library(NNS)
library(data.table)
require(knitr)
require(rgl)
require(meboot)
require(tdigest)
require(dtw)
The limitations of linear correlation are well known. Often one uses correlation, when dependence is the intended measure for defining the relationship between variables. NNS dependence NNS.dep
is a signal:noise measure robust to nonlinear signals.
Below are some examples comparing NNS correlation NNS.cor
and NNS.dep
with the standard Pearson’s correlation coefficient cor
.
Note the fact that all observations occupy the co-partial moment quadrants.
## [1] 1
## $Correlation
## [1] 1
##
## $Dependence
## [1] 1
Note the fact that all observations occupy the co-partial moment quadrants.
## [1] 0.6610183
## $Correlation
## [1] 0.9177746
##
## $Dependence
## [1] 0.9177746
Note the fact that all observations occupy only co- or divergent partial moment quadrants for a given subquadrant.
set.seed(123)
df <- data.frame(x = runif(10000, -1, 1), y = runif(10000, -1, 1))
df <- subset(df, (x ^ 2 + y ^ 2 <= 1 & x ^ 2 + y ^ 2 >= 0.95))
NNS.dep(df$x, df$y, print.map = TRUE)
## $Correlation
## [1] -0.004725857
##
## $Dependence
## [1] 0.8439756
These partial moment insights permit us to extend the analysis to multivariate instances. This level of analysis is simply impossible with Pearson or other rank based correlation methods, which are restricted to pairwise cases.
set.seed(123)
x <- rnorm(1000); y <- rnorm(1000); z <- rnorm(1000)
NNS.dep.hd(cbind(x, y, z), plot = TRUE, independence.overlay = TRUE)
## $actual.observations
## [1] 265
##
## $independent.null
## [1] 250
##
## $Dependence
## [1] 0.02
NNS.dep()
p-values and confidence intervals can be obtained from sampling random permutations of \(y \rightarrow y_p\) and running NNS.dep(x,\(y_p\)) to compare against a null hypothesis of 0 correlation, or independence between \((x, y)\).
## p-values for [NNS.dep]
x <- seq(-5, 5, .1); y <- x^2 + rnorm(length(x))
nns_cor_dep <- NNS.dep(x,abs (y), print.map = TRUE)
## $Correlation
## [1] -0.09848672
##
## $Dependence
## [1] 0.5441355
## Create permutations of y
y_p <- replicate(100, sample.int(length(y)))
## Generate new correlation and dependence measures on each new permutation of y
nns.mc <- apply(y_p, 2, function(g) NNS.dep(x, y[g]))
## Store results
cors <- unlist(lapply(nns.mc, "[[", 1))
deps <- unlist(lapply(nns.mc, "[[", 2))
## View results
hist(cors)
abline(v = LPM.VaR(.025,0, cors), col = 'red')
abline(v = UPM.VaR(.025,0, cors), col = 'red')
## [1] 0.23
## Right tailed correlation p-value
cor_p_value <- UPM(0, nns_cor_dep$Correlation, cors)
cor_p_value
## [1] 0.77
## Confidence Intervals
## For 95th percentile VaR (both-tails) see [LPM.VaR] and [UPM.VaR]
## Lower CI
LPM.VaR(.025, 0, cors)
## [1] -0.2526143
## [1] 0.2614773
hist(deps)
abline(v = LPM.VaR(.025,0, deps), col = 'red')
abline(v = UPM.VaR(.025,0, deps), col = 'red')
## [1] 0.88
## [1] 0.12
## Confidence Intervals
## For 95th percentile VaR (both-tails) see [LPM.VaR] and [UPM.VaR]
## Lower CI
LPM.VaR(.025, 0, deps)
## [1] 0.3259996
## [1] 0.6094201
If the user is so motivated, detailed arguments and proofs are provided within the following: