Fitting the Nelson—Siegel-Svensson model
with Differential Evolution

Enrico Schumann
es@enricoschumann.net

1 Introduction

In this tutorial we look into fitting the Nelson—Siegel-Svensson (NSS) model to data; for more
details, please see [Gilli et al., 2011]. Further information can be found in Gilli et al. [2010] and
Gilli and Schumann [2010].

We start by attaching the package. Since we will use a stochastic technique for optimisation,
we should be running several restarts (see Gilli et al., 2011, Chapter 12, for a discussion). The
variable nRuns sets the number of restarts for the examples to come. We set it to only two here to
keep the build-time of the package acceptable; increase it to check the stochastics of the solutions.
We set a seed to make the computations reproducible.

> require("NMOF")
> nRuns <- 2L
> set.seed(112233)

2 Fitting the NS model to given zero rates

The NS model

We create a ‘true’ yield curve yM with given parameters betaTRUE. The times-to-payment, mea-
sured in years, are collected in the vector tm.

tm <- c(c(1, 3, 6, 9)/12, 1:10)
betaTRUE <- c(6, 3, 8, 1)
yM <- NS(betaTRUE, tm)
par(ps = 11, bty = "n", las = 1, tck = 0.01,
mgp = c(3, 0.2, 0), mar c4, 4, 1, 1))
plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

vV V V V
]

\4

10.0 0?©
95r o
9.0 °

8.5 °

yields in %

8.0

7.5 °

7.0 S

maturities in years

The aim is to fit a smooth curve through these points. Since we have used the model to create
the points, we should be able to obtain a perfect fit. We start with the objective function OF. It

takes two arguments: param, which is a candidate solution (a numeric vector), and the list data,
which holds all other variables. It returns the maximum absolute difference between a vector of
observed (‘market’) yields yM, and the model’s yields for parameters param.

> OF <- function(param, data) {
y <- data$model (param, data$tm)
maxdiff <- y - data$yM
maxdiff <- max(abs(maxdiff))
if (is.na(maxdiff))
maxdiff <- 1el0
maxdiff

by

We have a added a crude but effective safeguard against ‘strange’ parameter values that lead
to NA values: the objective function returns a large positive value. We minimise, and hence param-
eters that produce NA values are marked as bad.

In this first example, we set up data as follows:

> data <- list(yM = yM,

tm = tm,
model = NS,
ww = 0.1,

min = c¢(0,-15,-30, 0),
max = c(15, 30, 30,10))

We add a model (a function; in this case NS) that describes the mapping from parameters to a
yield curve, and vectors min and max that we will later use as constraints. ww is a penalty weight,
explained below.

OF will take a candidate solution param, transform this solution via data$model into yields,
and compare these yields with yM, which here means to compute the maximum absolute difference.

> paraml <- betaTRUE ## the solutionm...
> OF (paraml, data) ## ...gives O
[11 0

> param2 <- c(5.7, 3, 8, 2) ## anything else
> OF (param2, data) ## ... gives a postive number

[1] 0.97686

We can also compare the solutions in terms of yield curves.

\4

par(ps = 11, bty = "n", las = 1, tck = 0.01,
mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))
plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")
lines(tm, NS(paraml, tm), col = "blue")
lines(tm, NS(param2, tm), col = "red")
legend(x = "topright",

vV V V V

legend = c("true yields", "paraml", "param2"),
col = c("black", "blue", "red"),
pch = c(1, NA, NA), 1ty = c(0, 1, 1))

10.0 i
o true yields

paraml
—— param2

9.5

9.0

8.5

yields in %

8.0
7.5

7.0

maturities in years

We generally want to obtain parameters such that certain constraints are met. We include these
through a penalty function.

> penalty <- function(mP, data) {
minV <- data$min
maxV <- data$max
ww <- data$ww
if larger than maxV, element in A is positiv
A <- mP - as.vector(maxV)
A <- A + abs(h)
if smaller than minV, element in B is positiv
B <- as.vector(minV) - mP
B <- B + abs(B)
beta 1 + beta2 > 0
C <= wwx((mP[1L,] + mP[2L, 1) - abs(wP[iL,] + mP[2L, 1))
A <- ww * colSums(A + B) - C
A

}

We already have data, so let us see what the function does to solutions that violate a constraint.
Suppose we have a population mP of three solutions (the m in mP is to remind us that we deal with
a matrix).

> paraml <- c(6, 3, 8, -1)
> param2 <- c(6, 3, 8, 1)
> param3 <- c(-1, 3, 8, 1)
> mP <- cbind(paraml,param?2,param3)
> rownames (mP) <- c("b1","b2","b3","lambda")
> mP
paraml param2 param3
bl 6 6 -1
b2 3 3 3
b3 8 8 8
lambda -1 1 1

The first and the third solution violate the constraints. In the first solution, A is negative; in the
third solution, B is negative.

> penalty(mP,data)

paraml param2 param3
0.2 0.0 0.2

The parameter ww controls how heavily we penalise.

> data$ww <- 0.5
> penalty(mP,data)

paraml param2 param3
1 0 1

For valid solutions, the penalty should be zero.

paraml <- c(6, 3, 8, 1)

param2 <- c(6, 3, 8, 1)

param3 <- c(2, 3, 8, 1)

mP <- cbind(paraml, param2, param3)
rownames (mP) <- c("bi1","b2","b3","lambda")
penalty(mP, data)

V V V V Vv V

paraml param2 param3
0 0 0

Note that penalty works on the complete population at once; there is no need to loop over the
solutions.

So we can run a test. We start by defining the parameters of DE. Note in particular that we
pass the penalty function, and that we set LoopPen to FALSE.

> algo <- list(nP = 100L, ## population size

nG = 500L, ## number of generations
F = 0.50, ## step size
CR = 0.99, ## prob. of crossover

min = ¢(0,-15,-30, 0),
max = c(15, 30, 30,10),

pen = penalty,
repair = NULL,
loopOF = TRUE, ## loop over popuation? yes
loopPen = FALSE, ## loop over popuation? no
loopRepair = TRUE, ## loop over popuation? yes
printBar = FALSE)

DEopt is then called with the objective function OF, the list data, and the list algo.

> sol <- DEopt(OF = OF, algo = algo, data = data)

Differential Evolution.
Best solution has objective function value O ;
standard deviation of OF in final population is 3.0455e-16

To check whether the objective function works properly, we compare the maximum error with
the returned objective function value — they should be the same.

> max(abs(data$model (sol$xbest, tm) - data$model (betaTRUE, tm)))

[1] o

> sol$0Fvalue
[11 0

As a benchmark, we run the function nlminb from the stats package. This is not a fair test:
nlminb is not appropriate for such problems. (But then, if we found that it performed better than
DE, we would have a strong indication that something is wrong with our implementation of DE.)
We use a random starting value sO.

> s0 <- algo$min + (algo$max - algo$min) * runif (length(algo$min))
> 5012 <- nlminb(s0, OF, data = data,
lower = data$min,
upper = data$max,
control = list(eval.max

50000L,
50000L))

iter.max
Again, we compare the returned objective function value and the maximum error.

> max(abs(data$model (sol2$par, tm) - data$model (betaTRUE,tm)))
[1] 1.5787e-07

> sol2$objective
[1] 1.5787e-07

To compare our two solutions (DE and n1lminb), we can plot them together with the true yields
curve. But it is important to stress that the results of both algorithms are stochastic: in the case
of DE because it deliberately uses randomness; in the case of nlminb because we set the starting
value randomly. To get more meaningful results we should run both algorithms several times. To
keep the build-time of the vignette down, we only run both methods once. But increase nRuns for
more restarts.

> par(ps = 11, bty = "n", las = 1, tck = 0.01,
mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))
> plot(tm, yM, xlab = "maturities in years",
ylab = "yields in %")
> algo$printDetail <- FALSE
> for (i in seq_len(nRuns)) {
sol <- DEopt(OF = OF, algo = algo, data = data)
lines(tm, data$model (sol$xbest,tm), col = "blue")
sO <- algo$min + (algo$max-algo$min) * runif (length(algo$min))
s0l2 <- nlminb(s0O, OF, data = data,
lower = data$min,
upper = data$max,
control = list(eval.max
iter.max

50000L,
50000L))

lines(tm,data$model (sol2$par,tm), col = "darkgreen", 1ty = 2)
}
> legend(x = "topright", legend = c("true yields", "DE", "nlminb"),
col c("black","blue","darkgreen"),
pch = c(1, NA, NA), 1ty = c(0, 1, 2))

10.0 | .
! o trueyields

951 # T DE
° ---- nlminb
=S 9.0)
£
8 8.5
°
> 8.0
75p T T
7.0 S —
0 2 4 6 8 10

maturities in years

It is no error that there tpyically appears to be only one curve for DE: there are, in fact, nRuns
lines, but they are printed on top of each other.

Other constraints

The parameter constraints on the NS (and NSS) model are to make sure that the resulting zero
rates are nonnegative. But in fact, they do not guarantee positive rates.

tm <- seq(1l, 10, length.out = 100) ## 1 to 10 years
betaTRUE <- c(3, -2, -8, 1.5) ## 'true' parameters
yM <- NS(betaTRUE, tm)
par(ps = 11, bty = "n", las = 1, tck = 0.01,
mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))
plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")
> abline(h = 0)

vV V V V

\4

15
1.0
8
£
g 05
0
>
0.0

maturities in years

This is really a made-up example, but nevertheless we may want to include safeguards against
such parameter vectors: we could include just one constraint that all rates are greater than zero.
This can be done, again, with a penalty function.

> penalty2 <- function(param, data) {
y <- data$model(param, data$tm)
maxdiff <- abs(y - abs(y))
sum(maxdiff) * data$ww

Check:

>

penalty2(c(3, -2, -8, 1.5),data)

[1] 0.86343

This penalty function only works for a single solution, so it is actually simplest to write it

directly into the objective function.

>

OFa <- function(param,data) {
y <- data$model (param,data$tm)
aux <- y - data$yM
res <- max(abs(aux))
compute the penalty
aux <- y - abs(y) ## aux == zero for nonnegative y
aux <- -sum(aux) * data$ww
res <- res + aux
if (is.na(res)) res <- lel0

res
}

So just as a numerical test: suppose the above parameters were true, and interest rates were nega-
tive.
> algo$pen <- NULL; data$yM <- yM; data$tm <- tm
> par(ps = 11, bty = "n", las = 1, tck = 0.01,

mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))
> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")
> abline(h = 0)
> sol <- DEopt(OF = OFa, algo = algo, data = data)
> lines(tm,data$model (sol$xbest,tm), col = "blue")
> legend(x = "topleft", legend = c("true yields", "DE (constrained)"),

col = c("black", "blue"),
pch = c(1, NA, NA), 1ty = c(0, 1, 2))
15 e S o
o trueyields | &
—— DE(constrained) | o

=) N e
3
s
L o5t
< &
SN e

- .'.

2 4 6 8 10
maturities in years

3 Fitting the NSS model to given zero rates

There is little that we need to change if we want to use the NSS model instead. We just have to
pass a different model to the objective function (and change the min/max-vectors). An example

follows. Again, we fix true parameters and try to recover them.

> tm <- c(c(1, 3, 6, 9)/12, 1:10)
> betaTRUE <- c(5,-2,5,-5,1,6)
> yM <- NSS(betaTRUE, tm)

The lists data and algo are almost the same as before; the objective function stays exactly
the same.

> data <- list(yM = yM,
tm = tm,
model = NSS,
min = ¢(0,-15,-30,-30, 0,5),
max = c(15, 30, 30, 30, 5, 10),

ww = 1)

> algo <- list(nP = 100L,
nG = 500L,
F = 0.50,
CR = 0.99,

min = ¢(0,-15,-30,-30, 0,5),
max = c(15, 30, 30, 30, 5, 10),
pen = penalty,
repair = NULL,
loopOF = TRUE,
loopPen = FALSE,
loopRepair = TRUE,
printBar = FALSE,
printDetail = FALSE)

It remains to run the algorithm. (Again, we check the returned objective function value.)

> sol <- DEopt(OF = OF, algo = algo, data = data)
> max(abs(data$model (sol$xbest, tm) - data$model(betaTRUE, tm)))

[1] 7.9936e-15

> sol$0Fvalue
[1] 7.9936e-15

We compare the results with nlminb.

> s0 <- algo$min + (algo$max - algo$min) * runif (length(algo$min))
> s0l2 <- nlminb(s0,0F,data = data,
lower = data$min,

upper = data$max,
control = list(eval.max = 50000L,
iter.max = 50000L))

> max(abs(data$model (sol2$par, tm) - data$model (betaTRUE, tm)))
[1] 1.0051

> sol2$objective
[1] 1.0051

Finally, we compare the yield curves resulting from several runs. (Recall that the number of
runs is controlled by nRuns, which we have set initially.)

> par(ps = 11, bty = "n", las = 1, tck = 0.01,
mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))
> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")
> for (i in seq_len(nRuns)) {
sol <- DEopt(OF = OF, algo = algo, data = data)
lines(tm, data$model (sol$xbest,tm), col = "blue")
sO <- algo$min + (algo$max - algo$min) * runif (length(algo$min))
s0l2 <- nlminb(s0O, OF, data = data,
lower = data$min,
upper = data$max,
control = list(eval.max
iter.max

50000L,
50000L))

lines(tm, data$model(sol2%par,tm), col = "darkgreen", lty = 2)
}
> legend(x = "topright", legend = c("true yields", "DE", "nlminb"),
col c("black","blue","darkgreen"),
c(1,NA,NA), 1ty = c(0,1,2), bg = "white")

pch

5.0
. o true yields
B DE
4.5 --=="777 " |---- nlminb

40t e e T

yields in %

35

maturities in years

4 Fitting the NSS model to given bond prices

The section was removed to reduce the build-time of the package. The examples were moved
to the ‘NMOF manual’ (see http://enricoschumann.net/NMOF.htm). The code is in the
subdirectory NMOFex; to show the code in R, you can use the function system.file.

> whereToLook <- system.file("NMOFex/NMOFman.R", package = "NMOF")
> file.show(whereToLook, title = "NMOF examples")

5 Fitting the NSS model to given yields-to-maturity

The section was removed to reduce the build-time of the package. The examples were moved
to the ‘NMOF manual’ (see http://enricoschumann.net/NMOF.htm). The code is in the
subdirectory NMOFex; to show the code in R, you can use the function system.file

> whereToLook <- system.file("NMOFex/NMOFman.R", package = "NMOF")
> file.show(whereToLook, title = "NMOF examples")

References

Manfred Gilli and Enrico Schumann. A Note on ‘Good Starting Values’ in Numerical Optimi-
sation. COMISEF Working Paper Series No. 44, 2010. available from http://comisef.eu/
7qg=working_papers.

Manfred Gilli, Stefan GroB3e, and Enrico Schumann. Calibrating the Nelson—Siegel-Svensson
model. COMISEF Working Paper Series No. 31, 2010. available from http://comisef.eu/
?gq=working_papers.

Manfred Gilli, Dietmar Maringer, and Enrico Schumann. Numerical Methods and Optimization
in Finance. Elsevier/Academic Press, 2011. URL http://enricoschumann.net/NMOF.

10

