Positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

hybridRepairFilter 25

Details

As presented in (Miranda et al., 2009), hybridRepairFilter builds on the dataset an ensemble
of four classifiers: SVM, Neural Network, CART, KNN (combining k=1,3,5). According to their
predictions and majority or consensus voting schemes, a subset of instances are labeled as noise.
These are removed if noiseAction equals "remove", their class is changed into the most voted
among the ensemble if noiseAction equals "repair", and when the latter is set to "hybrid", the vote
of KNN decides whether remove or repair.

All this procedure is repeated while the accuracy (over the original dataset) of the ensemble trained
with the processed dataset increases.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

References

Miranda A. L., Garcia L. P. F., Carvalho A. C., Lorena A. C. (2009): Use of classification algorithms
in noise detection and elimination. In Hybrid Artificial Intelligence Systems (pp. 417-424). Springer
Berlin Heidelberg.

Examples

Next example is not run in order to save time
Not run:
data(iris)
out <- hybridRepairFilter(iris, noiseAction = "hybrid")
summary(out, explicit = TRUE)

End(Not run)

26 INFFC

INFFC Iterative Noise Filter based on the Fusion of Classifiers

Description

Ensemble-based filter for removing label noise from a dataset as a preprocessing step of classifica-
tion. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
INFFC(formula, data, ...)

Default S3 method:
INFFC(x, consensus = FALSE, p = 0.01, s = 3, k = 5,
threshold = 0, classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

consensus Logical. If FALSE, majority voting scheme is used for ’preliminary filtering’
and ’noise free filtering’ (see ’Details’ and References’ section). If TRUE, con-
sensus voting scheme is applied.

p Real number between 0 and 1. It sets the minimum proportion of original in-
stances which must be tagged as noisy in order to go for another iteration.

s Positive integer setting the stop criterion together with p. The filter stops after s
iterations with not enough noisy instances removed (according to the proportion
p).

k Parameter for the k-nearest neighbors algorithm used for the ’noise score’ stage
(see ’Details’ and ’References’).

threshold Real number between -1 and 1. It sets the noise score value above which an
instance is removed.

classColumn Positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

Details

The full description of the method can be looked up in the provided reference. A ’preliminary fil-
tering’ is carried out with a fusion of classifiers (FC), including C4.5, 3NN, and logistic regression.
Then, potentially noisy instances are identified in a ’noise free filtering’ process building the FC on
the (preliminary) filtered instances. Finally, a ’noise score’ is computed on these potentially noisy
instances, removing those exceeding the threshold value. The process stops after s iterations with
not enough (according to the proportion p) noisy instances removed.

IPF 27

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

Note

By means of a message, the number of noisy instances removed in each iteration is displayed in the
console.

References

S\’aez J. A., Galar M., Luengo J., Herrera F. (2016): INFFC: An iterative class noise filter based on
the fusion of classifiers with noise sensitivity control. Information Fusion, 27, 19-32.

Examples

Next example is not run because it might be time-consuming
Not run:
data(iris)
out <- INFFC(Species~., data = iris)
summary(out)
identical(out$cleanData, iris[setdiff(1:nrow(iris),out$remIdx),])

End(Not run)

IPF Iterative Partitioning Filter

Description

Ensemble-based filter for removing label noise from a dataset as a preprocessing step of classifica-
tion. For more information, see ’Details’ and ’References’ sections.

28 IPF

Usage

S3 method for class 'formula'
IPF(formula, data, ...)

Default S3 method:
IPF(x, nfolds = 5, consensus = FALSE, p = 0.01, s = 3,
y = 0.5, classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

nfolds Number of partitions in each iteration.

consensus Logical. If FALSE, majority voting scheme is used. If TRUE, consensus voting
scheme is applied.

p Real number between 0 and 1. It sets the minimum proportion of original in-
stances which must be tagged as noisy in order to go for another iteration.

s Positive integer setting the stop criterion together with p. The filter stops after s
iterations with not enough noisy instances removed (according to the proportion
p, see the ’Details’).

y Real number between 0 and 1. It sets the proportion of good instances which
must be stored in each iteration.

classColumn Positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

Details

The full description of the method can be looked up in the provided references. A base classifier
is built in each of the nfolds partitions of data. Then, they are tested in the whole dataset, and
the removal of noisy instances is decided via consensus or majority voting schemes. Finally, a
proportion of good instances (i.e. those whose label agrees with all the base classifiers) is stored
and removed for the next iteration. The process stops after s iterations with not enough (according
to the proportion p) noisy instances removed. In this implementation, the base classifier used is
C4.5.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

ModeFilter 29

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

Note

By means of a message, the number of noisy instances removed in each iteration is displayed in the
console.

References

Khoshgoftaar T. M., Rebours P. (2007): Improving software quality prediction by noise filtering
techniques. Journal of Computer Science and Technology, 22(3), 387-396.

Zhu X., Wu X., Chen Q. (2003, August): Eliminating class noise in large datasets. International
Conference in Machine Learning (Vol. 3, pp. 920-927).

Examples

Next example is not run in order to save time
Not run:
data(iris)
We fix a seed since there exists a random folds partition for the ensemble
set.seed(1)
out <- IPF(Species~., data = iris, s = 2)
summary(out, explicit = TRUE)
identical(out$cleanData, iris[setdiff(1:nrow(iris),out$remIdx),])

End(Not run)

ModeFilter Mode Filter

Description

Similarity-based filter for removing or repairing label noise from a dataset as a preprocessing step
of classification. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
ModeFilter(formula, data, ...)

Default S3 method:
ModeFilter(x, type = "classical", noiseAction = "repair",
epsilon = 0.05, maxIter = 100, alpha = 1, beta = 1,
classColumn = ncol(x), ...)

30 ModeFilter

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

type Character indicating the scheme to be used. It can be ’classical’, ’iterative’ or
’weighted’.

noiseAction Character indicating what to do with noisy instances. It can be either ’remove’
or ’repair’.

epsilon If ’iterative’ type is used, the loop will be stopped if the proportion of modified
instances is less or equal than this threshold.

maxIter Maximum number of iterations in ’iterative’ type.

alpha Parameter used in the computation of the similarity between two instances.

beta It regulates the influence of the similarity metric in the estimation of a new label
for an instance.

classColumn positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

Details

ModeFilter estimates the most appropriate class for each instance based on the similarity metric
and the provided label. This can be addressed in three different ways (argument ’type’):

In the classical approach, all labels are tried for all instances, and the one maximizing a metric based
on similarity is chosen. In the iterative approach, the same scheme is repeated until the proportion
of modified instances is less than epsilon or the maximum number of iterations maxIter is reached.
The weighted approach extends the classical one by assigning a weight for each instance, which
quantifies the reliability on its label. This weights is utilized in the computation of the metric to be
maximized.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

ORBoostFilter 31

References

Du W., Urahama K. (2010, November): Error-correcting semi-supervised pattern recognition with
mode filter on graphs. In Aware Computing (ISAC), 2010 2nd International Symposium on (pp.
6-11). IEEE.

Examples

Next example is not run because in some cases it can be rather slow
Not run:

data(iris)
out <- ModeFilter(Species~., data = iris, type = "classical", noiseAction = "remove")
print(out)
identical(out$cleanData, iris[setdiff(1:nrow(iris),out$remIdx),])

End(Not run)

ORBoostFilter Outlier Removal Boosting Filter

Description

Ensemble-based filter for removing label noise from a dataset as a preprocessing step of classifica-
tion. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
ORBoostFilter(formula, data, ...)

Default S3 method:
ORBoostFilter(x, N = 20, d = 11, Naux = max(20, N),
useDecisionStump = FALSE, classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

N Number of boosting iterations.

d Threshold for removing noisy instances. Authors recommend to set it between
3 and 20. If it is set to NULL, the optimal threshold is chosen according to the
procedure described in Karmaker & Kwek. However, this can be very time-
consuming, and in most cases is little relevant for the final result.

Naux Number of boosting iterations for AdaBoost when computing the optimal thresh-
old ’d’.

32 ORBoostFilter

useDecisionStump

If TRUE, a decision stump is used as weak classifier. Otherwise (default), naive-
Bayes is applied. Recall decision stumps are not appropriate for multi-class
problems.

classColumn Positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

Details

The full description of ORBoostFilter method can be looked up in Karmaker & Kwek. In general
terms, a weak classifier is built in each iteration, and misclassified instances have their weight
increased for the next round. Instances are removed when their weight exceeds the threshold d, i.e.
they have been misclassified in consecutive rounds.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

Note

By means of a message, the number of noisy instances removed in each iteration is displayed in the
console.

References

Karmaker A., Kwek S. (2005, November): A boosting approach to remove class label noise. In
Hybrid Intelligent Systems, 2005. HIS’05. Fifth International Conference on (pp. 6-pp). IEEE.

Freund Y., Schapire R. E. (1997): A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1), 119-139.

Examples

Next example is not run in order to save time
Not run:
data(iris)
out <- ORBoostFilter(Species~., data = iris, N = 10)
summary(out)

PF 33

identical(out$cleanData, iris[setdiff(1:nrow(iris),out$remIdx),])

End(Not run)

PF Partitioning Filter

Description

Ensemble-based filter for removing label noise from a dataset as a preprocessing step of classifica-
tion. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
PF(formula, data, ...)

Default S3 method:
PF(x, nfolds = 5, consensus = FALSE, p = 0.01, s = 3,
y = 0.5, theta = 0.7, classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

nfolds Number of partitions in each iteration.

consensus Logical. If FALSE, majority voting scheme is used. If TRUE, consensus voting
scheme is applied.

p Real number between 0 and 1. It sets the minimum proportion of original in-
stances which must be tagged as noisy in order to go for another iteration.

s Positive integer setting the stop criterion together with p. The filter stops after s
iterations with not enough noisy instances removed (according to the proportion
p).

y Real number between 0 and 1. It sets the proportion of good instances which
must be stored in each iteration.

theta Real number between 0 and 1. It sets the proportion of ’good rules’ to be se-
lected (see also ’Details’ section).

classColumn Positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

34 PF

Details

The full description of the method can be looked up in the provided references. A PART rules
set (from RWeka) is built in each of the nfolds partitions of data. After a ’good rules selection’
process based on the accuracy of each rule, the subsequent good rules sets are tested in the whole
dataset, and the removal of noisy instances is decided via consensus or majority voting schemes.
Finally, a proportion of good instances (i.e. those whose label agrees with all the base classifiers)
is stored and not considered in subsequent iterations. The process stops after s iterations with not
enough (according to the proportion p) noisy instances removed.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

Note

The base rule classifier used is PART instead of C4.5rules used in the references.

For the ’good rules selection’ step, we implement the ’Best-L rules’ scheme since, according to the
authors, it usually outperforms the others ’Adaptive Threshold’ and ’Fixed Threshold’ schemes.

By means of a message, the number of noisy instances removed in each iteration is displayed in the
console.

References

Zhu X., Wu X., Chen Q. (2003, August): Eliminating class noise in large datasets. International
Conference in Machine Learning (Vol. 3, pp. 920-927).

Zhu X., Wu X., Chen Q. (2006): Bridging local and global data cleansing: Identifying class noise
in large, distributed data datasets. Data mining and Knowledge discovery, 12(2-3), 275-308.

Examples

Next example is not run in order to save time
Not run:
data(iris)
We fix a seed since there exists a random partition for the ensemble
set.seed(1)
out <- PF(Species~., data = iris, s = 1, nfolds = 3)

PRISM 35

print(out)
identical(out$cleanData, iris[setdiff(1:nrow(iris),out$remIdx),])

End(Not run)

PRISM PReprocessing Instances that Should be Misclassified

Description

Similarity-based filter for removing label noise from a dataset as a preprocessing step of classifica-
tion. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
PRISM(formula, data, ...)

Default S3 method:
PRISM(x, classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

classColumn positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

Details

PRISM identifies ISMs (Instances that Should be Misclassified) and removes them from the dataset.
In order to do so, it combines five heuristics based on varied approaches by means of a formula. One
heuristic relies on class distribution among nearest neighbors, two heuristics are based on the class
distribution in a leaf node of a C4.5 tree (either pruned or unpruned), and the other two are based on
the class likelihood for an instance, assuming gaussian distribution for continuous variables when
necessary.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

36 RNN

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

References

Smith M. R., Martinez T. (2011, July): Improving classification accuracy by identifying and remov-
ing instances that should be misclassified. In Neural Networks (IJCNN), The 2011 International
Joint Conference on (pp. 2690-2697). IEEE.

Examples

data(iris)
out <- PRISM(Species~., data = iris)
print(out)
identical(out$cleanData, iris[setdiff(1:nrow(iris),out$remIdx),])

RNN Reduced Nearest Neighbors

Description

Similarity-based method designed to select the most relevant instances for subsequent classification
with a nearest neighbor rule. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
RNN(formula, data, ...)

Default S3 method:
RNN(x, classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

classColumn positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

RNN 37

Details

RNN is an extension of CNN. The latter provides a ’consistent subset’, i.e. it is enough for correctly
classifying the rest of instances by means of 1-NN. Then, in the given order, RNN removes instances
as long as the remaining do not loss the property of being a ’consistent subset’.

Although RNN is not strictly a class noise filter, it is included here for completeness, since the origins
of noise filters are connected with instance selection algorithms.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

References

Gates G.W. (1972): The Reduced Nearest Neighbour Rule. IEEE Transactions on Information
Theory, 18:3 431-433.

See Also

CNN

Examples

Next example is not run in order to save time
Not run:
data(iris)
out <- RNN(Species~., data = iris)
print(out)
identical(out$cleanData, iris[setdiff(1:nrow(iris),out$remIdx),])

End(Not run)

38 saturationFilter

saturationFilter Saturation Filters

Description

Data complexity based filters for removing label noise from a dataset as a preprocessing step of
classification. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
saturationFilter(formula, data, ...)

Default S3 method:
saturationFilter(x, noiseThreshold = NULL,
classColumn = ncol(x), ...)

S3 method for class 'formula'
consensusSF(formula, data, ...)

Default S3 method:
consensusSF(x, nfolds = 10, consensusLevel = nfolds - 1,
noiseThreshold = NULL, classColumn = ncol(x), ...)

S3 method for class 'formula'
classifSF(formula, data, ...)

Default S3 method:
classifSF(x, nfolds = 10, noiseThreshold = NULL,
classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

noiseThreshold The threshold for removing noisy instances in the saturation filter. Authors rec-
ommend values between 0.25 and 2. If it is set to NULL, the threshold is appro-
priately chosen according to the number of training instances.

classColumn Positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

nfolds For consensusSF and classifSF, number of folds in which the dataset is split.

consensusLevel For consensusSF, it sets the (minimum) number of ’noisy votes’ an instance
must get in order to be removed. By default, the nfolds-1 filters built over each
instance must label it as noise.

saturationFilter 39

Details

Based on theoretical studies about data complexity (Gamberger & Lavrac, 1997), saturationFilter
removes those instances which most enable to reduce the CLCH (Complexity of the Least Complex
Hypotheses) of the training dataset. The full method can be looked up in (Gamberger et al., 1999),
and the previous step of literals extraction is detailed in (Gamberger et al., 1996).

consensusSF splits the dataset in nfolds folds, and applies saturationFilter to every combina-
tion of nfolds-1 folds. Those instances with (at least) consensusLevel ’noisy votes’ are removed.

classifSF combines saturationFilter with a nfolds-folds cross validation scheme (the latter
in the spirit of filters such as EF, CVCF). Namely, the dataset is split in nfolds folds and, for every
combination of nfolds-1 folds, saturationFilter is applied and a classifier (we implement a
standard C4.5 tree) is built. Instances from the excluded fold are removed according to this classifier.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

References

Gamberger D., Lavrac N., Groselj C. (1999, June): Experiments with noise filtering in a medical
domain. In ICML (pp. 143-151).

Gamberger D., Lavrac N., Dzeroski S. (1996, January): Noise elimination in inductive concept
learning: A case study in medical diagnosis. In Algorithmic Learning Theory (pp. 199-212).
Springer Berlin Heidelberg.

Gamberger D., Lavrac N. (1997): Conditions for Occam’s razor applicability and noise elimination
(pp. 108-123). Springer Berlin Heidelberg.

Examples

Next example is not run because saturation procedure is time-consuming.
Not run:
data(iris)
out1 <- saturationFilter(Species~., data = iris)
out2 <- consensusSF(Species~., data = iris)
out3 <- classifSF(Species~., data = iris)
print(out1)

40 summary.filter

print(out2)
print(out3)

End(Not run)

summary.filter Summary method for class filter

Description

This methods allows for appropriately displaying the most important information about a filtered
dataset, contained in the S3 class filter.

Usage

S3 method for class 'filter'
summary(object, ..., explicit = FALSE)

Arguments

object Object of class filter.
... Additional arguments affecting the summary produced.
explicit If set to TRUE, the indexes for removed and repaired instances (as well as new

labels for the latters) are displayed. It defaults to FALSE.

Details

The information offered is the following:

• Names of the dataset and the filter.
• Original call to the filter.
• Specific parameters used for the filter.
• Results: number of removed and repaired instances (absolute number and percentage).
• Additional information (if available, it depends on the filter).
• Optionally, if explicit=TRUE, the indexes for removed and repaired instances, as well as the

new labels.

Examples

Next example is not run in order to save time
Not run:
Example of filter with additional information available.
data(iris)
out <- edgeBoostFilter(Species~., data = iris)
class(out)
summary(out)
summary(out, explicit = TRUE)

End(Not run)

TomekLinks 41

TomekLinks TomekLinks

Description

Similarity-based filter for removing label noise from a dataset as a preprocessing step of classifica-
tion. For more information, see ’Details’ and ’References’ sections.

Usage

S3 method for class 'formula'
TomekLinks(formula, data, ...)

Default S3 method:
TomekLinks(x, classColumn = ncol(x), ...)

Arguments

formula A formula describing the classification variable and the attributes to be used.

data, x Data frame containing the tranining dataset to be filtered.

... Optional parameters to be passed to other methods.

classColumn positive integer indicating the column which contains the (factor of) classes. By
default, the last column is considered.

Details

The function TomekLinks removes "TomekLink points" from the dataset. These are introduced in
[Tomek, 1976], and are expected to lie on the border between classes. Removing such points is a
typical procedure for cleaning noise [Lorena, 2002].

Since the computation of mean points is necessary for TomekLinks, only numeric attributes are
allowed. Moreover, only two different classes are allowed to detect TomekLinks.

Value

An object of class filter, which is a list with seven components:

• cleanData is a data frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes for removed instances (i.e. their row
number with respect to the original data frame).

• repIdx is a vector of integers indicating the indexes for repaired/relabelled instances (i.e. their
row number with respect to the original data frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list containing the argument values.

• call contains the original call to the filter.

• extraInf is a character that includes additional interesting information not covered by previ-
ous items.

42 TomekLinks

References

Tomek I. (Nov. 1976): Two modifications of CNN, IEEE Trans. Syst., Man, Cybern., vol. 6, no.
11, pp. 769-772.

Lorena A. C., Batista G. E. A. P. A., de Carvalho A. C. P. L. F., Monard M. C. (Nov. 2002): The
influence of noisy patterns in the performance of learning methods in the splice junction recognition
problem, in Proc. 7th Brazilian Symp. Neural Netw., Recife, Brazil, pp. 31-37.

Examples

Next code fails since TomekLinks method is designed for two-class problems.
Some decomposition strategy like OVO or OVA could be used to overcome this.
Not run:
data(iris)
out <- TomekLinks(Species~., data = iris)

End(Not run)

Index

AENN, 2

BBNR, 3

C45ensembles, 5
C45iteratedVotingFilter (C45ensembles),

5
C45robustFilter (C45ensembles), 5
C45votingFilter (C45ensembles), 5
classifSF (saturationFilter), 38
CNN, 7, 37
consensusSF (saturationFilter), 38
CVCF, 9, 39

DROP, 10
DROP1 (DROP), 10
DROP2 (DROP), 10
DROP3 (DROP), 10
dynamicCF, 12

edgeBoostFilter, 13
EF, 12, 15, 39
ENG, 17
ENN, 3, 11, 18, 21
EWF, 19

GE, 21

HARF, 22
hybridRepairFilter, 24

INFFC, 26
IPF, 27

ModeFilter, 29

ORBoostFilter, 31

PF, 33
PRISM, 35

RNN, 8, 36

saturationFilter, 38
summary.filter, 40

TomekLinks, 41

43

	AENN
	BBNR
	C45ensembles
	CNN
	CVCF
	DROP
	dynamicCF
	edgeBoostFilter
	EF
	ENG
	ENN
	EWF
	GE
	HARF
	hybridRepairFilter
	INFFC
	IPF
	ModeFilter
	ORBoostFilter
	PF
	PRISM
	RNN
	saturationFilter
	summary.filter
	TomekLinks
	Index

