Learning, manipulation and evaluation of mixtures of truncated basis functions (MoTBFs), which include mixtures of polynomials (MOPs) and mixtures of truncated exponentials (MTEs). MoTBFs are a flexible framework for modelling hybrid Bayesian networks (I. Pérez-Bernabé, A. Salmerón, H. Langseth (2015) <doi:10.1007/978-3-319-20807-7_36>; H. Langseth, T.D. Nielsen, I. Pérez-Bernabé, A. Salmerón (2014) <doi:10.1016/j.ijar.2013.09.012>; I. Pérez-Bernabé, A. Fernández, R. Rumí, A. Salmerón (2016) <doi:10.1007/s10618-015-0429-7>). The package provides functionality for learning univariate, multivariate and conditional densities, with the possibility of incorporating prior knowledge. Structural learning of hybrid Bayesian networks is also provided. A set of useful tools is provided, including plotting, printing and likelihood evaluation. This package makes use of S3 objects, with two new classes called 'motbf' and 'jointmotbf'.
Version: | 1.4 |
Depends: | R (≥ 3.2.0) |
Imports: | quadprog, lpSolve, bnlearn, methods, ggm, Matrix |
Published: | 2020-06-19 |
Author: | Inmaculada Pérez-Bernabé, Antonio Salmerón, Thomas D. Nielsen, Ana D. Maldonado |
Maintainer: | Ana D. Maldonado <ana.d.maldonado at ual.es> |
License: | LGPL-3 |
NeedsCompilation: | yes |
CRAN checks: | MoTBFs results |
Reference manual: | MoTBFs.pdf |
Package source: | MoTBFs_1.4.tar.gz |
Windows binaries: | r-devel: MoTBFs_1.4.zip, r-release: MoTBFs_1.4.zip, r-oldrel: MoTBFs_1.4.zip |
macOS binaries: | r-release: MoTBFs_1.4.tgz, r-oldrel: MoTBFs_1.4.tgz |
Old sources: | MoTBFs archive |
Please use the canonical form https://CRAN.R-project.org/package=MoTBFs to link to this page.