Package 'MortalitySmooth'

February 19, 2015

Type Package Title Smoothing and Forecasting Poisson Counts with P-Splines Version 2.3.4 Date 2015-02-18 Author Carlo G Camarda Maintainer Carlo G Camarda <carlo-giovanni.camarda@ined.fr> **Depends** R (>= 3.0.2), svcm, lattice Description Smoothing one- and two-dimensional Poisson counts with P-splines specifically tailored to mortality data. Extra-Poisson variation can be accounted as well as forecasting. Collection of mortality data and a specific function for selecting those data by country, sex, age and years. License GPL (>= 2) LazyLoad yes LazyData yes VignetteBuilder knitr Suggests knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2015-02-18 11:45:57

R topics documented:

IortalitySmooth-package	2
MDdata	3
Iort1Dsmooth	4
Iort1Dsmooth_checker	8
Iort1Dsmooth_estimate	10
Iort1Dsmooth_optimize	11
Iort1Dsmooth_update	12
Iort2Dsmooth	13

Mort2Dsmooth_checker
Mort2Dsmooth_estimate
Mort2Dsmooth_optimize
Mort2Dsmooth_se
Mort2Dsmooth_update
MortSmooth_bbase
MortSmooth_BcoefB
MortSmooth_BWB
MortSmooth_tpower
plot.HMDdata
plot.Mort1Dsmooth
plot.Mort2Dsmooth
predict.Mort1Dsmooth
predict.Mort2Dsmooth
residuals.Mort1Dsmooth
residuals.Mort2Dsmooth
selectHMDdata
summary.Mort1Dsmooth
summary.Mort2Dsmooth
46

Index

MortalitySmooth-package

Smoothing Poisson counts with P-splines

Description

Smoothing one- and two-dimensional Poisson counts with P-splines specifically tailored to mortality data. Extra-Poisson variation can be accounted as well as mortality forecasting. Collection of mortality data and a specific function for selecting those data by country, sex, age and years.

Details

Package:	MortalitySmooth
Type:	Package
Version:	2.2
Date:	2012-02-05
License:	What license is it under?
LazyLoad:	yes

Author(s)

Carlo G Camarda

HMDdata

Maintainer: Carlo G Camarda <camarda@demogr.mpg.de>

References

Camarda, C. G. (2012). MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines. *Journal of Statistical Software*. 50, 1-24. http://www.jstatsoft.org/v50/i01/.

Eilers P. H. C. and B. D. Marx (1996). Flexible Smoothing with B-splines and Penalties. *Statistical Science*. 11, 89-121.

Currie, I. D., M. Durban, and P. H. C. Eilers (2004). Smoothing and forecasting mortality rates. *Statistical Modelling*. 4, 279-298.

Currie, I. D., M. Durban, and P. H. C. Eilers (2006). Generalized linear array models with applications to multidimentional smoothing. *Journal of the Royal Statistical Society. Series B*. 68, 259-280.

HMDdata

Population and Mortality Data

Description

Age-specific population, deaths, exposures and rates from the Human Mortality Database.

Usage

data(HMDdata)

Format

Object of class HMDdata containing, for each country, the following components:

country country name.

year vector of years.

age vector of ages.

pop list of matrices containing population with one age group per row and one column per year. Matrices: female, male, total.

death list of matrices containing deaths in same form as pop.

exposure list of matrices containing exposure in same form as pop.

rate list of matrices containing mortality rate in same form as pop.

Details

The list contained 4 countries (Denmark, Japan, Sweden and Switzerland). Data taken from the Human Mortality Database on 30 August 2011. Data are accessible either manually or using selectHMDdata.

For a given country, the matrices have the same dimensions. The vector age is the same for each country (0:110), whereas years depends on the availability.

pop indicates population size on January 1st of each age and year.

death are death counts occurred during one age-year interval.

exposure population is approximated by the average of the population size in the beginning and at the end of the year.

rate are computed as ratio between death counts and exposures.

Author(s)

Carlo G Camarda

Source

Human Mortality Database www.mortality.org

References

Human Mortality Database (2011). University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at www.mortality.org.

See Also

selectHMDdata.

Examples

```
data(HMDdata)
plot(HMDdata$Japan$year, HMDdata$Japan$pop$female[81,],
    main="Japan population, female, age 80")
## list of available countries
names(HMDdata)
```

Mort1Dsmooth

Fit One-dimensional Poisson P-splines

Description

Returns an object of class Mort1Dsmooth which is a P-splines smooth of the input data of degree and order fixed by the user. Specifically tailored to mortality data.

Mort1Dsmooth

Usage

Arguments

x	a vector with the values of the predictor variable. These must be at least 2 $ndx + 1$ of them.
У	a vector with a set of counts response variable values. y must be a vector of the same length as x .
offset	this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length either one or equal to the number of cases.
W	an optional vector of weights to be used in the fitting process. This should be NULL or a numeric vector of length equal to the number of cases.
overdispersion	logical on the accounting for overdisperion in the smoothing parameter selection criterion. See Details. Default: FALSE.
ndx	number of internal knots -1. Default: floor(length(x)/5).
deg	degree of the B-splines. Default: 3.
pord	order of differences. Default: 2.
lambda	smoothing parameter (optional).
df	a number which specifies the degrees of freedom (optional).
method	the method for controlling the amount of smoothing. method = 1 (default) adjusts the smoothing parameter so that the BIC is minimized. method = 2 adjusts lambda so that the AIC is minimized. method = 3 uses the value supplied for lambda. method = 4 adjusts lambda so that the degrees of freedom is equal to the supplied df.
coefstart	an optional vector of starting coefficients.
control	a list of control parameters. See Details.

Details

The method fits a P-spline model with equally-spaced B-splines along x. The response variables must be Poisson distributed counts, though overdisperion can be accounted. Offset can be provided, otherwise the default is that all weights are one.

The function is specifically tailored to smooth mortality data in one-dimensional setting. In such case the argument x would be either the ages or the years under study. Death counts will be the argument y. In a Poisson regression setting applied to actual death counts the offset will be the logarithm of the exposure population. See example below.

The function can obviously account for zero counts and definite offset. In a mortality context, the user can apply the function to data with zero deaths, but it has to take care that no exposures are equal to zero, i.e. offset equal to minus infinitive. In this last case, the argument w can help. The user would need to set weights equal to zero when exposures are equal to zero leading to interpolation of the data. See example below.

Regardless the presence of exposures equal to zero, the argument w can also be used for extrapolation and interpolation of the data. Nevertheless see the function predict.Mort1Dsmooth for a more comprehensive way to forecast mortality rates.

The method produces results similar to function smooth.spline, but the smoothing function is a B-spline smooth with discrete penalization directly on the differences of the B-splines coefficients. The user can set the order of difference, the degree of the B-splines and number of them. Nevertheless, the smoothing parameter lambda is mainly used to tune the smoothness/model fidelity of the fitted values.

The range in which lambda is searched is given in control - RANGE. Though it can be modified, the default values are suitable for most of the application.

There are print.Mort1Dsmooth, summary.Mort1Dsmooth, plot.Mort1Dsmooth, predict.Mort1Dsmooth and residuals.Mort1Dsmooth methods available for this function.

Four methods for optimizing the smoothing parameter are available. The BIC is set as default. Minimization of the AIC is also possible. BIC will give always smoother outcomes with respect to AIC, especially for large sample size. Alternatively the user can directly provide the smoothing parameter (method=3) or the degree of freedom to be used in the model (method=4). Note that Mort1Dsmooth uses approximated degree of freedom, therefore method=4 will produce fitted values with degree of freedom only similar to the one provided in df. The tolerance level can be set via control - TOL2.

Note that the 'ultimate' smoothing with very large lambda will approach to a polynomial of degree pord.

Starting coefficients for the B-spline basis can be provided by the user. This feature can be useful when a grid-search is manually performed by the user.

The argument overdispersion can be set to TRUE when possible presence of over(under)dispersion needs to be considered in the selection of the smoothing parameter. Mortality data often present overdispersion also known, in demography, as heterogeneity. Duplicates in insurance data can lead to overdispersed data, too. Smoothing parameter selection may be affected by this phenomenon. When overdispersion=TRUE, the function uses a penalized quasi-likelihood method for including an overdisperion parameter (psi2) in the fitting procedure. With this approach expected values are assumed equal to the variance multiplied by the parameter psi2. See reference. Note that the inclusion of the overdisperion parameter within the estimation might lead to select higher lambda, leading to smoother outcomes. When overdispersion=FALSE (default value) or method=3 or method=4, psi2 is estimated after the smoothing parameter have been employed. Overdispersion parameter considerably larger (smaller) than 1 may be a sign of overdispersion (underdispersion).

The control argument is a list that can supply any of the following components:

MON: Logical. If TRUE tracing information on the progress of the fitting is produced. Default: FALSE.

TOL1: The absolute convergence tolerance for each completed scoring algorithm. Default: 1e-06.

TOL2: Difference between two adjacent smoothing parameters in the (pseudo) grid search, log-scale. Useful only when method is equal to 1, 2 or 4. Default: 0.5.

Mort1Dsmooth

RANGE: Range of smoothing parameters in which the grid-search is applied, commonly taken in log-scale. Default: [10⁻⁴; 10⁶].

MAX.IT: The maximum number of iterations for each completed scoring algorithm. Default: 50.

The arguments MON, TOL1 and MAX.IT are kept during all the grid search when method is equal to 1, 2 or 4. Function cleversearch from package svcm is employed to speed the grid search. See Mort1Dsmooth_optimize for details.

Value

An object of the class Mort1Dsmooth with components:

coefficients	vector of fitted (penalized) B-splines coefficients.
residuals	the deviance residuals.
fitted.values linear.predicto	vector of fitted counts.
	vector of fitted linear predictor.
logmortality	fitted mortality rates in log-scale.
lev	diagonal of the hat-matrix.
df	effective dimension.
deviance	Poisson Deviance.
aic	Akaike's Information Criterion.
bic	Bayesian Information Criterion.
psi2	overdispersion parameter.
lambda	the selected (given) smoothing parameter lambda.
call	the matched call.
n	number of observations.
tolerance	the used tolerance level.
В	the B-splines basis.
ndx	the number of internal knots -1.
deg	degree of the B-splines.
pord	order of difference.
x	values of the predictor variable.
У	set of counts response variable values.
offset	vector of the offset.
W	vector of weights used in the model.

Author(s)

Carlo G Camarda

References

Eilers P. H. C. and B. D. Marx (1996). Flexible Smoothing with B-splines and Penalties. *Statistical Science*. 11, 89-121.

Camarda, C. G. (2012). MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines. *Journal of Statistical Software*. 50, 1-24. http://www.jstatsoft.org/v50/i01/.

See Also

predict.Mort1Dsmooth, plot.Mort1Dsmooth, Mort1Dsmooth_optimize.

Examples

```
## selected data
years <- 1950:2006
death <- selectHMDdata("Japan", "Deaths", "Females",</pre>
                       ages = 80, years = years)
exposure <- selectHMDdata("Japan", "Exposures", "Females",</pre>
                           ages = 80, years = years)
## various fits
## default using Bayesian Information Criterion
fitBIC <- Mort1Dsmooth(x=years, y=death,</pre>
                       offset=log(exposure))
fitBIC
summary(fitBIC)
## subjective choice of the smoothing parameter lambda
fitLAM <- Mort1Dsmooth(x=years, y=death,</pre>
                       offset=log(exposure),
                       method=3, lambda=10000)
## plot
plot(years, log(death/exposure),
main="Mortality rates, log-scale.
      Japanese females, age 80, 1950:2006")
lines(years, fitBIC$logmortality, col=2, lwd=2)
lines(years, fitLAM$logmortality, col=3, lwd=2)
legend("topright", c("Actual", "BIC", "lambda=10000"),
       col=1:3, lwd=c(1,2,2), lty=c(-1,1,1),
       pch=c(1,-1,-1))
## see vignettes for examples on
## - Extra-Poisson variation
## - interpolation
## - extrapolation
```

Mort1Dsmooth_checker Check Arguments for Function Mort1Dsmooth

Description

This is an internal function of package MortalitySmooth which checks whether the arguments given in the function Mort1Dsmooth have proper lengths and suitability.

Mort1Dsmooth_checker

Usage

```
Mort1Dsmooth_checker(x, y, offset,
    w, overdispersion,
    ndx, deg, pord, lambda,
    df, method, coefstart,
    control)
```

Arguments

х	values of the predictor variable.
У	set of counts response variable values.
offset	a vector with the offset.
w	an optional vector of weights to be used in the fitting process.
overdispersion	logical on the accounting for overdisperion.
ndx	number of internal knots -1.
deg	degree of the B-splines.
pord	order of differences.
lambda	smoothing parameter.
df	a number which specifies the degrees of freedom.
method	the method for controlling the amount of smoothing.
coefstart	a vector with the eventual starting coefficients.
control	a list of control parameters.

Details

Internal function used in Mort1Dsmooth for checking its arguments.

Value

A list with checked elements to be used in Mort1Dsmooth

Author(s)

Carlo G Camarda

See Also

Mort1Dsmooth

Mort1Dsmooth_estimate Estimate 1D P-splines for a given lambda

Description

This is an internal function of package MortalitySmooth which estimates coefficients and computes diagnostics for penalized B-splines for a given smoothing parameter within the function Mort1Dsmooth.

Usage

Mort1Dsmooth_estimate(х,	у,	offse	et,	wei,	psi2,
	Β,	lan	nbda,	DtD), a.	init,
	MON	1, 1	ΓOL1,	MAX	(.IT)	

Arguments

Х	Vector for the abscissa of data.
У	Vector of counts response.
offset	Vector with an a priori known component (optional).
wei	An optional vector of weights to be used in the fitting process.
psi2	Overdispersion parameter.
В	B-splines basis.
lambda	Smoothing parameter.
DtD	Inner product of the difference matrix.
a.init	Vector with the initial coefficients.
MON	Logical switch indicating if monitoring is required.
TOL1	The tolerance level in the IWLS algorithm.
MAX.IT	The maximum number of iterations.

Details

Internal function used in Mort1Dsmooth for estimating coefficients and computing diagnostics.

Value

A list with components:

а	fitted coefficients.
h	diagonal of the hat-matrix.
df	effective dimension of used degree of freedom.
aic	Akaike's Information Criterion.
bic	Bayesian Information Criterion.

Mort1Dsmooth_optimize

dev	Poisson deviance.
tol	tolerance level.
BtWB	inner product of basis and weights.
Р	penalty matrix.

Author(s)

Carlo G Camarda

See Also

Mort1Dsmooth_update, Mort1Dsmooth.

Mort1Dsmooth_optimize Optimize a 1D Penalized-Poisson IWLS over smoothing parameters

Description

This is an internal function of package MortalitySmooth which optimizes the smoothing parameter for penalized B-splines within the function Mort1Dsmooth.

Usage

Arguments

Х	vector for the abscissa of data.
У	vector of counts response.
offset	vector with an a priori known component (optional).
wei	an optional vector of weights to be used in the fitting process.
psi2	an overdispersion parameter used the quasi-likelihood approach.
В	B-splines basis.
DtD	inner product of the difference matrix
a.init	initial coefficients
MON	Logical switch indicating if monitoring is required.
TOL1	The tolerance level in the IWLS algorithm.
TOL2	difference between two adjacent smoothing parameters in the (pseudo) grid search, log-scale.
RANGE	range in which smoothing parameter should be searched.
MAX.IT	the maximum number of iterations
MET	the method for controlling the amount of smoothing

Details

The function aims to find the optimal smoothing parameter within the given RANGE in Mort1Dsmooth with method equal to 1 or 2 (BIC and AIC). It employs the function cleversearch from package svcm in two separate steps. First it searches using a rough grid (4 times TOL2) and the median of RANGE as starting lambda. Afterwards it searches in the restricted range around the sub-optimal smoothing parameter, using a finer grid defined by TOL2.

This procedure allows to find a precise smoothing parameter in an efficient way: we do not explore the full range of possible lambda values, moving at most one grid step up or down. Furthermore the two steps routine reduces the risk of finding sub-optimal smoothing parameter.

Author(s)

Carlo G Camarda

References

Camarda, C. G. (2012). MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines. *Journal of Statistical Software*. 50, 1-24. http://www.jstatsoft.org/v50/i01/.

See Also

Mort1Dsmooth_update, Mort1Dsmooth_estimate, Mort1Dsmooth.

Mort1Dsmooth_update Update a 1D Penalized-Poisson Iteration

Description

This is an internal function of package MortalitySmooth which update coefficients for penalized B-splines for a given smoothing parameter within the function Mort1Dsmooth.

Usage

```
Mort1Dsmooth_update(x, y, offset, wei, psi2, B, lambdaP, a)
```

Arguments

х	vector for the abscissa of data.
У	vector of counts response.
offset	vector with an a priori known component (optional).
wei	an optional vector of weights to be used in the fitting process.
psi2	an overdispersion parameter used the quasi-likelihood approach.
В	B-splines basis.
lambdaP	penalty factor, included the smoothing parameter.
а	old coefficients.

12

Mort2Dsmooth

Details

Internal function used for updating coefficients of the B-splines in 1D Poisson penalized B-splines model.

Value

A vector of updated coefficients

Author(s)

Carlo G Camarda

See Also

Mort1Dsmooth.

Mort2Dsmooth

Fit Two-dimensional Poisson P-splines

Description

Returns an object of class Mort2Dsmooth which is a two-dimensional P-splines smooth of the input data of degree and order fixed by the user. Specifically tailored to mortality data.

Usage

```
Mort2Dsmooth(x, y, Z, offset, W, overdispersion=FALSE,
    ndx = c(floor(length(x)/5), floor(length(y)/5)),
    deg = c(3, 3), pord = c(2, 2),
    lambdas = NULL, df = NULL, method = 1,
    coefstart = NULL,
    control = list())
```

Arguments

х	vector for the abscissa of data. These must be at least $2 \text{ ndx}[1] + 1 \text{ of them.}$	
У	vector for the ordinate of data. These must be at least $2 \text{ ndx}[2] + 1$ of them.	
Z	matrix of counts response. Dimensions of Z should correspond to the length of x and y, respectively.	
offset	matrix with an a priori known component to be included in the linear predictor during fitting. This should be NULL or a numeric matrix of dimensions of Z or a single numeric value.	
W	an optional matrix of weights to be used in the fitting process. This should be NULL or a numeric matrix of dimensions of Z or a single numeric value.	
overdispersion	logical on the accounting for overdisperion in the smoothing parameters selection criterion. See Details. Default: FALSE.	

ndx	vector with the number of internal knots -1 for each axis. Default: $[floor(length(x)/5) floor(length(y)/5)]$.
deg	vector with the degree of the B-splines for each axis. Default: [3, 3].
pord	vector with the order of differences for each axis. Default: [2, 2].
lambdas	vector with smoothing parameters, possibly one for axis (optional).
df	a number which specifies the degrees of freedom (optional).
method	the method for controlling the amount of smoothing. method = 1 (default) ad- justs the two smoothing parameters so that the BIC is minimized. method = 2 adjusts lambdas so that the AIC is minimized. method = 3 uses the values sup- plied for lambdas. Isotropic smoothing is allowed in this method. method = 4 adjusts lambdas so that the degrees of freedom is equal to the supplied df.
coefstart	an optional matrix of starting coefficients.
control	a list of control parameters. See Details.

Details

The method fits a two-dimensional P-spline model with equally-spaced B-splines along x and y. The response variables must be a matrix of Poisson distributed counts. Offset can be provided, otherwise the default is that all weights are one.

The function is specifically tailored to smooth mortality data in one-dimensional setting. In such case the argument x would be the ages and the argument y the years under study. The matrix of death counts will be the argument Z. In a Poisson regression setting applied to actual death counts the offset will be the logarithm of the matrix of exposure population. See example below.

The function can obviously account for zero counts and definite offset. In a mortality context, the user can apply the function to data with zero deaths, but it has to take care that no exposures are equal to zero, i.e. offset equal to minus infinitive. In this last case, the argument W can help. The user would need to set weights equal to zero when exposures are equal to zero leading to interpolation of the data. See example below.

Regardless the presence of exposures equal to zero, the argument W can also be used for extrapolation and interpolation of the data. Nevertheless see the function predict.Mort2Dsmooth for a more comprehensive way to forecast mortality rates over ages and years.

The method produces results from a smoothing function which is the Kronecker product of Bspline basis over the two axes and include a discrete penalization directly on the differences of the B-splines coefficients. The user can set the order of difference, the degree of the B-splines and number of them for each of the axis. Nevertheless, the smoothing parameters lambdas are mainly used to tune the smoothness/model fidelity of the fitted values.

The ranges in which lambda is searched is given in control - RANGEx and RANGEy. Though they can be modified, the default values are suitable for most of the application.

There are print.Mort2Dsmooth, summary.Mort2Dsmooth, plot.Mort2Dsmooth predict.Mort2Dsmooth and residuals.Mort2Dsmooth methods available for this function.

Four methods for optimizing the smoothing parameters are available. The BIC is set as default. Minimization of the AIC is also possible. BIC will give always smoother outcomes with respect to AIC, especially for large sample size. Alternatively the user can directly provide the smoothing parameters (method=3) or the degrees of freedom to be used in the model (method=4). In this last

Mort2Dsmooth

case isotropic smoothing (same smoothing parameter over x and y) is employed. If the user provides only a single value for the argument lambdas, isotropic smoothing is applied (with warning). Note that Mort2Dsmooth uses approximated degrees of freedom, therefore method=4 will produce fitted values with degree of freedom only similar to the one provided in df. The tolerance level can be set via control - TOL2.

Note that the two-dimensional 'ultimate' smoothing with very large lambda will approach to a surface which is a product of two polynomial of degree pord[1] and pord[2], respectively. In particular, when pord=c(2,2) the 'ultimate' smoothing is a bi-linear surface over x and y.

The argument overdispersion can be set to TRUE when smoothing parameters selection has to account for possible presence of over(under)dispersion. Mortality data often present overdispersion also known, in demography, as heterogeneity. Duplicates in insurance data can lead to overdispersed data, too. Smoothing parameters selection may be affected by this phenomenon. When overdispersion=TRUE, the function uses a penalized quasi-likelihood method for including an overdisperion parameter (psi2) in the fitting procedure. With this approach expected values are assumed equal to the variance multiplied by the parameter psi2. See references. Note that with overdispersed data both BIC and AIC might select higher lambdas, leading to smoother outcomes. When overdispersion=FALSE (default value) or method=3 or method=4, psi2 is estimated after the smoothing parameters have been employed. Overdispersion parameter larger (smaller) than 1 may be a sign of overdispersion (underdispersion).

The control argument is a list that can supply any of the following components:

MON: Logical. If TRUE tracing information on the progress of the fitting is produced. Default: FALSE.

TOL1: The absolute convergence tolerance for each completed scoring algorithm. Default: 1e-06.

TOL2: Difference between two adjacent smoothing parameters in the (pseudo) grid search, log-scale. Useful only when method is equal to 1, 2 or 4. Default: 0.5.

RANGEx: Range of smoothing parameters over x in which the grid-search is applied, commonly taken in log-scale. Default: $[10^{-4}; 10^{-6}]$.

RANGEy: Range of smoothing parameters over y in which the grid-search is applied, commonly taken in log-scale. Default: [10⁻⁴; 10⁶].

MAX.IT: The maximum number of iterations for each completed scoring algorithm. Default: 50.

The arguments MON, TOL1 and MAX.IT are kept during all the (pseudo) grid search when method is equal to 1, 2 or 4. Function cleversearch from package svcm is employed to speed the grid search. See Mort2Dsmooth_optimize for details.

The inner functions work using an arithmetic of arrays defined as Generalized Linear Array Model (GLAM) (see references). In order to avoid construction of large Kronecker product basis from the large number of B-splines along the axes, the function profits of the special structure of both the data as rectangular array and the model matrix as tensor product. It uses sequence of nested matrix operations and this leads to low storage and high speed computation within the IWLS algorithm. Moreover, the function do not vectorize the whole system keeping the actual two-dimensional array structure within the scoring algorithm.

Value

An object of the class Mort2Dsmooth with components:

coefficients matrix of fitted (penalized) B-splines coefficients.

residuals	matrix of deviance residuals.	
fitted.values linear.predicto	matrix of fitted counts.	
	matrix of fitted linear predictor.	
logmortality	fitted mortality rates in log-scale.	
df	effective dimension.	
dev	Poisson Deviance.	
aic	Akaike's Information Criterion.	
bic	Bayesian Information Criterion.	
psi2	Overdispersion parameter.	
lambdas	the selected (given) smoothing parameters.	
call	the matched call.	
m	length of argument x.	
n	length of argument y.	
tolerance	the used tolerance level.	
lev	diagonal of the hat-matrix.	
ndx	the number of internal knots -1 for each axis.	
deg	degree of the B-splines for each axis.	
pord	order of difference for each axis.	
x	vector for the abscissa of data.	
У	vector for the ordinate of data.	
Z	matrix of counts response.	
offset	matrix with an a priori known component.	
W	matrix of weights.	
Bx	the B-splines basis over x.	
Ву	the B-splines basis over y.	

Author(s)

Carlo G Camarda

References

Camarda, C. G. (2012). MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines. *Journal of Statistical Software*. 50, 1-24. http://www.jstatsoft.org/v50/i01/.

Currie, I. D., M. Durban, and P. H. C. Eilers (2006). Generalized linear array models with applications to multidimentional smoothing. *Journal of the Royal Statistical Society. Series B*. 68, 259-280.

Eilers, P. H. C., I. D. Currie, and M. Durban (2006). Fast and compact smoothing on large multidimensional grids. *Computational Statistics & Data Analysis*. 50, 61-76.

16

See Also

predict.Mort2Dsmooth, plot.Mort2Dsmooth.

Examples

```
## selected data
ages <- 50:100
years <- 1950:2006
death <- selectHMDdata("Sweden", "Deaths", "Females",</pre>
                       ages = ages, years = years)
exposure <- selectHMDdata("Sweden", "Exposures", "Females",</pre>
                           ages = ages, years = years)
## fit with BIC
fitBIC <- Mort2Dsmooth(x=ages, y=years, Z=death,</pre>
                       offset=log(exposure))
fitBIC
summary(fitBIC)
## plot age 50 log death rates (1st row)
plot(years, log(death[1,]/exposure[1,]),
     main="Mortality rates, log-scale.
           Swedish females, age 50, 1950:2006")
lines(years, fitBIC$logmortality[1,], col=2, lwd=2)
## plot over age and years
## fitted log death rates from fitBIC
grid. <- expand.grid(list(ages=ages, years=years))</pre>
grid.$lmx <- c(fitBIC$logmortality)</pre>
levelplot(lmx ~ years * ages , grid.,
          at=quantile(grid.$lmx, seq(0,1,length=10)),
          col.regions=rainbow(9))
## see vignettes for examples on
## - Extra-Poisson variation
## - interpolation
## - extrapolation
```

Mort2Dsmooth_checker Check Arguments for Function Mort2Dsmooth

Description

This is an internal function of package MortalitySmooth which checks whether the arguments given in the function Mort2Dsmooth have proper lengths and suitability.

Usage

Arguments

Х	vector for the abscissa of data.
У	vector for the ordinate of data.
Z	matrix of counts response.
offset	matrix with an a priori known component.
W	an optional matrix of weights to be used in the fitting process.
overdispersion	logical on the accounting for overdisperion.
ndx	vector with the number of internal knots -1 for each axis.
deg	vector with the degree of the B-splines for each axis.
pord	vector with the order of differences for each axis.
lambdas	vector with smoothing parameters, possibly one for axis.
df	a number which specifies the degrees of freedom.
method	the method for controlling the amount of smoothing.
coefstart	a matrix with the eventual starting coefficients.
control	a list of control parameters.

Details

Internal function used in Mort2Dsmooth for checking its arguments.

Value

A list with checked elements to be used in Mort2Dsmooth.

Author(s)

Carlo G Camarda

See Also

Mort2Dsmooth.

Mort2Dsmooth_estimate Estimate 2D P-splines for two given lambdas

Description

This is an internal function of package MortalitySmooth which estimates coefficients and computes diagnostics for two-dimensional penalized B-splines for two given smoothing parameters within the function Mort2Dsmooth.

Usage

Arguments

х	vector for the abscissa of data.
У	vector for the ordinate of data.
Z	matrix of counts response.
offset	matrix with an a priori known component (optional).
psi2	overdispersion parameter.
wei	an optional matrix of weights to be used in the fitting process.
Bx	B-splines basis for the x-axis.
Ву	B-splines basis for the y-axis.
nbx	number of B-splines for the x-axis.
nby	number of B-splines for the y-axis.
RTBx	tensors product of B-splines basis for the x-axis.
RTBy	tensors product of B-splines basis for the y-axis.
lambdas	vector with the two smoothing parameters.
Px	penalty factor for the x-axis.
Ру	penalty factor for the y-axis.
a.init	matrix with the initial coefficients.
MON	logical switch indicating if monitoring is required.
TOL1	the tolerance level in the IWLS algorithm.
MAX.IT	the maximum number of iterations.

Details

Internal function used in Mort2Dsmooth for estimating coefficients and computing diagnostics.

Value

A list with components:

а	fitted coefficients (in a matrix).
h	diagonal of the hat-matrix.
df	effective dimension of used degree of freedom.
aic	Akaike's Information Criterion.
bic	Bayesian Information Criterion.
dev	Poisson deviance.
tol	tolerance level.
BWB	inner product of basis and weights.
Р	penalty matrix.

Author(s)

Carlo G Camarda

See Also

Mort2Dsmooth_update, Mort2Dsmooth.

Mort2Dsmooth_optimize Optimize a 2D Penalized-Poisson IWLS over smoothing parameters

Description

This is an internal function of package MortalitySmooth which optimizes the smoothing parameter for penalized B-splines within the function Mort2Dsmooth.

Usage

20

Arguments

х	vector for the abscissa of data.
У	vector for the ordinate of data.
Z	matrix of counts response.
offset	matrix with an a priori known component (optional).
wei	an optional matrix of weights to be used in the fitting process.
psi2	overdispersion parameter.
Bx	B-splines basis for the x-axis.
Ву	B-splines basis for the y-axis.
nbx	number of B-splines for the x-axis.
nby	number of B-splines for the y-axis.
RTBx	tensors product of B-splines basis for the x-axis.
RTBy	tensors product of B-splines basis for the y-axis.
Px	penalty factor for the x-axis.
Ру	penalty factor for the y-axis.
a.init	matrix with the initial coefficients.
MON	Logical switch indicating if monitoring is required.
TOL1	The tolerance level in the IWLS algorithm.
TOL2	difference between two adjacent smoothing parameters in the grid search, log-scale.
RANGEx	range in which smoothing parameter for x should be searched.
RANGEy	range in which smoothing parameter for y should be searched.
MAX.IT	the maximum number of iterations
MET	the method for controlling the amount of smoothing

Details

The function aims to find the optimal smoothing parameters within the given RANGEx and RANGEy in Mort2Dsmooth with method equal to 1 or 2 (BIC and AIC). It employs the function cleversearch from package svcm in two separate steps. First it searches using a rough grid (4 times TOL2) and the median of RANGEx and RANGEy as starting lambdas. Afterwards it searches in the restricted areas around the sub-optimal smoothing parameters, using a finer grid defined by TOL2.

This procedure allows to find precise smoothing parameters in an efficient way: we do not explore the full ranges of possible lambda values, but we optimize each parameter in turn, moving at most one grid step up or down. Furthermore the two steps routine reduces the risk of finding sub-optimal smoothing parameters.

Author(s)

Carlo G Camarda

References

Camarda, C. G. (2012). MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines. *Journal of Statistical Software*. 50, 1-24. http://www.jstatsoft.org/v50/i01/.

See Also

Mort2Dsmooth_update, Mort2Dsmooth_estimate, Mort2Dsmooth.

Mort2Dsmooth_se Compute a 2D standard errors

Description

This is an internal function of package MortalitySmooth which calculates the inner product of a matrix (from a Kronecker product) and a sparse weight matrix in order to obtain standard errors. It uses the same idea employed in MortSmooth.BWB and the elements after the IWLS converged, including the penalty term.

Usage

Mort2Dsmooth_se(RTBx, RTBy, nbx, nby, BWB.P1)

Arguments

RTBx	tensors product of B-splines basis for the x-axis.
RTBy	tensors product of B-splines basis for the y-axis.
nbx	number of B-splines for the x-axis.
nby	number of B-splines for the y-axis.
BWB.P1	inverse of the LHS of the Poisson system of equations.

Details

This function is only used within predict.Mort2Dsmooth when standard errors are required. The arguments BWB.P1 is the LHS after convergence is reached and smoothing parameter selected. The standard errors as given in the function are computed for the linear predictor term and simple computation is needed to obtain standard errors for the Poisson counts. Anyway predict.Mort2Dsmooth takes care of such differences.

The Generalized Linear Array Models setting is explained in the reference in MortSmooth_BWB and Mort2Dsmooth.

Value

A matrix of standard errors for the linear predictor term.

Author(s)

Carlo G Camarda

See Also

Mort2Dsmooth, MortSmooth_BWB, predict.Mort2Dsmooth.

Mort2Dsmooth_update Update a 2D Penalized-Poisson Iteration

Description

This is an internal function of package MortalitySmooth which update coefficients for penalized B-splines for two given smoothing parameters within the function Mort2Dsmooth.

Usage

Arguments

х	vector for the abscissa of data.
У	vector for the ordinate of data.
Z	matrix of counts response.
offset	matrix with an a priori known component (optional).
wei	an optional matrix of weights to be used in the fitting process.
psi2	overdispersion parameter.
Bx	B-splines basis for the x-axis.
Ву	B-splines basis for the y-axis.
nbx	number of B-splines for the x-axis.
nby	number of B-splines for the y-axis.
RTBx	tensors product of B-splines basis for the x-axis.
RTBy	tensors product of B-splines basis for the y-axis.
Р	penalty factor.
а	coefficients (in a matrix).

Details

Internal function used for updating a matrix coefficients of the B-splines in 2D Poisson penalized B-splines model.

Value

A matrix of updated coefficients.

Author(s)

Carlo G Camarda

See Also

Mort2Dsmooth.

MortSmooth_bbase Construct B-spline basis

Description

This is an internal function of package MortalitySmooth which creates equally-spaced B-splines basis over an abscissa of data within the function Mort1Dsmooth.

Usage

MortSmooth_bbase(x, x1, xr, ndx, deg)

Arguments

x	vector for the abscissa of data.
xl	left boundary.
xr	right boundary.
ndx	number of internal knots minus one or number of internal intervals.
deg	degree of the splines.

Details

The function reproduce an algorithm presented by Eilers and Marx (2010) using differences of truncated power functions (see MortSmooth_tpower). The final matrix has a single B-spline for each of the [ndx + deg] columns. The number of rows is equal to the length of x.

The function differs from bs in the package splines since it automatically constructed B-splines with identical shape. This would allow a simple interpretation of coefficients and application of simple differencing.

Value

A matrix containing equally-spaced B-splines of degree deg along x for each column.

Author(s)

Carlo G Camarda

MortSmooth_BcoefB

References

Eilers P. H. C. and B. D. Marx (2010). Splines, Knots, and Penalties. *Wiley Interdisciplinary Reviews: Computational Statistics*. 2, 637-653.

See Also

MortSmooth_tpower.

Examples

MortSmooth_BcoefB *Multiply a matrix (from a kronecker product) by a matrix*

Description

This is an internal function of package MortalitySmooth which compute the linear predictor and the RHS of the IWLS algorithm for 2D penalized B-splines within the function Mort2Dsmooth.

Usage

```
MortSmooth_BcoefB(X1, X2, mat)
```

Arguments

X1	first marginal matrix.
X2	second marginal matrix.
mat	matrix to be multiplied.

Details

Internal function used for computing elements within the Mort2Dsmooth function.

Value

A matrix that multiplies X1 by mat and the transpose of X2.

Author(s)

Carlo G Camarda

See Also

Mort2Dsmooth, Mort2Dsmooth_estimate.

MortSmooth_BWB Calculates the inner product of a matrix and a sparse weight matrix

Description

This is an internal function of package MortalitySmooth which calculates the inner product of a matrix (from a Kronecker product) and a sparse weight matrix within the function Mort2Dsmooth. It construct the LHD of the IWLS algorithm following the idea proposed in the Generalized Linear Array Models (see references).

Usage

MortSmooth_BWB(RTBx, RTBy, nbx, nby, W)

Arguments

RTBx	tensors product of B-splines basis for the x-axis.
RTBy	tensors product of B-splines basis for the y-axis.
nbx	number of B-splines for the x-axis.
nby	number of B-splines for the y-axis.
W	matrix of weights.

Details

The function employs an arithmetic of arrays which allows to define the LHS of the Poisson system of equations as a sequence of nested matrix operations. Such way of operating with arrays leads to low storage and high speed computation when data are structure as array.

Value

A matrix of inner product of a matrix and a sparse weight matrix.

Author(s)

Carlo G Camarda

MortSmooth_tpower

References

Eilers, P. H. C., I. D. Currie, and M. Durban (2006). Fast and compact smoothing on large multidimensional grids. *Computational Statistics & Data Analysis*. 50, 61-76.

Currie, I. D., M. Durban, and P. H. C. Eilers (2006). Generalized linear array models with applications to multidimentional smoothing. *Journal of the Royal Statistical Society. Series B*. 68, 259-280.

See Also

Mort2Dsmooth, Mort2Dsmooth_estimate, Mort2Dsmooth_update.

MortSmooth_tpower Truncated p-th Power Function

Description

This is an internal function of package MortalitySmooth which constructs a truncated *p*-th power function along an abscissa within the function MortSmooth_bbase

Usage

MortSmooth_tpower(x, t, p)

Arguments

х	vector for the abscissa of data.
t	vector of truncation points.
р	degree of the power.

Details

Internal function used in MortSmooth_bbase. The vector t contains the knots. The simplest system of truncated power functions uses p = 0 and it consists of step functions with jumps of size 1 at the truncation points t.

Author(s)

Carlo G Camarda

References

Eilers P. H. C. and B. D. Marx (2010). Splines, Knots, and Penalties. *Wiley Interdisciplinary Reviews: Computational Statistics*. 2, 637-653.

See Also

MortSmooth_bbase.

Examples

```
x <- seq(0,1,length=100)
f1 <- MortSmooth_tpower(x=x, t=0.1, p=3)
f2 <- MortSmooth_tpower(x=x, t=0.2, p=3)
f3 <- MortSmooth_tpower(x=x, t=0.3, p=3)
## Truncated 3rd power functions equally-spaced
plot(x, f1, t="1",
            main="Truncated 3rd power functions equally-spaced")
lines(x, f2, col=2)
lines(x, f3, col=3)</pre>
```

plot	.HMDdata	Plot age	and year	specific	demogr	aphic	data

Description

Plot one or two-dimensional mortality data from a HMDdata object created by selectHMDdata.

Usage

S3 method for class 'HMDdata'
plot(x, ...)

Arguments

х	a HMDdata object.
	other plotting parameters. Either passed to plot in a one-dimensional plot or passed to levelplot in a two-dimensional surface.

Details

The function needs HMDdata to be uploaded.

A HMDdata object can be produced by selectHMDdata.

The function recognizes the HMDdata object, its dimensions and its attributes (country, type of data and sex). Given the dimensions of the object the function plot either a simple unidimensional plot or a more complex shaded contour map over age and years.

Note that rates are automatically plotted in log-scale.

Value

None. Function produces a plot.

Author(s)

Carlo G Camarda

28

plot.Mort1Dsmooth

See Also

HMDdata, selectHMDdata.

Examples

```
## 1-D plot
popDENf <- selectHMDdata("Denmark", "Population",</pre>
                       "Females", 50:100, 2000)
plot(popDENf, main="Danish female population, 2000",
    xlab="ages", pch=2, col=2)
plot(ratDENf, main="Danish female log death rates, 2000",
    xlab="ages")
## 2-D plot
years <- 1950:2000
ages <- 0:100
popJAPf <- selectHMDdata("Japan", "Population", "Females",</pre>
                       ages, years)
plot(popJAPf, main="Japanese female population")
ratSWEf <- selectHMDdata("Sweden", "Rates", "Females")</pre>
plot(ratSWEf, main="Swedish female log death rates")
```

ļ	olot.Mort1Dsmooth	Plot	of the	e Mort.	1Dsmooth	outcomes

Description

It produces a plot where the x-axis is the predictor of the given Mort1Dsmooth object and the y-axis is both actual and fitted log-rates, or actual and fitted counts.

Usage

S3 method for class 'Mort1Dsmooth'
plot(x, Type = c("logrates", "deaths"), ...)

Arguments

х	an object of class "Mort1Dsmooth", usually, a result of a call to Mort1Dsmooth.
Туре	the type of plot which should be returned. The alternatives are: logrates (default) and death.
	other plotting parameters passed to plot. Not in used.

Details

The function provides a simple tool for checking the outcomes of a Mort1Dsmooth object. In a Poisson setting, one would commonly look at rates in log-scale, but actual and fitted counts can be plotted too.

Plotting parameters are given and cannot be changed.

Value

None. Function produces a plot

Author(s)

Carlo G Camarda

See Also

Mort1Dsmooth for computing Mort1Dsmooth.object.

Examples

plot.Mort2Dsmooth Plot of the Mort2Dsmooth outcomes

Description

It produces two level plots, side-by-side, where the x- and y-axis are the predictors (x and y) of the given Mort2Dsmooth object and the numeric response is either the matrices of actual and fitted log-rates, or the matrices of actual and fitted counts.

Usage

Arguments

x	an object of class "Mort2Dsmooth", usually, a result of a call to ${\tt Mort2Dsmooth}.$
type	the type of plot which should be returned. The alternatives are: logrates (default) and death.
palette	a string with the color palette for creating a vector of contiguous colors. Default: rainbow.
	other plotting parameters passed to levelplot. Not in used.

Details

The function provides a simple tool for checking the outcomes of a Mort2Dsmooth object. In a Poisson setting, one would commonly look at rates in log-scale, but actual and fitted counts can be plotted too.

The function uses levelplot from package lattice to construct the two level plots side-by-side. Plotting parameters are given and cannot be changed. The only expection is the color palette: five different palletes are available and described in the associated documentation: the default rainbow as well as heat.colors, terrain.colors, topo.colors, and cm.colors.

A palette with 9 colors is chosen and the breaks for the level plot are chosen according to the deciles of distributions of actual and fitted log-rates (counts).

Value

None. Function produces a plot.

Author(s)

Carlo G Camarda

See Also

Mort2Dsmooth for computing Mort2Dsmooth.object.

Examples

predict.Mort1Dsmooth Predict Method for 1D P-splines Fits

Description

Obtains predictions, forecasts and optionally estimated standard errors of those predictions from a fitted Mort1Dsmooth object.

Usage

```
## S3 method for class 'Mort1Dsmooth'
predict(object, newdata = NULL,
        type = c("link", "response"),
        se.fit = FALSE, ...)
```

Arguments

object	an object of class "Mort1Dsmooth", usually, a result of a call to Mort1Dsmooth.
newdata	optionally, a vector in which to look for x with which to predict. If omitted, the fitted linear predictors are used.
type	the type of prediction required. The default ("link") is on the scale of the linear predictors; the alternative "response" is on the scale of the response variable.
se.fit	logical switch indicating if standard errors are required. Default: FALSE.
	other predict parameters to passed to predict. Not in used.

32

Details

If newdata is omitted the predictions are based on the data used for the fit. Note that, in common with other prediction functions, any offset supplied as an argument is always ignored when predicting, unlike offsets specified in modelling.

Forecast is possible, therefore newdata can include values out of the range of the original x. See example below.

Interpolation is also feasible. See example below.

It is noteworthy to point out that when interpolating the B-spline coefficients form a polynomial sequence of degree 2*pord-1, and for extrapolation/forecasting the degree is pord-1. For the default order of differences in Mort1Dsmooth which is pord=2, one has a cubic interpolation and a linear extrapolation.

Value

If se.fit = FALSE, a vector of predictions. If se.fit = TRUE, a list with components:

fit	predictions.
se.fit	estimated standard errors.

Author(s)

Carlo G Camarda

References

Camarda, C. G. (2012). MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines. *Journal of Statistical Software*. 50, 1-24. http://www.jstatsoft.org/v50/i01/.

See Also

Mort1Dsmooth for computing Mort1Dsmooth.object.

Examples

```
## and 95% confidence interval
plot(years, log(death/exposure),
     xlim=range(years.new), ylim=range(pred$fit))
lines(years.new, pred$fit, lwd=2, col=2)
lines(years.new, pred$fit + 2*pred$se.fit, lty=2, col=2)
lines(years.new, pred$fit - 2*pred$se.fit, lty=2, col=2)
## interpolation+extrapolating example over years
## selected+summed data
years0 <- 1860:2004
death0 <- selectHMDdata("Sweden", "Deaths",</pre>
                         "Females", 50, years0)
death <- c(rowsum(death0, gl(length(death0),</pre>
                              5, length(death0)))
exposure0 <- selectHMDdata("Sweden", "Exposures",</pre>
                             "Females", 50, years0)
exposure <- c(rowsum(exposure0, gl(length(exposure0),</pre>
                                     5, length(exposure0))))
years <- seq(1862, 2002, 5)
## fit
fit <- Mort1Dsmooth(x=years, y=death, offset=log(exposure))</pre>
## predict the model for each year
pre <- predict(fit, newdata=years0,</pre>
                se.fit=TRUE)
## plot log-rates
plot(years, log(death/exposure))
## add fitted log-rates from fit
## (every fifth year)
points(years, log(fit$fitted/exposure),
       pch=16, col=2)
## add to the plot fit and 95% confidence interval
## (every single year)
points(years0, pre$fit, col=4)
lines(years0, pre$fit + 2*pre$se, col=4)
lines(years0, pre$fit - 2*pre$se, col=4)
## interpolation+extrapolating example over ages
## selected+summed data
year <- 1965
death1.4 <- sum(selectHMDdata("Swi", "Deaths",</pre>
                                "Males", 1:4, year))
death5.99 <- colSums(matrix(selectHMDdata("Swi",</pre>
                                             "Deaths"
                                            "Males",
                                            5:99, year),
                             nrow=5))
death <- c(death1.4, death5.99)</pre>
exposure1.4 <- sum(selectHMDdata("Swi", "Exposures",</pre>
                                   "Males", 1:4, year))
exposure5.99 <- colSums(matrix(selectHMDdata("Swi",</pre>
                                                "Exposures",
                                                "Males",
                                                5:99, year),
```

```
nrow=5))
exposure <- c(exposure1.4, exposure5.99)</pre>
ages <- c(2.5, seq(7, 97, 5))
## fit
fit <- Mort1Dsmooth(x=ages, y=death, offset=log(exposure),</pre>
                    ndx=10)
## since the aim is to interpolate FEW data-points
## we use a large number of B-splines allows a precise,
## but not parsimonius, description
## predict the model for each age
newages <- 1:100
pre <- predict(fit, newdata=newages,</pre>
               se.fit=TRUE)
## plot log-rates
plot(ages, log(death/exposure), pch=16)
## add fitted log-rates from fit
## (every fifth age)
points(ages, log(fit$fitted/exposure),
       pch=16, col=2)
## add to the plot fit and 95% confidence interval
## (every single year)
points(newages, pre$fit, col=4, t="o")
lines(newages, pre$fit + 2*pre$se, col=4)
lines(newages, pre$fit - 2*pre$se, col=4)
```

predict.Mort2Dsmooth Predict Method for 2D P-splines Fits

Description

Obtains predictions, forecasts and optionally estimated standard errors of those predictions from a fitted Mort2Dsmooth object.

Usage

```
## S3 method for class 'Mort2Dsmooth'
predict(object, newdata = NULL,
        type = c("link", "response"),
        se.fit = FALSE, ...)
```

Arguments

object	an object of class "Mort2Dsmooth", usually, a result of a call to $Mort2Dsmooth$.
newdata	optionally, a list in which to look for x and/or y with which to predict. If omitted, the fitted linear predictors are used.
type	the type of prediction required. The default ("link") is on the scale of the linear predictors; the alternative "response" is on the scale of the response variable.

se.fit	logical switch indicating if standard errors are required. Default: FALSE.
	other predict parameters to passed to predict. Not in used.

Details

If newdata is omitted the predictions are based on the data used for the fit. Note that, in common with other prediction functions, any offset supplied as an argument is always ignored when predicting, unlike offsets specified in modelling.

The user can provide also a single predictor (either x or y) within the argument newdata. The name within the list newdata must be named x and y.

Forecast is possible, therefore newdata can include values out of the range of the original x and y. See example below.

Interpolation is also feasible. See example below.

Value

If se.fit = FALSE, a matrix of predictions. If se.fit = TRUE, a list with components:

fit	a matrix of predictions.
se.fit	a matrix of estimated standard errors.

Author(s)

Carlo G Camarda

References

Camarda, C. G. (2012). MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines. *Journal of Statistical Software*. 50, 1-24. http://www.jstatsoft.org/v50/i01/.

Currie, I. D., M. Durban, and P. H. C. Eilers (2004). Smoothing and forecasting mortality rates. *Statistical Modelling*. 4, 279-298.

See Also

Mort2Dsmooth for computing Mort2Dsmooth.object.

Examples

```
method=3, lambdas=c(100,500))
## predict and computing standard errors
pre <- predict(fit, se.fit=TRUE)</pre>
## plotting over ages and years 95% confidence intervals
## !hard to distinguish between upper
## and lower confidence bounds
grid. <- expand.grid(x = ages, y = years, gr = 1:2)</pre>
grid.$lmx <- c(c(pre$fit - 2*pre$se.fit),</pre>
               c(pre$fit + 2*pre$se.fit))
wireframe(lmx ~ x * y, data = grid., groups = gr,
          scales = list(arrows = FALSE),
          drape = TRUE, colorkey = TRUE)
## plotting age 80 (first row)
plot(years, log(death[1,] / exposure[1,]),
     main="Mortality rates, log-scale.
           Danish females, age 80, 1980:2006")
lines(years, pre$fit[1,], lwd=2, col=2)
lines(years, pre$fit[1,] + 2*pre$se.fit[1,],
      lwd=2, col=2, lty=2)
lines(years, pre$fit[1,] - 2*pre$se.fit[1,],
      lwd=2, col=2, lty=2)
## forecasting example
newyears <- 1980:2020
newdata <- list(x=ages, y=newyears)</pre>
pre.for <- predict(fit, newdata=newdata, se.fit=TRUE)</pre>
## plot fitted+forecast log-rates for all ages over years
matplot(years, t(log(death/exposure)), pch=1, cex=0.5,
        col=rainbow(length(ages)),
        xlim=range(newyears),
        ylim=range(pre.for$fit),
        ylab="log-mortality")
matlines(newyears, t(pre.for$fit), lty=1, lwd=2,
        col=rainbow(length(ages)))
## plot selected ages over years, with 95% confidence intervals
whiA <- c(1,6,11)
matplot(years, t(log(death[whiA,]/exposure[whiA,])),
        pch=1,
        xlim=range(newyears),
        ylim=c(-3.3, -1.5),
        ylab="log-mortality")
matlines(newyears, t(pre.for$fit[whiA,]), lty=1, lwd=2)
matlines(newyears, t(pre.for$fit[whiA,]+
                     2*pre.for$se.fit[whiA,]), lty=2)
matlines(newyears, t(pre.for$fit[whiA,]-
                     2*pre.for$se.fit[whiA,]), lty=2)
```

residuals.Mort1Dsmooth

Extract 1D P-splines Model Residuals

Description

Extracting different types of residuals from a Mort1Dsmooth object.

Usage

Arguments

object	an object of class "Mort1Dsmooth", usually, a result of a call to Mort1Dsmooth.
type	the type of residuals which should be returned. The alternatives are: "deviance" (default), "anscombe", "pearson" and "working".
	Further arguments passed to or from other methods. Not in used. Not in use.

Details

The references define the types of residuals.

The way of computing the residuals are described in Section 2.4 of McCullagh and Nelder's book. The working residuals are merely the differences between fitted and actual counts.

Value

A vector of the selected type of residuals for each of the predictor in the Mort1Dsmooth object.

38

Author(s)

Carlo G Camarda

References

Davison, A. C. and Snell, E. J. (1991). *Residuals and diagnostics*. In: Statistical Theory and Modelling. In Honour of Sir David Cox, FRS, eds. Hinkley, D. V., Reid, N. and Snell, E. J., Chapman & Hall.

McCullagh P. and Nelder, J. A. (1989). Generalized Linear Models. London: Chapman & Hall.

See Also

Mort1Dsmooth for computing Mort1Dsmooth.object.

Examples

```
## selected data
years <- 1970:2006
death <- selectHMDdata("Denmark", "Deaths", "Females",</pre>
                         ages = 60, years = years)
exposure <- selectHMDdata("Denmark", "Exposures", "Females",</pre>
                            ages = 60, years = years)
## fit
fit <- Mort1Dsmooth(x=years, y=death, offset=log(exposure),</pre>
                     method=3, lambda=1000)
## extracting residuals
devR <- resid(fit, type="deviance")</pre>
ansR <- resid(fit, type="anscombe")</pre>
peaR <- resid(fit, type="pearson")</pre>
worR <- resid(fit, type="working")</pre>
## summaries
summary(devR)
summary(ansR)
summary(peaR)
summary(worR)
```

residuals.Mort2Dsmooth

Extract 2D P-splines Model Residuals

Description

Extracting different types of residuals from a Mort2Dsmooth object.

Usage

Arguments

object	An object of class "Mort2Dsmooth", usually, a result of a call to Mort2Dsmooth.
type	The type of residuals which should be returned. The alternatives are: "deviance" (default), "anscombe", "pearson" and "working".
•••	Further arguments passed to or from other methods. Not in used. Not in use.

Details

The references define the types of residuals.

The way of computing the residuals are described in Section 2.4 of McCullagh and Nelder's book. The working residuals are merely the differences between fitted and actual counts.

Value

A matrix of the selected type of residuals over both the x and the y axes in the Mort2Dsmooth object.

Author(s)

Carlo G Camarda

References

Davison, A. C. and Snell, E. J. (1991). *Residuals and diagnostics*. In: Statistical Theory and Modelling. In Honour of Sir David Cox, FRS, eds. Hinkley, D. V., Reid, N. and Snell, E. J., Chapman & Hall.

McCullagh P. and Nelder, J. A. (1989). Generalized Linear Models. London: Chapman & Hall.

See Also

Mort2Dsmooth for computing Mort2Dsmooth.object.

Examples

40

selectHMDdata

Selecting Data from the HMDdata Object

Description

Creates subset of the HMDdata object.

Usage

Arguments

country	character string for the country name.
data	character string showing type of demographic series: either "Population", "Deaths", "Exposures" or "Rates". Default value "Population".
sex	character string showing sex of demographic series: either "Females", "Males" or "Total". Default value "Females".
ages	vector of ages to extract from data. If it is NULL, all ages will be selected.
years	vector of years to extract from data. If it is NULL, all available years will be selected.

Details

HMDdata are loaded with the package.

Country names is not case-sensitive and initials can be used. However, distinguishable country name is necessary. Type of data and sex are case-sensitive and initials can be used.

Available ages are always from 0 to 110, whereas years depends on the country. Warning massages will be provided in case of selected default values. Attributes about country, data and sex will be given to the outcome.

Value

Matrix object from HMDdata with a subset of country, type of data, sex, ages and years.

Author(s)

Carlo G Camarda

References

Camarda, C. G. (2012). MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines. *Journal of Statistical Software*. 50, 1-24. http://www.jstatsoft.org/v50/i01/.

See Also

HMDdata.

Examples

```
## "Complete" example
x <- 1950:2000
den50 <- selectHMDdata("Denmark", "Death", "Females", 50, x)
plot(x, den50, main="Danish female deaths at age 50")
## "Incomplete" example with warning
jap50 <- selectHMDdata("jap", "Pop", "F", 50)
## Wrong example (don't run)
## selectHMDdata("Sw", "Pop", "F", 50, 2000)
## Sw can stand for both Sweden and Switzerland</pre>
```

summary.Mort1Dsmooth Summary for Mort1Dsmooth objects

Description

Summarizes the Poisson P-spline model fitted to a unidimensional data. It returns various settings and measures.

summary.Mort1Dsmooth

Usage

```
## S3 method for class 'Mort1Dsmooth'
summary(object, ...)
```

Arguments

object	an object of class "Mort1Dsmooth", usually, a result of a call to Mort1Dsmooth.
	further arguments passed to or from other methods.

Details

print.summary.Mort1Dsmooth tries to be smart about formatting settings, outcomes, etc. After the matched call, the function presents several outcomes of the model, such as AIC, BIC, effective dimension, selected smoothing parameter, overdispersion parameter and a summary of the deviance residuals. The last lines show specifications and control parameters of the fitted model.

Value

It produces an object of class summary.Mort1Dsmooth which contains exactly the same components of the associated Mort1Dsmooth object.

Author(s)

Carlo G Camarda

See Also

Mort1Dsmooth.

Examples

summary.Mort2Dsmooth Summary for Mort2Dsmooth objects

Description

Summarizes the Poisson P-spline model fitted to a two-dimensional data. It returns various settings and measures.

Usage

S3 method for class 'Mort2Dsmooth'
summary(object, ...)

Arguments

object	an object of class "Mort2Dsmooth", usually, a result of a call to Mort2Dsmooth
	further arguments passed to or from other methods.

Details

print.summary.Mort2Dsmooth tries to be smart about formatting settings, outcomes, etc. After the matched call, the function presents several outcomes of the model, such as AIC, BIC, effective dimension, selected smoothing parameters, overdispersion parameter and a summary of the deviance residuals. The last lines show specifications and control parameters of the fitted model on both axes.

Value

It produces an object of class summary. Mort2Dsmooth which contains exactly the same components of the associated Mort2Dsmooth object.

Author(s)

Carlo G Camarda

See Also

Mort2Dsmooth.

Examples

Index

*Topic datasets HMDdata, 3 selectHMDdata, 41 *Topic **hplot** plot.HMDdata, 28 plot.Mort1Dsmooth, 29 plot.Mort2Dsmooth, 30 *Topic **models** Mort1Dsmooth, 4 Mort2Dsmooth, 13 predict.Mort1Dsmooth, 32 predict.Mort2Dsmooth, 35 residuals.Mort1Dsmooth.38 residuals.Mort2Dsmooth, 39 summary.Mort1Dsmooth, 42 summary.Mort2Dsmooth, 44 *Topic package MortalitySmooth-package, 2 *Topic **regression** Mort1Dsmooth, 4 Mort2Dsmooth, 13 Mort2Dsmooth_se, 22 MortSmooth_BWB, 26 plot.Mort1Dsmooth, 29 plot.Mort2Dsmooth, 30 predict.Mort1Dsmooth, 32 predict.Mort2Dsmooth, 35 residuals.Mort1Dsmooth, 38 residuals.Mort2Dsmooth, 39 summary.Mort1Dsmooth, 42 summary.Mort2Dsmooth, 44 *Topic smooth Mort1Dsmooth, 4 Mort1Dsmooth_checker, 8 Mort1Dsmooth_estimate, 10 Mort1Dsmooth_optimize, 11 Mort1Dsmooth_update, 12 Mort2Dsmooth, 13 Mort2Dsmooth_checker, 17

Mort2Dsmooth_estimate, 19 Mort2Dsmooth_optimize, 20 Mort2Dsmooth_se, 22 Mort2Dsmooth_update, 23 MortSmooth_bbase, 24 MortSmooth BcoefB. 25 MortSmooth_BWB, 26 MortSmooth_tpower, 27 plot.Mort1Dsmooth, 29 plot.Mort2Dsmooth, 30 predict.Mort1Dsmooth, 32 predict.Mort2Dsmooth, 35 residuals.Mort1Dsmooth, 38 residuals.Mort2Dsmooth, 39 summary.Mort1Dsmooth, 42 summary.Mort2Dsmooth, 44

HMDdata, 3, 28, 29, 42

Mort1Dsmooth, 4, 9–13, 30, 33, 39, 43 Mort1Dsmooth_checker, 8 Mort1Dsmooth_estimate, 10, 12 Mort1Dsmooth_optimize, 7, 8, 11 Mort1Dsmooth_update, 11, 12, 12 Mort2Dsmooth, 13, 18-27, 31, 36, 40, 44 Mort2Dsmooth_checker, 17 Mort2Dsmooth_estimate, 19, 22, 26, 27 Mort2Dsmooth_optimize, 15, 20 Mort2Dsmooth_se, 22 Mort2Dsmooth_update, 20, 22, 23, 27 MortalitySmooth (MortalitySmooth-package), 2 MortalitySmooth-package, 2 MortSmooth_bbase, 24, 27 MortSmooth_BcoefB, 25 MortSmooth_BWB, 22, 23, 26 MortSmooth_tpower, 24, 25, 27

plot.HMDdata, 28
plot.Mort1Dsmooth, 6, 8, 29

INDEX

plot.Mort2Dsmooth, 14, 17, 30
predict.Mort1Dsmooth, 6, 8, 32
predict.Mort2Dsmooth, 14, 17, 22, 23, 35
print.Mort1Dsmooth, 6
print.Mort1Dsmooth (Mort1Dsmooth), 4
print.Mort2Dsmooth (Mort2Dsmooth), 13
print.summary.Mort1Dsmooth
 (summary.Mort2Dsmooth), 42
print.summary.Mort2Dsmooth), 44

residuals.Mort1Dsmooth, 6, 38 residuals.Mort2Dsmooth, 14, 39

selectHMDdata, 4, 29, 41
summary.Mort1Dsmooth, 6, 42
summary.Mort2Dsmooth, 14, 44