Basic Usage of **NetworkDistance** Package

Kisung You

1. Load

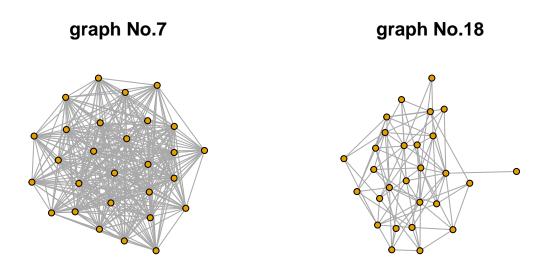
Surely, the first thing we are always bound to do is to load the package,

2. Computing Distances

Suppose you have N network objects represented as square adjacency matrices. All the functions in the package require your data to be in a form of list whose elements are your adjacency matrices. Let's load example data graph20.

```
data(graph20) # use `help(graph20)' to see more details.
typeof(graph20) # needs to be a list
#> [1] "list"
```

Before proceeding any further, since we have two types of graphs - densely and sparsely connected with p = 0.8 and p = 0.2 - we know that the distance matrix should show block-like pattern. Below is two example graphs from the dataset.

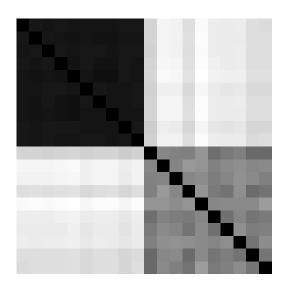


Once you have your data in such a form, all you've got is to run a single-line code to acquire distance numerics, resulting in either a **dist** class object or a square matrix. For example, let's compute graph diffusion distance by Hammond et al. (2013) on our example set.

dist.gdd <- nd.gdd(graph20) # return as a 'dist' object</pre>

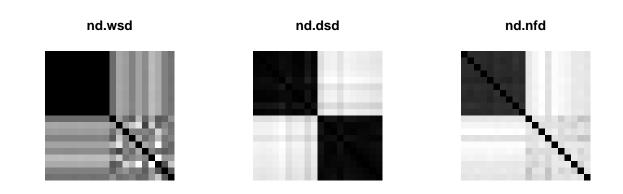
and you can see the discriminating pattern from the distance matrix dist.gdd\$D with black represents 0 and white represents the largest positive number, indicating large deviation from 0.

pairwise distance matrix



Finally, let's compare different methods as well.

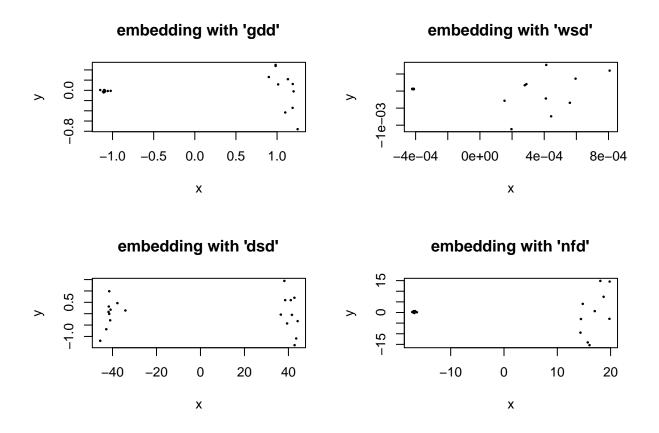
<pre>dist.wsd <- nd.wsd(graph20)</pre>		#	spectrum-weighted distance
<pre>dist.dsd <- nd.dsd(graph20,</pre>	<pre>type="SLap")</pre>	#	discrete spectral measure
<pre>dist.nfd <- nd.nfd(graph20)</pre>		#	network flow distance



3. One Application : Embedding Networks, Not Network Embedding

Our interest is focused on dealing with a collection of networks, **not** a single network. Therefore, the example we cover here is to **embed** multiple networks, not an embedding of single network and its nodes as points. We will use multidimensional scaling to embed 20 graphs we did before.

<pre>gdd2 = stats::cmdscale(dist.gdd\$D, k</pre>	∠=2)	# 2-d embedding from	'gdd' distance
<pre>wsd2 = stats::cmdscale(dist.wsd\$D, k</pre>	(=2)	#	'wsd'
<pre>dsd2 = stats::cmdscale(dist.dsd\$D, k</pre>	(= <mark>2</mark>)	#	'dsd'
<pre>nfd2 = stats::cmdscale(dist.nfd\$D, k</pre>	(=2)	#	'nfd'



From the figure above, we can see that different measures/metrics reveal a variety of topological or network features. This necessitates the very existence of a package like ours to provide a set of tools for diverse perspectives on the space networks.