
An Introduction To Using NAPPA To

Pre-Process NanoString nCounter data

Chris Harbron, Mark Wappett

March 3, 2015

1 Introduction

NAPPA is an algorithm for the pre-processing of mRNA data from the NanoS-
tring nCounter software, working from the output RCC files saved as a tab
delimited text file and imported into R.

NAPPA has been optimised to generate high quality robust data for subse-
quent analyses by optimizing steps to reduce bias and variability and reducing
arbitrary decisions. The NAPPA function also provides options for how each
algorithmic step is performed.

2 Getting Started

We illustrate NAPPA with data from an experiment on 50 lung cancer samples
as well as a dilution series experiment.

To generate basic output using the default options:

> require(NAPPA)

> data(NS.Lung)

> NAPPA.Lung.simple <- NAPPA(NS.Lung , tissueType = "tumour")

This generates a matrix of gene expression values which can then be used
for downstream analysis. For example we may wish to perform a Principal
Components Analysis on the data and look at the score plot.

> lungsamplecolours <- sample(colors(),ncol(NAPPA.Lung.simple))

> plot(prcomp(t(NAPPA.Lung.simple))$x[,1:2], pch=21 ,

+ bg=lungsamplecolours , cex=1.5)

1

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−10 0 10 20

−
15

−
10

−
5

0
5

10

PC1

P
C

2

We can request more detailed output using the output argument.

> NAPPA.Lung.detailed <- NAPPA(NS.Lung , tissueType = "tumour" ,

+ output=c("All","Steps"))

The output of NAPPA is now a list where the matrix of gene expression
values is the first item of the list with name GeneExpression.

> identical(NAPPA.Lung.simple , NAPPA.Lung.detailed$GeneExpression)

[1] TRUE

The more detailed output can be used to generate diagnostics. For example
if we plot the internal positive control factor against the external housekeep-
ing normalisation factor we see that they are uncorrelated. This plot would
also highlight any samples with low values in either control which may impact
confidence in data from these samples.

> plot(NAPPA.Lung.detailed$PosFactor , NAPPA.Lung.detailed$HousekeepingFactor,

+ xlab="Positive Control Factor" , ylab="Housekeeping Normalisation Factor" ,

+ pch=21 , bg=lungsamplecolours , cex=1.5)

2

●

●

●

●
●

●

●

●
● ●

●

●

●

●●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

80 100 120 140

0
1

2
3

Positive Control Factor

H
ou

se
ke

ep
in

g
N

or
m

al
is

at
io

n
Fa

ct
or

3 Sequential Analyses

NAPPA also allows data to be run in batches. As an extreme example, suppose
the first two samples had been run as an initial batch, followed by the remaining
48 samples in a subsequent batch.

If we were to run NAPPA on the first batch (the first two samples):

> NAPPA.Lung.batch1 <- NAPPA(NS.Lung[,1:5] , tissueType = "tumour" ,

+ output="All")

Then the results of these samples would change slightly when the second
batch of data was included in the analysis due to the parameters relating to
the centering and shrinkage of the housekeeping genes being updated with more
data.

> plot(NAPPA.Lung.batch1$GeneExpression , NAPPA.Lung.simple[,1:2],

+ xlab="Interim Results" , ylab="Final Results" , main="First 2 Samples")

> abline(0 , 1 , col="RED" , lwd=2)

3

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●●●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●
●

●●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●●

●
●

●
●●

●●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●●

●

●

●

● ●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

5 10 15

5
10

15
First 2 Samples

Interim Results

F
in

al
 R

es
ul

ts

> identical(NAPPA.Lung.batch1$GeneExpression , NAPPA.Lung.simple[,1:2])

[1] FALSE

Using the NReferenceSamples argument, NAPPA allows the final analysis
to be based upon the parameters derived from the interim analysis, so that the
interim data values remain unchanged in the final analysis.

> NAPPA.Lung.frozen1 <- NAPPA(NS.Lung , tissueType = "tumour" , NReferenceSamples = 2)

> plot(NAPPA.Lung.batch1$GeneExpression , NAPPA.Lung.frozen1[,1:2],

+ xlab="Interim Results", ylab="Final Results Based On Frozen Analysis",

+ main="First 2 Samples")

> abline(0 , 1 , col="RED" , lwd=2)

4

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●
●

●
●

●●●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●
●

●●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●●

●
●

●
●●

●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

5 10 15

5
10

15
First 2 Samples

Interim Results

F
in

al
 R

es
ul

ts
 B

as
ed

 O
n

F
ro

ze
n

A
na

ly
si

s

> identical(NAPPA.Lung.batch1$GeneExpression , NAPPA.Lung.frozen1[,1:2])

[1] TRUE

The same effect can be achieved in a more advanced manner by directly
passing the parameters betas and hknormfactor.mean from the interim analysis
to the final analysis.

> NAPPA.Lung.frozen2 <- NAPPA(NS.Lung , tissueType = "tumour" ,

+ betas=NAPPA.Lung.batch1$Betas ,

+ hknormfactor.mean=NAPPA.Lung.batch1$HousekeepingFactor.Mean)

> plot(NAPPA.Lung.batch1$GeneExpression , NAPPA.Lung.frozen2[,1:2],

+ xlab="Interim Results" , ylab="Final Results Based On Frozen Analysis",

+ main="First 2 Samples")

> abline(0 , 1 , col="RED" , lwd=2)

5

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●
●

●
●

●●●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●
●

●●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●●

●
●

●
●●

●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

5 10 15

5
10

15
First 2 Samples

Interim Results

F
in

al
 R

es
ul

ts
 B

as
ed

 O
n

F
ro

ze
n

A
na

ly
si

s

> identical(NAPPA.Lung.batch1$GeneExpression , NAPPA.Lung.frozen2[,1:2])

[1] TRUE

4 A Dilution Data Set

To explore the robustness of the NanoString platform to variability in the quan-
tity of input mRNA, four of the lung tumour samples were run using a two-fold
dilution series, at concentrations of 100ng, 50ng, 25ng, 12.5ng, 6.25ng + 3.125ng.
In order to analyse this data, the slope parameters (betas) are taken from the
larger dataset as these will be more representative of the overall behaviour of
the genes rather than from this dataset where the raw count levels have been
lowered through the study design.

> data(NS.Dilution)

> NAPPA.Dilution <- NAPPA(NS.Dilution , betas=NAPPA.Lung.detailed$Betas,

+ output="All")

A Score Plot of a Principal Components Analysis of these results with dif-
ferent samples being represented by different shapes and concentrations being
represented by a colour gradient from red (100ng) to yellow (3.125ng) shows
the 4 individual samples generally clustering together, with greatest deviations
being seen in the lowest concentration samples, including two large outliers at
the lowest concentrations for one of the samples.

6

> dilutioncolours <- rep(heat.colors(6),4)

> dilutionshapes <- rep(c(21,22,24,25) , each=6)

> plot(prcomp(t(NAPPA.Dilution$GeneExpression))$x[,1:2],

+ pch=dilutionshapes , bg=dilutioncolours , cex=1.5)

●
●

●
●

●
●

−20 −10 0 10

−
20

−
15

−
10

−
5

0
5

10

PC1

P
C

2

We can plot both the housekeeping normalisation and positive control fac-
tors against concentration for each sample. The housekeeping normalisation
factor shows a strong relationship with concentration with increased variability
at the lowest concentrations, whilst the internal positive control factor shows no
relationship, but does highlight one of the outliers previously observed in the
PCA, possibly suggesting a failed run.

> opar <- par(mfrow=c(2,1) , mar=c(1,3,4,1))

> plot(c(1,6) , range(NAPPA.Dilution$HousekeepingFactor) , type="n",

+ xlab="" , ylab="" , axes=F , main="Housekeeping Normalisation Factors")

> box()

> axis(2 , las=2)

> for(i in 1:4) {

+ lines(1:6 , NAPPA.Dilution$HousekeepingFactor[6*i + (-5:0)] , col=i , lwd=2)

+ points(1:6 , NAPPA.Dilution$HousekeepingFactor[6*i + (-5:0)] , bg=i , pch=21)

+ }

7

Housekeeping Normalisation Factors

−3
−2
−1

0
1
2
3 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

> plot(c(1,6) , range(NAPPA.Dilution$PosFactor) , type="n",

+ xlab="" , ylab="" , axes=F , main="Positive Control Factors")

> box()

> axis(2 , las=2)

> for(i in 1:4) {

+ lines(1:6 , NAPPA.Dilution$PosFactor[6*i + (-5:0)] , col=i , lwd=2)

+ points(1:6 , NAPPA.Dilution$PosFactor[6*i + (-5:0)] , bg=i , pch=21)

+ }

> par(opar)

8

Positive Control Factors

20

40

60

80

100

120

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 Changing The Pre-Processing Algorithm

Each of NAPPAs steps contains options which can be used to change the algo-
rithm being performed. So for example we may investigate the impact of the
shrunken housekeeper normalisation rather than a simpler subtraction normal-
isation, using the hk.method argument.

> NAPPA.Dilution.subtract <- NAPPA(NS.Dilution , hk.method="subtract",

+ output="All")

We can then visually observe the impact of this for the different concen-
trations using a series of Bland-Altman plots, plotting for each dilution the
difference in expression to the sample run at 100ng against the average of the
sample run diluted and at 100ng.

> blandaltmanaplot <- function(x,y,...) {

+ d <- x-y

+ a <- 0.5*(x+y)

+ plot(a , d , pch="." , ...)

+ abline(h=0 , col="BLUE")

+ lines(smooth.spline(y=d , x=a , df=4) , col="RED")

+ }

> opar <- par(mfcol=c(2,5) , mar=c(4,4,2,0) , oma=c(0,0,0.5,0.5))

> for(i in 1:5)

9

+ {

+ blandaltmanaplot(c(NAPPA.Dilution.subtract$GeneExpression[,i+c(1,7,13,19)]),

+ c(NAPPA.Dilution.subtract$GeneExpression[,c(1,7,13,19)]) , ylim=c(-5,10),

+ xlim=c(0,15) , ylab="" , xlab="")

+ title(paste(c(50,25,12.5,6.25,3.125)[i],"ng",collapse="") , line=1,

+ cex.main=1.5)

+ if(i==1) title(ylab="Difference From 100ng Expression\nSubtraction Normalisation" ,

+ line=2)

+

+ blandaltmanaplot(c(NAPPA.Dilution$GeneExpression[,i+c(1,7,13,19)]),

+ c(NAPPA.Dilution$GeneExpression[,c(1,7,13,19)]) , ylim=c(-5,10),

+ xlim=c(0,15) , ylab="" , xlab="")

+ if(i==1) title(ylab="Difference From 100ng Expression\nSubtraction Normalisation" ,

+ line=2)

+ if(i==3) title(xlab="Average Of 100ng &\nDilution Expression")

+ }

> par(opar)

0 5 10

−
5

0
5

10

50 ng

D
iff

er
en

ce
 F

ro
m

 1
00

ng
 E

xp
re

ss
io

n
S

ub
tr

ac
tio

n
N

or
m

al
is

at
io

n

0 5 10

−
5

0
5

10

D
iff

er
en

ce
 F

ro
m

 1
00

ng
 E

xp
re

ss
io

n
S

ub
tr

ac
tio

n
N

or
m

al
is

at
io

n

0 5 10

−
5

0
5

10

25 ng

0 5 10

−
5

0
5

10

0 5 10

−
5

0
5

10

12.5 ng

0 5 10

−
5

0
5

10

Average Of 100ng &
Dilution Expression

0 5 10

−
5

0
5

10
6.25 ng

0 5 10

−
5

0
5

10

0 5 10

−
5

0
5

10

3.125 ng

0 5 10

−
5

0
5

10

These show a reduced bias, particularly with the results from lower express-
ing genes from low concentration samples with the shrunken housekeeping nor-
malisation.

This also allows wider comparison with other NanoString pre-processing al-
gorithms. If we load the dilution data as processed by NanoString’s nsolver
programme:

> data(nsolver.Dilution)

10

And we also process the data through NanoStringNorm using the settings
used in NanoStringNorm’s example documentation, with a little bit of data
processing to get the outputs from all packages into the same format.

> require(NanoStringNorm)

> NS.Dilution.NSN <- cbind(NS.Dilution[-(1:21),1:3],

+ sapply(NS.Dilution[-(1:21),-(1:3)] , as.numeric))

> colnames(NS.Dilution.NSN)[1:3] <- c('Code.Class', 'Name', 'Accession')

> colnames(NS.Dilution.NSN)[4:27] <- colnames(nsolver.Dilution)

> NSN.Dilution <- NanoStringNorm(NS.Dilution.NSN , CodeCount = 'geo.mean',

+ Background = 'mean',

+ SampleContent = 'housekeeping.geo.mean',

+ round.values = TRUE,

+ take.log = TRUE)$normalized.data

##############################
NanoStringNorm v1.1.17
##############################

There are 24 samples and 461 Endogenous genes

CodeCount: The following samples have positive normalization factors outside the
recommended range of (0.3 to 3). Consider removing them.

pos.norm.factor
4_5 4.74

Background: After correction 24 samples and 457
Endogenous genes have less than 90% missing.

SampleContent: The following samples have sample/rna content greater than
3 standard deviations from the mean.

rna.zscore
1_1 3.27

log: Setting values less than 1 to 1 in order to calculate the log in positive space.

> NSN.Dilution <- NSN.Dilution[NSN.Dilution$Code.Class=="Endogenous",-(1:3)]

> all(rownames(NSN.Dilution) == rownames(NAPPA.Dilution$GeneExpression))

[1] TRUE

> nsolver.Dilution <- nsolver.Dilution[rownames(NAPPA.Dilution$GeneExpression),]

We can also specify arguments in NAPPA to run ”nsolver-like”and ”NanoStringNorm-
like” analyses, although we were not able to reproduce these exactly.

> NAPPA.Dilution.NSN <- NAPPA(NS.Dilution , scaleFOV=F,

+ background.method="subtract.global" , nposcontrols=6 ,

+ poscontrol.method="geometric.mean" , hk.method="subtract",

11

+ output="All")

> NAPPA.Dilution.NS <- NAPPA(NS.Dilution , scaleFOV=F,

+ background.method="none" , nposcontrols=6,

+ poscontrol.method="geometric.mean" , hk.method="subtract",

+ output="All")

Principal Components Analyses of each of these pre-processing methods give
a visual indication of the variability of the different algorithms across the dif-
ferent dilutions.

> opar <- par(mfrow=c(3,2) , mar=c(0,0,2,0))

> plot(prcomp(t(NAPPA.Dilution$GeneExpression))$x[,1:2] , pch=dilutionshapes,

+ bg=dilutioncolours , cex=1.5 , axes=F , main="NAPPA")

> box()

> plot(prcomp(t(NAPPA.Dilution$GeneExpression))$x[,1:2] , pch=dilutionshapes,

+ bg=dilutioncolours , cex=1.5 , axes=F , main="NAPPA")

> box()

> plot(prcomp(t(NSN.Dilution))$x[,1:2] , pch=dilutionshapes , bg=dilutioncolours,

+ cex=1.5 , axes=F , main="NanoStringNorm")

> box()

> plot(prcomp(t(NAPPA.Dilution.NSN$GeneExpression))$x[,1:2] , pch=dilutionshapes,

+ bg=dilutioncolours , cex=1.5 , axes=F , main="NAPPA version of NanoStringNorm")

> box()

> plot(prcomp(t(log2(nsolver.Dilution)))$x[,1:2] , pch=dilutionshapes,

+ bg=dilutioncolours , cex=1.5 , axes=F , main="nsolver")

> box()

> plot(prcomp(t(NAPPA.Dilution.NS$GeneExpression))$x[,1:2] , pch=dilutionshapes,

+ bg=dilutioncolours , cex=1.5 , axes=F , main="NAPPA version of nsolver")

> box()

> par(opar)

12

●● ●●
●

●

NAPPA

PC1

●● ●●
●

●

NAPPA

PC1

P
C

2
●●●
● ●

●

NanoStringNorm

PC1

●●
●

●

●

●

NAPPA version of NanoStringNorm

PC1

P
C

2

●
● ●

●
● ●

nsolver

● ●
●

●
● ●

NAPPA version of nsolver

P
C

2

13

