
Package ‘NeuralNetTools’
July 27, 2018

Type Package

Title Visualization and Analysis Tools for Neural Networks

Version 1.5.2

Date 2018-07-26

Author Marcus W. Beck [aut, cre]

Maintainer Marcus W. Beck <marcusb@sccwrp.org>

Description Visualization and analysis tools to aid in the interpretation of
neural network models. Functions are available for plotting,
quantifying variable importance, conducting a sensitivity analysis, and
obtaining a simple list of model weights.

BugReports https://github.com/fawda123/NeuralNetTools/issues

License CC0

LazyData true

Imports ggplot2 (>= 2.0.0), nnet, reshape2, scales, tidyr

Suggests caret, neuralnet, RSNNS

Depends R (>= 3.1.1)

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-07-26 22:10:03 UTC

R topics documented:
bias_lines . 2
bias_points . 3
garson . 3
get_ys . 6
layer_lines . 7
layer_points . 8
lekgrps . 9

1

https://github.com/fawda123/NeuralNetTools/issues

2 bias_lines

lekprofile . 9
neuraldat . 13
neuralskips . 14
neuralweights . 15
olden . 17
plotnet . 20
pred_sens . 25

Index 27

bias_lines Plot connection weights for bias lines

Description

Plot connection weights for bias lines in plotnet

Usage

bias_lines(bias_x, bias_y, mod_in, nid, rel_rsc, all_out, pos_col, neg_col,
struct, y_names, x_range, y_range, layer_x, line_stag, max_sp)

Arguments

bias_x numeric vector x axis locations for bias lines

bias_y numeric vector y axis locations for bias lines

mod_in neural network model object

nid logical value indicating if neural interpretation diagram is plotted, default TRUE

rel_rsc numeric indicating the scaling range for the width of connection weights in a
neural interpretation diagram. Default is NULL for no rescaling.

all_out chr string indicating names of response variables for which connections are plot-
ted, default all

pos_col chr string indicating color of positive connection weights, default 'black'

neg_col chr string indicating color of negative connection weights, default 'grey'

struct numeric vector for network structure

y_names chr string for names of output variables

x_range numeric of x axis range for base plot

y_range numeric of x axis range for base plot

layer_x numeric indicating locations of layers on x axis

line_stag numeric value that specifies distance of connection weights from nodes

max_sp logical indicating if space is maximized in plot

bias_points 3

bias_points Plot bias points

Description

Plot bias points in plotnet

Usage

bias_points(bias_x, bias_y, layer_name, node_labs, x_range, y_range, circle_cex,
cex_val, bord_col, circle_col)

Arguments

bias_x numeric vector of values for x locations

bias_y numeric vector for y location

layer_name string indicating text to put in node

node_labs logical indicating of node labels are included

x_range numeric of x axis range for base plot

y_range numeric of y axis range for base plot

circle_cex numeric value indicating size of nodes, default 5

cex_val numeric value indicating size of text labels, default 1

bord_col chr string indicating border color around nodes, default 'lightblue'

circle_col chr string indicating color of nodes

garson Variable importance using Garson’s algorithm

Description

Relative importance of input variables in neural networks using Garson’s algorithm

Usage

garson(mod_in, ...)

Default S3 method:
garson(mod_in, x_names, y_names, bar_plot = TRUE,

x_lab = NULL, y_lab = NULL, ...)

S3 method for class 'numeric'
garson(mod_in, struct, ...)

4 garson

S3 method for class 'nnet'
garson(mod_in, ...)

S3 method for class 'mlp'
garson(mod_in, ...)

S3 method for class 'nn'
garson(mod_in, ...)

S3 method for class 'train'
garson(mod_in, ...)

Arguments

mod_in input model object or a list of model weights as returned from neuralweights
if using the default method

... arguments passed to other methods

x_names chr string of input variable names, obtained from the model object

y_names chr string of response variable names, obtained from the model object

bar_plot logical indicating if a ggplot object is returned (default T), otherwise numeric
values are returned

x_lab chr string of alternative names to be used for explanatory variables in the figure,
default is taken from mod_in

y_lab chr string of alternative name to be used for the y-axis in the figure

struct numeric vector equal in length to the number of layers in the network. Each
number indicates the number of nodes in each layer starting with the input and
ending with the output. An arbitrary number of hidden layers can be included.

Details

The weights that connect variables in a neural network are partially analogous to parameter coeffi-
cients in a standard regression model and can be used to describe relationships between variables.
The weights dictate the relative influence of information that is processed in the network such that
input variables that are not relevant in their correlation with a response variable are suppressed by
the weights. The opposite effect is seen for weights assigned to explanatory variables that have
strong positive or negative associations with a response variable. An obvious difference between
a neural network and a regression model is that the number of weights is excessive in the former
case. This characteristic is advantageous in that it makes neural networks very flexible for model-
ing non-linear functions with multiple interactions, although interpretation of the effects of specific
variables is of course challenging.

A method described in Garson 1991 (also see Goh 1995) identifies the relative importance of ex-
planatory variables for a single response variables in a supervised neural network by deconstructing
the model weights. The relative importance (or strength of association) of a specific explanatory
variable for the response variable can be determined by identifying all weighted connections be-
tween the nodes of interest. That is, all weights connecting the specific input node that pass through
the hidden layer to the response variable are identified. This is repeated for all other explanatory

garson 5

variables until a list of all weights that are specific to each input variable is obtained. The connec-
tions are tallied for each input node and scaled relative to all other inputs. A single value is obtained
for each explanatory variable that describes the relationship with the response variable in the model
(see the appendix in Goh 1995 for a more detailed description). The original algorithm indicates
relative importance as the absolute magnitude from zero to one such the direction of the response
cannot be determined.

Misleading results may be produced if the neural network was created with a skip-layer using
skip = TRUE with the nnet or train functions. Garson’s algorithm does not describe the effects
of skip layer connections on estimates of variable importance. As such, these values are removed
prior to estimating variable importance.

The algorithm currently only works for neural networks with one hidden layer and one response
variable.

Value

A ggplot object for plotting if bar_plot = FALSE, otherwise a data.frame of relative importance
values for each input variable. The default aesthetics for ggplot can be further modified, as shown
with the examples.

References

Beck, M.W. 2018. NeuralNetTools: Visualization and Analysis Tools for Neural Networks. Journal
of Statistical Software. 85(11):1-20.

Garson, G.D. 1991. Interpreting neural network connection weights. Artificial Intelligence Expert.
6(4):46-51.

Goh, A.T.C. 1995. Back-propagation neural networks for modeling complex systems. Artificial
Intelligence in Engineering. 9(3):143-151.

Olden, J.D., Jackson, D.A. 2002. Illuminating the ’black-box’: a randomization approach for under-
standing variable contributions in artificial neural networks. Ecological Modelling. 154:135-150.

Olden, J.D., Joy, M.K., Death, R.G. 2004. An accurate comparison of methods for quantifying vari-
able importance in artificial neural networks using simulated data. Ecological Modelling. 178:389-
397.

See Also

olden for a more flexible approach for variable importance

Examples

using numeric input

wts_in <- c(13.12, 1.49, 0.16, -0.11, -0.19, -0.16, 0.56, -0.52, 0.81)
struct <- c(2, 2, 1) #two inputs, two hidden, one output

garson(wts_in, struct)

using nnet

6 get_ys

library(nnet)

data(neuraldat)
set.seed(123)

mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5)

garson(mod)

Not run:
using RSNNS, no bias layers

library(RSNNS)

x <- neuraldat[, c('X1', 'X2', 'X3')]
y <- neuraldat[, 'Y1']
mod <- mlp(x, y, size = 5)

garson(mod)

using neuralnet

library(neuralnet)

mod <- neuralnet(Y1 ~ X1 + X2 + X3, data = neuraldat, hidden = 5)

garson(mod)

using caret

library(caret)

mod <- train(Y1 ~ X1 + X2 + X3, method = 'nnet', data = neuraldat, linout = TRUE)

garson(mod)

modify the plot using ggplot2 syntax
library(ggplot2)

mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5)

cols <- heat.colors(10)
garson(mod) +

scale_y_continuous('Rel. Importance', limits = c(-1, 1)) +
scale_fill_gradientn(colours = cols) +
scale_colour_gradientn(colours = cols)

End(Not run)

get_ys Get y locations for layers in plotnet

layer_lines 7

Description

Get y locations for input, hidden, output layers in plotnet

Usage

get_ys(lyr, max_sp, struct, y_range)

Arguments

lyr numeric indicating layer for getting y locations

max_sp logical indicating if space is maximized in plot

struct numeric vector for network structure

y_range numeric vector indicating limits of y axis

layer_lines Plot connection weights

Description

Plot connection weights in plotnet

Usage

layer_lines(mod_in, h_layer, layer1 = 1, layer2 = 2, out_layer = FALSE,
nid, rel_rsc, all_in, pos_col, neg_col, x_range, y_range, line_stag, x_names,
layer_x, struct, max_sp, prune_col = NULL, prune_lty = "dashed", skip)

Arguments

mod_in neural network model object

h_layer numeric indicating which connections to plot for the layer

layer1 numeric indicating order of first layer (for multiple hiden layers)

layer2 numeric indicating order of second layer (for multiple hiden layers)

out_layer logical indicating if the lines are for the output layer

nid logical value indicating if neural interpretation diagram is plotted, default TRUE

rel_rsc numeric indicating the scaling range for the width of connection weights in a
neural interpretation diagram. Default is NULL for no rescaling.

all_in chr string indicating names of input variables for which connections are plotted,
default all

pos_col chr string indicating color of positive connection weights, default 'black'

neg_col chr string indicating color of negative connection weights, default 'grey'

x_range numeric of x axis range for base plot

y_range numeric of y axis range for base plot

8 layer_points

line_stag numeric value that specifies distance of connection weights from nodes

x_names chr string for names of input variables

layer_x numeric indicating locations of layers on x axis

struct numeric vector for network structure

max_sp logical indicating if space is maximized in plot

prune_col chr string indicating color of pruned connections, otherwise not shown

prune_lty line type for pruned connections, passed to segments

skip logical to plot connections for skip layer

layer_points Plot neural network nodes

Description

Plot neural network nodes in plotnet

Usage

layer_points(layer, x_loc, x_range, layer_name, cex_val, circle_cex, bord_col,
in_col, node_labs, line_stag, var_labs, x_names, y_names, ...)

Arguments

layer specifies which layer, integer from struct

x_loc indicates x location for layer, integer from layer_x

x_range numeric for total range of x-axis

layer_name string indicating text to put in node

cex_val numeric indicating size of point text

circle_cex numeric indicating size of circles

bord_col chr string indicating border color around nodes, default lightblue

in_col chr string indicating interior color of nodes

node_labs logical indicating if node labels are to be plotted

line_stag numeric indicating distance between of text from nodes

var_labs chr string for variable labels

x_names chr string for alternative names of input nodes

y_names chr string for alternative names of output nodes

... values passed to get_ys

lekgrps 9

lekgrps Create optional barplot for lekprofile groups

Description

Create optional barplot of constant values of each variable for each group used with lekprofile

Usage

lekgrps(grps, position = "dodge", grp_nms = NULL)

Arguments

grps data.frame of values for each variable in each group used to create groups in
lekprofile

position chr string indicating bar position (e.g., ’dodge’, ’fill’, ’stack’), passed to geom_bar

grp_nms optional chr string of alternative names for groups in legend

Value

A ggplot object

Examples

enters used with kmeans clustering
x <- neuraldat[, c('X1', 'X2', 'X3')]
grps <- kmeans(x, 6)$center

lekgrps(grps)

lekprofile Sensitivity analysis using Lek’s profile method

Description

Conduct a sensitivity analysis of model responses in a neural network to input variables using Lek’s
profile method

10 lekprofile

Usage

lekprofile(mod_in, ...)

Default S3 method:
lekprofile(mod_in, xvars, ysel = NULL, xsel = NULL,
steps = 100, group_vals = seq(0, 1, by = 0.2), val_out = FALSE,
group_show = FALSE, grp_nms = NULL, position = "dodge", ...)

S3 method for class 'nnet'
lekprofile(mod_in, xsel = NULL, ysel = NULL, ...)

S3 method for class 'mlp'
lekprofile(mod_in, xvars, yvars, xsel = NULL, ysel = NULL,
...)

S3 method for class 'train'
lekprofile(mod_in, xsel = NULL, ysel = NULL, ...)

S3 method for class 'nn'
lekprofile(mod_in, xsel = NULL, ysel = NULL, ...)

Arguments

mod_in input object for which an organized model list is desired. The input can be an
object of class nnet or mlp

... arguments passed to other methods

xvars data.frame of explanatory variables used to create the input model, only needed
for mlp objects

ysel chr string indicating which response variables to plot if more than one, defaults
to all

xsel chr string of names of explanatory variables to plot, defaults to all

steps numeric value indicating number of observations to evaluate for each explana-
tory variable from minimum to maximum value, default 100

group_vals numeric vector with values from 0-1 indicating quantile values at which to hold
other explanatory variables constant or a single value indicating number of clus-
ters to define grouping scheme, see details

val_out logical value indicating if actual sensitivity values are returned rather than a plot,
default FALSE

group_show logical if a barplot is returned that shows the values at which explanatory vari-
ables were held constant while not being evaluated

grp_nms optional chr string of alternative names for groups in legend

position chr string indicating bar position (e.g., ’dodge’, ’fill’, ’stack’), passed to geom_bar,
used if group_show = TRUE

yvars data.frame of explanatory variables used to create the input model, only needed
for mlp objects

lekprofile 11

Details

The Lek profile method is described briefly in Lek et al. 1996 and in more detail in Gevrey et al.
2003. The profile method is fairly generic and can be extended to any statistical model in R with a
predict method. However, it is one of few methods used to evaluate sensitivity in neural networks.

The profile method can be used to evaluate the effect of explanatory variables by returning a plot
of the predicted response across the range of values for each separate variable. The original profile
method evaluated the effects of each variable while holding the remaining explanatory variables
at different quantiles (e.g., minimum, 20th percentile, maximum). This is implemented in in the
function by creating a matrix of values for explanatory variables where the number of rows is the
number of observations and the number of columns is the number of explanatory variables. All
explanatory variables are held at their mean (or other constant value) while the variable of interest
is sequenced from its minimum to maximum value across the range of observations. This matrix (or
data frame) is then used to predict values of the response variable from a fitted model object. This is
repeated for each explanatory variable to obtain all response curves. Values passed to group_vals
must range from zero to one to define the quantiles for holding unevaluated explanatory variables.

An alternative implementation of the profile method is to group the unevaluated explanatory vari-
ables using groupings defined by the statistical properties of the data. Covariance among predictors
may present unlikely scenarios if holding all unevaluated variables at the same level. To address this
issue, the function provides an option to hold unevaluated variable at mean values defined by natural
clusters in the data. kmeans clustering is used on the input data.frame of explanatory variables if
the argument passed to group_vals is an integer value greater than one. The centers of the clusters
are then used as constant values for the unevaluated variables. An arbitrary grouping scheme can
also be passed to group_vals as a data.frame where the user can specify exact values for holding
each value constant (see the examples).

For all plots, the legend with the ’Groups’ label indicates the colors that correspond to each group.
The groups describe the values at which unevaluated explanatory variables were held constant,
either as specific quantiles, group assignments based on clustering, or in the arbitrary grouping
defined by the user. The constant values of each explanatory variable for each group can be viewed
as a barplot by using group_show = TRUE.

Note that there is no predict method for neuralnet objects from the nn package. The lekprofile
method for nn objects uses the nnet package to recreate the input model, which is then used for the
sensitivity predictions. This approach only works for networks with one hidden layer.

Value

A ggplot object for plotting if val_out = FALSE, otherwise a two-element list is returned with
a data.frame in long form showing the predicted responses at different values of the explanatory
variables and the grouping scheme that was used to hold unevaluated variables constant.

References

Beck, M.W. 2018. NeuralNetTools: Visualization and Analysis Tools for Neural Networks. Journal
of Statistical Software. 85(11):1-20.

Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J., Aulagnier, S. 1996. Application of
neural networks to modelling nonlinear relationships in Ecology. Ecological Modelling. 90:39-52.

Gevrey, M., Dimopoulos, I., Lek, S. 2003. Review and comparison of methods to study the contri-
bution of variables in artificial neural network models. Ecological Modelling. 160:249-264.

12 lekprofile

Olden, J.D., Joy, M.K., Death, R.G. 2004. An accurate comparison of methods for quantifying vari-
able importance in artificial neural networks using simulated data. Ecological Modelling. 178:389-
397.

Examples

using nnet

library(nnet)

set.seed(123)

mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5)

lekprofile(mod)

Not run:
using RSNNS, no bias layers

library(RSNNS)

x <- neuraldat[, c('X1', 'X2', 'X3')]
y <- neuraldat[, 'Y1', drop = FALSE]

mod <- mlp(x, y, size = 5)

lekprofile(mod, xvars = x)

using neuralnet

library(neuralnet)

mod <- neuralnet(Y1 ~ X1 + X2 + X3, data = neuraldat, hidden = 5)

lekprofile(mod)

back to nnet, not using formula to create model
y variable must have a name attribute

mod <- nnet(x, y, size = 5)

lekprofile(mod)

using caret

library(caret)

mod <- train(Y1 ~ X1 + X2 + X3, method = 'nnet', data = neuraldat, linout = TRUE)

lekprofile(mod)

group by clusters instead of sequencing by quantiles

neuraldat 13

mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5)

lekprofile(mod, group_vals = 6) # six clusters

enter an arbitrary grouping scheme for the group values
i.e. hold all values at 0.5
group_vals <- rbind(rep(0.5, length = ncol(x)))
group_vals <- data.frame(group_vals)
names(group_vals) <- names(group_vals)

lekprofile(mod, group_vals = group_vals, xsel = 'X3')

End(Not run)

neuraldat Simulated dataset for function examples

Description

A simulated dataset of 2000 observations containing two response variables and three explanatory
variables. Explanatory variables were sampled from a standard normal distribution. Response
variables were linear combinations of the explanatory variables. The response variables Y1 and Y2
are standardized from 0 to 1.

Usage

neuraldat

Format

A data frame with 2000 rows and 5 variables:

Y1 numeric

Y2 numeric

X1 numeric

X2 numeric

X3 numeric ...

14 neuralskips

neuralskips Get weights for the skip layer in a neural network

Description

Get weights for the skip layer in a neural network, only valid for networks created using skip = TRUE
with the nnet function.

Usage

neuralskips(mod_in, ...)

S3 method for class 'nnet'
neuralskips(mod_in, rel_rsc = NULL, ...)

Arguments

mod_in input object for which an organized model list is desired.

... arguments passed to other methods

rel_rsc numeric indicating the scaling range for the width of connection weights in a
neural interpretation diagram. Default is NULL for no rescaling. Scaling is rela-
tive to all weights, not just those in the primary network.

Details

This function is similar to neuralweights except only the skip layer weights are returned.

Value

Returns a list of connections for each output node, where each element of the list is the connection
for each input node in sequential order to the respective output node. The first weight in each
element is not the bias connection, unlike the results for neuralweights.

Examples

data(neuraldat)
set.seed(123)

using nnet

library(nnet)

mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5, linout = TRUE,
skip = TRUE)

neuralskips(mod)

neuralweights 15

neuralweights Get weights for a neural network

Description

Get weights for a neural network in an organized list by extracting values from a neural network
object. This function is generally not called by itself.

Usage

neuralweights(mod_in, ...)

S3 method for class 'numeric'
neuralweights(mod_in, rel_rsc = NULL, struct, ...)

S3 method for class 'nnet'
neuralweights(mod_in, rel_rsc = NULL, ...)

S3 method for class 'mlp'
neuralweights(mod_in, rel_rsc = NULL, ...)

S3 method for class 'nn'
neuralweights(mod_in, rel_rsc = NULL, ...)

Arguments

mod_in input object for which an organized model list is desired. The input can be an
object of class numeric, nnet, mlp, or nn

... arguments passed to other methods

rel_rsc numeric indicating the scaling range for the width of connection weights in a
neural interpretation diagram. Default is NULL for no rescaling.

struct numeric vector equal in length to the number of layers in the network. Each
number indicates the number of nodes in each layer starting with the input and
ending with the output. An arbitrary number of hidden layers can be included.

Details

Each element of the returned list is named using the construct ’layer node’, e.g. ’out 1’ is the
first node of the output layer. Hidden layers are named using three values for instances with more
than one hidden layer, e.g., ’hidden 1 1’ is the first node in the first hidden layer, ’hidden 1 2’ is
the second node in the first hidden layer, ’hidden 2 1’ is the first node in the second hidden layer,
etc. The values in each element of the list represent the weights entering the specific node from
the preceding layer in sequential order, starting with the bias layer if applicable. For example, the
elements in a list item for ’hidden 1 1’ of a neural network with a 3 5 1 structure (3 inputs, 5 hidden
nodes, 1 output) would have four values indicating the weights in sequence from the bias layer, first
input layer, second input layer, and third input layer going to the first hidden node.

16 neuralweights

The function will remove direct weight connections between input and output layers if the neural
network was created with a skip-layer using skip = TRUE with the nnet or train functions. This
may produce misleading results when evaluating variable performance with the garson function.

Value

Returns a two-element list with the first element being a vector indicating the number of nodes in
each layer of the neural network and the second element being a named list of weight values for the
input model.

Examples

data(neuraldat)
set.seed(123)

using numeric input

wts_in <- c(13.12, 1.49, 0.16, -0.11, -0.19, -0.16, 0.56, -0.52, 0.81)
struct <- c(2, 2, 1) #two inputs, two hidden, one output

neuralweights(wts_in, struct = struct)

using nnet

library(nnet)

mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5, linout = TRUE)

neuralweights(mod)

Not run:
using RSNNS, no bias layers

library(RSNNS)

x <- neuraldat[, c('X1', 'X2', 'X3')]
y <- neuraldat[, 'Y1']
mod <- mlp(x, y, size = 5, linOut = TRUE)

neuralweights(mod)

pruned model using code from RSSNS pruning demo
pruneFuncParams <- list(max_pr_error_increase = 10.0, pr_accepted_error = 1.0,
no_of_pr_retrain_cycles = 1000, min_error_to_stop = 0.01, init_matrix_value = 1e-6,
input_pruning = TRUE, hidden_pruning = TRUE)

mod <- mlp(x, y, size = 5, pruneFunc = "OptimalBrainSurgeon",
pruneFuncParams = pruneFuncParams)

neuralweights(mod)

using neuralnet

olden 17

library(neuralnet)

mod <- neuralnet(Y1 ~ X1 + X2 + X3, data = neuraldat, hidden = 5)

neuralweights(mod)

End(Not run)

olden Variable importance using connection weights

Description

Relative importance of input variables in neural networks as the sum of the product of raw input-
hidden, hidden-output connection weights, proposed by Olden et al. 2004.

Usage

olden(mod_in, ...)

Default S3 method:
olden(mod_in, x_names, y_names, out_var = NULL,

bar_plot = TRUE, x_lab = NULL, y_lab = NULL, skip_wts = NULL, ...)

S3 method for class 'numeric'
olden(mod_in, struct, ...)

S3 method for class 'nnet'
olden(mod_in, ...)

S3 method for class 'mlp'
olden(mod_in, ...)

S3 method for class 'nn'
olden(mod_in, ...)

S3 method for class 'train'
olden(mod_in, ...)

Arguments

mod_in input model object or a list of model weights as returned from neuralweights
if using the default method

... arguments passed to or from other methods

x_names chr string of input variable names, obtained from the model object

y_names chr string of response variable names, obtained from the model object

18 olden

out_var chr string indicating the response variable in the neural network object to be
evaluated. Only one input is allowed for models with more than one response.
Names must be of the form 'Y1', 'Y2', etc. if using numeric values as weight
inputs for mod_in.

bar_plot logical indicating if a ggplot object is returned (default T), otherwise numeric
values are returned

x_lab chr string of alternative names to be used for explanatory variables in the figure,
default is taken from mod_in

y_lab chr string of alternative names to be used for response variable in the figure,
default is taken from out_var

skip_wts vector from neuralskips for nnet models with skip-layer connections

struct numeric vector equal in length to the number of layers in the network. Each
number indicates the number of nodes in each layer starting with the input and
ending with the output. An arbitrary number of hidden layers can be included.

Details

This method is similar to Garson’s algorithm (Garson 1991, modified by Goh 1995) in that the
connection weights between layers of a neural network form the basis for determining variable
importance. However, Olden et al. 2004 describe a connection weights algorithm that consis-
tently out-performed Garson’s algorithm in representing the true variable importance in simulated
datasets. This ‘Olden’ method calculates variable importance as the product of the raw input-hidden
and hidden-output connection weights between each input and output neuron and sums the prod-
uct across all hidden neurons. An advantage of this approach is the relative contributions of each
connection weight are maintained in terms of both magnitude and sign as compared to Garson’s
algorithm which only considers the absolute magnitude. For example, connection weights that
change sign (e.g., positive to negative) between the input-hidden to hidden-output layers would
have a cancelling effect whereas Garson’s algorithm may provide misleading results based on the
absolute magnitude. An additional advantage is that Olden’s algorithm is capable of evaluating
neural networks with multiple hidden layers wheras Garson’s was developed for networks with a
single hidden layer.

The importance values assigned to each variable are in units that are based directly on the summed
product of the connection weights. The actual values should only be interpreted based on relative
sign and magnitude between explanatory variables. Comparisons between different models should
not be made.

The Olden function also works with networks that have skip layers by adding the input-output
connection weights to the final summed product of all input-hidden and hidden-output connections.
This was not described in the original method so interpret with caution.

By default, the results are shown only for the first response variable for networks with multiple
output nodes. The plotted response variable can be changed with out_var.

Value

A ggplot object for plotting if bar_plot = FALSE, otherwise a data.frame of relative importance
values for each input variable.

olden 19

References

Beck, M.W. 2018. NeuralNetTools: Visualization and Analysis Tools for Neural Networks. Journal
of Statistical Software. 85(11):1-20.

Garson, G.D. 1991. Interpreting neural network connection weights. Artificial Intelligence Expert.
6(4):46-51.

Goh, A.T.C. 1995. Back-propagation neural networks for modeling complex systems. Artificial
Intelligence in Engineering. 9(3):143-151.

Olden, J.D., Jackson, D.A. 2002. Illuminating the ’black-box’: a randomization approach for under-
standing variable contributions in artificial neural networks. Ecological Modelling. 154:135-150.

Olden, J.D., Joy, M.K., Death, R.G. 2004. An accurate comparison of methods for quantifying vari-
able importance in artificial neural networks using simulated data. Ecological Modelling. 178:389-
397.

Examples

using numeric input

wts_in <- c(13.12, 1.49, 0.16, -0.11, -0.19, -0.16, 0.56, -0.52, 0.81)
struct <- c(2, 2, 1) #two inputs, two hidden, one output

olden(wts_in, struct)

using nnet

library(nnet)

data(neuraldat)
set.seed(123)

mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5)

olden(mod)

Not run:
View the difference for a model w/ skip layers

set.seed(123)

mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5, skip = TRUE)

olden(mod)

using RSNNS, no bias layers

library(RSNNS)

x <- neuraldat[, c('X1', 'X2', 'X3')]
y <- neuraldat[, 'Y1']
mod <- mlp(x, y, size = 5)

20 plotnet

olden(mod)

using neuralnet

library(neuralnet)

mod <- neuralnet(Y1 ~ X1 + X2 + X3, data = neuraldat, hidden = 5)

olden(mod)

using caret

library(caret)

mod <- train(Y1 ~ X1 + X2 + X3, method = 'nnet', data = neuraldat, linout = TRUE)

olden(mod)

multiple hidden layers

x <- neuraldat[, c('X1', 'X2', 'X3')]
y <- neuraldat[, 'Y1']
mod <- mlp(x, y, size = c(5, 7, 6), linOut = TRUE)

olden(mod)

End(Not run)

plotnet Plot a neural network model

Description

Plot a neural interpretation diagram for a neural network object

Usage

plotnet(mod_in, ...)

Default S3 method:
plotnet(mod_in, x_names, y_names, struct = NULL,

nid = TRUE, all_out = TRUE, all_in = TRUE, bias = TRUE,
rel_rsc = c(1, 7), circle_cex = 5, node_labs = TRUE, var_labs = TRUE,
line_stag = NULL, cex_val = 1, alpha_val = 1,
circle_col = "lightblue", pos_col = "black", neg_col = "grey",
bord_col = "lightblue", max_sp = FALSE, pad_x = 1, prune_col = NULL,
prune_lty = "dashed", skip = NULL, ...)

plotnet 21

S3 method for class 'nnet'
plotnet(mod_in, x_names = NULL, y_names = NULL,
skip = FALSE, ...)

S3 method for class 'numeric'
plotnet(mod_in, struct, x_names = NULL, y_names = NULL,
...)

S3 method for class 'mlp'
plotnet(mod_in, x_names = NULL, y_names = NULL,
prune_col = NULL, prune_lty = "dashed", ...)

S3 method for class 'nn'
plotnet(mod_in, x_names = NULL, y_names = NULL, ...)

S3 method for class 'train'
plotnet(mod_in, x_names = NULL, y_names = NULL,
skip = FALSE, ...)

Arguments

mod_in neural network object or numeric vector of weights

... additional arguments passed to or from other methods

x_names chr string indicating names for input variables, default from model object

y_names chr string indicating names for output variables, default from model object

struct numeric vector equal in length to the number of layers in the network. Each
number indicates the number of nodes in each layer starting with the input and
ending with the output. An arbitrary number of hidden layers can be included.

nid logical value indicating if neural interpretation diagram is plotted, default TRUE

all_out chr string indicating names of response variables for which connections are plot-
ted, default all

all_in chr string indicating names of input variables for which connections are plotted,
default all

bias logical value indicating if bias nodes and connections are plotted, default TRUE

rel_rsc numeric indicating the scaling range for the width of connection weights

circle_cex numeric value indicating size of nodes, default 5

node_labs logical value indicating if labels are plotted directly on nodes, default TRUE

var_labs logical value indicating if variable names are plotted next to nodes, default TRUE

line_stag numeric value that specifies distance of connection weights from nodes

cex_val numeric value indicating size of text labels, default 1

alpha_val numeric value (0-1) indicating transparency of connections, default 1

circle_col chr string indicating color of nodes, default 'lightblue', or two element list
with first element indicating color of input nodes and second indicating color of
remaining nodes

22 plotnet

pos_col chr string indicating color of positive connection weights, default 'black'

neg_col chr string indicating color of negative connection weights, default 'grey'

bord_col chr string indicating border color around nodes, default 'lightblue'

max_sp logical value indicating if space between nodes in each layer is maximized, de-
fault FALSE

pad_x numeric for increasing or decreasing padding on the x-axis, values less than one
will increase padding and values greater than one will decrease padding

prune_col chr string indicating color of pruned connections, otherwise not shown

prune_lty line type for pruned connections, passed to segments

skip logical if skip layer connections are plotted instead of the primary network

Details

This function plots a neural network as a neural interpretation diagram as in Ozesmi and Ozesmi
(1999). Options to plot without color-coding or shading of weights are also provided. The default
settings plot positive weights between layers as black lines and negative weights as grey lines. Line
thickness is in proportion to relative magnitude of each weight. The first layer includes only input
variables with nodes labelled arbitrarily as I1 through In for n input variables. One through many
hidden layers are plotted with each node in each layer labelled as H1 through Hn. The output layer
is plotted last with nodes labeled as O1 through On. Bias nodes connected to the hidden and output
layers are also shown. Neural networks created using mlp do not show bias layers.

A primary network and a skip layer network can be plotted for nnet models with a skip layer
connection. The default is to plot the primary network, whereas the skip layer network can be
viewed with skip = TRUE. If nid = TRUE, the line widths for both the primary and skip layer plots
are relative to all weights. Viewing both plots is recommended to see which network has larger
relative weights. Plotting a network with only a skip layer (i.e., no hidden layer, size = 0) will
include bias connections to the output layer, whereas these are not included in the plot of the skip
layer if size is greater than zero.

The numeric method for plotting requires the input weights to be in a specific order given the
structure of the network. An additional argument struct (from neuralweights is also required
that lists the number of nodes in the input, hidden, and output layers. The example below for the
numeric input shows the correct weight vector for a simple neural network model with two input
variables, one output variable, and one hidden layer with two nodes. Bias nodes are also connected
to the hidden and output layer. Using the plot syntax of I, H, O, and B for input, hidden, output, and
bias to indicate weighted connections between layers, the correct weight order for the mod_in vector
is B1-H1, I1-H1, I2-H1, B1-H2, I1-H2, I2-H2, B2-O1, H1-O1, H2-O1. For a generic network
(three layers) with n input nodes, j hidden nodes, and k output nodes, the weights are ordered as the
connections from B1, I1,...,In to H1,...,Hj, then B2, H1,..,Hj to O1,...,Ok.

Value

A graphics object unless wts_only = TRUE, then neural network weights from neuralweights.

References

Beck, M.W. 2018. NeuralNetTools: Visualization and Analysis Tools for Neural Networks. Journal
of Statistical Software. 85(11):1-20.

plotnet 23

Ozesmi, S.L., Ozesmi, U. 1999. An artificial neural network approach to spatial habitat modeling
with interspecific interaction. Ecological Modelling. 116:15-31.

Examples

using numeric input

B1-H1, I1-H1, I2-H1, B1-H2, I1-H2, I2-H2, B2-O1, H1-O1, H2-O1.
wts_in <- c(13.12, 1.49, 0.16, -0.11, -0.19, -0.16, 0.56, -0.52, 0.81)
struct <- c(2, 2, 1) #two inputs, two hidden, one output

plotnet(wts_in, struct = struct)

numeric input, two hidden layers

B1-H11, I1-H11, I2-H11, B1-H12, I1-H12, I2-H12, B2-H21, H11-H21, H12-H21,
B2-H22, H11-H22, H12-H22, B3-O1, H21-O1, H22-O1
wts_in <- c(1.12, 1.49, 0.16, -0.11, -0.19, -0.16, 0.5, 0.2, -0.12, -0.1,
0.89, 0.9, 0.56, -0.52, 0.81)

struct <- c(2, 2, 2, 1) # two inputs, two (two nodes each), one output

plotnet(wts_in, struct = struct)

using nnet

library(nnet)

data(neuraldat)
set.seed(123)

mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5)

plotnet(mod)

plot the skip layer from nnet model

mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5, skip = TRUE)

plotnet(mod, skip = TRUE)

Not run:
using RSNNS, no bias layers

library(RSNNS)

x <- neuraldat[, c('X1', 'X2', 'X3')]
y <- neuraldat[, 'Y1']
mod <- mlp(x, y, size = 5)

plotnet(mod)

pruned model using code from RSSNS pruning demo
pruneFuncParams <- list(max_pr_error_increase = 10.0, pr_accepted_error = 1.0,

24 plotnet

no_of_pr_retrain_cycles = 1000, min_error_to_stop = 0.01, init_matrix_value = 1e-6,
input_pruning = TRUE, hidden_pruning = TRUE)

mod <- mlp(x, y, size = 5, pruneFunc = "OptimalBrainSurgeon",
pruneFuncParams = pruneFuncParams)

plotnet(mod)
plotnet(mod, prune_col = 'lightblue')

using neuralnet

library(neuralnet)

mod <- neuralnet(Y1 ~ X1 + X2 + X3, data = neuraldat, hidden = 5)

plotnet(mod)

using caret

library(caret)

mod <- train(Y1 ~ X1 + X2 + X3, method = 'nnet', data = neuraldat, linout = TRUE)

plotnet(mod)

a more complicated network with categorical response
AND <- c(rep(0, 7), 1)
OR <- c(0, rep(1, 7))

binary_data <- data.frame(expand.grid(c(0, 1), c(0, 1), c(0, 1)), AND, OR)

mod <- neuralnet(AND + OR ~ Var1 + Var2 + Var3, binary_data,
hidden = c(6, 12, 8), rep = 10, err.fct = 'ce', linear.output = FALSE)

plotnet(mod)

recreate the previous example with numeric inputs

get the weights and structure in the right format
wts <- neuralweights(mod)
struct <- wts$struct
wts <- unlist(wts$wts)

plot
plotnet(wts, struct = struct)

color input nodes by relative importance
mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5)

rel_imp <- garson(mod, bar_plot = FALSE)$rel_imp
cols <- colorRampPalette(c('lightgreen', 'darkgreen'))(3)[rank(rel_imp)]

plotnet(mod, circle_col = list(cols, 'lightblue'))

pred_sens 25

End(Not run)

pred_sens Predicted values for Lek profile method

Description

Get predicted values for Lek Profile method, used iteratively in lekprofile

Usage

pred_sens(mat_in, mod_in, var_sel, step_val, grps, ysel)

Arguments

mat_in data.frame of only the explanatory variables used to create model

mod_in any model object with a predict method

var_sel chr string of explanatory variable to select

step_val number of values to sequence range of selected explanatory variable

grps matrix of values for holding explanatory values constant, one column per vari-
able and one row per group

ysel chr string of response variable names for correct labelling

Details

Gets predicted output for a model’s response variable based on matrix of explanatory variables that
are restricted following Lek’s profile method. The selected explanatory variable is sequenced across
a range of values. All other explanatory variables are held constant at the values in grps.

Value

A list of predictions where each element is a data.frame with the predicted value of the response
and the values of the explanatory variable defined by var_sel. Each element of the list corresponds
to a group defined by the rows in grps at which the other explanatory variables were held constant.

See Also

lekprofile

26 pred_sens

Examples

using nnet

library(nnet)

data(neuraldat)
set.seed(123)

mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5)

mat_in <- neuraldat[, c('X1', 'X2', 'X3')]
grps <- apply(mat_in, 2, quantile, seq(0, 1, by = 0.2))

pred_sens(mat_in, mod, 'X1', 100, grps, 'Y1')

Index

∗Topic datasets
neuraldat, 13

bias_lines, 2
bias_points, 3

data.frame, 9, 10, 25

garson, 3, 16
geom_bar, 9, 10
get_ys, 6, 8
ggplot, 5, 9, 11, 18

kmeans, 11

layer_lines, 7
layer_points, 8
lekgrps, 9
lekprofile, 9, 9, 25
list, 25

mlp, 22

neuraldat, 13
neuralskips, 14, 18
neuralweights, 4, 14, 15, 17, 22
nnet, 5, 14, 16, 18, 22

olden, 5, 17

plotnet, 2, 3, 6–8, 20
pred_sens, 25

segments, 8, 22

train, 5, 16

27

	bias_lines
	bias_points
	garson
	get_ys
	layer_lines
	layer_points
	lekgrps
	lekprofile
	neuraldat
	neuralskips
	neuralweights
	olden
	plotnet
	pred_sens
	Index

