
Package ‘NanoStringNorm’
December 12, 2017

Type Package

Title Normalize NanoString miRNA and mRNA Data

Version 1.2.1

Date 2017-12-11

Author Daryl M. Waggott

Maintainer Paul Boutros <Paul.Boutros@oicr.on.ca>

Depends R (>= 2.14.0), gdata (>= 2.8.2), vsn (>= 3.22.0), XML (>=
3.98-1.5)

Imports methods

Suggests googleVis (>= 0.2.14), lme4, RUnit (>= 0.4.26)

Description A set of tools for normalizing, diagnostics and visualization of NanoString nCounter data.

License GPL-2

LazyLoad yes

LazyData yes

NeedsCompilation no

Repository CRAN

Date/Publication 2017-12-12 22:33:57 UTC

R topics documented:
NanoStringNorm-package . 2
NanoString . 2
NanoString.mRNA . 3
NanoStringNorm . 3
norm.comp . 8
nsn . 11
other.normalization . 11
Plot.NanoStringNorm . 14
Plot.NanoStringNorm.gvis . 18
read.markup.RCC . 21
read.xls.RCC . 22

1

2 NanoString

Index 24

NanoStringNorm-package

A suite of functions for normalization, visualization and differential
expression of NanoString miRNA and RNA expression levels

Description

A suite of functions for the normalization, visualization and differential expression of NanoString
miRNA and RNA expression level. The primary interface is through the function ’NanoString-
Norm’. The package enables existing preprocessing methods proposed by NanoString in addition
to an extensible plug and play framework for further methods incorporation. Emphasis is put on
visualization of normalization diagnostics and results in order to prevent inadvertent batch effects
or confounding introduced through the specifics of study design.

Details

Package: NanoStringNorm
Type: Package
Version: 1.2.0
Date: 2017-08-17
License: GPL2
LazyLoad: yes

Author(s)

Author: Daryl M Waggott Maintainer: Daryl Waggott <daryl.waggott@oicr.on.ca>

NanoString An rda file storing NanoString example datasets. Currently, a
data.frame consisting of Nanostring Rat RNA expression values. The
data were exported as a tab delimited file from the XLS results.

Description

Contains mRNA data from an experiment of TCDD exposure in Rats. The data structure and
normalization workflow is different for miRNA.

Usage

data(NanoString)

NanoString.mRNA 3

Format

A data.frame of 25 samples and 68 genes.

NanoString.mRNA A data.frame consisting of Nanostring Rat RNA expression values. The
data were exported as a tab delimited file from the XLS results.

Description

Contains mRNA data from an experiment of TCDD exposure in Rats. The data structure and
normalization workflow is different for miRNA.

Usage

data(NanoString)

Format

A data.frame of 25 samples and 68 genes.

NanoStringNorm Methods for preprocessing NanoString nCounter data

Description

This function can be used to normalize mRNA and miRNA expression data from the NanoString
platform.

Usage

NanoStringNorm(
x,
anno = NA,
header = NA,
Probe.Correction.Factor = 'adjust',
CodeCount = 'none',
Background = 'none',
SampleContent = 'none',
OtherNorm = 'none',
CodeCount.summary.target = NA,
SampleContent.summary.target = NA,
round.values = FALSE,
is.log = FALSE,
take.log = FALSE,
return.matrix.of.endogenous.probes = FALSE,

4 NanoStringNorm

traits = NA,
predict.conc = FALSE,
verbose = TRUE,
genes.to.fit,
genes.to.predict,
guess.cartridge = TRUE,
...
);

Arguments

x The data used for Normalization. This is typically the raw expression data as
exported from an Excel spreadsheet. If anno is NA then the first three columns
must be c(’Code.Class’, ’Name’, ’Accession’) and the remaining columns re-
fer to the samples being analyzed. The rows should include all control and
endogenous genes. For convenience you can use the Excel import functions
read.xls.RCC to read directly from nCounter output files.

anno Alternatively, anno can be used to specify the first three annotation columns of
the expression data. If anno used then it is assumed that x does not contain these
data. Anno allows flexible inclusion of alternative annotation data. The only
requirement is that it includes the Code.Class and Name columns. Code.Class
refers to gene classification i.e. Positive, Negative, Housekeeping or Endoge-
nous gene. For some Code Sets you will need to manually specify Housekeeping
genes.

header The sample meta data at the top of the RCC excel worksheet. The data typically
spans rows 4-18 and there should be the same number of columns as samples.
This is imported automaically when you use the read.xls.RCC. Values in the
header will be parsed for normalization diagnostics i.e. is expression associated
with a specific cartridge.

Probe.Correction.Factor

An adjustment factor to be applied at the probe level prior to any normalization.
Specify ’filter’ if you would like to remove any flagged genes. The default to
’adjust’ which uses the probe correction factors concatenated to the gene names.
See details.

CodeCount The method used to normalize for technical assay variation. The options are
none and sum and geo.mean (geometric mean). The method adjusts each sample
based on its relative value to all samples. The geometric mean may be less
susceptible to extreme values. The CodeCount normalization is applied first and
is considered the most fundamental Normalization step for technical variation.

Background The method used to estimate the background count level. Background is cal-
culated based on negative controls and the options are none, mean, mean.2sd,
max. Mean is the least is the least conservative, while max and mean.2sd are
the most robust to false positives. The calculated background is subtracted from
each sample. Background is calculated after code count adjustment.

SampleContent The method used to normalize for sample or RNA content i.e. pipetting fluc-
tuations. The options are none, housekeeping.sum, housekeeping.geo.mean, to-
tal.sum, low.cv.geo.mean, top.mean and top.geo.mean. The Housekeeping op-
tions require a set of annotated genes. For RNA datasets the genes can be

NanoStringNorm 5

specified by editing the Code.Class field to equal ’Housekeeping’ or ’Control’.
miRNA Code Sets generally already have annotated Housekeeping genes. Note
that the Housekeeping genes on miRNA Code Sets are messenger RNAs and
therefore undergo a different laboratory process, specifically no ligation. If us-
ing Housekeeping genes then ’housekeeping.geo.mean’ is recommended. Al-
ternatively, you can use the method total.sum which uses the sum of the all the
genes or top.geo.mean which uses the geometric mean of the top 75 expressed.
low.cv.geo.mean has recently been added to reduce the influence of outliers and
normalizing to trait associated genes. This method simply selects genes that ex-
pressed with low coefficients of variation. Sample Content adjustment is applied
after Code Count and Background correction.

OtherNorm Some additional normalization methods. Options include ’none’, ’quantile’ and
’zscore’. OtherNorm is applied after CodeCount, Background, SampleContent
normalizations. This is probably the largest source of inter sample variation in
most studies.

CodeCount.summary.target

The expected summary value for CodeCount positive control probes. By default
this is calculated as the mean of summary values across all samples. This target
value is then used to determine the normalization factor of each sample when
a CodeCount method is applied. User-assignment of the target value produces
sample-independent CodeCount normalization, allowing for new samples to be
added without changing the normalization factors of existing samples.

SampleContent.summary.target

The expected summary value for SampleContent housekeeping control probes.
By default this is calculated as the mean of summary values across all sam-
ples. This target value is then used to determine the normalization factor of
each sample when a SampleContent method is applied. User-assignment of the
target value produces sample-independent SampleContent normalization, allow-
ing for new samples to be added without changing the normalization factors of
existing samples. Note that by definition ’low.cv.geo.mean’, ’top.mean’, and
’top.geo.mean’ methods are not compatible with sample-independent normal-
ization.

round.values Should the values be rounded to the nearest absolute count or integer. This
simplifies interpretation if taking the log by removing values 0-1 which result in
negatives.

is.log Is the data already in logspace. This is recommended if applying NSN to PCR
type microarray data. In this scenario the geometric log is altered and negative
values are not flagged.

take.log Should a log2 transformation of the data be used. Taking the log may help distri-
butional assumptions and consistency with PCR based methods for calculating
fold change. Note, this is not a flag on if the log has already been taken.

return.matrix.of.endogenous.probes

If true a matrix of normalized Endogenous code counts is returned. Annotation
columns and control probes are removed. This can be useful if you the output is
being used directly for downstream analysis. By default it is FALSE and list of
objects including descriptive and diagnostics are returned.

6 NanoStringNorm

traits A vector or matrix of phenotypes, design or batch effect variables. For example
tumour status, trx regimen, age at FFPE fixation, RNA quality scores and sample
plate. Note, that nCounter design covariates such as ’cartridge’ and ’date’ can
be collected from the header of the RCC Excel spreadsheet. At this time each
trait should be binary and may only contain 1,2 or NA similar to the numeric
coding of factors. T-tests p-values and Fold-Change are presented in terms of
the ’2’ category. The results can be displayed using built in plotting functions.

predict.conc Should the predicted concentration values be returned. Defaults to FALSE.
The predicted concentrations are based on a fitted model between the observed
counts and the expected concentration (fM). Counts are replaced by predicted
concentrations from a model using each samples normalized data. In addition
a final column is added which predicts the concentration using the mean of all
samples.

verbose Output comments on run-status

genes.to.fit The set of genes used to generate the normalization parameters. You can specify
a vector of code classes or gene names as indicated in the annotation. Alterna-
tively, you can use descriptors such as ’all’, ’controls’, ’endogenous’. For most
methods the model will be fit and applied to the endogenous genes. In some
cases such as vsn you may want to vary this approach.

genes.to.predict

The set of genes that the parameters or model is applied to.
guess.cartridge

Should the cartridge be estimated based on the order of the samples.

... The ellipses are included to allow flexible use of parameters that are required by
OtherNorm methods. For example the use of strata or calib parameters docu-
mented in the vsn package.

Details

The code is based on the NanoString analysis guidelines (see references). The function allows
normalization of both mRNA and miRNA NanoString expression data. The order of the methods is
fixed but the use of the method none and multiple iterations of the functions allows flexibility.

Note. Poorly assayed samples could negatively influence the normalization of the remaining data.
Prior to normalization check that the binding density is not less than .04 and the number of total
counts/FOV is not much less than 1500.

In the newer RCC format (Spring 2012) the probe correction factors are concatenated to the gene
name via a pipe symbol. By default these are parsed and corrected for. In the older RCC format
the ’Name’ column of the RCC worksheet sometimes flags certain probes with the message ’(+++
See Message Below)’. If this is the case a ’Readme’ document including probe level adjustment
factors should have been supplied by your Microrray center. This file must be edited into a tabular
file and specified in the Probe.Correction.Factor argument. The function will fail with an error
if warnings are detected and no probe levels correction factor is supplied. Upon correction any
warning messages will be stripped from the raw data file. This background is probe-specific and
all background subtraction should be completed prior to normalization. The number of counts to
be subtracted for a given probe is determined by multiplying a correction factor by the number of
counts observed for the 128fM positive control in the same lane.

NanoStringNorm 7

Value

By default the function returns a list of objects including pre-processed counts, specified model,
sample and gene summaries. The sample summary holds the calculated normalization factors for
evaluation of problem samples. The gene summary includes means, coefficient of variation and
differential expression statistics for any traits.

Note

Future updates to include more informative diagnostic plots, trait specific normalization and repli-
cate merging.

Author(s)

Daryl M. Waggott

References

See NanoString website for PDFs on analysis guidelines: https://www.nanostring.com/support/
product-support/support-documentation

The NanoString assay is described in the paper: Fortina, P. & Surrey, S. Digital mRNA profiling.
Nature biotechnology 26, 293-294 (2008).

Examples

1 Normalize mRNA and output a matrix of normalized counts

load the NanoString.mRNA dataset
data(NanoString);

alternatively you can import the dataset
path.to.xls.file <- system.file("extdata", "RCC_files", "RCCCollector1_rat_tcdd.xls",
package = "NanoStringNorm");
NanoString.mRNA <- read.xls.RCC(x = path.to.xls.file, sheet = 1);

specifiy housekeeping genes in annotation
NanoString.mRNA[NanoString.mRNA$Name %in%
c('Eef1a1','Gapdh','Hprt1','Ppia','Sdha'),'Code.Class'] <- 'Housekeeping';

normalize
NanoString.mRNA.norm <- NanoStringNorm(
x = NanoString.mRNA,
anno = NA,
CodeCount = 'geo.mean',
Background = 'mean',
SampleContent = 'housekeeping.geo.mean',
round.values = TRUE,
take.log = TRUE,
return.matrix.of.endogenous.probes = TRUE
);

https://www.nanostring.com/support/product-support/support-documentation
https://www.nanostring.com/support/product-support/support-documentation

8 norm.comp

2 include a trait for differential expression and batch effect evaluation
A list of diagnostic objects is output.

Define a traits based on strain
sample.names <- names(NanoString.mRNA)[-c(1:3)];
strain1 <- rep(1, times = (ncol(NanoString.mRNA)-3));
strain1[grepl('HW',sample.names)] <- 2;
strain2 <- rep(1, times = (ncol(NanoString.mRNA)-3));
strain2[grepl('WW',sample.names)] <- 2;
strain3 <- rep(1, times = (ncol(NanoString.mRNA)-3));
strain3[grepl('LE',sample.names)] <- 2;
trait.strain <- data.frame(
row.names = sample.names,
strain1 = strain1,
strain2 = strain2,
strain3 = strain3
);

Split the input into separate annotation and count input

NanoString.mRNA.anno <- NanoString.mRNA[,c(1:3)];
NanoString.mRNA.data <- NanoString.mRNA[,-c(1:3)];

Normalize
NanoString.mRNA.norm <- NanoStringNorm(
x = NanoString.mRNA.data,
anno = NanoString.mRNA.anno,
CodeCount = 'sum',
Background = 'mean.2sd',
SampleContent = 'top.geo.mean',
round.values = TRUE,
take.log = TRUE,
traits = trait.strain,
return.matrix.of.endogenous.probes = FALSE
);

3 plot results

Plot all the plots as PDF report. See help on Plot.NanoStringNorm for examples
pdf('NanoStringNorm_Example_Plots_All.pdf');
Plot.NanoStringNorm(
x = NanoString.mRNA.norm,
label.best.guess = TRUE,
plot.type = 'all'
);
dev.off();

norm.comp norm.comp

norm.comp 9

Description

Compare normalizaton methods using signal to noise CV and replicates ICC.

Usage

norm.comp(
x,
anno,
replicates = NULL,
CodeCount.methods = c('none', 'sum', 'geo.mean'),
Background.methods = c('none','mean', 'mean.2sd','max'),
SampleContent.methods = c('none','housekeeping.sum', 'housekeeping.geo.mean',
'total.sum','top.mean', 'top.geo.mean', 'low.cv.geo.mean'),
OtherNorm.methods = c('none','quantile','zscore', 'rank.normal', 'vsn'),
histogram = FALSE,
verbose = TRUE,
icc.method = "mixed")

Arguments

x The data used for Normalization. This is typically the raw expression data as
exported from an Excel spreadsheet. If anno is NA then the first three columns
must be c(’Code.Class’, ’Name’, ’Accession’) and the remaining columns refer
to the samples being analyzed. The rows should include all control and endoge-
nous genes.

anno Alternatively, anno can be used to specify the first three annotation columns of
the expression data. If anno used then it assumed that ’x’ does not contain these
data. Anno allows flexible inclusion of alternative annotation data. The only re-
quirement is that it includes the ’Code.Class’ and ’Name’ columns. Code.Class
refers to gene classification i.e. Positive, Negative, Housekeeping or Endoge-
nous gene.

replicates A vector of IDs indicating what samples are replicates. Replicate samples need
to have the same ID.

CodeCount.methods

vector of methods to compare
Background.methods

vector of methods to compare
SampleContent.methods

vector of methods to compare
OtherNorm.methods

vector of methods to compare

histogram logical if histogram is to be output

verbose logical if logging should be output

icc.method if replicates are included then the intra-class correlation can be calculated via
mixed models or anova. Anova is fast but not appropriate in unbalanced situa-
tions.

10 norm.comp

Details

A data.frame is returned with a single row for each combination of methods. For each method the
coefficient of variation is reported for positive controls, housekeeping and endogenous genes. If
replicates are included then intra-class correlation (ICC) values are reported. One would expect that
minimizing variation in controls and replicates is a reasonable estimate of normalization perfor-
mance. Ideally, this should be performed on a pilot study. Future extensions will include comparing
methods via cross validation on trait differences in order to maximize information content.

Author(s)

Daryl M. Waggott

Examples

Not run:

load the NanoString.mRNA dataset
data(NanoString);

specifiy housekeeping genes in annotation
NanoString.mRNA[NanoString.mRNA$Name %in% c('Eef1a1','Gapdh','Hprt1','Ppia','Sdha'),
'Code.Class'] <- 'Housekeeping';

NanoString.mRNA <- NanoString.mRNA[1:50,];

strain x experimental condition i.e. replicate.
this is only a small subset of the original data used for the plot
biological.replicates <- c("HW_1.5_0","HW_1.5_0","HW_1.5_0","HW_1.5_100","HW_1.5_100",
"HW_1.5_100","HW_6_100","HW_6_100","HW_3_100","HW_3_100","HW_3_100","HW_3_100","LE_19_0",
"LE_19_0","LE_19_0","LE_96_0","LE_96_0","LE_96_0","HW_10_100","HW_10_100","HW_10_100",
"HW_10_100","HW_6_100","HW_6_100","HW_96_0");

if (requireNamespace("lme4")) {

norm.comp.results <- norm.comp(
x = NanoString.mRNA,
replicates = biological.replicates,
CodeCount.methods = 'none',
Background.methods = 'none',
SampleContent.methods = c('none','housekeeping.sum', 'housekeeping.geo.mean',
'top.mean', 'top.geo.mean'),
OtherNorm.methods = 'none',
verbose = FALSE
);

}

End(Not run)

nsn 11

nsn Methods for preprocessing NanoString nCounter data.

Description

This function can be used to normalize mRNA and miRNA expression data from the NanoString
platform. This is just a convenience wrapper of the NanoStrinNorm function

Usage

nsn(
x,
...
);

Arguments

x The data used for Normalization. This is typically the raw expression data as
exported from an Excel spreadsheet. If anno is NA then the first three columns
must be c(’Code.Class’, ’Name’, ’Accession’) and the remaining columns re-
fer to the samples being analyzed. The rows should include all control and
endogenous genes. For convenience you can use the Excel import functions
read.xls.RCC to read directly from nCounter output files.

... Other NanoStringNorm arguments

Author(s)

Daryl M. Waggott

other.normalization other.normalization

Description

This function can be used to normalize mRNA and miRNA expression data from the NanoString
platform.

Usage

other.normalization(
x,
anno,
OtherNorm = 'none',
verbose = TRUE,
genes.to.fit,
genes.to.predict,
...);

12 other.normalization

Arguments

x The data used for Normalization. This is typically the raw expression data as
exported from an Excel spreadsheet. If anno is NA then the first three columns
must be c(’Code.Class’, ’Name’, ’Accession’) and the remaining columns refer
to the samples being analyzed. The rows should include all control and endoge-
nous genes.

anno Alternatively, anno can be used to specify the first three annotation columns of
the expression data. If anno used then it assumed that ’x’ does not contain these
data. Anno allows flexible inclusion of alternative annotation data. The only re-
quirement is that it includes the ’Code.Class’ and ’Name’ columns. Code.Class
refers to gene classification i.e. Positive, Negative, Housekeeping or Endoge-
nous gene.

OtherNorm Some additional normalization methods. Options currently include ’none’, ’zs-
core’, ’rank.normal’ and ’vsn’. OtherNorm is applied after CodeCount, Back-
ground, SampleContent normalizations, therefore you may want to set them to
’none’.

verbose Enable run-time status messages
genes.to.fit The set of genes used to generate the normalization parameters. You can specify

a vector of code classes or gene names as indicated in the annotation. Alterna-
tively, you can use descriptors such as ’all’, ’controls’, ’endogenous’. For most
methods the model will be fit and applied to the endogenous genes. vsn defaults
to ’all’ genes.

genes.to.predict

The set of genes that the parameters or model is applied to.
... The ellipses are included to allow flexible use of parameters that are required by

sub normalization methods. For example the use of ’strata’ or ’calib’ parameters
documented in the vsn package.

Details

The methods used for OtherNorm are designed to be extensible to alternate and evolving NanoString
pre-processing analysis. These can be combined with standard CodeCount, Background, Sample-
Content methods (i.e. positive, negative and housekeeping controls).

zscore is simply scaling each sample to have a mean 0 and standard deviation of 1. Similarly,
rank.normal uses the quantiles or ranks to transform to the normal distribution with mean 0 and
standard deviation of 1. Both methods are helpful when comparing multiple datasets or platforms
during meta or joint analysis due to the abstraction of effects sizes or expression scale.

quantile normalization is based on pegging each sample to an empirically derived distribution. The
distribution is simply the mean expression across all samples for each gene rank.

vsn normalization is well documented and additional parameterization can be read about via it’s
package documentation. One interesting feature is that the affine transformation can be turned off
leaving just the generalized log2 (glog2) transformation calib = ’none’. One can thereby use the
existing NanoString methods to shift and scale the count data and then apply glog2 transformation
to help stabilize the variance.

other.normalization 13

Note

Future updates to include more informative diagnostic plots, trait specific normalization and repli-
cate merging.

Author(s)

Daryl M. Waggott

References

See NanoString website for PDFs on analysis guidelines: https://www.nanostring.com/support/
product-support/support-documentation

The NanoString assay is described in the paper: Fortina, P. & Surrey, S. Digital mRNA profiling.
Nature biotechnology 26, 293-294 (2008).

Examples

load the NanoString.mRNA dataset
data(NanoString);

specify housekeeping genes in annotation
NanoString.mRNA[NanoString.mRNA$Name %in%
c('Eef1a1','Gapdh','Hprt1','Ppia','Sdha'),'Code.Class'] <- 'Housekeeping';

z-value transformation. scale each sample to have a mean 0 and sd
by default all the other normalization methods are 'none'
you cannot apply a log because there are negative values
good for meta-analysis and cross platform comparison abstraction of effect size
NanoString.mRNA.norm <- NanoStringNorm(
x = NanoString.mRNA,
OtherNorm = 'zscore',
return.matrix.of.endogenous.probes = TRUE
);

inverse normal transformation. use quantiles to transform each sample to
the normal distribution
NanoString.mRNA.norm <- NanoStringNorm(
x = NanoString.mRNA,
OtherNorm = 'rank.normal',
return.matrix.of.endogenous.probes = TRUE
);

quantile normalization. create an empirical distribution based on the
median gene counts at the same rank across sample. then transform each
sample to the empirical distribution.
NanoString.mRNA.norm <- NanoStringNorm(
x = NanoString.mRNA,
OtherNorm = 'quantile',
return.matrix.of.endogenous.probes = FALSE

https://www.nanostring.com/support/product-support/support-documentation
https://www.nanostring.com/support/product-support/support-documentation

14 Plot.NanoStringNorm

);

if(require(vsn)) { # only run if vsn installed
vsn. apply a variance stabilizing normalization.
fit and predict the model using 'all' genes
i.e. 'controls' and 'endogenous', this is the default
note this is just a wrapper for the vsn package.
you could even add strata for the controls vs the
endogenous to review systematic differences

NanoString.mRNA.norm <- NanoStringNorm(
x = NanoString.mRNA,
OtherNorm = 'vsn',
return.matrix.of.endogenous.probes = FALSE,
genes.to.fit = 'all',
genes.to.predict = 'all'
);

vsn. this time generate the parameters (fit the model) on the 'controls' and apply
(predict) on the endogenous
alternatively you may want to use the endogenous probes for both fitting and predicting.
NanoString.mRNA.norm <- NanoStringNorm(
x = NanoString.mRNA,
OtherNorm = 'vsn',
return.matrix.of.endogenous.probes = FALSE,
genes.to.fit = 'controls',
genes.to.predict = 'endogenous'
);

vsn. apply standard NanoString normalization strategies as an alternative to the vsn
affine transformation.
this effectively applies the glog2 variance stabilizing transformation to the
adjusted counts
NanoString.mRNA.norm <- NanoStringNorm(
x = NanoString.mRNA,
CodeCount = 'sum',
Background = 'mean',
SampleContent = 'top.geo.mean',
OtherNorm = 'vsn',
return.matrix.of.endogenous.probes = FALSE,
genes.to.fit = 'endogenous',
genes.to.predict = 'endogenous',
calib = 'none'
);
} # end vsn

Plot.NanoStringNorm Plot.NanoStringNorm

Plot.NanoStringNorm 15

Description

Do some diagnostic and descriptive plots

Usage

Plot.NanoStringNorm(
x,
plot.type = 'RNA.estimates',
samples = NA,
genes = NA,
label.best.guess = TRUE,
label.ids = list(),
label.as.legend = TRUE,
label.n = 10,
title = TRUE,
col = NA
);

Arguments

x An object of class NanoStringNorm i.e. the list not matrix output of NanoS-
tringNorm

plot.type A vector of the different plots that you are interested in. Currently the fol-
lowing are implemented: normalization factors ’norm.factors’, coefficient of
variance ’cv’ and mean vs sd ’mean.sd’, ’volcano’, ’missing’, ’RNA.estimates’,
’batch.effects’ and ’positive.controls’. To plot all available plots you can use
’all’.

samples List of samples to use. Not yet implemented.

genes List of genes to use. Not yet implemented.
label.best.guess

Labels will automatically be added for samples and genes that are either outliers
(~3sd from mean) or the most significant. The default is TRUE.

label.ids Explicitly label points. To use this feature supply a list with with two elements
named genes and samples. By default this is set to NA. Note that you can add
manual and auto labels at the same time.

title Should the plot titles be included. By default they are included but this can be
turned off if generating plots for publication or presentation.

label.as.legend

Should the points be labelled using a legend or directly. The legend tends to be
more clear when there are number of overlapping positions. Only volcano plots
implemented currently.

label.n How many points to be chosen for labelling. Only volcano plots implemented
currently.

col Alternate colours for plotting. Input should be a vector of two rgb values. The
default colours are orange and green.

16 Plot.NanoStringNorm

Value

The output is single or series of plots. Plots focus on either genes or samples. Due to variation in
sample quality it is a good idea to review data in order to determine outliers. Outliers could effect
normalization of other samples and bias results of downstream statistical analysis. Systematic batch
effects in terms of cartridge, sample type or covariates should also be evaluated to minimize con-
founding results.

The mean vs standard deviation plot for each gene is a good indication of the noisiness of con-
trols genes. Also, candidate housekeeping genes can be identified by having a high mean and very
low variance.

The coefficient of variation density plot shows the change in signal to noise pre and post normaliza-
tion.

The volcano plots show the relationship between p-value and fold-change for traits supplied in
the normalization step. These can be phenotype’s of interest or study design based for evaluating
batch effects. Orange dots have a fold-change greater than 2 and are sized proportional to the mean
expression.

The proportion missing plot highlights samples that have elevated levels of missing. Elevated miss-
ing could be indicative of a low RNA, inhibition or tissue type.

The rna content plot compares estimates of the total amount of RNA. Any inconsistency between
housekeeping and global RNA content estimates should be evaluated for assay issues. In the case of
miRNA’s this could be due to the housekeeping genes undergoing different processing (no ligation).

The batch effect plot looks for differences in sample summary statistics among groups, as defined
by traits supplied during normalization. Green dots are sized proportionally to their p-value and
are less that 0.05. A cartridge variable is automatically added to the checked traits. If no header
is supplied then the cartridge is assumed to be determined by column position in the input dataset.
That is, sample 1-12 from cartridge 1, 2-24 from cartridge 2 etc. Note that the mean, sd and missing
are post normalization and therefore may show an opposite trend than expected due to overcompen-
sating normalization factors. To check the raw data normalize using ’none’ for each option. Ideally,
technical or study design traits should have orange dots and be near the line. It can be expected
that biological traits such as tumour status have different mean, sd and missing but they should not
be correlated with assay related controls or normalization factors (positive, negative, housekeeping
controls). It’s a good idea to double check any significant associations.

The normalization factors plot looks at the calculated normalization parameters for each sample.
By default samples are labeled if one of the normalization factors is greater or less than 100% from
the mean. The raw data should be investigated for these samples as they could be contributing
unnecessary noise to the downstream analysis. Remember that the normalization factors are ratios
of all samples vs a specifcic sample therefore high normalization factors reflect low code counts.
If a sample had a high positive control normalization factor this would show up as low intercept
on the positive control plots. The trend will also be opposite for the batch effects plots which use
the summary of the counts not the ratio based normalization factor. Normalization factors outside
100% difference from the mean could reflect noise inducing over or under correction.

Plot.NanoStringNorm 17

The positive control plots compare the expected concentration with observed counts. Orange dots
are the negative controls. The intercept reflects the sensitivity of the assay for that sample.

Author(s)

Daryl M. Waggott

Examples

Not run:

load data
data(NanoString);

specifiy housekeeping genes in annotation
NanoString.mRNA[NanoString.mRNA$Name %in%
c('Eef1a1','Gapdh','Hprt1','Ppia','Sdha'),'Code.Class'] <- 'Housekeeping';

setup the traits
sample.names <- names(NanoString.mRNA)[-c(1:3)];
strain1 <- rep(1, times = (ncol(NanoString.mRNA)-3));
strain1[grepl('HW',sample.names)] <- 2;
strain2 <- rep(1, times = (ncol(NanoString.mRNA)-3));
strain2[grepl('WW',sample.names)] <- 2;
strain3 <- rep(1, times = (ncol(NanoString.mRNA)-3));
strain3[grepl('LE',sample.names)] <- 2;
trait.strain <- data.frame(
row.names = sample.names,
strain1 = strain1,
strain2 = strain2,
strain3 = strain3
);

normalize
NanoString.mRNA.norm <- NanoStringNorm(
x = NanoString.mRNA,
anno = NA,
CodeCount = 'geo.mean',
Background = 'mean.2sd',
SampleContent = 'housekeeping.geo.mean',
round.values = TRUE,
take.log = TRUE,
traits = trait.strain,
return.matrix.of.endogenous.probes = FALSE
);

plot all the plots as PDF report
pdf('NanoStringNorm_Example_Plots_All.pdf')
Plot.NanoStringNorm(
x = NanoString.mRNA.norm,
label.best.guess = TRUE,
plot.type = 'all'
);

18 Plot.NanoStringNorm.gvis

dev.off()

publication quality tiff volcano plot
tiff('NanoStringNorm_Example_Plots_Volcano.tiff', units = 'in', height = 6,
width = 6, compression = 'lzw', res = 1200, pointsize = 10);
Plot.NanoStringNorm(
x = NanoString.mRNA.norm,
label.best.guess = TRUE,
plot.type = c('volcano'),
title = FALSE
);
dev.off()

all plots as seperate files output for a presentation
png('NanoStringNorm_Example_Plots_%03d.png', units = 'in', height = 6,
width = 6, res = 250, pointsize = 10);
Plot.NanoStringNorm(
x = NanoString.mRNA.norm,
label.best.guess = TRUE,
plot.type = c('cv','mean.sd','RNA.estimates','volcano','missing','norm.factors',
'positive.controls','batch.effects')
);
dev.off()

user specified labelling with optimal resolution for most digital displays
png('NanoStringNorm_Example_Plots_Normalization_Factors.png', units = 'in', height = 6,
width = 6, res = 250, pointsize = 10);
Plot.NanoStringNorm(
x = NanoString.mRNA.norm,
label.best.guess = FALSE,
label.ids = list(genes = rownames(NanoString.mRNA.norm$gene.summary.stats.norm),
samples = rownames(NanoString.mRNA.norm$sample.summary.stats)),
plot.type = c('norm.factors')
);
dev.off()

End(Not run)

Plot.NanoStringNorm.gvis

Plot.NanoStringNorm.gvis

Description

Plot interactive normalization diagnostic’s and differential expression results using Google charts

Usage

Plot.NanoStringNorm.gvis(

Plot.NanoStringNorm.gvis 19

x,
plot.type = c('gene.norm', 'sample'),
save.plot = FALSE,
path.to.mongoose = 'web',
output.directory = 'NanoStringNorm_gvis_plots'
);

Arguments

x An object of class NanoStringNorm i.e. the list output of NanoStringNorm

plot.type A vector of the different plots that you would like. Currently the following are
implemented: gene.norm, gene.raw and sample. These correspond to the list
items in the NanoStringNorm output.

save.plot By default the plot is displayed on your browser using a built in web server. This
is good for quick evaluation if you have access to the underlying data. However
for distribution and presentations it is easier to save the plots bundled with an
embedded web server. You need to set save.plot to TRUE in order to get the
bundled output.

path.to.mongoose

The path to a previously downloaded version of the mongoose embedded web
server. http://code.google.com/p/mongoose/ If the path to mongoose is not
specified then it will be attempted to be downloaded from the internet i.e. default
path.to.mongoose = ’web’. If you do not want to attempt to download from the
internet then specify ’none’.

output.directory

The name of the directory you want the output saved in.

Value

The output is a series of html files that contain interactive 4 dimensional plots. The motivation for
these plots is to enable end users to explore their own data quickly and effectively without depend-
ing on informaticians.

For samples, a Google chart is rendered using sample summary statistics, traits and normaliza-
tion factors as output from the NanoStringNorm function. You can change the variables associated
with each axis, colour coding and point sizing. There are a number of ways to query the data in
order to emphasise specific samples. You can however mouse over the point to get label information
or select specific rows from the table.

Similarly, for gene level data you can explore the results summary statistics and trait associations.
For example, change the x-axis to Fold-Change.trait.X and the y-axis to P-value.trait.x, the size
of the dot to mean expression and the colour to Code.Class. This gives a nice interactive volcano
plot. Alternatively, you can plot the results of P-value.trait.x vs P-value-trait.y in order to look for
common genes effecting different traits. Note that P-values are displayed as -log10 P-value.

To display plots saved as a bundle, first navigate to the directory and execute the mongoose binary.

http://code.google.com/p/mongoose/

20 Plot.NanoStringNorm.gvis

Then start your browser and specify the following url ‘http://127.0.0.1:8080’ There should be
a set of links to the plots. The windows executable binary is automatically downloaded if no loca-
tion is provided. For other systems the source code is downloaded. To install untar the binary, run
make and then copy the resulting binary to the directory containing the output html files.

cd output.directory;
tar -zxvf mongoose.tgz;
cd mongoose;
make linux;
cp mongoose ..;
./mongoose;

For further documentation regarding these plots see the R package googleVis and Google’s vi-
sualization API.

http://code.google.com/p/google-motion-charts-with-r
http://code.google.com/apis/visualization/interactive_charts.html

Author(s)

Daryl M. Waggott

Examples

load data
data(NanoString);

specify housekeeping genes in annotation
NanoString.mRNA[NanoString.mRNA$Name %in%

c('Eef1a1','Gapdh','Hprt1','Ppia','Sdha'),'Code.Class'] <- 'Housekeeping';

setup the traits
sample.names <- names(NanoString.mRNA)[-c(1:3)];
strain1 <- rep(1, times = (ncol(NanoString.mRNA)-3));
strain1[grepl('HW',sample.names)] <- 2;
strain2 <- rep(1, times = (ncol(NanoString.mRNA)-3));
strain2[grepl('WW',sample.names)] <- 2;
strain3 <- rep(1, times = (ncol(NanoString.mRNA)-3));
strain3[grepl('LE',sample.names)] <- 2;
trait.strain <- data.frame(

row.names = sample.names,
strain1 = strain1,
strain2 = strain2,
strain3 = strain3
);

normalize
NanoString.mRNA.norm <- NanoStringNorm(

x = NanoString.mRNA,
anno = NA,

http://code.google.com/p/google-motion-charts-with-r
http://code.google.com/apis/visualization/interactive_charts.html

read.markup.RCC 21

CodeCount = 'geo.mean',
Background = 'mean.2sd',
SampleContent = 'housekeeping.geo.mean',
round.values = TRUE,
take.log = TRUE,
traits = trait.strain,
return.matrix.of.endogenous.probes = FALSE
);

plot the sample summaries to your browser
if (requireNamespace("googleVis")) {
Plot.NanoStringNorm.gvis(

x = NanoString.mRNA.norm,
plot.type = c('gene.norm', 'sample'),
save.plot = FALSE
);

plot the gene summaries to a directory for distribution and later viewing
Plot.NanoStringNorm.gvis(

x = NanoString.mRNA.norm,
plot.type = c('gene.norm', 'sample'),
save.plot = TRUE,
path.to.mongoose = 'none',
output.directory = "NanoStringNorm_Interactive_Plot"
);

}

read.markup.RCC read.markup.RCC

Description

A function to read and merge a set of sample specific RCC markup files.

Usage

read.markup.RCC(
rcc.path = ".",
rcc.pattern = "*.RCC|*.rcc",
exclude = NULL,
include = NULL,
nprobes = -1)

Arguments

rcc.path The directory of the rcc files. Defaults to current working directory.

rcc.pattern The file pattern used to search for the RCC files. Defaults to the RCC extension

exclude A list of files to ignore

22 read.xls.RCC

include A list of files to include

nprobes (Optional) This defaults to the read.table default for nrows (-1). In some cases,
a message follows the comment ("<") line and causes an error. In this case, the
user can now define the number of rows (number of probes including controls
and experimental) that should be read in.

Value

Returns a list with two components. The first is the header information which contains sample IDs
and diagnostic information on the quality of the samples. The second is the count data and can be
directly used in the input to NanoStringNorm.

Author(s)

Daryl M. Waggott

Examples

read in all the rcc files in the current directory
data.raw <- read.markup.RCC();
data.norm <- NanoStringNorm(data.raw);

read.xls.RCC read.xls.RCC

Description

A function to read the raw counts from the RCC excel spreadsheet output by the nCounter platform.

Usage

read.xls.RCC(xls, sheet = 1, perl, sample.id.row = 'File.Name')

Arguments

xls The excel spreadsheet output by nCounter. This should be a string with the path
pointing to the desired file.

sheet The worksheet that contains the raw counts. Make sure to check that you are
using the worksheet with the "raw" counts and not something that has been
processed. The name of the correct worksheet usually has "RCC" in it but not
"norm". The input is an integer and it defaults to 1 or the first worksheet.

perl The path to a perl binary. This does not need to be specified if perl is in your
PATH

sample.id.row The row in the RCC file that contains the sample IDs to be used as column names
for the count data. Defaults to "File.Name" but in some cases "Sample.ID" or
"Lane.ID" would be more appropriate.

read.xls.RCC 23

Value

Returns a list with two components. The first is the header information which contains sample IDs
and diagnostic information on the quality of the samples. The second is the count data and can be
directly used in the input to NanoStringNorm.

Author(s)

Daryl M. Waggott

Examples

directly import the nCounter output
path.to.xls.file <- system.file("extdata", "RCC_files", "RCCCollector1_rat_tcdd.xls",
package = "NanoStringNorm");
NanoString.mRNA <- read.xls.RCC(x = path.to.xls.file, sheet = 1);

Index

∗Topic NanoString
NanoStringNorm, 3
norm.comp, 8
nsn, 11
other.normalization, 11
Plot.NanoStringNorm, 14
Plot.NanoStringNorm.gvis, 18
read.markup.RCC, 21
read.xls.RCC, 22

∗Topic Normalization
NanoStringNorm, 3
norm.comp, 8
nsn, 11
other.normalization, 11
Plot.NanoStringNorm, 14
Plot.NanoStringNorm.gvis, 18
read.markup.RCC, 21
read.xls.RCC, 22

∗Topic datasets
NanoString, 2
NanoString.mRNA, 3

∗Topic mRNA
NanoStringNorm, 3
norm.comp, 8
nsn, 11
other.normalization, 11
Plot.NanoStringNorm, 14
Plot.NanoStringNorm.gvis, 18
read.markup.RCC, 21
read.xls.RCC, 22

∗Topic miRNA
NanoStringNorm, 3
norm.comp, 8
nsn, 11
other.normalization, 11
Plot.NanoStringNorm, 14
Plot.NanoStringNorm.gvis, 18
read.markup.RCC, 21
read.xls.RCC, 22

∗Topic package
NanoStringNorm-package, 2

NanoString, 2
NanoString.mRNA, 3
NanoStringNorm, 3
NanoStringNorm-package, 2
norm.comp, 8
nsn, 11

other.normalization, 11

Plot.NanoStringNorm, 14
Plot.NanoStringNorm.gvis, 18

read.markup.RCC, 21
read.xls.RCC, 22

24

	NanoStringNorm-package
	NanoString
	NanoString.mRNA
	NanoStringNorm
	norm.comp
	nsn
	other.normalization
	Plot.NanoStringNorm
	Plot.NanoStringNorm.gvis
	read.markup.RCC
	read.xls.RCC
	Index

