Package 'NetLogoR'

March 2, 2020
Title Build and Run Spatially Explicit Agent-Based Models
Description Build and run spatially explicit
agent-based models using only the R platform. 'NetLogoR' follows the same framework as the 'NetLogo' software (Wilensky, 1999 http://ccl.northwestern.edu/netlogo/) and is a translation in R of the structure and functions of 'NetLogo'.
'NetLogoR' provides new R classes to define model agents and functions to implement spatially explicit agent-based models in the R environment. This package allows benefiting of the fast and easy coding phase from the highly developed 'NetLogo' framework, coupled with the versatility, power and massive resources of the R software.
Examples of three models (Ants http://ccl.northwestern.edu/netlogo/models/Ants, Butterfly (Railsback and Grimm, 2012) and Wolf-Sheep-Predation http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation) written using 'NetLogoR' are available. The 'NetLogo' code of the original version of these models is provided alongside.
A programming guide inspired from the 'NetLogo' Programming Guide (https://ccl.northwestern.edu/netlogo/docs/programming.html) and a dictionary of 'NetLogo' primitives (https://ccl.northwestern.edu/netlogo/docs/dictionary.html) equivalences are also available.
NOTE: To increment 'time', these functions can use a for loop or can be integrated with a discrete event simulator, such as 'SpaDES'
(https://cran.r-project.org/package=SpaDES).
The suggested package 'fastshp' can be installed with
'install.packages(`fastshp", repos = `https://rforge.net", type = ``source")'.
URL http://netlogor.predictiveecology.org,
https://github.com/PredictiveEcology/NetLogoR/

Version 0.3.7

Date 2020-02-28
Depends R (>= 3.5), raster
Imports abind, car, CircStats, data.table, grDevices, Hmisc, matrixStats, methods, plyr, quickPlot ($>=0.1 .2$), sp , SpaDES.tools, stats, rgeos
Suggests fastshp, knitr, magrittr, microbenchmark, rmarkdown, sf,SpaDES.core, testthat
License GPL-3
Language en-US
Encoding UTF-8
VignetteBuilder knitr, rmarkdown
BugReports https://github.com/PredictiveEcology/NetLogoR/issues
ByteCompile yes
LazyData true
RoxygenNote 7.0.2
Additional_repositories https://rforge.net
Collate 'Agent-classes.R' 'Classes.R' 'NetLogoR-package.R'
'worldNLR-classes-methods.R' 'agentMatrix-Class-methods.R'
'agentset-functions.R' 'function-arguments.R'
'patch-functions.R' 'plot.R' 'world-functions.R' 'quickPlot.R'
'spades-functions.R' 'turtle-functions.R'
NeedsCompilation no
Author Sarah Bauduin [aut] (https://orcid.org/0000-0002-3252-5894),
Eliot J B McIntire [aut, cre] (https://orcid.org/0000-0002-6914-8316),Alex M Chubaty [aut] (https://orcid.org/0000-0001-7146-8135),Her Majesty the Queen in Right of Canada, as represented by theMinister of Natural Resources Canada [cph]
Maintainer Eliot J B McIntire eliot.mcintire@canada.ca
Repository CRAN
Date/Publication 2020-03-02 10:00:08 UTC
R topics documented:
NetLogoR-package 5
==,agentMatrix,character-method 5
agentClasses-class 6
agentMatrix 6
agentMatrix-class 7
bk 8
canMove 10
cbind 11
cellFromPxcorPycor 11
clearPatches 12
coordinates,agentMatrix-method 13
createOTurtles 14
createTurtles 15
createWorld 16
die 18
R topics documented: 3
diffuse 19
downhill 20
dx 22
dy 23
extent,worldNLR-method 24
face 25
fargs 26
fd 28
hatch 29
home 30
inCone 31
initialize,agentMatrix-method 33
inRadius 34
inspect 35
isNLclass 36
layoutCircle 37
left 38
maxNof 40
maxOneOf 41
maxPxcor 43
maxPycor 44
minNof 45
minOneOf 46
minPxcor 48
minPycor 49
moveTo 50
neighbors 51
NLall 52
NLany 54
NLcount 55
NLdist 56
NLset 58
NLwith 59
NLworldIndex 61
nOf 62
noPatches 63
noTurtles 64
numLayers,worldArray-method 65
of 67
oneOf 68
other 70
patch 71
patchAhead 72
patchAt 74
patchDistDir 75
patches 76
patchHere 77
patchLeft 78
patchRight 80
patchSet 81
pExist 82
plot.agentMatrix 83
PxcorPycorFromCell 84
randomPxcor 85
randomPycor 86
randomXcor 87
randomXYcor 88
randomYcor 88
raster2world 89
right 90
setXY 92
show,agentMatrix-method 93
show,worldArray-method 94
sortOn 94
spdf2turtles 96
sprout 97
stackWorlds 98
subHeadings 99
tExist 100
towards 101
turtle 103
turtles2spdf 104
turtlesAt 105
turtleSet 106
turtlesOn 107
turtlesOwn 109
updateList 110
uphill 111
withMax 112
withMin 114
world2raster 115
worldArray-class 116
worldHeight 117
worldMatrix-class 118
worldNLR-class 119
worldWidth 119
wrap 120
[..... 122
[[. 124
Index 125

Description

The suggested package fastshp can be installed with install.packages("fastshp", repos = "https://rforge.net", type = "source"). The examples included with the package, are located in the R package "examples" folder, which can be found at system. file(package = "NetLogoR", "examples"). The 3 specific R examples can be opened here: file.edit(file.path(system.file(package = "NetLogoR", "examples"), "Ants", "Ants.R")), file.edit(file.path(system.file(package = "NetLogoR", "examples"), "Butterfly", "Butterfly-1.R")), or file.edit(file.path(system.file(package = "NetLogoR", "examples"), "Wolf-Sheep-Predation", "Wolf-Sheep-Predation.R")).

Author(s)

Maintainer: Eliot J B McIntire <eliot.mcintire@canada. ca> (ORCID)
Authors:

- Sarah Bauduin sarahbauduin@hotmail.fr (ORCID)
- Alex M Chubaty <alex. chubaty@gmail.com> (ORCID)

Other contributors:

- Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources Canada [copyright holder]

See Also

Useful links:

- http://netlogor.predictiveecology.org
- https://github.com/PredictiveEcology/NetLogoR/
- Report bugs at https://github.com/PredictiveEcology/NetLogoR/issues

```
==, agentMatrix, character-method
```

Relational Operators

Description

Binary operators which allow the comparison of values in an agentMatrix.

Usage

\#\# S4 method for signature 'agentMatrix, character'
e1 == e2
\#\# S4 method for signature 'agentMatrix, numeric'
e1 == e2

Arguments

e1
An agentMatrix object.
e2 atomic vector, symbol, call, or other object for which methods have been written.

```
agentClasses-class A meta class for agentMatrix and SpatialPointsDataFrame
```


Description

Both these types can be used by NetLogoR to describe turtle agents.
Both these types can be used by NetLogoR to describe turtle agents.

Author(s)

Eliot McIntire
Eliot McIntire

```
agentMatrix

\section*{Description}

This is a fast alternative to the SpatialPointsDataFrame. It is meant to replace that functionality, though there are not as many methods (yet). The object is primarily a numeric matrix. Any character column passed to ... will be converted to a numeric, using as.factor internally, and stored as a numeric. Methods using this class will automatically convert character queries to the correct numeric alternative.

\section*{Usage}
agentMatrix(..., coords)
\#\# S4 method for signature 'matrix'
agentMatrix(..., coords)
\#\# S4 method for signature 'missing'
agentMatrix(..., coords)

\section*{Arguments}
> .. Vectors, a data.frame, or a matrix of extra columns to add to the coordinates, or a SpatialPointsDataFrame.
> coords A matrix with 2 columns representing \(x\) and \(y\) coordinates

\section*{Author(s)}

Eliot McIntire

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#clear-turtles

\section*{Examples}
```

newAgent <- agentMatrix(
coords = cbind(pxcor = c(1, 2, 5), pycor = c(3, 4, 6)),
char = letters[c(1, 2, 6)],
nums2 = c(4.5, 2.6, 2343),
char2 = LETTERS[c(4, 24, 3)],
nums = 5:7)
w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
data = runif(25))
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))

```
    agentMatrix-class The agentMatrix class

\section*{Description}

Documentation needed.
Documentation needed.

\section*{Author(s)}

Eliot McIntire
Eliot McIntire

\section*{Examples}
```

 newAgent <- new("agentMatrix",
 coords = cbind(pxcor = c(1, 2, 5), pycor = c(3, 4, 6)),
 char = letters[c(1, 2, 6)],
 nums2 = c(4.5, 2.6, 2343),
 char2 = LETTERS[c(4, 24, 3)],
 nums = 5:7)
 newAgent <- new("agentMatrix",
 coords = cbind(pxcor = c(1, 2, 5), pycor = c(3, 4, 6)),
 char = letters[c(1, 2, 6)],
 nums2 = c(4.5, 2.6, 2343),
 char2 = LETTERS[c(4, 24, 3)],
 nums = 5:7)

compare speeds -- about 5x faster

if(require(microbenchmark)) {
microbenchmark(times = 499,
spdf = {SpatialPointsDataFrame(
coords = cbind(pxcor = c(1, 2, 5), pycor = c(3, 4, 6)),
data = data.frame(
char = letters[c(1, 2, 6)],
nums2 = c(4.5, 2.6, 2343),
char2 = LETTERS[c(4, 24, 3)],
nums = 5:7))},
agentMat = {agentMatrix(
coords = cbind(pxcor = c(1, 2, 5),
pycor = c(3, 4, 6)),
char = letters[c(1, 2, 6)],
nums2 = c(4.5, 2.6, 2343),
char2 = LETTERS[c(4, 24, 3)],
nums = 5:7)},
agentMatDirect = {new("agentMatrix",
coords = cbind(pxcor = c(1, 2, 5),
pycor = c(3, 4, 6)),
char = letters[c(1, 2, 6)],
nums2 = c(4.5, 2.6, 2343),
char2 = LETTERS[c(4, 24, 3)],
nums = 5:7)})
}

```
bk Move backward

\section*{Description}

Move the turtles backward of their headings' directions.

\section*{Usage}
bk(turtles, dist, world, torus = FALSE, out = TRUE)
\#\# S4 method for signature 'agentMatrix, numeric'
bk(turtles, dist, world, torus = FALSE, out = TRUE)

\section*{Arguments}
turtles AgentMatrix object representing the moving agents.
dist Numeric. Vector of distances to move. Must be of length 1 or of length turtles.
world WorldMatrix or worldArray object.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.
out Logical. Determine if a turtle should move when torus = FALSE and its ending position will be outside of the world's extent. Default is out = TRUE.

\section*{Details}

If torus \(=\) FALSE and out \(=\) TRUE, world does not need to be provided.
If a distance to move leads a turtle outside of the world's extent and torus = TRUE, the turtle is relocated on the other side of the world, inside its extent; if torus = FALSE and out = TRUE, the turtle moves past the world's extent; if torus = FALSE and out = FALSE, the turtle does not move at all. In the event that a turtle does not move, its previous coordinates are still updated with its position before running bk() (i.e., its current position).

If a given dist value is negative, then the turtle moves forward.
The turtles' headings are not affected by the function (i.e., the turtles do not face backward).

\section*{Value}

AgentMatrix representing the turtles with updated coordinates and updated data for their previous coordinates prevX and prevY.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#back
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#jump

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
data = runif(25))
t1 <- createOTurtles(n = 10, world = w1)
plot(w1)
points(t1, col = of(agents = t1, var = "color"), pch = 16)
t1 <- fd(turtles = t1, dist = 2)
points(t1, col = of(agents = t1, var = "color"), pch = 16)
t1 <- bk(turtles = t1, dist = 1)
points(t1, col = of(agents = t1, var = "color"), pch = 16)
t1 <- fd(turtles = t1, dist = 0.5)
points(t1, col = of(agents = t1, var = "color"), pch = 16)

```
    canMove Can the turtles move?

\section*{Description}

Report TRUE if a turtle can move the given distance without leaving the world's extent, report FALSE otherwise.

\section*{Usage}
canMove(world, turtles, dist)
\#\# S4 method for signature 'worldNLR,agentMatrix, numeric' canMove(world, turtles, dist)

\section*{Arguments}
\begin{tabular}{ll} 
world & WorldMatrix or worldArray object. \\
turtles & AgentMatrix object representing the moving agents. \\
dist & Numeric. Vector of distances to move. Must be of length 1 or of length turtles.
\end{tabular}

\section*{Value}

Logical. Vector of length turtles.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#can-move

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4)
t1 <- createTurtles(n = 10, world = w1)
canMove(world = w1, turtles = t1, dist = 1:10)

```
    cbind Combine R Objects by Rows or Columns

\section*{Description}

Take a sequence of agentMatrix arguments and combine by columns or rows, respectively. This will take the coordinates of the first argument and remove the coordinates of the second object.

\section*{Usage}
\#\# S3 method for class 'agentMatrix'
cbind(..., deparse.level)
\#\# S3 method for class 'agentMatrix'
rbind(..., deparse.level = 1)

\section*{Arguments}
\(\begin{array}{ll}\ldots & \text { Two agentMatrix objects } \\ \text { deparse.level } & \text { See cbind }\end{array}\)
cellFromPxcorPycor Cells numbers from patches coordinates

\section*{Description}

Report the cells numbers as defined for a Raster* object given the patches coordinates pxcor and pycor.

\section*{Usage}
```

cellFromPxcorPycor(world, pxcor, pycor)

S4 method for signature 'worldNLR,numeric,numeric'

cellFromPxcorPycor(world, pxcor, pycor)

```

\section*{Arguments}
\[
\begin{array}{ll}
\text { world } & \text { WorldMatrix or worldArray object. } \\
\text { pxcor } & \begin{array}{l}
\text { Integer. Vector of patches pxcor coordinates. Must be of length } 1 \text { or of the same } \\
\text { length as pycor. }
\end{array} \\
\text { pycor } & \begin{array}{l}
\text { Integer. Vector of patches pycor coordinates. Must be of length } 1 \text { or of the same } \\
\text { length as pxcor. }
\end{array}
\end{array}
\]

\section*{Value}

Numeric. Vector of cells number.

\section*{Author(s)}

Sarah Bauduin

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
cellFromPxcorPycor(world = w1, pxcor = 0, pycor = 9)
cellFromPxcorPycor(world = w1, pxcor = c(0, 1, 2), pycor = 0)

```
```

clearPatches Clear world's patches

```

\section*{Description}

Reset all patches values to NA.

\section*{Usage}
```

clearPatches(world)
\#\# S4 method for signature 'worldMatrix'
clearPatches(world)
\#\# S4 method for signature 'worldArray'
clearPatches(world)

```

\section*{Arguments}
world WorldMatrix or worldArray object.

\section*{Value}

WorldMatrix object with NA values for all patches.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#clear-patches

\section*{Examples}
```

w1 <- createWorld()
w1 <- NLset(world = w1, agents = patches(w1), val = runif(NLcount(patches(w1))))
w1Val <- of(world = w1, agents = patches(w1))
summary(w1Val)
w1 <- clearPatches(w1)
w1Val <- of(world = w1, agents = patches(w1))
summary(w1Val)

```
coordinates, agentMatrix-method
    Set spatial coordinates

\section*{Description}

Set spatial coordinates

\section*{Usage}
\#\# S4 method for signature 'agentMatrix'
coordinates(obj, ...)

\section*{Arguments}
obj
documentation needed
additional arguments that may be used by particular methods description needed
    Create ordered turtles

\section*{Description}

Create n turtles at the center of the world with their headings evenly distributed.

\section*{Usage}
createOTurtles(n, world, breed, color)
\#\# S4 method for signature 'numeric'
createOTurtles(n, world, breed, color)

\section*{Arguments}
n
Integer.
world WorldMatrix or worldArray object.
breed Character. Vector of breed names. Must be of length 1 or of length \(n\). If missing, breed = "turtle" for all turtles.
color Character. Vector of color names. Must be of length n. If missing, colors are assigned using the function rainbow( \(n\) ).

\section*{Details}

The identity of the turtles is defined by their who number. This numbering starts at 0 and increments by 1 .

The coordinates from the previous time step are stored in prevX and prevY. The initial values are NA.

\section*{Value}

AgentMatrix object of length \(n\) with data for the turtles being: xcor, ycor, who, heading, prevX, prevY, breed, and color.

\section*{Author(s)}

Sarah Bauduin and Eliot McIntire

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#create-ordered-turtles

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
data = runif(25))
t1 <- createOTurtles(n = 10, world = w1)
plot(w1)
points(t1, col = of(agents = t1, var = "color"), pch = 16)
t1 <- fd(turtles = t1, dist = 1)
points(t1, col = of(agents = t1, var = "color"), pch = 16)

```
```

 createTurtles Create turtles
    ```

\section*{Description}

Create n moving agents with a set of defined variables.

\section*{Usage}
createTurtles(n, coords, world, heading, breed, color)
\#\# S4 method for signature 'numeric,matrix,missing'
createTurtles(n, coords, world, heading, breed, color)
\#\# S4 method for signature 'numeric,missing, ANY'
createTurtles(n, coords, world, heading, breed, color)

\section*{Arguments}
n
coords
world
heading Numeric. Vector of values between 0 and 360. Must be of length 1 or of length n . If missing, a random heading is assigned to each turtle.
breed Character. Vector of breed names. Must be of length 1 or of length \(n\). If missing, breed = "turtle" for all turtles.
color Character. Vector of color names. Must be of length \(n\). If missing, colors are assigned using the function rainbow( \(n\) ).

\section*{Details}

If coords is provided, world must not be provided.
The identity of the turtles is defined by their who number. This numbering starts at 0 and increments by 1 .

The coordinates from the previous time step are stored in prevX and prevY. The initial values are NA.

\section*{Value}

AgentMatrix object of length \(n\) with data for the turtles being: xcor, ycor, who, heading, prevX, prevY, breed, and color.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#create-turtles

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
data = runif(25))
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))
plot(w1)
points(t1, col = of(agents = t1, var = "color"), pch = 16)

```
```

createWorld Create a world

```

\section*{Description}

Create a world of patches of class worldMatrix.

\section*{Usage}
```

createWorld(minPxcor, maxPxcor, minPycor, maxPycor, data = NA)

S4 method for signature 'numeric,numeric,numeric,numeric,ANY'

createWorld(minPxcor, maxPxcor, minPycor, maxPycor, data = NA)

S4 method for signature 'missing,missing,missing,missing,missing'

createWorld()

```

\section*{Arguments}
minPxcor Integer. Minimum pxcor for the patches (world's left border).
maxPxcor Integer. Maximum pxcor for the patches (world's right border).
minPycor Integer. Minimum pycor for the patches (world's bottom border).
maxPycor Integer. Maximum pycor for the patches (world's top border).
data \(\quad\) Vector of length 1 or length (maxPxcor \(-m i n P x c o r+1) *(m a x P y c o r-m i n P y c o r\) \(+1)\). Default is NA.

\section*{Details}

If data is provided, values are assigned by rows.
If no parameters value are provided, default values are: \(\operatorname{minPxcor}=-16\), maxPxcor \(=16\), minPycor \(=-16\), and maxPycor \(=16\).
See help("worldMatrix-class") for more details on the worldMatrix class.

\section*{Value}

WorldMatrix object composed of (maxPxcor -minPxcor +1 ) * (maxPycor -minPycor +1 ) patches (i.e., matrix cells).

\section*{Author(s)}

Sarah Bauduin, Eliot McIntire, and Alex Chubaty

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{Examples}
w1 <- createWorld(minPxcor \(=0, \operatorname{maxPxcor}=4\), minPycor \(=0\), maxPycor \(=4\), data \(=1: 25\) ) plot(w1)

\section*{Description}

Kill selected turtles.

\section*{Usage}
die(turtles, who)
\#\# S4 method for signature 'agentMatrix, numeric'
die(turtles, who)

\section*{Arguments}
turtles AgentMatrix object representing the moving agents.
who Integer. Vector of the who numbers for the selected turtles.

\section*{Details}

The who numbers of the remaining turtles are unchanged.

\section*{Value}

AgentMatrix representing the turtles with the selected ones removed.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#die

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4)
t1 <- createTurtles(n = 10, world = w1)
NLcount(t1)
t1 <- die(turtles = t1, who = c(2, 3, 4))
NLcount(t1)

```
diffuse Diffuse values in \(a\) world

\section*{Description}

Each patch gives an equal share of a portion of its value to its neighbor patches.

\section*{Usage}
```

diffuse(world, pVar, share, nNeighbors, torus = FALSE)

S4 method for signature 'worldMatrix,missing,numeric,numeric'

diffuse(world, share, nNeighbors, torus)

S4 method for signature 'worldArray,character,numeric,numeric'

diffuse(world, pVar, share, nNeighbors, torus = FALSE)

```

\section*{Arguments}
world WorldMatrix or worldArray object.
pVar Character. If the world is a worldArray object, pVar is the name of the layer to use to define the patches values. pVar must not be provided if the world is a worldMatrix object.
share \(\quad\) Numeric. Value between 0 and 1 representing the portion of the patches values to be diffused among the neighbors.
nNeighbors Integer: 4 or 8 . Represents the number of neighbor patches considered.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.

\section*{Details}

What is given is lost for the patches.
If torus = TRUE, all patches have nNeighbors patches around them, which some may be on the other sides of the world. If torus = FALSE, patches located on the edges of the world have less than nNeighbors patches around them. However, each neighbor still gets \(1 / 4\) or \(1 / 8\) of the shared amount and the diffusing patch keeps the leftover.

\section*{Value}

WorldMatrix or worldArray object with patches values updated.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#diffuse
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#diffuse4

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
data = sample(1:3, size = 25, replace = TRUE))
plot(w1)

Diffuse 50% of each patch value to its 8 neighbors

w2 <- diffuse(world = w1, share = 0.5, nNeighbors = 8)
plot(w2)

```
downhill Move downhill

\section*{Description}

Move the turtles to their neighboring patch with the lowest value.

\section*{Usage}
downhill(world, pVar, turtles, nNeighbors, torus = FALSE)
\#\# S4 method for signature 'worldMatrix,missing, agentMatrix, numeric'
downhill(world, turtles, nNeighbors, torus)
\#\# S4 method for signature 'worldArray, character, agentMatrix, numeric' downhill(world, pVar, turtles, nNeighbors, torus = FALSE)

\section*{Arguments}
world WorldMatrix or worldArray object.
pVar Character. If the world is a worldArray object, pVar is the name of the layer to use to define the patches values. pVar must not be provided if the world is a worldMatrix object.
turtles AgentMatrix object representing the moving agents.
nNeighbors Integer: 4 or 8 . Represents the number of neighbor patches considered.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.

\section*{Details}

If no neighboring patch has a smaller value than the patch where the turtle is currently located on, the turtle stays on this patch. It still moves to the patch center if it was not already on it.
If there are multiple neighboring patches with the same lowest value, the turtle chooses one patch randomly.

If a turtle is located on a patch on the edge of the world and torus = FALSE, it has fewer neighboring patches as options to move than nNeighbors; if torus = TRUE, the turtle can move on the other side of the world to move downhill and its choice of neighboring patches is always equals to \(\mathrm{nNeighbors}\).

\section*{Value}

AgentMatrix representing the turtles with updated coordinates and updated data for their heading values and previous coordinates prevX and prevY.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#downhill

\section*{Examples}
```

w1 <- createWorld(minPxcor = 1, maxPxcor = 10, minPycor = 1, maxPycor = 10,
data = runif(100))
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))
plot(w1)
points(t1, col = of(agents = t1, var = "color"), pch = 16)
t1 <- downhill(world = w1, turtles = t1, nNeighbors = 8)
points(t1, col = of(agents = t1, var = "color"), pch = 16)

```

\section*{Description}

Report the amount by which the turtles' coordinates xcor would change if the turtles were to move forward the given distances with their current headings.

\section*{Usage}
\(\mathrm{dx}(\) turtles, dist \(=1\) )
\#\# S4 method for signature 'agentMatrix, numeric'
\(\mathrm{dx}(\) turtles, dist \(=1\) )
\#\# S4 method for signature 'agentMatrix,missing'
dx(turtles)

\section*{Arguments}
turtles AgentMatrix object representing the moving agents.
dist Numeric. Vector of distances the turtles would have to move forward to compute the increment values. Must be of length 1 or of length turtles. The default value is dist \(=1\).

\section*{Details}

Report the sine of the turtles' heading multiplied by the dist values. Heading 0 is north and angles are calculated in degrees in a clockwise manner.

\section*{Value}

Numeric. Vector of length turtles.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#dxy

\section*{Examples}
```

 w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4)
 t1 <- createOTurtles(world = w1, n = 10)
 dx(turtles = t1)
    ```
    dy
    \(y\)-increment

\section*{Description}

Report the amount by which the turtles' coordinates ycor would change if the turtles were to move forward the given distances with their current headings.

\section*{Usage}
dy (turtles, dist = 1)
\#\# S4 method for signature 'agentMatrix, numeric'
dy(turtles, dist = 1)
\#\# S4 method for signature 'agentMatrix,missing'
dy(turtles)

\section*{Arguments}
turtles AgentMatrix object representing the moving agents.
dist Numeric. Vector of distances the turtles would have to move forward to compute the increment values. Must be of length 1 or of length turtles. The default value is dist \(=1\).

\section*{Details}

Report the cosine of the turtles' heading multiplied by the dist values. Heading 0 is north and angles are calculated in degrees in a clockwise manner.

\section*{Value}

Numeric. Vector of length turtles.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#dxy

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4)
t1 <- createOTurtles(world = w1, n = 10)
dy(turtles = t1)

```
extent,worldNLR-method
    Bounding box and extent methods for NetLogoR classes

\section*{Description}

Same as bbox and extent

\section*{Usage}
\#\# S4 method for signature 'worldNLR'
extent (x, ...)
\#\# S4 method for signature 'agentMatrix'
extent(x, ...)
.bboxCoords(coords)
\#\# S4 method for signature 'agentMatrix'
bbox (obj)
bbox (obj) <- value
\#\# S4 replacement method for signature 'agentMatrix,matrix'
bbox (obj) <- value
\#\# S4 method for signature 'worldNLR'
bbox (obj)

\section*{Arguments}
x
... Additional arguments. When x is a single number representing 'xmin', you can pass three additional numbers (xmax, ymin, ymax)
When x is a Raster* object, you can pass four additional arguments to crop the extent: \(r 1, r 2, c 1, c 2\), representing the first and last row and column number
\begin{tabular}{ll} 
coords & documentation needed \\
obj & \begin{tabular}{l} 
object deriving from class "Spatial", or one of classes: "Line", "Lines", "Poly- \\
gon" or "Polygons", or ANY, which requires obj to be an array with at least two \\
columns
\end{tabular} \\
value & \(2 \times 2\) matrix representing the bounding box. See bbox
\end{tabular}
face Face something

\section*{Description}

Set the turtles' heading towards agents2.

\section*{Usage}
face(turtles, agents2, world, torus = FALSE)
\#\# S4 method for signature 'agentMatrix,matrix'
face(turtles, agents2, world, torus = FALSE)

\section*{Arguments}
turtles AgentMatrix object representing the moving agents.
agents2 Matrix \((\mathrm{ncol}=2)\) with the first column pxcor and the second column pycor representing the patches coordinates, or
AgentMatrix object representing the moving agents, or
Matrix ( \(\mathrm{ncol}=2\) ) with the first column x and the second column y representing locations coordinates.
world WorldMatrix or worldArray object.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.

\section*{Details}

The number of agents/locations in agents 2 must be equal to 1 or to the length of turtles.
If torus \(=\) FALSE, world does not need to be provided.
If torus = TRUE and the distance from one turtles to its corresponding agent/location agents2 is smaller around the sides of the world than across it, then the direction to the agent/location agents 2 going around the sides of the world is given to the turtle.
If a turtle is facing its own location, its heading does not change.

\section*{Value}

AgentMatrix representing the turtles with updated headings.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
```

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#face
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#facexy

```

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
data = runif(25))
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))
plot(w1)
points(t1, col = of(agents = t1, var = "color"), pch = 16)
t1 <- face(turtles = t1, agents2 = cbind(x = 0, y = 0))
t1 <- fd(turtles = t1, dist = 0.5)
points(t1, col = of(agents = t1, var = "color"), pch = 16)

```
fargs Function arguments

\section*{Description}

Function arguments

\section*{Arguments}
n
world
torus
minPxcor
maxPxcor
minPycor
maxPycor
pxcor

Integer.
WorldMatrix or worldArray object.
Logical to determine if the world is wrapped. Default is torus = FALSE.
Integer. Minimum pxcor for the patches (world's left border).
Integer. Maximum pxcor for the patches (world's right border).
Integer. Minimum pycor for the patches (world's bottom border).
Integer. Maximum pycor for the patches (world's top border).
Integer. Vector of patches pxcor coordinates. Must be of length 1 or of the same length as pycor.
\begin{tabular}{ll} 
pycor & \begin{tabular}{l} 
Integer. Vector of patches pycor coordinates. Must be of length 1 or of the same \\
length as pxcor. \\
cellNum \\
pVar \\
Integer. Vector of cells number. \\
Character. If the world is a worldArray object, pVar is the name of the layer to \\
use to define the patches values. pVar must not be provided if the world is a \\
worldMatrix object.
\end{tabular} \\
turtles & AgentMatrix object representing the moving agents. \\
patches & \begin{tabular}{l} 
Matrix (ncol = 2) with the first column pxcor and the second column pycor \\
representing the patches coordinates.
\end{tabular} \\
agents & \begin{tabular}{l} 
Matrix (ncol = 2) with the first column pxcor and the second column pycor \\
representing the patches coordinates, or
\end{tabular} \\
AgentMatrix object representing the moving agents. \\
agents2 & \begin{tabular}{l} 
Matrix (ncol = 2) with the first column pxcor and the second column pycor \\
representing the patches coordinates, or
\end{tabular} \\
AgentMatrix object representing the moving agents, or \\
Matrix (ncol = 2) with the first column x and the second column y representing
\end{tabular}

\section*{Description}

Move the turtles forward with their headings as directions.

\section*{Usage}
fd(turtles, dist, world, torus = FALSE, out = TRUE)
\#\# S4 method for signature 'agentMatrix, numeric'
fd(turtles, dist, world, torus = FALSE, out = TRUE)

\section*{Arguments}
turtles AgentMatrix object representing the moving agents.
dist Numeric. Vector of distances to move. Must be of length 1 or of length turtles.
world WorldMatrix or worldArray object.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.
out Logical. Determine if a turtle should move when torus = FALSE and its ending position will be outside of the world's extent. Default is out = TRUE.

\section*{Details}

If torus \(=\) FALSE and out \(=\) TRUE, world does not need to be provided.
If a distance to move leads a turtle outside of the world's extent and torus = TRUE, the turtle is relocated on the other side of the world, inside its extent; if torus = FALSE and out = TRUE, the turtle moves past the world's extent; if torus = FALSE and out = FALSE, the turtle does not move at all. In the event that a turtle does not move, its previous coordinates are still updated with its position before running \(\mathrm{fd}(\) ) (i.e., its current position).
If a given dist value is negative, then the turtle moves backward.

\section*{Value}

AgentMatrix representing the turtles with updated coordinates and updated data for their previous coordinates prevX and prevY.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#forward
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#jump

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
data = runif(25))
t1 <- createOTurtles(n = 10, world = w1)
plot(w1)
points(t1, col = of(agents = t1, var = "color"), pch = 16)
t1 <- fd(turtles = t1, dist = 1)
points(t1, col = of(agents = t1, var = "color"), pch = 16)

```

\section*{hatch Hatch new turtles}

\section*{Description}

Create new turtles from parent turtles.

\section*{Usage}
hatch(turtles, who, \(n\), breed)
\#\# S4 method for signature 'agentMatrix, numeric, numeric' hatch(turtles, who, \(n\), breed)

\section*{Arguments}
turtles AgentMatrix object representing the moving agents.
who Integer. Vector of the who numbers for the selected turtles.
\(\mathrm{n} \quad\) Integer. Vector of length 1 or of length who. Number of new turtles to create for each parent.
breed Character. One breed name. If missing, the created turtles are of the same breed as their parent turtle.

\section*{Details}

The parent turtle must be contained in the turtles.
The created turtles inherit of all the data from the parent turtle, except for the breed if specified otherwise, and for the who numbers. The who" numbers of the turtles created take on following the highest who number among the turtles.
All new hatched turtles are placed at the end of the agentMatrix object.

\section*{Value}

AgentMatrix representing the turtles with the new hatched ones.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#hatch

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4)
t1 <- createTurtles(n = 10, world = w1)
NLcount(t1)
t1 <- hatch(turtles = t1, who = 0, n = 2)
NLcount(t1)

```
home Return home

\section*{Description}

Move the turtles back home.

\section*{Usage}
home(world, turtles, home)
\#\# S4 method for signature 'worldNLR,agentMatrix,character'
home(world, turtles, home)

\section*{Arguments}
world WorldMatrix or worldArray object.
turtles AgentMatrix object representing the moving agents.

Character. Can take one of the following options to define where to relocate the
turtles:
home \(=\) "home \(0 "\) will place the turtles at the location \(x=0, y=0\).
home \(=\) "center" will place the turtles at the center of the world.
home \(=\) "pCorner" will place the turtles at the center of the patch located in
the left bottom corner of the world.
home \(=\) "corner" will place the turtles at the left bottom corner of the world.

\section*{Value}

AgentMatrix representing the turtles with updated coordinates and updated data for their previous coordinates prevX and prevY.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#home

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
data = runif(25))
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))
plot(w1)
points(t1, col = "black", pch = 16)
t1 <- home(world = w1, turtles = t1, home = "pCorner")
points(t1, col = "red", pch = 16)

```

Agents in cone

\section*{Description}

Report the agents within the "cone of vision" in front of each one of the turtles.

\section*{Usage}
inCone(turtles, radius, angle, agents, world, torus = FALSE)
\#\# S4 method for signature 'agentMatrix, numeric, numeric,matrix'
inCone(turtles, radius, angle, agents, world, torus = FALSE)

\section*{Arguments}
turtles AgentMatrix object representing the moving agents.
radius Numeric. Vector of distances from turtles to locate agents. Must be of length 1 or of length turtles.
angle Numeric. Vector of angles to define the size of the cone of vision for the turtles. The cone of vision is defined between the direction of their headings minus angle / 2 to the direction of their headings plus angle / 2. Must be of length 1 or of length turtles.
agents Matrix ( \(\mathrm{ncol}=2\) ) with the first column pxcor and the second column pycor representing the patches coordinates, or AgentMatrix object representing the moving agents.
world WorldMatrix or worldArray object.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.

\section*{Details}
agents are reported if there are within radius distance of the turtle and their direction from the turtle is within [-angle, + angle] of the turtle's heading.
Distances to patches are calculated to their center.
If torus \(=\) FALSE, world does not need to be provided.
If torus \(=\) TRUE, the radius distances are calculated around the sides of the world to select agents.

\section*{Value}

Matrix ( \(\mathrm{ncol}=3\) ) with the first column pxcor and the second column pycor representing the coordinates of the patches among agents2 within the cone of vision of each of the turtles which are represented by the id column, if agents are patches, or
Matrix ( \(\mathrm{ncol}=2\) ) with the first column who representing the who numbers of the turtles among agents 2 within the cone of vision of each of the turtles which are represented by the id column, if agents are turtles.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
```

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#in-cone

```

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4)
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))
p1 <- inCone(turtles = t1, radius = 2, agents = patches(w1), angle = 90)
t2 <- inCone(turtles = turtle(t1, who = 0), radius = 2, angle = 90, agents = t1)

```

\section*{initialize, agentMatrix-method}
```

 Initialize for agentMatrix Class
    ```

\section*{Description}

To create a new agentMatrix object.

\section*{Usage}
\#\# S4 method for signature 'agentMatrix'
initialize(.Object = "agentMatrix", coords, ..., levelsAM)

\section*{Arguments}
\begin{tabular}{ll}
.Object & An object: see the "Initialize Methods" section. \\
coords & 2 column matrix of coordinates \\
\(\ldots\) & arguments to specify properties of the new object, to be passed to initialize(). \\
levelsAM & \begin{tabular}{l} 
A list with named character vectors. Each name should match with elements in \\
..., and each character vector should be the length of unique elements in the ... \\
element.
\end{tabular}
\end{tabular}
```

inRadius Agents in radius

```

\section*{Description}

Report the patches or turtles among agents 2 within given distances of each of the agents. Currently, this function multiplies radius by 1.0000001 so that the response of inRadius is inclusive.

\section*{Usage}
inRadius(agents, radius, agents2, world, torus = FALSE)
\#\# S4 method for signature 'matrix, numeric,matrix'
inRadius(agents, radius, agents2, world, torus = FALSE)

\section*{Arguments}
agents Matrix ( \(\mathrm{ncol}=2\) ) with the first column pxcor and the second column pycor representing the patches coordinates, or AgentMatrix object representing the moving agents.
radius Numeric. Vector of distances from agents to locate agents2. Must be of length 1 or of length agents.
agents2 Matrix ( \(\mathrm{ncol}=2\) ) with the first column pxcor and the second column pycor representing the patches coordinates, or AgentMatrix object representing the moving agents.
world WorldMatrix or worldArray object.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.

\section*{Details}

Distances from/to patches are calculated from/to their center.
If torus = FALSE, world does not need to be provided.
If torus = TRUE, the radius distances are calculated around the sides of the world to select agents2.

\section*{Value}

Matrix ( \(\mathrm{ncol}=3\) ) with the first column pxcor and the second column pycor representing the coordinates of the patches among agents2 within radius distances for each agents which are represented by the id column, if agents2 are patches, or
Matrix (ncol =2) with the first column who representing the who numbers of the turtles among agents 2 within radius distances for each agents which are represented by the id column, if agents2 are turtles.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#in-radius

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4)
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))
p1 <- inRadius(agents = patch(w1, 0, 0), radius = 2, agents2 = patches(w1))
t2 <- inRadius(agents = patch(w1, 0, 0), radius = 2, agents2 = t1)
p2 <- inRadius(agents = t1, radius = 2, agents2 = patches(w1))
t3 <- inRadius(agents = turtle(t1, who = 0), radius = 2, agents2 = t1)

```
inspect Inspect turtles

\section*{Description}

Display all variables values for the selected individuals among the turtles.

\section*{Usage}
inspect(turtles, who)
\#\# S4 method for signature 'agentMatrix, numeric' inspect(turtles, who)

\section*{Arguments}
turtles AgentMatrix object representing the moving agents.
who Integer. Vector of the who numbers for the selected turtles.

\section*{Value}

Dataframe (nrow \(=\) length \((w h o)\) ) of the variables of the selected individuals among the turtles.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#inspect

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
t1 <- createOTurtles(world = w1, n = 10)
inspect(turtles = t1, who = c(2, 3))

```
```

isNLclass Type of object

```

\section*{Description}

Report TRUE if the agents is of the class tested, report FALSE otherwise.

\section*{Usage}
isNLclass(agents, class)
\#\# S4 method for signature 'matrix, character'
isNLclass(agents, class)

\section*{Arguments}
agents Matrix ( \(\mathrm{ncol}=2\) ) with the first column pxcor and the second column pycor representing the patches coordinates, or AgentMatrix object representing the moving agents.
class Character. Can take one of the following options to define the class: "agent", "agentset", "patch", "patchset". "turtle" or "turtleset".

\section*{Details}

Careful! The class tested does not correspond to actual R classes.
agents is "patch" if it is a matrix ( \(\mathrm{ncol}=2\) ) with the first column pxcor and the second column pycor with only one row. agents is "patcheset" if the matrix has more than one row.
agents is "turtle" if it is an agentMatrix containing only one turtle. agents is "turtleset" if the agentMatrix contains more than one turtle.
agents is "agent" if it is either "patch" or "turtle". agents is "agentset" if it is either "patcheset" or "turtleset".

\section*{Value}

Logical. TRUE if agents is of the class tested.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl. northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#is-of-type

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4)
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10),
heading = sample(1:3, size = 10, replace= TRUE))
isNLclass(agents = patches(w1), class = "patch")
isNLclass(agents = patches(w1), class = "patcheset")
isNLclass(agents = t1, class = "agentset")
isNLclass(agents = t1, class = "turtleset")

```

\section*{layoutCircle Layout turtles on a circle}

\section*{Description}

Relocate the turtles on a circle centered on the world.

\section*{Usage}
layoutCircle(world, turtles, radius, torus = FALSE)
\#\# S4 method for signature 'worldNLR, agentMatrix, numeric'
layoutCircle(world, turtles, radius, torus = FALSE)

\section*{Arguments}
world WorldMatrix or worldArray object.
turtles AgentMatrix object representing the moving agents.
radius Numeric. Radius of the circle.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.

\section*{Details}

The turtles point outwards.
If the radius value leads turtles outside of the world's extent and torus = TRUE, they are relocated on the other sides of the world, inside its extent; if torus = FALSE, the turtles are located past the world's extent.

\section*{Value}

AgentMatrix representing the turtles with updated coordinates and updated data for their heading values and previous coordinates prevX and prevY.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
```

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#layout-circle

```

\section*{Examples}
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9,
data \(=\) runif(100))
t1 <- createTurtles( \(\mathrm{n}=10\), coords = randomXYcor(w1, \(\mathrm{n}=10\) ))
plot(w1)
points(t1, col = "black", pch = 16)
t 1 <- layoutCircle(world = w1, turtles = t1, radius = 3)
points(t1, col = "red", pch = 16)
left
Rotate to the left

\section*{Description}

Rotate the turtles's headings to the left of angle degrees.

\section*{Usage}
```

left(turtles, angle)

S4 method for signature 'agentMatrix,numeric'

left(turtles, angle)

```

\section*{Arguments}
turtles AgentMatrix object representing the moving agents.
angle Numeric. Vector of angles in degrees by which to rotate the turtles' headings. Must be of length 1 or of length turtles.

\section*{Details}

If a given angle value is negative, then the turtle rotates to the right.

\section*{Value}

AgentMatrix representing the turtles with updated heading values.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#left

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4)
t1 <- createTurtles(n = 10, world = w1)
of(agents = t1, var = "heading")
t1 <- left(turtles = t1, angle = 180)
of(agents = t1, var = "heading")

```

\section*{Description}

Report the n patches or turtles among agents which have their variable among the maximum values.

\section*{Usage}
```

 maxNof(agents, n, world, var)
 ## S4 method for signature 'matrix,numeric,worldMatrix,missing'
 maxNof(agents, n, world)
 ## S4 method for signature 'matrix,numeric,worldArray,character'
 maxNof(agents, n, world, var)
 ## S4 method for signature 'agentMatrix,numeric,missing,character'
 maxNof(agents, n, var)
    ```

\section*{Arguments}
agents \(\quad\) Matrix ( \(\mathrm{ncol}=2\) ) with the first column pxcor and the second column pycor representing the patches coordinates, or
AgentMatrix object representing the moving agents.
n
world WorldMatrix or worldArray object.
var Character. The name of the selected agents variable. If agents are patches and the world is a worldMatrix object, var must not be provided. If agents are patches and the world is a worldArray object, var is the name of the layer to use to define the patches values. If agents are turtles, var is one of the turtles' variable and can be equal to xcor, ycor, any of the variables created when turtles were created, as well as any variable created using turtlesOwn().

\section*{Details}
world must not be provided if agents are turtles.
If there is a tie that would make the number of returned patches or turtles larger than \(n\), it is broken randomly.

\section*{Value}

Matrix ( \(\mathrm{ncol}=2\), \(\mathrm{nrow}=\mathrm{n}\) ) with the first column pxcor and the second column pycor representing the coordinates of the \(n\) patches among the agents which have their variable values among the maximum values among the agents, or

AgentMatrix of length n representing the turtles among the agents which have their var values among the maximum values among the agents.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl. northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#max-n-of

\section*{Examples}
```


Patches

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
data = sample(1:10, size = 25, replace = TRUE))
plot(w1)
p1 <- maxNof(agents = patches(w1), n = 6, world = w1)

Turtles

t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10),
heading = sample(1:5, size = 10, replace= TRUE))
t2 <- maxNof(agents = t1, n = 5, var = "heading")

```
    maxOneOf
    One agent with maximum

\section*{Description}

Report one patch or one turtle among agents which has its variable equals to the maximum value.

\section*{Usage}
```

maxOneOf(agents, world, var)

S4 method for signature 'matrix,worldMatrix,missing'

maxOneOf(agents, world)

S4 method for signature 'matrix,worldArray,character'

maxOneOf(agents, world, var)

S4 method for signature 'agentMatrix,missing,character'

maxOneOf(agents, var)

```

\section*{Arguments}
agents \(\quad\) Matrix \((\mathrm{ncol}=2)\) with the first column pxcor and the second column pycor representing the patches coordinates, or
AgentMatrix object representing the moving agents.
world WorldMatrix or worldArray object.
var Character. The name of the selected agents variable. If agents are patches and the world is a worldMatrix object, var must not be provided. If agents are patches and the world is a worldArray object, var is the name of the layer to use to define the patches values. If agents are turtles, var is one of the turtles' variable and can be equal to xcor, ycor, any of the variables created when turtles were created, as well as any variable created using turtlesOwn().

\section*{Details}
world must not be provided if agents are turtles.
If there are several patches or turtles among agents with their variable equal to the maximum value, one is chosen randomly. To access to all patches or turtles among agents which have their variable equal to the maximum value, use withMax ().

\section*{Value}

Matrix (ncol \(=2\), nrow \(=1\) ) with the first column pxcor and the second column pycor representing the coordinates of the patch (or of one of the patches) among the agents which has its variable equals to the maximum value among the agents, or

AgentMatrix of length 1 representing the turtle (or one of the turtles) among the agents which has its variable var equals to the maximum value among the agents.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#max-one-of

\section*{Examples}
```


Patches

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
data = sample(1:5, size = 25, replace = TRUE))
plot(w1)
p1 <- maxOneOf(agents = patches(w1), world = w1)

Turtles

t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10),
heading = sample(1:3, size = 10, replace= TRUE))
t2 <- maxOneOf(agents = t1, var = "heading")

```
    maxPxcor Maximum pxcor

\section*{Description}

Report the patches maximum pxcor in the world.

\section*{Usage}
maxPxcor(world)
\#\# S4 method for signature 'worldNLR'
maxPxcor (world)

\section*{Arguments}
world WorldMatrix or worldArray object.

\section*{Value}

Integer.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#max-pcor

\section*{Examples}
```

w1 <- createWorld()
maxPxcor(w1)

```
maxPycor \(\quad\) Maximum pycor

\section*{Description}

Report the patches maximum pycor in the world.

\section*{Usage}
maxPycor(world)
\#\# S4 method for signature 'worldNLR'
maxPycor(world)

\section*{Arguments}
world WorldMatrix or worldArray object.

\section*{Value}

Integer.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#max-pcor
minNof

\section*{Examples}
```

 w1 <- createWorld()
    ```
    maxPycor(w1)
minNof \(\quad N\) agents with minimum

\section*{Description}

Report the n patches or turtles among agents which have their variable among the minimum values.

\section*{Usage}
minNof(agents, n , world, var)
\#\# S4 method for signature 'matrix, numeric,worldMatrix,missing'
minNof(agents, \(n\), world)
\#\# S4 method for signature 'matrix, numeric, worldArray, character'
minNof(agents, \(n\), world, var)
\#\# S4 method for signature 'agentMatrix, numeric,missing, character'
minNof(agents, \(n\), var)

\section*{Arguments}
agents Matrix ( \(\mathrm{ncol}=2\) ) with the first column pxcor and the second column pycor representing the patches coordinates, or AgentMatrix object representing the moving agents.
n
Integer.
world
WorldMatrix or worldArray object.
var
Character. The name of the selected agents variable. If agents are patches and the world is a worldMatrix object, var must not be provided. If agents are patches and the world is a worldArray object, var is the name of the layer to use to define the patches values. If agents are turtles, var is one of the turtles' variable and can be equal to xcor, ycor, any of the variables created when turtles were created, as well as any variable created using turtlesOwn().

\section*{Details}
world must not be provided if agents are turtles.
If there is a tie that would make the number of returned patches or turtles larger than \(n\), it is broken randomly.

\section*{Value}

Matrix ( \(\mathrm{ncol}=2\), nrow \(=\mathrm{n}\) ) with the first column pxcor and the second column pycor representing the coordinates of the \(n\) patches among the agents which have their variable values among the minimum values among the agents, or

AgentMatrix of length \(n\) representing the turtles among the agents which have their var values among the minimum values among the agents.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#min-n-of

\section*{Examples}
```


Patches

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
data = sample(1:10, size = 25, replace = TRUE))
plot(w1)
p1 <- minNof(agents = patches(w1), n = 6, world = w1)

Turtles

t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10),
heading = sample(1:5, size = 10, replace= TRUE))
t2 <- minNof(agents = t1, n = 5, var = "heading")

```
minOneOf One agent with minimum

\section*{Description}

Report one patch or one turtle among agents which has its variable equals to the minimum value.

\section*{Usage}
```

minOneOf(agents, world, var)

S4 method for signature 'matrix,worldMatrix,missing'

minOneOf(agents, world)

S4 method for signature 'matrix,worldArray,character'

minOneOf(agents, world, var)

S4 method for signature 'agentMatrix,missing,character'

minOneOf(agents, var)

```

\section*{Arguments}
agents \(\quad\) Matrix \((\mathrm{ncol}=2)\) with the first column pxcor and the second column pycor representing the patches coordinates, or
AgentMatrix object representing the moving agents.
world WorldMatrix or worldArray object.
var Character. The name of the selected agents variable. If agents are patches and the world is a worldMatrix object, var must not be provided. If agents are patches and the world is a worldArray object, var is the name of the layer to use to define the patches values. If agents are turtles, var is one of the turtles' variable and can be equal to xcor, ycor, any of the variables created when turtles were created, as well as any variable created using turtlesOwn().

\section*{Details}
world must not be provided if agents are turtles.
If there are several patches or turtles among agents with their variable equal to the minimum value, one is chosen randomly. To access to all patches or turtles among agents which have their variable equal to the minimum value, use withMin().

\section*{Value}

Matrix (ncol \(=2\), nrow \(=1\) ) with the first column pxcor and the second column pycor representing the coordinates of the patch (or of one of the patches) among the agents which has its variable equals to the minimum value among the agents, or

AgentMatrix of length 1 representing the turtle (or one of the turtles) among the agents which has its variable var equals to the minimum value among the agents.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#min-one-of

\section*{Examples}
```


Patches

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
data = sample(1:5, size = 25, replace = TRUE))
plot(w1)
p1 <- minOneOf(agents = patches(w1), world = w1)

Turtles

t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10),
heading = sample(1:3, size = 10, replace= TRUE))
t2 <- minOneOf(agents = t1, var = "heading")

```
minPxcor
Minimum pxcor

\section*{Description}

Report the patches minimum pxcor in the world.

\section*{Usage}
minPxcor(world)
\#\# S4 method for signature 'worldNLR'
minPxcor(world)

\section*{Arguments}
world WorldMatrix or worldArray object.

\section*{Value}

Integer.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#min-pcor

\section*{Examples}
```

w1 <- createWorld()
minPxcor(w1)

```
minPycor Minimum pycor

\section*{Description}

Report the patches minimum pycor in the world.

\section*{Usage}
minPycor(world)
\#\# S4 method for signature 'worldNLR'
minPycor(world)

\section*{Arguments}
world WorldMatrix or worldArray object.

\section*{Value}

Integer.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#min-pcor

\section*{Examples}
w1 <- createWorld()
minPycor(w1)
moveTo Move to

\section*{Description}

Move the turtles to the agents' locations.

\section*{Usage}
moveTo(turtles, agents)
\#\# S4 method for signature 'agentMatrix,matrix'
moveTo(turtles, agents)

\section*{Arguments}
turtles AgentMatrix object representing the moving agents.
agents Matrix ( \(\mathrm{ncol}=2\) ) with the first column pxcor and the second column pycor representing the patches coordinates, or AgentMatrix object representing the moving agents.

\section*{Details}

The number of agents must be equal to 1 or to length turtles.
The turtle's headings are not affected with this function.
If a turtle is moving to a patch location, it will be located at the patch center.

\section*{Value}

AgentMatrix representing the turtles with updated coordinates and updated data for their previous coordinates prevX and prevY.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#move-to

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9,
data = runif(100))
t1 <- createTurtles(n = 5, coords = randomXYcor(w1, n = 5))
plot(w1)
points(t1, col = "black", pch = 16)
t1 <- moveTo(turtles = t1, agents = turtle(t1, who = 0))
points(t1, col = "red", pch = 16)
t1 <- moveTo(turtles = t1, agents = patch(w1, 9, 9))
points(t1, col = "blue", pch = 16)

```
neighbors Neighbors patches

\section*{Description}

Report the coordinates of the neighbors patches around the agents.

\section*{Usage}
neighbors(world, agents, nNeighbors, torus = FALSE)
\#\# S4 method for signature 'worldNLR, matrix, numeric'
neighbors(world, agents, nNeighbors, torus = FALSE)

\section*{Arguments}
world WorldMatrix or worldArray object.
agents Matrix ( \(\mathrm{ncol}=2\) ) with the first column pxcor and the second column pycor representing the patches coordinates, or AgentMatrix object representing the moving agents.
nNeighbors Integer: 4 or 8 . Represents the number of neighbor patches considered.
torus Logical to determine if the world is wrapped. Default is torus \(=\) FALSE

\section*{Details}

The patch around which the neighbors are identified, or the patch where the turtle is located on around which the neighbors are identified, is not returned.
If torus = FALSE, agents located on the edges of the world have less than nNeighbors patches around them. If torus = TRUE, all agents located on the edges of the world have nNeighbors patches around them, which some may be on the other sides of the world.

\section*{Value}

Matrix ( \(\mathrm{ncol}=3\) ) with the first column pxcor and the second column pycor representing the coordinates of the neighbors patches around the agents and the third column id representing the id of the agents in the order provided.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#neighbors

\section*{Examples}
```

w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
neighbors(world = w1, agents = patch(w1, c(0,9), c(0,7)), nNeighbors = 8)
t1 <- createTurtles(n = 3, coords = randomXYcor(w1, n = 3))
neighbors(world = w1, agents = t1, nNeighbors = 4)

```
NLall All agents?

\section*{Description}

Report TRUE if all agents have their variable equal to a given value, report FALSE otherwise.
```

Usage
NLall(agents, world, var, val)
\#\# S4 method for signature 'matrix,worldMatrix,missing'
NLall(agents, world, val)
\#\# S4 method for signature 'matrix,worldArray,character'
NLall(agents, world, var, val)
\#\# S4 method for signature 'agentMatrix,missing,character'
NLall(agents, var, val)

```

\section*{Arguments}
agents
world
var
val

\section*{Details}
world must not be provided if agents are turtles.

\section*{Value}

Logical. TRUE if all the agents have their variable equal to val, FALSE otherwise.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#all

\section*{Examples}
```


Patches

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4, data = runif(25))
NLall(agents = patches(w1), world = w1, val = 5)
w2 <- w1
w2 <- NLset(world = w1, agents = patches(w1), val = 5)
NLall(agents = patches(w2), world = w2, val = 5)

Turtles

t1 <- createTurtles(n = 5, coords = cbind(xcor = 1, ycor = 1), heading = c(1, 2, 2, 1, 2))
NLall(agents = t1, var = "xcor", val = 1)
NLall(agents = t1, var = "heading", val = 2)

```
NLany Anyagents?

\section*{Description}

Report TRUE if agents is non empty, report FALSE otherwise.

\section*{Usage}

NLany (agents)
\#\# S4 method for signature 'matrix'
NLany (agents)

\section*{Arguments}
agents Matrix ( \(\mathrm{ncol}=2\) ) with the first column pxcor and the second column pycor representing the patches coordinates, or AgentMatrix object representing the moving agents.

\section*{Value}

Logical. TRUE if there is at least one patch or one turtle in the agents, FALSE otherwise.

\section*{Author(s)}

Sarah Bauduin

\section*{References}

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

\section*{See Also}
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#any

\section*{Examples}
```


Patches

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4)
p1 <- noPatches()
p2 <- patch(w1, 0, 0)
NLany(p1)
NLany(p2)

Turtles

t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))
t2 <- noTurtles()

```
NLany (t1)
NLany (t2)
```

NLcount Count agents

Description

Report the number of patches or turtles inside agents.

Usage

NLcount (agents)
\#\# S4 method for signature 'matrix'
NLcount (agents)

Arguments

agents Matrix (ncol =2) with the first column pxcor and the second column pycor representing the patches coordinates, or
AgentMatrix object representing the moving agents.

Value

Integer.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#count

Examples

\# Patches
w1 <- createWorld(minPxcor $=0$, maxPxcor $=4$, minPycor $=0$, maxPycor $=4$)
p1 <- patches(w1)
NLcount(p1) \# 25 patches
\# Turtles
t 1 <- createTurtles($\mathrm{n}=10$, coords $=$ randomXYcor(w1, $\mathrm{n}=10)$)
NLcount(t1) \# 10 turtles

NLdist Distances between agents

Description

Report the distances between agents and agents2.

Usage

NLdist(agents, agents2, world, torus = FALSE, allPairs = FALSE)
\#\# S4 method for signature 'matrix,matrix'
NLdist(agents, agents2, world, torus = FALSE, allPairs = FALSE)

Arguments

agents Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates, or
AgentMatrix object representing the moving agents.
agents2 Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates, or
AgentMatrix object representing the moving agents, or
Matrix ($\mathrm{ncol}=2$) with the first column x and the second column y representing locations coordinates.
world WorldMatrix or worldArray object.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.
allPairs Logical. Only relevant if the number of agents/locations in agents and in agents2 are the same. If allPairs = FALSE, the distance between each agents with the corresponding agents 2 is returned. If allPairs = TRUE, a full distance matrix is returned. Default is allPairs = FALSE.

Details

Distances from/to a patch are measured from/to its center.
If torus $=$ FALSE, world does not need to be provided.
If torus $=$ TRUE, a distance around the sides of the world is reported only if smaller than the one across the world.

Value

Numeric. Vector of distances between agents and agents 2 if agents and/or agents 2 contained one agent/location, or if agents and agents2 contained the same number of agents/locations and allPairs = FALSE, or

Matrix of distances between agents (rows) and agents2 (columns) if agents and agents2 are of different lengths, or of same length and allPairs = TRUE.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#distance
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#distancexy

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
NLdist(agents = patch(w1, 0, 0), agents2 = patch(w1, c(1, 9), c(1, 9)))
NLdist(agents = patch(w1, 0, 0), agents2 = patch(w1, c(1, 9), c(1, 9)),
    world = w1, torus = TRUE)
t1 <- createTurtles(n = 2, coords = randomXYcor(w1, n = 2))
NLdist(agents = t1, agents2 = patch(w1, c(1,9), c(1,9)), allPairs = TRUE)
```

NLset Set an agents variable

Description

Assign values to the agents for the selected variables.

Usage

```
NLset(world, turtles, agents, var, val)
## S4 method for signature 'missing,agentMatrix,agentMatrix,character'
NLset(turtles, agents, var, val)
## S4 method for signature 'worldMatrix,missing,matrix,missing'
NLset(world, agents, val)
## S4 method for signature 'worldArray,missing,matrix,character'
NLset(world, agents, var, val)
```


Arguments

world WorldMatrix or worldArray object.
turtles AgentMatrix object representing the moving agents.
agents Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates, or
AgentMatrix object representing the moving agents.
var Character. Vector of the names of the selected agents variables. If agents are patches and the world is a worldMatrix object, var must not be provided. If agents are patches and the world is a worldArray object, var is the name of the layers to use to define the patches values. If agents are turtles, var is some of the turtles' variable and can be any of the variables created when turtles were created, as well as any variable created with turtlesOwn().
val Numeric or character. Vector of length 1 or length NLcount (agents) if length(var) $=1$, or
Matrix or Dataframe (ncol = length(var), nrow = NLcount (agents)). Columns must be in the same order as var.

Details

If agents are patches, world must be provided and turtles must not be provided. If agents are turtles, turtles must be provided and world must not be provided.

Value

WorldMatrix or worldArray object with the values val assigned to the patches variables var for the agents, or

AgentMatrix representing the turtles with the values val assigned to the variables var for the agents.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#set

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4)
w1 <- NLset(world = w1, agents = patches(w1), val = 1)
# Set the patch[0,4] to 0
w1 <- NLset(world = w1, agents = patch(w1, 0, 4), val = 0)
of(world = w1, agents = patches(w1))
t1 <- createTurtles(n = 3, world = w1, heading = 0)
# Set the heading of turtle 0 to 180
t2 <- NLset(turtles = t1, agents = turtle(t1, who = 0), var = "heading", val = 180)
of(agents = t2, var = "heading") # c(180, 0, 0)
```

NLwith Agents with

Description

Report the patches or the turtles among agents which have their variable equals to specific values.

Usage

```
NLwith(agents, world, var, val)
## S4 method for signature 'matrix,worldMatrix,missing'
NLwith(agents, world, val)
## S4 method for signature 'matrix,worldArray,character'
NLwith(agents, world, var, val)
## S4 method for signature 'agentMatrix,missing,character'
NLwith(agents, var, val)
```


Arguments

agents Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates, or AgentMatrix object representing the moving agents.
world WorldMatrix or worldArray object.
var Character. The name of the selected agents variable. If agents are patches and the world is a worldMatrix object, var must not be provided. If agents are patches and the world is a worldArray object, var is the name of the layer to use to define the patches values. If agents are turtles, var is one of the turtles' variable and can be equal to xcor, ycor, any of the variables created when turtles were created, as well as any variable created using turtlesOwn().
val Numeric or character. Vector of any length.

Details

world must not be provided if agents are turtles.
This is equivalent in R to subsetting.

Value

Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the coordinates of the patches among the agents which have their variable equals to any val, or AgentMatrix representing the turtles among the agents which have their variable var equals to any val.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#with

Examples

```
# Patches
w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
                        data = sample(1:5, size = 25, replace = TRUE))
plot(w1)
p2 <- NLwith(agents = patches(w1), world = w1, val = 2)
# Turtles
t1 <- createTurtles(n = 5, coords = randomXYcor(w1, n = 5),
                        breed = c("sheep", "sheep", "wolf", "sheep", "sheperd"))
t2 <- NLwith(agents = t1, var = "breed", val = "sheep")
t3 <- NLwith(agents = t1, var = "breed", val = c("sheep", "wolf"))
```

NLworldIndex WorldMatrix indices from vector indices

Description

Convert vector indices or Raster* cell numbers into worldMatrix indices.

Usage

NLworldIndex (world, cellNum)
\#\# S4 method for signature 'worldMatrix, numeric' NLworldIndex(world, cellNum)

Arguments

world WorldMatrix or worldArray object.
cellNum Integer. Vector of cells number.

Value

Numeric. Vector of worldMatrix indices.

Author(s)

Eliot McIntire

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9, data = 1:100)
w1Ras <- world2raster(w1)
index <- 24
pxpy <- PxcorPycorFromCell(world = w1, cellNum = index)
rasValue <- as.integer(unname(w1Ras[index]))
# Not correct index:
identical(w1[index], rasValue)
# Correct index
identical(w1[NLworldIndex(w1, index)], rasValue)
```

```
nOf N random agents
```


Description

Report n patches or turtles randomly selected among agents.

Usage

```
nOf(agents, \(n\) )
    \#\# S4 method for signature 'matrix,numeric'
    nOf (agents, n)
```


Arguments

agents \quad Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates, or
Matrix (ncol =3) with the first column "pxcor and the second column pycor representing the patches coordinates and the third column id, or AgentMatrix object representing the moving agents, or Matrix (ncol =2) with the first column whoTurtles and the second column id.
n Integer. Number of patches or turtles to select from agents.

Details

n must be less or equal the number of patches or turtles in agents.
If agents is a matrix with $n c o l=3$, the selection of n random patches is done per individual "id". The order of the patches coordinates returned follow the order of "id". If agents is a matrix ($n c o l=2$) with columns whoTurtles and id, the selection of n random turtles (defined by their whoTurtles) is done per individual "id". The order of the who numbers returned follow the order of "id".

Value

Matrix ($\mathrm{ncol}=2$, $\mathrm{nrow}=\mathrm{n}$) with the first column pxcor and the second column pycor representing the coordinates of the selected patches from agents, or
Matrix ($n c o l=2$) with the first column pxcor and the second column pycor representing the coordinates of the selected patches from agents, n per individual "id", or
AgentMatrix ($n r o w=n$) representing the turtles selected from agents,
Integer. Vector of who numbers for the selected turtles from agents, n per individual "id".

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl. northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#n-of

Examples

```
# Patches
w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4)
pSelect <- nOf(agents = patches(w1), n = 5)
# Turtles
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))
tSelect <- nOf(agents = t1, n = 2)
```

```
noPatches No patches
```


Description

Report an empty patch agentset.

Usage

noPatches()

Value

Matrix ($\mathrm{ncol}=2$, nrow $=0$) with the first column pxcor and the second column pycor.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#no-patches

Examples

```
p1 <- noPatches()
NLcount(p1)
```

```
    noTurtles Noturtles
```


Description

Report an empty turtle agentset.

Usage

noTurtles()

Value

AgentMatrix with the turtle variables defined as when using createTurtles() but with 0 turtle.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#no-turtles

Examples

t1 <- noTurtles()

NLcount(t1)

numLayers, worldArray-method
Methods for quickPlot

Description

These are required to create plotting methods to work with quickPlot.

Usage

```
## S4 method for signature 'worldArray'
numLayers(x)
## S4 method for signature 'agentMatrix'
    .plotGrob(
        grobToPlot,
        col = NULL,
        real = FALSE,
        size = unit(5, "points"),
        minv,
        maxv,
        legend = TRUE,
        legendText = NULL,
        length = NULL,
        gp = gpar(),
        gpText = gpar(),
        pch = 19,
        speedup = 1,
        name = character(),
        vp = list(),
    )
    ## S4 method for signature 'worldArray'
    layerNames(object)
    ## S4 method for signature 'worldArray,.quickPlotGrob'
    .identifyGrobToPlot(toPlot, sGrob, takeFromPlotObj)
```


Arguments

| x | A .quickPlot0bjects object or list of these. |
| :---: | :---: |
| grobToPlot | Raster*, SpatialLines*, SpatialPoints*, or SpatialPolygons* object. |
| col | Currently only used for the legend of a Raster* object. |
| real | Logical indicating whether the data are real numbers (i.e., as opposed to integer or factor). |
| size | The size of the SpatialPoints. |
| minv | The minimum value on a Raster*. Required because not all Rasters have this defined internally. |
| maxv | The maximum value on a Raster*. Required because not all Rasters have this defined internally. |
| legend | Logical indicating whether a legend should be drawn. Default TRUE. |
| legendText | Vector of values to use for legend value labels. Defaults to NULL which results in a pretty numeric representation. If Raster* has a Raster Attribute Table (rat; see raster package), this will be used by default. Currently, only a single vector is accepted. |
| length | Numeric. |
| gp | grid parameters, usually the output of a call to gpar. |
| gpText | gpar object for legend label text. |
| pch | Point character for SpatialPoints, as par. |
| speedup | Numeric. The factor by which the number of vertices in SpatialPolygons and SpatialLines* will be subsampled. The vertices are already subsampled by default to make plotting faster. |
| name | Character string of name of object being plotted. |
| vp | whole viewport tree of quickPlotGrob |
| | Additional arguments. None currently implemented. |
| object | A Raster*, SpatialPoints*, SpatialLines*, or SpatialPolygons* object; or list of these. |
| toPlot | The object to plot. Should be a single layer if from a multi-layer object such as a RasterStack. |
| sGrob | quickPlot grob object |
| takeFromPlo | |

Logical. Should the data come from the argument passed into Plot (TRUE), or from the (.quickPlotEnv) (FALSE).
of
Values of an agents variable

Description

Report the agents values for the requested variable.

Usage

of(world, agents, var)
\#\# S4 method for signature 'missing,agentMatrix, character' of (agents, var)
\#\# S4 method for signature 'worldMatrix,matrix,missing'
of(world, agents)
\#\# S4 method for signature 'worldArray,matrix, character'
of(world, agents, var)

Arguments

world WorldMatrix or worldArray object.
agents Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates, or
AgentMatrix object representing the moving agents.
var Character. Vector of the names of the selected agents variables. If agents are patches and the world is a worldMatrix object, var must not be provided. If agents are patches and the world is a worldArray object, var is the name of the layers to use to define the patches values. If agents are turtles, var is some of the turtles' variable and can be any of the variables created when turtles were created, as well as any variable created with turtlesOwn().

Details

world must be provided only if agents are patches.

Value

Vector of values for the agents if one variable is requested. The class depends of the variable class. The order of the vector follows the order of the agents, or
Matrix or Dataframe (ncol = length(var), nrow = NLcount (agents)) if more than one variable is requested. The row order follows the order of the agents.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#of

Examples

```
# Patches
w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
                    data = 1:25)
of(world = w1, agents = patch(w1, c(0, 0), c(4, 0)))
# Turtles
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))
of(agents = t1, var = "heading")
```

 oneOf One random agent

Description

Report one patch or turtle randomly selected among agents.

Usage

```
    oneOf(agents)
```

 \#\# S4 method for signature 'matrix'
 oneOf(agents)

Arguments

agents Matrix (ncol =2) with the first column pxcor and the second column pycor representing the patches coordinates, or
Matrix ($n c o l=3$) with the first column "pxcor and the second column pycor representing the patches coordinates and the third column id, or
AgentMatrix object representing the moving agents, or
Matrix (ncol = 2) with the first column whoTurtles and the second column id.

Details

If agents is a matrix with $n c o l=3$, the selection of one random patch is done per individual id. The order of the patches coordinates returned follow the order of id. If agents is a matrix ($\mathrm{ncol}=2$) with columns whoTurtles and id, the selection of one random turtle (defined by their whoTurtles) is done per individual id. The order of the who numbers returned follow the order of id.

Value

Matrix ($\mathrm{ncol}=2$, nrow $=1$) with the first column pxcor and the second column pycor representing the coordinates of the selected patch from agents, or

Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the coordinates of the selected patches from agents, one per individual id, or

AgentMatrix object representing the turtle selected from agents, or
Integer. Vector of who numbers for the selected turtles from agents, one per individual id.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#one-of

Examples

```
# Patches
w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4)
pSelect <- oneOf(agents = patches(w1))
# Turtles
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))
tSelect <- oneOf(agents = t1)
```


other Others

Description

Report an agentset of the agents except specific ones.

Usage

other(agents, except)
\#\# S4 method for signature 'matrix,matrix'
other(agents, except)

Arguments

agents Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates, or
AgentMatrix object representing the moving agents.
except Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates, or
AgentMatrix object representing the moving agents.

Details

Both agents and except must be of the same class (e.g., both patches or both turtles).
Warning: this function removes turtles only based on similar who numbers and breed names.

Value

Matrix ($n c o l=2$) with the first column pxcor and the second column pycor representing the patches in agents without the ones in except, or
AgentMatrix representing the turtles in agents without the ones in except.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#other

Examples

```
    # Patches
    w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
    p1 <- other(agents = patches(w1), except = patch(w1, 0, 0))
    NLcount(p1) # 99 patches
    # Turtles
    t1 <- createTurtles(n = 10, coords = cbind(xcor = 0, ycor = 0))
    t2 <- other(agents = t1, except = turtle(t1, who = 0))
    NLcount(t2) # 9 turtles
```

 patch Patches coordinates

Description

Report the coordinates of the patches at the given $[x, y]$ locations.

Usage

```
patch(world, x, y, duplicate = FALSE, torus = FALSE, out = FALSE)
## S4 method for signature 'worldNLR,numeric,numeric'
patch(world, x, y, duplicate = FALSE, torus = FALSE, out = FALSE)
```


Arguments

world WorldMatrix or worldArray object.
$x \quad$ Numeric. Vector of x coordinates. Must be of same length as y.
$y \quad$ Numeric. Vector of y coordinates. Must be of same length as x.
duplicate Logical. If more than one location $[x, y]$ fall into the same patch and duplicate $==$ TRUE, the patch coordinates are returned the number of times the locations. If duplicate $==$ FALSE, the patch coordinates are only returned once. Default is duplicate == FALSE.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.
out Logical. If out = FALSE, no patch coordinates are returned for patches outside of the world's extent, if out $=$ TRUE, NA are returned. Default is out $=$ FALSE.

Details

If a location $[x, y]$ is outside the world's extent and torus $=$ FALSE and out $=$ FALSE, no patch coordinates are returned; if torus $=$ FALSE and out $=$ TRUE, NA are returned; if torus $=$ TRUE, the patch coordinates from a wrapped world are returned.

Value

Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates at $[x, y]$.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#patch

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
patch(world = w1, x = c(0, 9.1, 8.9, 5, 5.3), y = c(0, 0, -0.1, 12.4, 12.4))
patch(world = w1, x = c(0, 9.1, 8.9, 5, 5.3), y = c(0, 0, -0.1, 12.4, 12.4),
    duplicate = TRUE)
patch(world = w1, x = c(0, 9.1, 8.9, 5, 5.3), y = c(0, 0, -0.1, 12.4, 12.4),
    torus = TRUE)
patch(world = w1, x = c(0, 9.1, 8.9, 5, 5.3), y = c(0, 0, -0.1, 12.4, 12.4),
        torus = TRUE, duplicate = TRUE)
```

 patchAhead Patches ahead

Description

Report the coordinates of the patches at the given distances of the turtles in the direction of their headings.

Usage

```
patchAhead(world, turtles, dist, torus = FALSE)
## S4 method for signature 'worldNLR,agentMatrix,numeric'
patchAhead(world, turtles, dist, torus = FALSE)
```


Arguments

world WorldMatrix or worldArray object.
turtles AgentMatrix object representing the moving agents.
dist Numeric. Vector of distances from the turtles. dist must be of length 1 or of length turtles.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.

Details

If torus = FALSE and the patch at distance dist of a turtle is outside the world's extent, NA are returned for the patch coordinates. If torus = TRUE, the patch coordinates from a wrapped world are returned.

Value

Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the coordinates of the patches at the distances dist and turtles's headings directions of turtles. The order of the patches follows the order of the turtles.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#patch-ahead

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))
patchAhead(world = w1, turtles = t1, dist = 1)
```

```
patchAt Patches at
```


Description

Report the coordinates of the patches at (dx, dy) distances of the agents.

Usage

patchAt(world, agents, dx , dy , torus = FALSE)
\#\# S4 method for signature 'worldNLR,matrix,numeric,numeric'
patchAt(world, agents, dx , dy , torus = FALSE)

Arguments

world WorldMatrix or worldArray object.
agents Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates, or
AgentMatrix object representing the moving agents.
$\mathrm{dx} \quad$ Numeric. Vector of distances to the east (right) from the agents. If dx is negative, the distance to the west (left) is computed. dx must be of length 1 or of the same length as number of patches or turtles in agents.
dy Numeric. Vector of distances to the north (up) from the agents. If dy is negative, the distance to the south is computed (down). dy must be of length 1 or of the same length as number of patches or turtles in agents.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.

Details

If the patch at distance (dx, dy) of an agent is outside of the world's extent and torus = FALSE, NA are returned for the patch coordinates; if torus = TRUE, the patch coordinates from a wrapped world are returned.

Value

Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the coordinates of the patches at (dx, dy) distances of the agents. The order of the patches follows the order of the agents.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#patch-at
https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#at-points

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
patchCorner <- patchAt(world = w1, agents = patch(w1, 0, 0), dx = 1, dy = 1)
t1 <- createTurtles(n = 1, coords = cbind(xcor = 0, ycor = 0))
patchCorner <- patchAt(world = w1, agents = t1, dx = 1, dy = 1)
```

```
patchDistDir Patches at given distances and directions
```


Description

Report the coordinates of the patches at the given distances and directions from the agents.

Usage

patchDistDir(world, agents, dist, angle, torus = FALSE)
\#\# S4 method for signature 'worldNLR,matrix, numeric, numeric' patchDistDir(world, agents, dist, angle, torus = FALSE)

Arguments

world WorldMatrix or worldArray object.
agents Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates, or AgentMatrix object representing the moving agents.
dist Numeric. Vector of distances from the agents. Must be of length 1 or of the same length as the number of agents.
angle Numeric. Absolute directions from the agents. angle must be of length 1 or of the same length as the number of agents. Angles are in degrees with 0 being North.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.

Details

If torus = FALSE and the patch at distance dist and direction angle of an agent is outside the world's extent, NA are returned for the patch coordinates. If torus = TRUE, the patch coordinates from a wrapped world are returned.
If agents are turtles, their headings are not taken into account; the given directions angle are used. To find a patch at certain distance from a turtle using the turtle's heading, look at pacthAhead(), patchLeft() or patchRight().

Value

Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the coordinates of the patches at the distances dist and directions angle of agents. The order of the patches follows the order of the agents.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#patch-at-heading-and-distance

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
p1 <- patchDistDir(world = w1, agents = patch(w1, 0, 0), dist = 1, angle = 45)
t1 <- createTurtles(n = 1, coords = cbind(xcor = 0, ycor = 0), heading = 315)
p2 <- patchDistDir(world = w1, agents = t1, dist = 1, angle = 45)
```

```
patches All the patches in a world
```


Description

Report the coordinates of all the patches in the world.

Usage

patches(world)
\#\# S4 method for signature 'worldNLR'
patches(world)

Arguments

world WorldMatrix or worldArray object.

Value

Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates. The order of the patches follows the order of the cells numbers as defined for a Raster* object.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#patches

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
allPatches <- patches(world = w1)
NLcount(allPatches) # 100 patches
```

```
patchHere Patches here
```


Description

Report the coordinates of the patches under the turtles locations.

Usage

patchHere(world, turtles)
\#\# S4 method for signature 'worldNLR,agentMatrix'
patchHere(world, turtles)

Arguments

world WorldMatrix or worldArray object.
turtles AgentMatrix object representing the moving agents.

Details

If a turtle is located outside of the world's extent, NA are returned for the patch coordinates.

Value

Matrix ($n c o l=2$) with the first column pxcor and the second column pycor representing the coordinates of the patches at the turtles location. The order of the patches follows the order of the turtles.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#patch-here

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))
patchHere(world = w1, turtles = t1)
```

patchLeft Patches on the left

Description

Report the coordinates of the patches at the given distances of the turtles and given angle left of their headings.

Usage

patchLeft(world, turtles, dist, angle, torus = FALSE)
\#\# S4 method for signature 'worldNLR, agentMatrix, numeric, numeric'
patchLeft(world, turtles, dist, angle, torus = FALSE)

Arguments

world WorldMatrix or worldArray object.
turtles AgentMatrix object representing the moving agents.
dist Numeric. Vector of distances from the turtles. dist must be of length 1 or of length turtles.
angle Numeric. Vector of angles in degrees by which the turtle's headings should rotate to locate the patches. Must be of length 1 or of length turtles.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.

Details

If a given dist value is negative, then the turtle would look backward. If a given angle value is negative, then the turtle would look to the right.

If torus = FALSE and the patch at distance dist of a turtle and angle degrees to the left of its heading is outside the world's extent, NA are returned for the patch coordinates. If torus = TRUE, the patch coordinates from a wrapped world are returned.

Value

Matrix ($n c o l=2$) with the first column pxcor and the second column pycor representing the coordinates of the patches at dist distances of the turtles and angle to the left of their headings. The order of the patches follows the order of the turtles.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#patch-lr-and-ahead

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
t1 <- createTurtles(n = 1, coords = cbind(xcor = 2, ycor = 2), heading = 90)
patchLeft(world = w1, turtles = t1, dist = 2, angle = 90)
```

```
patchRight Patches on the right
```


Description

Report the coordinates of the patches at the given distances of the turtles and given angle right of their headings.

Usage

```
patchRight(world, turtles, dist, angle, torus = FALSE)
## S4 method for signature 'worldNLR,agentMatrix,numeric,numeric'
patchRight(world, turtles, dist, angle, torus = FALSE)
```


Arguments

world WorldMatrix or worldArray object.
turtles AgentMatrix object representing the moving agents.
dist Numeric. Vector of distances from the turtles. dist must be of length 1 or of length turtles.
angle Numeric. Vector of angles in degrees by which the turtle's headings should rotate to locate the patches. Must be of length 1 or of length turtles.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.

Details

If a given dist value is negative, then the turtle would look backward. If a given angle value is negative, then the turtle would look to the left.
If torus = FALSE and the patch at distance dist of a turtle and angle degrees to the right of its heading is outside the world's extent, NA are returned for the patch coordinates. If torus = TRUE, the patch coordinates from a wrapped world are returned.

Value

Matrix (ncol =2) with the first column pxcor and the second column pycor representing the coordinates of the patches at dist distances of the turtles and angle to the right of their headings. The order of the patches follows the order of the turtles.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

```
https://ccl.northwestern.edu/netlogo/docs/dictionary.html#patch-lr-and-ahead
```


Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
t1 <- createTurtles(n = 1, coords = cbind(xcor = 2, ycor = 2), heading = 90)
patchRight(world = w1, turtles = t1, dist = 2, angle = 90)
```

```
patchSet Patch set
```


Description

Report the patch coordinates of all the unique patches contained in the inputs.

Usage

patchSet(...)
\#\# S4 method for signature 'matrix'
patchSet(...)

Arguments

$\ldots \quad$ Matrices $(\mathrm{ncol}=2)$ of patches coordinates with the first column pxcor and the second column pycor.

Details

Duplicate patches among the inputs are removed in the returned matrix.

Value

Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern. edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#patch-set

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
p1 <- patchAt(world = w1, agents = patch(w1, c(0,1,2), c(0,0,0)), dx = 1, dy = 1)
p2 <- patchDistDir(world = w1, agents = patch(w1, 0, 0), dist = 1, angle = 45)
p3 <- patch(world = w1, x = 4.3, y = 8)
p4 <- patchSet(p1, p2, p3)
```

pExist Do the patches exist?

Description

Report TRUE if a patch exists inside the world's extent, report FALSE otherwise.

Usage

pExist(world, pxcor, pycor)
\#\# S4 method for signature 'worldNLR, numeric, numeric'
pExist(world, pxcor, pycor)

Arguments

world WorldMatrix or worldArray object.
pxcor Integer. Vector of patches pxcor coordinates. Must be of length 1 or of the same length as pycor.
pycor Integer. Vector of patches pycor coordinates. Must be of length 1 or of the same length as pxcor.

Value

Logical.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern. edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#member

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
pExist(world = w1, pxcor = -1, pycor = 2)
```

plot.agentMatrix Basic plot methods for agentMatrix, worldMatrix, worldArray

Description

These pass to plot, as a matrix of points (agentMatrix), as a raster (worldMatrix), or a rasterStack (worldArray). They can be modified.

Usage

```
## S3 method for class 'agentMatrix'
plot(x, ...)
## S3 method for class 'worldMatrix'
plot(x, ...)
## S3 method for class 'worldArray'
plot(x, ...)
    ## S3 method for class 'agentMatrix'
    points(x, ...)
```


Arguments

| x | an agentMatrix, worldMatrix or worldArray object |
| :--- | :--- |
| \ldots | arguments passed to plot methods for matrix (agentMatrix) or raster (world*) |

Examples

```
# agentMatrix
    newAgent <- new("agentMatrix",
        coords = cbind(pxcor = c(1, 2, 5), pycor = c(3, 4, 6)),
        char = letters[c(1, 2, 6)],
        nums2 = c(4.5, 2.6, 2343),
        char2 = LETTERS[c(4, 24, 3)],
        nums = 5:7)
    plot(newAgent)
```

```
## worldMatrix
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9, data = 1:100)
plot(w1)
## worldArray
w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4, data = 1:25)
w2 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4, data = 25:1)
w3 <- stackWorlds(w1, w2)
plot(w3)
# agentMatrix
    newAgent <- new("agentMatrix",
        coords = cbind(pxcor = c(1, 2, 5), pycor = c(3, 4, 6)),
        char = letters[c(1, 2, 6)],
        nums2 = c(4.5, 2.6, 2343),
        char2 = LETTERS[c(4, 24, 3)],
        nums = 5:7)
    points(newAgent)
```


PxcorPycorFromCell Patches coordinates from cells numbers

Description

Report the patches coordinates pxcor and pycor given the cells numbers as defined for a Raster* object.

Usage

PxcorPycorFromCell(world, cellNum)
\#\# S4 method for signature 'worldNLR, numeric'
PxcorPycorFromCell(world, cellNum)

Arguments

world WorldMatrix or worldArray object.
cellNum Integer. Vector of cells number.

Value

Matrix (ncol =2) with the first column pxcor and the second column pycor in the order of the given cellNum.

Author(s)

Sarah Bauduin

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
cellNum <- cellFromPxcorPycor(world = w1, pxcor = 0, pycor = 9)
PxcorPycorFromCell(world = w1, cellNum = cellNum)
cellNum <- cellFromPxcorPycor(world = w1, pxcor = c(0, 1, 2), pycor = 0)
PxcorPycorFromCell(world = w1, cellNum = cellNum)
```

randomPxcor Random pxcor

Description

Report n random pxcor coordinates within the world's extent.

Usage

randomPxcor(world, n)
\#\# S4 method for signature 'worldNLR,numeric' randomPxcor(world, n)

Arguments

world WorldMatrix or worldArray object.
$\mathrm{n} \quad$ Integer.

Value

Integer. Vector of length n of pxcor coordinates.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl. northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#random-pcor

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
pxcor <- randomPxcor(world = w1, n = 10)
```

```
    randomPycor Random pycor
```


Description

Report n random pycor coordinates within the world's extent.

Usage

randomPycor(world, n)
\#\# S4 method for signature 'worldNLR, numeric' randomPycor(world, n)

Arguments

world WorldMatrix or worldArray object.
$\mathrm{n} \quad$ Integer.

Value

Integer. Vector of length n of pycor coordinates.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#random-pcor

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
pycor <- randomPycor(world = w1, n = 10)
```

```
    randomXcor Random xcor
```


Description

Report n random xcor coordinates within the world's extent.

Usage

randomXcor(world, n)
\#\# S4 method for signature 'worldNLR, numeric'
randomXcor(world, n)

Arguments

world WorldMatrix or worldArray object.
$\mathrm{n} \quad$ Integer.

Value

Numeric. Vector of length n of xcor coordinates.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#random-cor

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
    data = runif(25))
t1 <- createTurtles(n = 10, coords = cbind(xcor = randomXcor(world = w1, n = 10),
    ycor = randomYcor(world = w1, n = 10)))
plot(w1)
points(t1, col = of(agents = t1, var = "color"), pch = 16)
```

randomXYcor \quad Random turtles coordinates

Description

Report n random xcor and ycor coordinates within the world's extent.

Usage

randomXYcor (world, n)
\#\# S4 method for signature 'worldNLR, numeric'
randomXYcor(world, n)

Arguments

world WorldMatrix or worldArray object.
$\mathrm{n} \quad$ Integer.

Value

Matrix ($\mathrm{ncol}=2$, nrow $=n$) with the first column x cor and the second column ycor.

Author(s)

Sarah Bauduin

Examples

w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4, data $=$ runif(25))
$\mathrm{t} 1<-$ createTurtles $(\mathrm{n}=10$, coords $=$ randomXYcor (world $=\mathrm{w} 1, \mathrm{n}=10)$) plot(w1)
points(t1, col = of(agents = t1, var = "color"), pch = 16)
randomYcor Random ycor

Description

Report n random ycor coordinates within the world's extent.

Usage

```
randomYcor(world, n)
## S4 method for signature 'worldNLR,numeric'
randomYcor(world, n)
```


Arguments

| world | WorldMatrix or worldArray object. |
| :--- | :--- |
| n | Integer. |

Value

Numeric. Vector of length n of ycor coordinates.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#random-cor

Examples

$\mathrm{w} 1<-\mathrm{createWorld}(\operatorname{minPxcor}=0, \operatorname{maxPxcor}=4, \operatorname{minPycor}=0, \operatorname{maxPycor}=4$, data $=$ runif(25))
t1 <- createTurtles $(\mathrm{n}=10$, coords $=\operatorname{cbind}(x \operatorname{cor}=\operatorname{randomXcor}($ world $=w 1, n=10)$, ycor $=$ randomYcor(world = w1, $n=10)$)) plot(w1)
points(t1, col = of(agents = t1, var = "color"), pch = 16)
raster2world Convert a Raster* object into a worldMatrix or worldArray object

Description

Convert a RasterLayer object into a worldMatrix object or a RasterStack object into a worldArray object.

Usage

```
raster2world(raster, method)
## S4 method for signature 'RasterLayer,character'
raster2world(raster, method)
## S4 method for signature 'RasterStack,character'
raster2world(raster, method)
```


Arguments

raster RasterLayer or RasterStack object.
method \quad ngb or bilinear for the resample method.

Details

See help("worldMatrix-class") or help("worldArray-class") for more details on the classes.
The raster is resampled to match the coordinates system and resolution of a worldMatrix or worldArray using the chosen method. The extent will be bigger by 1 on the width and on the height.

Value

WorldMatrix or worldArray object depending on the input raster. Patches value are retained from the raster.

Author(s)

Sarah Bauduin

Examples

```
r1 <- raster(extent(c(0, 10, 0, 10)), nrows = 10, ncols = 10)
r1[]<-runif(100)
w1 <- raster2world(r1, method = "ngb")
plot(r1)
plot(w1)
```

right
Rotate to the right

Description

Rotate the turtles's headings to the right of angle degrees.

Usage

right(turtles, angle)
\#\# S4 method for signature 'agentMatrix, numeric'
right(turtles, angle)

Arguments

turtles AgentMatrix object representing the moving agents.
angle Numeric. Vector of angles in degrees by which to rotate the turtles' headings. Must be of length 1 or of length turtles.

Details

If a given angle value is negative, then the turtle rotates to the left.

Value

AgentMatrix representing the turtles with updated heading values.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#right

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4)
t1 <- createTurtles(n = 10, world = w1)
of(agents = t1, var = "heading")
t1 <- right(turtles = t1, angle = 180)
of(agents = t1, var = "heading")
```

```
setXY Set turtles' locations
```


Description

Set the turtles xcor and ycor coordinates.

Usage

setXY(turtles, xcor, ycor, world, torus = FALSE)
\#\# S4 method for signature 'agentMatrix, numeric, numeric,missing, ANY'
setXY(turtles, xcor, ycor, torus)
\#\# S4 method for signature 'agentMatrix, numeric, numeric, worldNLR,logical'
setXY(turtles, xcor, ycor, world, torus = FALSE)

Arguments

turtles AgentMatrix object representing the moving agents.
xcor Numeric. Vector of x coordinates. Must be of length 1 or of length turtles.
ycor Numeric. Vector of y coordinates. Must be of length 1 or of length turtles.
world WorldMatrix or worldArray object.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.

Details

world must be provided only if torus $=$ TRUE .
If the given coordinates [xcor, ycor] are located outside of the world's extent and torus = TRUE, then the coordinates assigned to the turtle are the ones from a wrapped word; if torus = FALSE, the turtle is located outside of the world's extent with the given coordinates.

Value

AgentMatrix representing the turtles with updated coordinates and updated data for their previous coordinates prevX and prevY.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#setxy

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9,
    data = runif(100))
t1 <- createTurtles(n = 5, coords = randomXYcor(w1, n = 5))
plot(w1)
points(t1, col = of(agents = t1, var = "color"), pch = 16)
t1 <- setXY(turtles = t1, xcor = 1:5, ycor = 1:5)
points(t1, col = of(agents = t1, var = "color"), pch = 16)
```

show, agentMatrix-method

Key base R functions for agentMatrix class

Description

Slight modifications from the default versions.

Usage

\#\# S4 method for signature 'agentMatrix' show(object)
\#\# S4 method for signature 'agentMatrix'
length (x)
\#\# S4 method for signature 'agentMatrix' nrow (x)
\#\# S3 method for class 'agentMatrix' head($x, n=6 L, \ldots$)
\#\# S3 method for class 'agentMatrix' tail(x, n = 6L, ...)

Arguments

object An agentMatrix object.
x
An agentMatrix object.
$\mathrm{n} \quad$ documentation needed
... documentation needed
show, worldArray-method

Description

Slight modifications from the default versions.

Usage

```
## S4 method for signature 'worldArray'
show(object)
## S4 method for signature 'worldMatrix'
show(object)
```


Arguments

object An agentMatrix object.

```
sortOn Sort agents
```


Description

Return the agents sorted according to their value.

Usage

sortOn(agents, world, var)
\#\# S4 method for signature 'matrix, worldMatrix,missing' sortOn(agents, world)
\#\# S4 method for signature 'matrix,worldArray,character' sortOn(agents, world, var)
\#\# S4 method for signature 'agentMatrix,missing, character'
sortOn(agents, var)

Arguments

agents Matrix (ncol =2) with the first column pxcor and the second column pycor representing the patches coordinates, or AgentMatrix object representing the moving agents.
world WorldMatrix or worldArray object.
var
Character. The name of the selected agents variable. If agents are patches and the world is a worldMatrix object, var must not be provided. If agents are patches and the world is a worldArray object, var is the name of the layer to use to define the patches values. If agents are turtles, var is one of the turtles' variable and can be equal to xcor, ycor, any of the variables created when turtles were created, as well as any variable created using turtlesOwn().

Details

world must not be provided if agents are turtles.
The sorting of the agents is done in a increasing order.

Value

Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the coordinates of the patches sorted according to their values, if agents are patches, or
AgentMatrix representing the turtles sorted according to their var values, if agents are turtles.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#sort-on

Examples

```
# Patches
w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
                data = sample(1:5, size = 25, replace = TRUE))
plot(w1)
p1 <- sortOn(agents = patches(w1), world = w1)
# Turtles
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))
sortHeadingT1 <- sortOn(agents = t1, var = "heading")
```

```
    spdf2turtles From SpatialPointsDataFrame to agentMatrix
```


Description

Convert a SpatialPointsDataFrame object into an agentMatrix object.

Usage

spdf2turtles(spdf)
\#\# S4 method for signature 'SpatialPointsDataFrame' spdf2turtles(spdf)

Arguments

spdf SpatialPointsDataFrame object representing moving agents.

Details

If the spdf does not contain the variables created with createTurtles(), these variables will be created with the default values as in createTurtles().

Value

AgentMatrix object representing the moving agents (coordinates and data) as contained in spdf.

Author(s)

Sarah Bauduin

Examples

```
sp1 <- SpatialPointsDataFrame(coords = cbind(x = c(1, 2, 3), y = c(1, 2, 3)),
    data = cbind.data.frame(age = c(0, 0, 3),
    sex = c("F", "F", "M")))
t1 <- spdf2turtles(spdf = sp1)
```

sprout Sprout new turtles

Description

Create n new turtles on specific patches.

Usage

sprout(n, patches, breed, heading, color, turtles)
\#\# S4 method for signature 'numeric,matrix'
sprout(n, patches, breed, heading, color, turtles)

Arguments

n Integer. Vector of length 1 or of length the number of patches. Number of new turtles to create on each patch.
patches \quad Matrix $(\mathrm{ncol}=2)$ with the first column pxcor and the second column pycor representing the patches coordinates.
breed \quad Character. Vector of breed names. Must be of length 1 or of length the number of patches. If missing, breed = turtle for all the sprouted turtles.
heading Numeric. Vector of values between 0 and 360 . Must be of length 1 or of length the number of patches. If missing, a random heading is assigned to each sprouted turtle.
color Character. Vector of color names. Must be of length 1, of length the number of patches or of length sum(n). If missing, colors are assigned using the function rainbow (n).
turtles AgentMatrix object representing the moving agents.

Details

nrow(patches) must be equal to 1 or to n.
If turtles is provided, the new turtles are added to the turtles when returned. The who numbers of the sprouted turtles therefore follow the ones from the turtles. All new sprouted turtles are placed at the end of the agentMatrix object. If no turtles is provided, a new agentMatrix is created and the who numbers start at 0 .

If turtles is provided and had additional variables created with turtlesOwn(), NA is given for these variables for the new sprouted turtles.

Value

AgentMatrix including the new sprouted turtles.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

```
https://ccl.northwestern.edu/netlogo/docs/dictionary.html#sprout
```


Examples

```
t1 <- sprout(patches = cbind(pxcor = 2, pycor = 2), n = 3)
t2 <- sprout(patches = cbind(pxcor = 3, pycor = 3), n = 3, turtles = t1)
```

stackWorlds Stack worlds

Description

Stack multiple worldMatrix into a worldArray.

Usage

stackWorlds(...)
\#\# S4 method for signature 'worldMatrix'
stackWorlds(...)

Arguments

... worldMatrix objects.

Details

The worldMatrix objects must all have the same extents.

Value

worldArray object.

Author(s)

Sarah Bauduin

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4, data = 1:25)
w2 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4, data = 25:1)
w3 <- stackWorlds(w1, w2)
plot(w3)
```

subHeadings
Subtract headings

Description

Compute the difference between headings.

Usage

subHeadings(angle1, angle2, range360 = FALSE)
\#\# S4 method for signature 'numeric,numeric'
subHeadings(angle1, angle2, range360 = FALSE)
\#\# S4 method for signature 'agentMatrix, numeric'
subHeadings(angle1, angle2, range360 = FALSE)
\#\# S4 method for signature 'numeric,agentMatrix'
subHeadings(angle1, angle2, range360 = FALSE)
\#\# S4 method for signature 'agentMatrix, agentMatrix'
subHeadings(angle1, angle2, range360 = FALSE)

Arguments

angle1 AgentMatrix object representing the moving agents, or Numeric. Vector of angles.
angle2 AgentMatrix object representing the moving agents, or Numeric. Vector of angles.
range360 Logical. If range360 = TRUE, returned values are between 0 and 360 degrees; if range $360=$ FALSE, returned values are between -180 and 180 degrees. Default is range360 $=$ FALSE .

Details

This function does the opposite as the one in NetLogo where angle1 is the target heading. angle1 and angle2 must be of the same length or if different, one of them must be of length 1. Positive values mean clockwise rotations, negative value mean counterclockwise rotations.

Value

Numeric. Vector of the smallest angles in degrees by which angle1 could be rotated to produce angle2 (i.e., the target heading).

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#subtract-headings

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
t1 <- createOTurtles(n = 10, world = w1)
subHeadings(angle1 = t1, angle2 = 0)
```

```
tExist
Do the turtle exist?
```


Description

Report TRUE if a turtle exists inside the turtles, report FALSE otherwise.

Usage

tExist(turtles, who, breed)
\#\# S4 method for signature 'agentMatrix, numeric,missing'
tExist(turtles, who)
\#\# S4 method for signature 'agentMatrix, numeric, character'
tExist(turtles, who, breed)

Arguments

turtles AgentMatrix object representing the moving agents.
who Integer. Vector of the who numbers for the selected turtles.
breed Characters. Vector of breed names for the selected turtles. If missing, there is no distinction based upon breed.

Value

Logical. Vector of TRUE or FALSE if the who numbers with any of the breed, if provided, exist or not inside the turtles.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#member

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10),
        breed = c(rep("sheep", 5), rep("wolf", 5)))
tExist(turtles = t1, who = 3, breed = "sheep")
tExist(turtles = t1, who = 9, breed = "sheep")
tExist(turtles = t1, who = 9, breed = c("sheep", "wolf"))
tExist(turtles = t1, who = c(3, 9))
```

 towards Directions towards

Description

Report the directions of each agents towards each corresponding agents2.

Usage

```
towards(agents, agents2, world, torus = FALSE)
## S4 method for signature 'matrix,matrix'
towards(agents, agents2, world, torus = FALSE)
```


Arguments

agents \quad Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates, or AgentMatrix object representing the moving agents.
agents2 Matrix $(\mathrm{ncol}=2)$ with the first column pxcor and the second column pycor representing the patches coordinates, or
AgentMatrix object representing the moving agents, or
Matrix ($\mathrm{ncol}=2$) with the first column x and the second column y representing locations coordinates.
world WorldMatrix or worldArray object.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.

Details

agents and agents 2 must have the same number of agents/locations or if different, one of them must have only one agent/location. If agents and agents2 have the same number of agents/locations, the directions are calculated for each pair agents[i] and agents2[i] and not for each agents towards every single agents2.
If torus $=$ FALSE, world does not need to be provided.
If torus = TRUE and the distance from one agents to its corresponding agents2 is smaller around the sides of the world than across it, then the direction to agents2 going around the sides of the world is returned.
The direction from a patch to its location returns 0 ; the direction from a turtle to its location returns the turtle's heading.

Value

Numeric. Vector of angles in degrees of length equal to the largest number of agents/locations between agents and agents2.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

Examples

```
    w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4)
    towards(agents = patches(w1), agents2 = cbind(x = 0, y = 0))
    t1 <- createTurtles(n = 10, world = w1)
    towards(agents = t1, agents2 = cbind(x = 0, y = 0))
```

 turtle Select turtles

Description

Report the individuals among turtles based on their who numbers and breed.

Usage

turtle(turtles, who, breed)
\#\# S4 method for signature 'agentMatrix, numeric,missing'
turtle(turtles, who)
\#\# S4 method for signature 'agentMatrix, numeric, character'
turtle(turtles, who, breed)

Arguments

turtles AgentMatrix object representing the moving agents.
who Integer. Vector of the who numbers for the selected turtles.
breed Characters. Vector of breed names for the selected turtles. If missing, there is no distinction based upon breed.

Details

If no turtle matches the given who numbers, with potentially one of the given breed, inside turtles, then an empty agentMatrix is returned.
If there are duplicates who numbers among the turtles, the first matching turtle with the requested who number is returned.

Value

AgentMatrix of the selected turtles sorted in the order of the who numbers requested. If breed was provided, the turtles selected are of one of the breed.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#turtle

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))
t2 <- turtle(t1, who = 2)
```

turtles2spdf From agentMatrix to SpatialPointsDataFrame

Description

Convert an agentMatrix object into a SpatialPointsDataFrame object.

Usage

turtles2spdf(turtles)
\#\# S4 method for signature 'agentMatrix'
turtles2spdf(turtles)

Arguments

turtles AgentMatrix object representing the moving agents.

Value

SpatialPointsDataFrame object representing the moving agents (coordinates and data) as contained in turtles.

Author(s)

Sarah Bauduin

Examples

```
t1 <- createTurtles(n = 10, coords = cbind(xcor = 1:10, ycor = 1:10))
sp1 <- turtles2spdf(turtles = t1)
```

```
turtlesAt Turtles at
```


Description

Report the individuals among turtles that are located on the patches at (dx, dy) distances of the agents.

Usage

turtlesAt(world, turtles, agents, dx, dy, breed, torus = FALSE)
\#\# S4 method for signature
\#\# 'worldNLR, agentMatrix, matrix, numeric, numeric,missing'
turtlesAt(world, turtles, agents, dx, dy, torus)
\#\# S4 method for signature
\#\# 'worldNLR, agentMatrix,matrix,numeric,numeric, character'
turtlesAt(world, turtles, agents, dx, dy, breed, torus = FALSE)

Arguments

| world | WorldMatrix or worldArray object. |
| :--- | :--- |
| turtles | AgentMatrix object representing the moving agents.
 agents
 Matrix $($ ncol = 2) with the first column pxcor and the second column pycor
 representing the patches coordinates, or
 AgentMatrix object representing the moving agents.
 Numeric. Vector of distances to the east (right) from the agents. If dx is nega-
 tive, the distance to the west (left) is computed. dx must be of length 1 or of the
 same length as number of patches or turtles in agents. |
| dy | Numeric. Vector of distances to the north (up) from the agents. If dy is nega-
 tive, the distance to the south is computed (down). dy must be of length 1 or of
 the same length as number of patches or turtles in agents. |
| breed | Characters. Vector of breed names for the selected turtles. If missing, there
 is no distinction based upon breed. |
| torus | Logical to determine if the world is wrapped. Default is torus = FALSE. |

Details

If the patch at distance (dx, dy) of an agent is outside of the world's extent and torus = FALSE, no turtle is returned; if torus = TRUE, the turtle located on the patch whose coordinates are defined from the wrapped world is returned.

Value

AgentMatrix representing the individuals among turtles of any of the given breed, if specified, which are located on the patches at (dx, dy) distances of the agents.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

> https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#turtles-at https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#at-points

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
t1 <- createTurtles(n = 10, coords = cbind(xcor = 0:9, ycor = 0:9),
            breed = c(rep("sheep", 5), rep("wolf", 5)))
t2 <- turtlesAt(world = w1, turtles = t1, agents = turtle(t1, who = 0),
    dx = 1, dy = 1)
t3 <- turtlesAt(world = w1, turtles = t1,
    agents = patch(w1, c(3,4,5), c(3,4,5)), dx = 1, dy = 1,
    breed = "sheep")
```

 turtleSet \(\quad\) Create \(a\) turtle agentset

Description

Report a turtle agentset containing all unique turtles provided in the inputs.

Usage

```
turtleSet(...)
```

\#\# S4 method for signature 'agentMatrix'
turtleSet(...)

Arguments

.. AgentMatrix objects representing the moving agents.

Details

Duplicated turtles are identified based only on their who numbers. The turtle chosen for a who number is the first one given in the inputs. To keep all turtles from the inputs, use NLset () to reassign who numbers in some of the inputs, prior using turtleSet (), to avoid turtles with duplicated who numbers.

Value

AgentMatrix object containing all the unique turtles.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#turtle-set

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9)
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10), breed = "sheep")
t2 <- createTurtles(n = 2, coords = randomXYcor(w1, n = 2), breed = "wolf")
t2 <- NLset(turtles = t2, agents = t2, var = "who", val = c(10, 11))
t3 <- createTurtles(n = 1, coords = randomXYcor(w1, n = 1), breed = "sheperd")
t3 <- NLset(turtles = t3, agents = t3, var = "who", val = 12)
t4 <- turtleSet(t1, t2, t3)
```

| turtlesOn \quad Turtles on |
| :--- | :--- |

Description

Report the individuals among turtles that are on the same patches as the agents.

Usage

```
turtlesOn(world, turtles, agents, breed, simplify = TRUE)
\#\# S4 method for signature 'worldNLR,agentMatrix,matrix,missing'
turtlesOn(world, turtles, agents, simplify)
    \#\# S4 method for signature 'worldNLR, agentMatrix, matrix, character'
    turtlesOn(world, turtles, agents, breed, simplify = TRUE)
```


Arguments

world WorldMatrix or worldArray object.
turtles AgentMatrix object representing the moving agents.
agents Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates, or
AgentMatrix object representing the moving agents.
breed Characters. Vector of breed names for the selected turtles. If missing, there is no distinction based upon breed.
simplify Logical. If simplify = TRUE, all turtles on the same patches as any agents are returned; if simplify = FALSE, the turtles are evaluated for each agents's patches individually.

Details

The agents must be located inside the world's extent.

Value

AgentMatrix representing any individuals from turtles of any of the given breed, if specified, located on the same patches as any of the agents, if simplify = TRUE, or
Matrix ($n c o l=2$) with the first column whoTurtles and the second column id showing which turtles are on the same patches as which agents represented by id, if simplify = FALSE. id represents and follows the order of the agents. id does not represent the who numbers of the agents if agents are turtles.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

Examples

```
    w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9,
            data = runif(100))
t1 <- createTurtles(n = 500, coords = randomXYcor(w1, n = 500))
plot(w1)
points(t1, col = of(agents = t1, var = "color"), pch = 16)
t2 <- turtlesOn(world = w1, turtles = t1, agents = patch(w1, 2, 2))
```

```
turtlesOwn New turtles variable
```


Description

Create a new variable for the turtles.

Usage

```
turtlesOwn(turtles, tVar, tVal)
## S4 method for signature 'agentMatrix,character,missing'
turtlesOwn(turtles, tVar)
## S4 method for signature 'agentMatrix,character,ANY'
turtlesOwn(turtles, tVar, tVal)
```


Arguments

turtles AgentMatrix object representing the moving agents.
tVar Character. the name of the turtles variable to create.
tVal Vector representing the values of tVar. Must be of length 1 or of length turtles. If missing, NA is given.

Value

AgentMatrix representing the turtles with the new variable tVar added.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

```
https://ccl.northwestern.edu/netlogo/docs/dictionary.html#turtles-own
```


Examples

```
t1 <- createTurtles(n = 5, coords = cbind(xcor = 0, ycor = 0))
t1 <- turtlesOwn(turtles = t1, tVar = "sex", tVal = c("F", "F", "F", "M", "M"))
```

updateList Update elements of a named list with elements of a second named list

Description

Merge two named list based on their named entries. Where any element matches in both lists, the value from the second list is used in the updated list. Subelements are not examined and are simply replaced. If one list is empty, then it returns the other one, unchanged.

Usage

```
    updateList(x, y)
```

 \#\# S4 method for signature 'list,list'
 updateList(x, y)
 \#\# S4 method for signature '`NULL`, list'
 updateList(x, y)
 \#\# S4 method for signature 'list, `NULL`'
 updateList(x, y)
 \#\# S4 method for signature '`NULL`, 'NULL`'
 updateList (x, y)

Arguments

x, y
a named list

Value

A named list, with elements sorted by name. The values of matching elements in list y replace the values in list x.

Author(s)

Alex Chubaty

Examples

```
L1 <- list(a = "hst", b = NA_character_, c = 43)
L2 <- list(a = "gst", c = 42, d = list(letters))
updateList(L1, L2)
updateList(L1, NULL)
updateList(NULL, L2)
updateList(NULL, NULL) # should return empty list
```

```
uphill Move uphill
```


Description

Move the turtles to their neighboring patch with the highest value.

Usage

uphill(world, pVar, turtles, nNeighbors, torus = FALSE)
\#\# S4 method for signature 'worldMatrix,missing, agentMatrix, numeric'
uphill(world, turtles, nNeighbors, torus)
\#\# S4 method for signature 'worldArray, character, agentMatrix, numeric'
uphill(world, pVar, turtles, nNeighbors, torus = FALSE)

Arguments

world WorldMatrix or worldArray object.
pVar Character. If the world is a worldArray object, pVar is the name of the layer to use to define the patches values. pVar must not be provided if the world is a worldMatrix object.
turtles AgentMatrix object representing the moving agents.
nNeighbors Integer: 4 or 8 . Represents the number of neighbor patches considered.
torus Logical to determine if the world is wrapped. Default is torus = FALSE.

Details

If no neighboring patch has a larger value than the patch where the turtle is currently located on, the turtle stays on this patch. It still moves to the patch center if it was not already on it.
If there are multiple neighboring patches with the same highest value, the turtle chooses one patch randomly.
If a turtle is located on a patch on the edge of the world and torus = FALSE, it has fewer neighboring patches as options to move than nNeighbors; if torus = TRUE, the turtle can move on the other side of the world to move uphill and its choice of neighboring patches is always equals to n Neighbors.

Value

AgentMatrix representing the turtles with updated coordinates and updated data for their heading values and previous coordinates prevX and prevY.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#uphill

Examples

```
w1 <- createWorld(minPxcor = 1, maxPxcor = 10, minPycor = 1, maxPycor = 10,
                    data = runif(100))
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10))
plot(w1)
points(t1, col = of(agents = t1, var = "color"), pch = 16)
t1 <- uphill(world = w1, turtles = t1, nNeighbors = 8)
points(t1, col = of(agents = t1, var = "color"), pch = 16)
```

withMax Agents with maximum

Description

Report the patches or turtles among agents which have their variable equals to the maximum value.

Usage

withMax(agents, world, var)
\#\# S4 method for signature 'matrix, worldMatrix,missing' withMax (agents, world)
\#\# S4 method for signature 'matrix,worldArray,character' withMax(agents, world, var)

```
## S4 method for signature 'agentMatrix,missing,character'
```

withMax (agents, var)
withMax

Arguments

agents
world
var

Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the patches coordinates, or AgentMatrix object representing the moving agents. WorldMatrix or worldArray object.
Character. The name of the selected agents variable. If agents are patches and the world is a worldMatrix object, var must not be provided. If agents are patches and the world is a worldArray object, var is the name of the layer to use to define the patches values. If agents are turtles, var is one of the turtles' variable and can be equal to xcor, ycor, any of the variables created when turtles were created, as well as any variable created using turtlesOwn().

Details

world must not be provided if agents are turtles.

Value

Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the coordinates of the patches among the agents which have their variable equal to the maximum value among the agents, or

AgentMatrix representing the turtles among the agents which have their variable var equal to the maximum value among the agents.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl. northwestern. edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#with-max

Examples

```
# Patches
w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
            data = sample(1:5, size = 25, replace = TRUE))
plot(w1)
p1 <- withMax(agents = patches(w1), world = w1)
# Turtles
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10),
            heading = sample(1:3, size = 10, replace= TRUE))
```

```
t2 <- withMax(agents = t1, var = "heading")
```

```
withMin Agents with minimum
```


Description

Report the patches or turtles among agents which have their variable equals to the minimum value.

Usage

withMin(agents, world, var)
\#\# S4 method for signature 'matrix,worldMatrix,missing'
withMin(agents, world)
\#\# S4 method for signature 'matrix, worldArray, character'
withMin(agents, world, var)
\#\# S4 method for signature 'agentMatrix,missing, character'
withMin(agents, var)

Arguments

agents Matrix $(\mathrm{ncol}=2)$ with the first column pxcor and the second column pycor representing the patches coordinates, or
AgentMatrix object representing the moving agents.
world WorldMatrix or worldArray object.
var Character. The name of the selected agents variable. If agents are patches and the world is a worldMatrix object, var must not be provided. If agents are patches and the world is a worldArray object, var is the name of the layer to use to define the patches values. If agents are turtles, var is one of the turtles' variable and can be equal to xcor, ycor, any of the variables created when turtles were created, as well as any variable created using turtlesOwn().

Details

world must not be provided if agents are turtles.

Value

Matrix ($\mathrm{ncol}=2$) with the first column pxcor and the second column pycor representing the coordinates of the patches among the agents which have their variable equal to the minimum value among the agents, or

AgentMatrix representing the turtles among the agents which have their variable var equal to the minimum value among the agents.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#with-min

Examples

```
# Patches
w1 <- createWorld(minPxcor = 0, maxPxcor = 4, minPycor = 0, maxPycor = 4,
            data = sample(1:5, size = 25, replace = TRUE))
plot(w1)
p1 <- withMin(agents = patches(w1), world = w1)
# Turtles
t1 <- createTurtles(n = 10, coords = randomXYcor(w1, n = 10),
            heading = sample(1:3, size = 10, replace= TRUE))
t2 <- withMin(agents = t1, var = "heading")
```

 world2raster
 Convert a worldMatrix or worldArray object into a Raster* object

Description

Convert a worldMatrix object into a RasterLayer object or a worldArray object into a RasterStack object

Usage

```
    world2raster(world)
    ## S4 method for signature 'worldMatrix'
    world2raster(world)
    ## S4 method for signature 'worldArray'
    world2raster(world)
```


Arguments

world WorldMatrix or worldArray object.

Details

The Raster* returned has the same extent and resolution as the world with round coordinates at the center of the cells and coordinates $x .5$ at the edges of the cells.

Value

RasterLayer or RasterStack object depending on the input world. Patches value are retained from the world.

Author(s)

Sarah Bauduin

Examples

```
w1 <- createWorld(minPxcor = 0, maxPxcor = 9, minPycor = 0, maxPycor = 9, data = runif(100))
r1 <- world2raster(w1)
plot(r1)
```

worldArray-class The worldArray class

Description

This is an s4 class extension of array. It is a collection of several worldMatrix objects with the same extent (i.e., same values for all their slots) stacked together. It is used to keep more than one value per patch.

Author(s)

Sarah Bauduin, Eliot McIntire, and Alex Chubaty
worldHeight

See Also

worldMatrix

| worldHeight \quad World height |
| :--- |

Description

Report the height of the world in patch number.

Usage

worldHeight(world)
\#\# S4 method for signature 'worldNLR'
worldHeight(world)

Arguments

world WorldMatrix or worldArray object.

Value

Integer.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#world-dim

Examples

```
w1 <- createWorld()
worldHeight(w1)
```


Description

This is an s4 class extension of matrix with 7 additional slots. A worldMatrix object can be viewed as a grid composed of squared patches (i.e., matrix cells). Patches have two spatial coordinates pxcor and pycor, representing the location of their center. pxcor and pycor are always integer and increment by 1. pxcor increases as you move right and pycor increases as you move up. pxcor and pycor can be negative if there are patches to the left or below the patch $[p \times c o r=0$, pycor $=$ $0]$.

Details

The first four slots of the worldMatrix are: minPxcor, maxPxcor, minPycor, maxPycor which represent the minimum and maximum patches coordinates in the worldMatrix. The slot extent is similar to a Raster* extent. Because pxcor and pycor represent the spatial location at the center of the patches and the resolution of them is 1 , the extent of the worldMatrix is equal to xmin $=\operatorname{minPxcor}-0.5, x \max =\operatorname{maxPxcor}+0.5, y m i n=\operatorname{minPycor}-0.5$, and ymax $=\operatorname{maxPycor}+0.5$. The number of patches in a worldMatrix is equal to ((maxPxcor -minPxcor) + 1) * ((maxPycor $-m i n P y c o r)+1)$. The slot res is equal to 1 as it is the spatial resolution of the patches. The last slot p Coords is a matrix representing the patches coordinates of all the matrix cells in the order of cells in a Raster* (i.e., by rows).

Careful: The methods [] and [] <- retrieve or assign values for the patches in the given order of the patches coordinates provided. When no patches coordinates are provided, the values retrieved or assigned is done in the order of the cell numbers as defined in in Raster* objects (i.e., by rows).

Author(s)

Sarah Bauduin, Eliot McIntire, and Alex Chubaty

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

worldArray

```
worldNLR-class The worldNLR class
```


Description

The worldNLR class is the union of the worldMatrix and worldArray classes. Mostly used for building function purposes.

Author(s)

Sarah Bauduin, and Eliot McIntire

```
worldWidth World width
```


Description

Report the width of the world in patch number.

Usage

worldWidth(world)
\#\# S4 method for signature 'worldNLR'
worldWidth(world)

Arguments

world WorldMatrix or worldArray object.

Value

Integer.

Author(s)

Sarah Bauduin

References

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

See Also

https://ccl.northwestern.edu/netlogo/docs/dictionary.html\#world-dim

Examples

w1 <- createWorld()
worldWidth(w1)
wrap
Wrap coordinates or pixels in a torus-like fashion

Description

Generally for model development purposes.

Usage

wrap(obj, bounds, withHeading)
\#\# S4 method for signature 'matrix, Extent,missing'
wrap(obj, bounds)
\#\# S4 method for signature 'SpatialPoints,ANY,missing'
wrap(obj, bounds)
\#\# S4 method for signature 'matrix,Raster,missing'
wrap(obj, bounds)
\#\# S4 method for signature 'matrix,Raster,missing'
wrap(obj, bounds)
\#\# S4 method for signature 'matrix,matrix,missing'
wrap(obj, bounds)
\#\# S4 method for signature 'SpatialPointsDataFrame,Extent,logical'
wrap(obj, bounds, withHeading)
\#\# S4 method for signature 'SpatialPointsDataFrame,Raster,logical'
wrap(obj, bounds, withHeading)
\#\# S4 method for signature 'SpatialPointsDataFrame,matrix,logical'
wrap(obj, bounds, withHeading)

Arguments

obj A SpatialPoints* object, or matrix of coordinates.
bounds Either a Raster*, Extent, or bbox object defining bounds to wrap around.
withHeading Logical. If TRUE, then the previous points must be wrapped also so that the subsequent heading calculation will work. Default FALSE. See details.

Details

If withHeading used, then obj must be a SpatialPointsDataFrame that contains two columns, x1 and y 1 , with the immediately previous agent locations.

Value

Same class as obj, but with coordinates updated to reflect the wrapping.

Author(s)

Eliot McIntire

Examples

```
library(quickPlot)
library(raster)
xrange <- yrange <- c(-50, 50)
hab <- raster(extent(c(xrange, yrange)))
hab[] <- 0
# initialize agents
N <- 10
# previous points
x1 <- rep(0, N)
y1 <- rep(0,N)
# initial points
starts <- cbind(x = stats::runif(N, xrange[1], xrange[2]),
    y = stats::runif(N, yrange[1], yrange[2]))
# create the agent object
agent <- SpatialPointsDataFrame(coords = starts, data = data.frame(x1, y1))
ln <- rlnorm(N, 1, 0.02) # log normal step length
sd <- 30 # could be specified globally in params
if (interactive()) {
    clearPlot()
    Plot(hab, zero.color = "white", axes = "L")
}
if (requireNamespace("SpaDES.tools")) {
    for (i in 1:10) {
        agent <- SpaDES.tools::crw(agent = agent,
                                    extent = extent(hab), stepLength = ln,
                                    stddev = sd, lonlat = FALSE, torus = TRUE)
    if (interactive()) Plot(agent, addTo = "hab", axes = TRUE)
    }
}
```

[
Extract or Replace Parts of an Object

Description

Operators acting on vectors, matrices, arrays and lists to extract or replace parts.

Usage

\#\# S4 method for signature 'worldMatrix, numeric, numeric, ANY'
$x[i, j, \ldots$, drop $=$ TRUE $]$
\#\# S4 method for signature 'worldMatrix,missing,missing, ANY'
$x[i, j, \ldots$, drop $=$ TRUE $]$
\#\# S4 replacement method for signature 'worldMatrix, numeric, numeric, ANY' $x[i, j]<-$ value
\#\# S4 replacement method for signature 'worldMatrix,missing,missing, ANY' $x[i, j]<-$ value
\#\# S4 method for signature 'worldArray,numeric, numeric,ANY'
$x[i, j, \ldots$, drop $=$ TRUE $]$
\#\# S4 method for signature 'worldArray,missing,missing, ANY'
$\mathrm{x}[\mathrm{i}, \mathrm{j}, \ldots, \mathrm{drop}=$ TRUE]
\#\# S4 replacement method for signature 'worldArray, numeric, numeric, matrix' $x[i, j]<-$ value
\#\# S4 replacement method for signature 'worldArray,missing,missing,matrix' x[i, j] <- value
\#\# S4 method for signature 'agentMatrix, numeric, numeric, ANY'
$x[i, j, \ldots$, drop $=$ TRUE $]$
\#\# S4 method for signature 'agentMatrix,logical,missing, ANY'
x[i, j, ..., drop = TRUE]
\#\# S4 method for signature 'agentMatrix, numeric,missing, ANY'
$x[i, j, \ldots$, drop $=$ TRUE $]$
\#\# S4 method for signature 'agentMatrix,missing,missing,missing'
$x[i, j, \ldots$, drop $=$ TRUE $]$
\#\# S4 method for signature 'agentMatrix,missing, character, ANY'
$x[i, j, \ldots$, drop $=$ TRUE $]$

```
## S4 method for signature 'agentMatrix,numeric,character,ANY'
x[i, j, ..., drop = TRUE]
## S4 method for signature 'agentMatrix,missing,numeric,ANY'
x[i, j, ..., drop = TRUE]
## S4 replacement method for signature 'agentMatrix,numeric,numeric,numeric'
x[i, j] <- value
## S4 replacement method for signature 'agentMatrix,missing,numeric,numeric'
x[i, j] <- value
## S4 replacement method for signature 'agentMatrix,numeric,missing,numeric'
x[i, j] <- value
## S4 replacement method for signature 'agentMatrix,numeric,character,data.frame'
x[i, j] <- value
## S4 replacement method for signature 'agentMatrix,numeric,numeric,character'
x[i, j] <- value
## S4 replacement method for signature 'agentMatrix,missing,numeric,character'
x[i, j] <- value
## S4 replacement method for signature 'agentMatrix,missing,character,character'
x[i, j] <- value
## S4 replacement method for signature 'agentMatrix,numeric,character,character'
x[i, j] <- value
## S4 method for signature 'agentMatrix'
x$name
```


Arguments

drop not implemented
value Any R object
name documentation needed
x
i
j
. . .

A agentMatrix object from which to extract element(s) or in which to replace element(s).

Indices specifying elements to extract or replace.
see i.
other named arguments

Note

Extract methods for agentMatrix class will generally maintain the agentMatrix class. This means that there will still be coordinates, character columns represented as numerics etc. $\$$ is for extracting the raw columns and does not maintain the agentMatrix class. [] will extract all values, and result in a data.frame with the correct character and numeric columns.

Description

These function similarly to [[for RasterStack objects.

Usage

\#\# S4 method for signature 'worldArray, ANY, ANY'
x[[i]]
\#\# S4 replacement method for signature 'worldArray,ANY,ANY'
x[[i]] <- value
\#\# S4 method for signature 'worldArray'
x\$name

Arguments

x
i
value
name

A worldArray object.
Index number or layer name specifying a subset of layer(s) from the worldArray.
A replacement worldMatrix layer for one of the current layers in the worldArray. Layer name, normally without back ticks, unless has symbols.

Index

*Topic integral

fargs, 26
.bboxCoords (extent, worldNLR-method), 24
.identifyGrobToPlot, worldArray, .quickPlotGrob-method ([), 122
(numLayers, worldArray-method), [<-, agentMatrix, numeric, character, character-method 65
.plotGrob, agentMatrix-method
(numLayers, worldArray-method),
65
==, agentMatrix, character-method, 5
==, agentMatrix, numeric-method
(==, agentMatrix, character-method), 5
[, 122
[, agentMatrix, logical, missing, ANY-method ([), 122
[, agentMatrix, missing, character, ANY-method ([), 122
[, agentMatrix,missing,missing, missing-method ([), 122
[, agentMatrix,missing, numeric, ANY-method ([), 122
[, agentMatrix, numeric, character, ANY-method ([), 122
[, agentMatrix, numeric, missing, ANY-method ([), 122
[, agentMatrix, numeric, numeric, ANY-method ([), 122
[, worldArray, missing, missing, ANY-method ([), 122
[, worldArray, numeric, numeric, ANY-method ([), 122
[,worldMatrix,missing,missing, ANY-method ([), 122
[,worldMatrix, numeric, numeric, ANY-method ([), 122
[<- ([), 122
[<-, agentMatrix, missing, character, character-m\&th $申$ Lall), 52
([), 122
[<-, agentMatrix, missing, numeric, character-method ([), 122
[<-, agentMatrix, missing, numeric, numeric-method ([), 122
[<-, agentMatrix, numeric, character, data.frame-method ([), 122
[<-, agentMatrix, numeric, missing, numeric-method ([), 122
[<-, agentMatrix, numeric, numeric, character-method ([), 122
[<-, agentMatrix, numeric, numeric, numeric-method
([), 122
[<-, worldArray,missing, missing, matrix-method ([), 122
[<-, worldArray, numeric, numeric, matrix-method ([), 122
[<-, worldMatrix, missing, missing, ANY-method ([), 122
[<-, worldMatrix, numeric, numeric, ANY-method ([), 122
[[, 124
[[, worldArray, ANY, ANY-method ([C), 124
[[<- ([C), 124
[[<-, worldArray, ANY, ANY-method ([C), 124
\$ ([C), 124
\$, agentMatrix-method ([), 122
\$, worldArray-method ([[), 124
agentClasses (agentClasses-class), 6
agentClasses-class, 6
agentMatrix, 6
agentMatrix, matrix-method
(agentMatrix), 6
agentMatrix,missing-method
(agentMatrix), 6
agentMatrix-class, 7
any (NLany), 54
bbox, 24, 25
bbox, agentMatrix-method
(extent, worldNLR-method), 24
bbox, worldNLR-method
(extent, worldNLR-method), 24
bbox<- (extent, worldNLR-method), 24
bbox<-, agentMatrix, matrix-method
(extent, worldNLR-method), 24
bk, 8
bk, agentMatrix, numeric-method (bk), 8
canMove, 10
canMove, worldNLR, agentMatrix, numeric-method (canMove), 10
cbind, 11,11
cellFromPxcorPycor, 11
cellFromPxcorPycor, worldNLR, numeric, numeric-metteed agentMatrix, matrix-method (face),
(cellFromPxcorPycor), 11
clearPatches, 12
clearPatches, worldArray-method (clearPatches), 12
clearPatches, worldMatrix-method (clearPatches), 12
coordinates, agentMatrix-method, 13
count (NLcount), 55
createOTurtles, 14
createOTurtles, numeric-method (createOTurtles), 14
createTurtles, 15
createTurtles, numeric, matrix, missing-method (createTurtles), 15
createTurtles, numeric, missing, ANY-method (createTurtles), 15
createWorld, 16
createWorld,missing, missing, missing, missing, missing-methone), 31 (createWorld), $16 \quad \begin{aligned} & \text { initialize, } \\ & \text { inRadius, } \\ & \text { ald, numeric, numeric, numeric, numeric, ANY-method }\end{aligned}$
createWorld, numeric, numeric, numeric, numeric, ANYAdius, 34
(createWorld), 16
die, 18
die, agentMatrix, numeric-method (die), 18
diffuse, 19
 (diffuse), 19
(inRadius), 34
inspect, 35
inspect, agentMatrix, numeric-method
(inspect), 35
isNLclass, 36
(isNLclass), 36
diffuse, worldMatrix, missing, numeric, numeric-method
(diffuse), 19
layerNames, worldArray-method
dist (NLdist), 56
downhill, 20
(numLayers,worldArray-method),
65
layoutCircle, 37
layoutCircle,worldNLR, agentMatrix, numeric-metheíghbors, worldNLR, matrix, numeric-method (layoutCircle), 37
(neighbors), 51
left, 38
left, agentMatrix, numeric-method (left), 38
length, agentMatrix-method (show, agentMatrix-method), 93
maxNof, 40
 (maxNof), 40 (NLall), 52
maxNof, matrix, numeric, worldArray, character-methanyy, 54
(maxNof), $40 \quad$ NLany, matrix-method (NLany), 54
maxNof, matrix, numeric, worldMatrix, missing-metNbgount, 55 (maxNof), 40
maxOneOf, 41
NLcount, matrix-method (NLcount), 55
NLdist, 56
maxOneOf, agentMatrix, missing, character-methodNLdist, matrix, matrix-method (NLdist), 56
(maxOneOf), 41
NLset, 58
maxOneOf,matrix, worldArray, character-method NLset,missing, agentMatrix, agentMatrix, character-method (maxOneOf), 41
maxOneOf, matrix, worldMatrix, missing-method (maxOneOf), 41
maxPxcor, 43
maxPxcor, worldNLR-method (maxPxcor), 43
maxPycor, 44
maxPycor, worldNLR-method (maxPycor), 44
minNof, 45
 (minNof), 45
(NLwith), 59
 (minNof), 45 (NLwith), 59
minNof, matrix, numeric, worldMatrix, missing-metNbuorldIndex, 61 (minNof), 45
minOneOf, 46
NLworldIndex, worldMatrix, numeric-method
minOneOf, agentMatrix, missing, character-methodnOf, 62
(minOneOf), 46
minOneOf, matrix, worldArray, character-method (minOneOf), 46
minOneOf,matrix, worldMatrix, missing-method (minOneOf), 46
minPxcor, 48
minPxcor, worldNLR-method (minPxcor), 48
minPycor, 49
minPycor, worldNLR-method (minPycor), 49
moveTo, 50
moveTo, agentMatrix, matrix-method
(moveTo), 50
(NLworldIndex), 61
nOf, matrix, numeric-method (nOf), 62
noPatches, 63
noTurtles, 64
nrow, agentMatrix-method
(show, agentMatrix-method), 93
numLayers, worldArray-method, 65
of, 67
of,missing, agentMatrix, character-method (of), 67
of, worldArray, matrix, character-method (of), 67
of, worldMatrix,matrix,missing-method (of), 67
oneOf, 68
oneOf, matrix-method (oneOf), 68
other, 70
other, matrix, matrix-method (other), 70
patch, 71
patch, worldNLR, numeric, numeric-method (patch), 71
patchAhead, 72
patchAhead, worldNLR, agentMatrix, numeric-methoઘaster2world, 89 (patchAhead), 72 raster2world,RasterLayer, character-method
patchAt, 74
patchAt, worldNLR, matrix, numeric, numeric-methodaster2world, RasterStack, character-method (patchAt), 74
patchDistDir, 75
patchDistDir, worldNLR, matrix, numeric, numeric-mé发肠d90 (patchDistDir), 75
patches, 76
patches, worldNLR-method (patches), 76
patchHere, 77
patchHere, worldNLR, agentMatrix-method (patchHere), 77
patchLeft, 78
patchLeft, worldNLR, agentMatrix, numeric, numerisemegentMatrix, numeric, numeric, worldNLR, logical-method (patchLeft), 78
patchRight, 80
patchRight, worldNLR , (patchRight), 80
patchSet, 81
patchSet, matrix-method (patchSet), 81
pExist, 82
pExist, worldNLR, numeric, numeric-method (pExist), 82
plot.agentMatrix, 83
plot.worldArray (plot.agentMatrix), 83
plot.worldMatrix (plot.agentMatrix), 83
points.agentMatrix (plot.agentMatrix), 83
PxcorPycorFromCell, 84
PxcorPycorFromCell, worldNLR, numeric-method
(PxcorPycorFromCell), 84
randomPxcor, 85
randomPxcor, worldNLR, numeric-method (randomPxcor), 85
randomPycor, 86
right, agentMatrix, numeric-method
randomPycor, worldNLR, numeric-method (randomPycor), 86
randomXcor, 87
randomXcor, worldNLR, numeric-method (randomXcor), 87
randomXYcor, 88
randomXYcor, worldNLR, numeric-method (randomXYcor), 88
randomYcor, 88
randomYcor, worldNLR, numeric-method (randomYcor), 88 (raster2world), 89
(raster2world), 89
rbind (cbind), 11 (right), 90
set (NLset), 58
setXY, 92
setXY, agentMatrix, numeric, numeric, missing, ANY-method (setXY), 92 (setXY), 92
show, agentMatrix-method, 93
show, worldMatrix-method
(show, worldArray-method), 94
sortOn, 94
sortOn, agentMatrix, missing, character-method (sortOn), 94
sortOn, matrix, worldArray, character-method (sortOn), 94
sortOn, matrix, worldMatrix, missing-method (sortOn), 94
spdf2turtles, 96
spdf2turtles, SpatialPointsDataFrame-method (spdf2turtles), 96
sprout, 97
sprout, numeric, matrix-method (sprout), 97
stackWorlds, 98
stackWorlds, worldMatrix-method
(stackWorlds), 98
subHeadings, 99
subHeadings, agentMatrix, agentMatrix-method (subHeadings), 99
subHeadings, agentMatrix, numeric-method (subHeadings), 99
subHeadings, numeric, agentMatrix-method (subHeadings), 99
subHeadings, numeric, numeric-method (subHeadings), 99
tail (show, agentMatrix-method), 93
tExist, 100
tExist, agentMatrix, numeric, character-method (tExist), 100
tExist, agentMatrix, numeric, missing-method (tExist), 100
towards, 101
towards, matrix, matrix-method (towards), 101
turtle, 103
turtle, agentMatrix, numeric, character-method (turtle), 103
turtle, agentMatrix, numeric,missing-method (turtle), 103
turtles2spdf, 104
turtles2spdf, agentMatrix-method (turtles2spdf), 104
turtlesAt, 105
updateList,list,NULL-method (updateList), 110
updateList,NULL, list-method (updateList), 110
updateList, NULL, NULL-method (updateList), 110
uphill, 111
uphill, worldArray, character, agentMatrix, numeric-method (uphill), 111
uphill, worldMatrix,missing, agentMatrix, numeric-method (uphill), 111
with (NLwith), 59
withMax, 112
withMax, agentMatrix, missing, character-method (withMax), 112
withMax, matrix, worldArray, character-method (withMax), 112
withMax, matrix, worldMatrix, missing-method (withMax), 112
withMin, 114
withMin, agentMatrix, missing, character-method (withMin), 114
withMin, matrix, worldArray, character-method (withMin), 114
withMin,matrix, worldMatrix,missing-method (withMin), 114
world2raster, 115
 (world2raster), 115
turtlesAt, worldNLR, agentMatrix, matrix, numeric numericas missingighttodx-method (turtlesAt), 105
turtleSet, 106
turtleSet, agentMatrix-method (turtleSet), 106
turtlesOn, 107
turtlesOn, worldNLR, agentMatrix, matrix, characterimetheght, worldNLR-method (turtlesOn), 107
turtlesOn, worldNLR, agen
(turtlesOn), 107
turtlesOwn, 109
turtlesOwn, agentMatrix, character, ANY-method (turtlesOwn), 109
(world2raster), 115
worldArray, 118
worldArray (worldArray-class), 116
worldArray-class, 116
worldHeight, 117 (worldHeight), 117
ngwoftang trix, 117
worldMatrix (worldMatrix-class), 118
worldMatrix-class, 118
worldNLR (worldNLR-class), 119
worldNLR-class, 119
turtlesOwn, agentMatrix, character, missing-methQdrldWidth, 119
(turtlesOwn), 109
updateList, 110
updateList,list,list-method (updateList), 110
worldWidth, worldNLR-method (worldWidth), 119
wrap, 120
wrap, matrix, Extent, missing-method
(wrap), 120
wrap, matrix, matrix, missing-method (wrap), 120
wrap, matrix,Raster,missing-method (wrap), 120
wrap, SpatialPoints, ANY, missing-method (wrap), 120
wrap, SpatialPointsDataFrame, Extent, logical-method (wrap), 120
wrap, SpatialPointsDataFrame, matrix, logical-method (wrap), 120
wrap, SpatialPointsDataFrame, Raster, logical-method (wrap), 120

